xref: /linux/kernel/time/vsyscall.c (revision ac1a42f4e4e296b5ba5fdb39444f65d6e5196240)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 ARM Ltd.
4  *
5  * Generic implementation of update_vsyscall and update_vsyscall_tz.
6  *
7  * Based on the x86 specific implementation.
8  */
9 
10 #include <linux/hrtimer.h>
11 #include <linux/timekeeper_internal.h>
12 #include <vdso/datapage.h>
13 #include <vdso/helpers.h>
14 #include <vdso/vsyscall.h>
15 
16 #include "timekeeping_internal.h"
17 
18 static inline void update_vdso_time_data(struct vdso_time_data *vdata, struct timekeeper *tk)
19 {
20 	struct vdso_timestamp *vdso_ts;
21 	u64 nsec, sec;
22 
23 	vdata[CS_HRES_COARSE].cycle_last	= tk->tkr_mono.cycle_last;
24 #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
25 	vdata[CS_HRES_COARSE].max_cycles	= tk->tkr_mono.clock->max_cycles;
26 #endif
27 	vdata[CS_HRES_COARSE].mask		= tk->tkr_mono.mask;
28 	vdata[CS_HRES_COARSE].mult		= tk->tkr_mono.mult;
29 	vdata[CS_HRES_COARSE].shift		= tk->tkr_mono.shift;
30 	vdata[CS_RAW].cycle_last		= tk->tkr_raw.cycle_last;
31 #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
32 	vdata[CS_RAW].max_cycles		= tk->tkr_raw.clock->max_cycles;
33 #endif
34 	vdata[CS_RAW].mask			= tk->tkr_raw.mask;
35 	vdata[CS_RAW].mult			= tk->tkr_raw.mult;
36 	vdata[CS_RAW].shift			= tk->tkr_raw.shift;
37 
38 	/* CLOCK_MONOTONIC */
39 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
40 	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
41 
42 	nsec = tk->tkr_mono.xtime_nsec;
43 	nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
44 	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
45 		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
46 		vdso_ts->sec++;
47 	}
48 	vdso_ts->nsec	= nsec;
49 
50 	/* Copy MONOTONIC time for BOOTTIME */
51 	sec	= vdso_ts->sec;
52 	/* Add the boot offset */
53 	sec	+= tk->monotonic_to_boot.tv_sec;
54 	nsec	+= (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
55 
56 	/* CLOCK_BOOTTIME */
57 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
58 	vdso_ts->sec	= sec;
59 
60 	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
61 		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
62 		vdso_ts->sec++;
63 	}
64 	vdso_ts->nsec	= nsec;
65 
66 	/* CLOCK_MONOTONIC_RAW */
67 	vdso_ts		= &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
68 	vdso_ts->sec	= tk->raw_sec;
69 	vdso_ts->nsec	= tk->tkr_raw.xtime_nsec;
70 
71 	/* CLOCK_TAI */
72 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI];
73 	vdso_ts->sec	= tk->xtime_sec + (s64)tk->tai_offset;
74 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
75 }
76 
77 void update_vsyscall(struct timekeeper *tk)
78 {
79 	struct vdso_time_data *vdata = vdso_k_time_data;
80 	struct vdso_timestamp *vdso_ts;
81 	s32 clock_mode;
82 	u64 nsec;
83 
84 	/* copy vsyscall data */
85 	vdso_write_begin(vdata);
86 
87 	clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
88 	vdata[CS_HRES_COARSE].clock_mode	= clock_mode;
89 	vdata[CS_RAW].clock_mode		= clock_mode;
90 
91 	/* CLOCK_REALTIME also required for time() */
92 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
93 	vdso_ts->sec	= tk->xtime_sec;
94 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
95 
96 	/* CLOCK_REALTIME_COARSE */
97 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
98 	vdso_ts->sec	= tk->xtime_sec;
99 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
100 
101 	/* CLOCK_MONOTONIC_COARSE */
102 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
103 	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
104 	nsec		= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
105 	nsec		= nsec + tk->wall_to_monotonic.tv_nsec;
106 	vdso_ts->sec	+= __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
107 
108 	/*
109 	 * Read without the seqlock held by clock_getres().
110 	 * Note: No need to have a second copy.
111 	 */
112 	WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution);
113 
114 	/*
115 	 * If the current clocksource is not VDSO capable, then spare the
116 	 * update of the high resolution parts.
117 	 */
118 	if (clock_mode != VDSO_CLOCKMODE_NONE)
119 		update_vdso_time_data(vdata, tk);
120 
121 	__arch_update_vsyscall(vdata);
122 
123 	vdso_write_end(vdata);
124 
125 	__arch_sync_vdso_time_data(vdata);
126 }
127 
128 void update_vsyscall_tz(void)
129 {
130 	struct vdso_time_data *vdata = vdso_k_time_data;
131 
132 	vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
133 	vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
134 
135 	__arch_sync_vdso_time_data(vdata);
136 }
137 
138 /**
139  * vdso_update_begin - Start of a VDSO update section
140  *
141  * Allows architecture code to safely update the architecture specific VDSO
142  * data. Disables interrupts, acquires timekeeper lock to serialize against
143  * concurrent updates from timekeeping and invalidates the VDSO data
144  * sequence counter to prevent concurrent readers from accessing
145  * inconsistent data.
146  *
147  * Returns: Saved interrupt flags which need to be handed in to
148  * vdso_update_end().
149  */
150 unsigned long vdso_update_begin(void)
151 {
152 	struct vdso_time_data *vdata = vdso_k_time_data;
153 	unsigned long flags = timekeeper_lock_irqsave();
154 
155 	vdso_write_begin(vdata);
156 	return flags;
157 }
158 
159 /**
160  * vdso_update_end - End of a VDSO update section
161  * @flags:	Interrupt flags as returned from vdso_update_begin()
162  *
163  * Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
164  * synchronization if the architecture requires it, drops timekeeper lock
165  * and restores interrupt flags.
166  */
167 void vdso_update_end(unsigned long flags)
168 {
169 	struct vdso_time_data *vdata = vdso_k_time_data;
170 
171 	vdso_write_end(vdata);
172 	__arch_sync_vdso_time_data(vdata);
173 	timekeeper_unlock_irqrestore(flags);
174 }
175