xref: /linux/kernel/time/vsyscall.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 ARM Ltd.
4  *
5  * Generic implementation of update_vsyscall and update_vsyscall_tz.
6  *
7  * Based on the x86 specific implementation.
8  */
9 
10 #include <linux/hrtimer.h>
11 #include <linux/timekeeper_internal.h>
12 #include <vdso/datapage.h>
13 #include <vdso/helpers.h>
14 #include <vdso/vsyscall.h>
15 
16 #include "timekeeping_internal.h"
17 
18 static inline void update_vdso_data(struct vdso_data *vdata,
19 				    struct timekeeper *tk)
20 {
21 	struct vdso_timestamp *vdso_ts;
22 	u64 nsec, sec;
23 
24 	vdata[CS_HRES_COARSE].cycle_last	= tk->tkr_mono.cycle_last;
25 #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
26 	vdata[CS_HRES_COARSE].max_cycles	= tk->tkr_mono.clock->max_cycles;
27 #endif
28 	vdata[CS_HRES_COARSE].mask		= tk->tkr_mono.mask;
29 	vdata[CS_HRES_COARSE].mult		= tk->tkr_mono.mult;
30 	vdata[CS_HRES_COARSE].shift		= tk->tkr_mono.shift;
31 	vdata[CS_RAW].cycle_last		= tk->tkr_raw.cycle_last;
32 #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
33 	vdata[CS_RAW].max_cycles		= tk->tkr_raw.clock->max_cycles;
34 #endif
35 	vdata[CS_RAW].mask			= tk->tkr_raw.mask;
36 	vdata[CS_RAW].mult			= tk->tkr_raw.mult;
37 	vdata[CS_RAW].shift			= tk->tkr_raw.shift;
38 
39 	/* CLOCK_MONOTONIC */
40 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
41 	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
42 
43 	nsec = tk->tkr_mono.xtime_nsec;
44 	nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
45 	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
46 		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
47 		vdso_ts->sec++;
48 	}
49 	vdso_ts->nsec	= nsec;
50 
51 	/* Copy MONOTONIC time for BOOTTIME */
52 	sec	= vdso_ts->sec;
53 	/* Add the boot offset */
54 	sec	+= tk->monotonic_to_boot.tv_sec;
55 	nsec	+= (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
56 
57 	/* CLOCK_BOOTTIME */
58 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
59 	vdso_ts->sec	= sec;
60 
61 	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
62 		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
63 		vdso_ts->sec++;
64 	}
65 	vdso_ts->nsec	= nsec;
66 
67 	/* CLOCK_MONOTONIC_RAW */
68 	vdso_ts		= &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
69 	vdso_ts->sec	= tk->raw_sec;
70 	vdso_ts->nsec	= tk->tkr_raw.xtime_nsec;
71 
72 	/* CLOCK_TAI */
73 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI];
74 	vdso_ts->sec	= tk->xtime_sec + (s64)tk->tai_offset;
75 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
76 }
77 
78 void update_vsyscall(struct timekeeper *tk)
79 {
80 	struct vdso_data *vdata = __arch_get_k_vdso_data();
81 	struct vdso_timestamp *vdso_ts;
82 	s32 clock_mode;
83 	u64 nsec;
84 
85 	/* copy vsyscall data */
86 	vdso_write_begin(vdata);
87 
88 	clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
89 	vdata[CS_HRES_COARSE].clock_mode	= clock_mode;
90 	vdata[CS_RAW].clock_mode		= clock_mode;
91 
92 	/* CLOCK_REALTIME also required for time() */
93 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
94 	vdso_ts->sec	= tk->xtime_sec;
95 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
96 
97 	/* CLOCK_REALTIME_COARSE */
98 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
99 	vdso_ts->sec	= tk->xtime_sec;
100 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
101 
102 	/* CLOCK_MONOTONIC_COARSE */
103 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
104 	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
105 	nsec		= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
106 	nsec		= nsec + tk->wall_to_monotonic.tv_nsec;
107 	vdso_ts->sec	+= __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
108 
109 	/*
110 	 * Read without the seqlock held by clock_getres().
111 	 * Note: No need to have a second copy.
112 	 */
113 	WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution);
114 
115 	/*
116 	 * If the current clocksource is not VDSO capable, then spare the
117 	 * update of the high resolution parts.
118 	 */
119 	if (clock_mode != VDSO_CLOCKMODE_NONE)
120 		update_vdso_data(vdata, tk);
121 
122 	__arch_update_vsyscall(vdata);
123 
124 	vdso_write_end(vdata);
125 
126 	__arch_sync_vdso_data(vdata);
127 }
128 
129 void update_vsyscall_tz(void)
130 {
131 	struct vdso_data *vdata = __arch_get_k_vdso_data();
132 
133 	vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
134 	vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
135 
136 	__arch_sync_vdso_data(vdata);
137 }
138 
139 /**
140  * vdso_update_begin - Start of a VDSO update section
141  *
142  * Allows architecture code to safely update the architecture specific VDSO
143  * data. Disables interrupts, acquires timekeeper lock to serialize against
144  * concurrent updates from timekeeping and invalidates the VDSO data
145  * sequence counter to prevent concurrent readers from accessing
146  * inconsistent data.
147  *
148  * Returns: Saved interrupt flags which need to be handed in to
149  * vdso_update_end().
150  */
151 unsigned long vdso_update_begin(void)
152 {
153 	struct vdso_data *vdata = __arch_get_k_vdso_data();
154 	unsigned long flags = timekeeper_lock_irqsave();
155 
156 	vdso_write_begin(vdata);
157 	return flags;
158 }
159 
160 /**
161  * vdso_update_end - End of a VDSO update section
162  * @flags:	Interrupt flags as returned from vdso_update_begin()
163  *
164  * Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
165  * synchronization if the architecture requires it, drops timekeeper lock
166  * and restores interrupt flags.
167  */
168 void vdso_update_end(unsigned long flags)
169 {
170 	struct vdso_data *vdata = __arch_get_k_vdso_data();
171 
172 	vdso_write_end(vdata);
173 	__arch_sync_vdso_data(vdata);
174 	timekeeper_unlock_irqrestore(flags);
175 }
176