xref: /linux/kernel/time/vsyscall.c (revision ed0c10f34ffd94d6e0d37b830c232f7ca38ea174)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 ARM Ltd.
4  *
5  * Generic implementation of update_vsyscall and update_vsyscall_tz.
6  *
7  * Based on the x86 specific implementation.
8  */
9 
10 #include <linux/hrtimer.h>
11 #include <linux/timekeeper_internal.h>
12 #include <vdso/datapage.h>
13 #include <vdso/helpers.h>
14 #include <vdso/vsyscall.h>
15 
16 #include "timekeeping_internal.h"
17 
18 static inline void update_vdso_time_data(struct vdso_time_data *vdata, struct timekeeper *tk)
19 {
20 	struct vdso_timestamp *vdso_ts;
21 	struct vdso_clock *vc = vdata;
22 	u64 nsec, sec;
23 
24 	vc[CS_HRES_COARSE].cycle_last	= tk->tkr_mono.cycle_last;
25 #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
26 	vc[CS_HRES_COARSE].max_cycles	= tk->tkr_mono.clock->max_cycles;
27 #endif
28 	vc[CS_HRES_COARSE].mask		= tk->tkr_mono.mask;
29 	vc[CS_HRES_COARSE].mult		= tk->tkr_mono.mult;
30 	vc[CS_HRES_COARSE].shift	= tk->tkr_mono.shift;
31 	vc[CS_RAW].cycle_last		= tk->tkr_raw.cycle_last;
32 #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
33 	vc[CS_RAW].max_cycles		= tk->tkr_raw.clock->max_cycles;
34 #endif
35 	vc[CS_RAW].mask			= tk->tkr_raw.mask;
36 	vc[CS_RAW].mult			= tk->tkr_raw.mult;
37 	vc[CS_RAW].shift		= tk->tkr_raw.shift;
38 
39 	/* CLOCK_MONOTONIC */
40 	vdso_ts		= &vc[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
41 	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
42 
43 	nsec = tk->tkr_mono.xtime_nsec;
44 	nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
45 	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
46 		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
47 		vdso_ts->sec++;
48 	}
49 	vdso_ts->nsec	= nsec;
50 
51 	/* Copy MONOTONIC time for BOOTTIME */
52 	sec	= vdso_ts->sec;
53 	/* Add the boot offset */
54 	sec	+= tk->monotonic_to_boot.tv_sec;
55 	nsec	+= (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
56 
57 	/* CLOCK_BOOTTIME */
58 	vdso_ts		= &vc[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
59 	vdso_ts->sec	= sec;
60 
61 	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
62 		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
63 		vdso_ts->sec++;
64 	}
65 	vdso_ts->nsec	= nsec;
66 
67 	/* CLOCK_MONOTONIC_RAW */
68 	vdso_ts		= &vc[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
69 	vdso_ts->sec	= tk->raw_sec;
70 	vdso_ts->nsec	= tk->tkr_raw.xtime_nsec;
71 
72 	/* CLOCK_TAI */
73 	vdso_ts		= &vc[CS_HRES_COARSE].basetime[CLOCK_TAI];
74 	vdso_ts->sec	= tk->xtime_sec + (s64)tk->tai_offset;
75 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
76 }
77 
78 void update_vsyscall(struct timekeeper *tk)
79 {
80 	struct vdso_time_data *vdata = vdso_k_time_data;
81 	struct vdso_timestamp *vdso_ts;
82 	struct vdso_clock *vc = vdata;
83 	s32 clock_mode;
84 	u64 nsec;
85 
86 	/* copy vsyscall data */
87 	vdso_write_begin(vdata);
88 
89 	clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
90 	vc[CS_HRES_COARSE].clock_mode	= clock_mode;
91 	vc[CS_RAW].clock_mode		= clock_mode;
92 
93 	/* CLOCK_REALTIME also required for time() */
94 	vdso_ts		= &vc[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
95 	vdso_ts->sec	= tk->xtime_sec;
96 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
97 
98 	/* CLOCK_REALTIME_COARSE */
99 	vdso_ts		= &vc[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
100 	vdso_ts->sec	= tk->xtime_sec;
101 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
102 
103 	/* CLOCK_MONOTONIC_COARSE */
104 	vdso_ts		= &vc[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
105 	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
106 	nsec		= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
107 	nsec		= nsec + tk->wall_to_monotonic.tv_nsec;
108 	vdso_ts->sec	+= __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
109 
110 	/*
111 	 * Read without the seqlock held by clock_getres().
112 	 * Note: No need to have a second copy.
113 	 */
114 	WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution);
115 
116 	/*
117 	 * If the current clocksource is not VDSO capable, then spare the
118 	 * update of the high resolution parts.
119 	 */
120 	if (clock_mode != VDSO_CLOCKMODE_NONE)
121 		update_vdso_time_data(vdata, tk);
122 
123 	__arch_update_vsyscall(vdata);
124 
125 	vdso_write_end(vdata);
126 
127 	__arch_sync_vdso_time_data(vdata);
128 }
129 
130 void update_vsyscall_tz(void)
131 {
132 	struct vdso_time_data *vdata = vdso_k_time_data;
133 
134 	vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
135 	vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
136 
137 	__arch_sync_vdso_time_data(vdata);
138 }
139 
140 /**
141  * vdso_update_begin - Start of a VDSO update section
142  *
143  * Allows architecture code to safely update the architecture specific VDSO
144  * data. Disables interrupts, acquires timekeeper lock to serialize against
145  * concurrent updates from timekeeping and invalidates the VDSO data
146  * sequence counter to prevent concurrent readers from accessing
147  * inconsistent data.
148  *
149  * Returns: Saved interrupt flags which need to be handed in to
150  * vdso_update_end().
151  */
152 unsigned long vdso_update_begin(void)
153 {
154 	struct vdso_time_data *vdata = vdso_k_time_data;
155 	unsigned long flags = timekeeper_lock_irqsave();
156 
157 	vdso_write_begin(vdata);
158 	return flags;
159 }
160 
161 /**
162  * vdso_update_end - End of a VDSO update section
163  * @flags:	Interrupt flags as returned from vdso_update_begin()
164  *
165  * Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
166  * synchronization if the architecture requires it, drops timekeeper lock
167  * and restores interrupt flags.
168  */
169 void vdso_update_end(unsigned long flags)
170 {
171 	struct vdso_time_data *vdata = vdso_k_time_data;
172 
173 	vdso_write_end(vdata);
174 	__arch_sync_vdso_time_data(vdata);
175 	timekeeper_unlock_irqrestore(flags);
176 }
177