xref: /linux/kernel/time/timer_migration.c (revision e6719d48ba6329536c459dcee5a571e535687094)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Infrastructure for migratable timers
4  *
5  * Copyright(C) 2022 linutronix GmbH
6  */
7 #include <linux/cpuhotplug.h>
8 #include <linux/slab.h>
9 #include <linux/smp.h>
10 #include <linux/spinlock.h>
11 #include <linux/timerqueue.h>
12 #include <trace/events/ipi.h>
13 
14 #include "timer_migration.h"
15 #include "tick-internal.h"
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/timer_migration.h>
19 
20 /*
21  * The timer migration mechanism is built on a hierarchy of groups. The
22  * lowest level group contains CPUs, the next level groups of CPU groups
23  * and so forth. The CPU groups are kept per node so for the normal case
24  * lock contention won't happen across nodes. Depending on the number of
25  * CPUs per node even the next level might be kept as groups of CPU groups
26  * per node and only the levels above cross the node topology.
27  *
28  * Example topology for a two node system with 24 CPUs each.
29  *
30  * LVL 2                           [GRP2:0]
31  *                              GRP1:0 = GRP1:M
32  *
33  * LVL 1            [GRP1:0]                      [GRP1:1]
34  *               GRP0:0 - GRP0:2               GRP0:3 - GRP0:5
35  *
36  * LVL 0  [GRP0:0]  [GRP0:1]  [GRP0:2]  [GRP0:3]  [GRP0:4]  [GRP0:5]
37  * CPUS     0-7       8-15      16-23     24-31     32-39     40-47
38  *
39  * The groups hold a timer queue of events sorted by expiry time. These
40  * queues are updated when CPUs go in idle. When they come out of idle
41  * ignore flag of events is set.
42  *
43  * Each group has a designated migrator CPU/group as long as a CPU/group is
44  * active in the group. This designated role is necessary to avoid that all
45  * active CPUs in a group try to migrate expired timers from other CPUs,
46  * which would result in massive lock bouncing.
47  *
48  * When a CPU is awake, it checks in it's own timer tick the group
49  * hierarchy up to the point where it is assigned the migrator role or if
50  * no CPU is active, it also checks the groups where no migrator is set
51  * (TMIGR_NONE).
52  *
53  * If it finds expired timers in one of the group queues it pulls them over
54  * from the idle CPU and runs the timer function. After that it updates the
55  * group and the parent groups if required.
56  *
57  * CPUs which go idle arm their CPU local timer hardware for the next local
58  * (pinned) timer event. If the next migratable timer expires after the
59  * next local timer or the CPU has no migratable timer pending then the
60  * CPU does not queue an event in the LVL0 group. If the next migratable
61  * timer expires before the next local timer then the CPU queues that timer
62  * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0
63  * group.
64  *
65  * When CPU comes out of idle and when a group has at least a single active
66  * child, the ignore flag of the tmigr_event is set. This indicates, that
67  * the event is ignored even if it is still enqueued in the parent groups
68  * timer queue. It will be removed when touching the timer queue the next
69  * time. This spares locking in active path as the lock protects (after
70  * setup) only event information. For more information about locking,
71  * please read the section "Locking rules".
72  *
73  * If the CPU is the migrator of the group then it delegates that role to
74  * the next active CPU in the group or sets migrator to TMIGR_NONE when
75  * there is no active CPU in the group. This delegation needs to be
76  * propagated up the hierarchy so hand over from other leaves can happen at
77  * all hierarchy levels w/o doing a search.
78  *
79  * When the last CPU in the system goes idle, then it drops all migrator
80  * duties up to the top level of the hierarchy (LVL2 in the example). It
81  * then has to make sure, that it arms it's own local hardware timer for
82  * the earliest event in the system.
83  *
84  *
85  * Lifetime rules:
86  * ---------------
87  *
88  * The groups are built up at init time or when CPUs come online. They are
89  * not destroyed when a group becomes empty due to offlining. The group
90  * just won't participate in the hierarchy management anymore. Destroying
91  * groups would result in interesting race conditions which would just make
92  * the whole mechanism slow and complex.
93  *
94  *
95  * Locking rules:
96  * --------------
97  *
98  * For setting up new groups and handling events it's required to lock both
99  * child and parent group. The lock ordering is always bottom up. This also
100  * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and
101  * active CPU/group information atomic_try_cmpxchg() is used instead and only
102  * the per CPU tmigr_cpu->lock is held.
103  *
104  * During the setup of groups tmigr_level_list is required. It is protected by
105  * @tmigr_mutex.
106  *
107  * When @timer_base->lock as well as tmigr related locks are required, the lock
108  * ordering is: first @timer_base->lock, afterwards tmigr related locks.
109  *
110  *
111  * Protection of the tmigr group state information:
112  * ------------------------------------------------
113  *
114  * The state information with the list of active children and migrator needs to
115  * be protected by a sequence counter. It prevents a race when updates in child
116  * groups are propagated in changed order. The state update is performed
117  * lockless and group wise. The following scenario describes what happens
118  * without updating the sequence counter:
119  *
120  * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well
121  * as GRP0:1 will not change during the scenario):
122  *
123  *    LVL 1            [GRP1:0]
124  *                     migrator = GRP0:1
125  *                     active   = GRP0:0, GRP0:1
126  *                   /                \
127  *    LVL 0  [GRP0:0]                  [GRP0:1]
128  *           migrator = CPU0           migrator = CPU2
129  *           active   = CPU0           active   = CPU2
130  *              /         \                /         \
131  *    CPUs     0           1              2           3
132  *             active      idle           active      idle
133  *
134  *
135  * 1. CPU0 goes idle. As the update is performed group wise, in the first step
136  *    only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to
137  *    walk the hierarchy.
138  *
139  *    LVL 1            [GRP1:0]
140  *                     migrator = GRP0:1
141  *                     active   = GRP0:0, GRP0:1
142  *                   /                \
143  *    LVL 0  [GRP0:0]                  [GRP0:1]
144  *       --> migrator = TMIGR_NONE     migrator = CPU2
145  *       --> active   =                active   = CPU2
146  *              /         \                /         \
147  *    CPUs     0           1              2           3
148  *         --> idle        idle           active      idle
149  *
150  * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of
151  *    idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also
152  *    has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the
153  *    hierarchy to perform the needed update from their point of view. The
154  *    currently visible state looks the following:
155  *
156  *    LVL 1            [GRP1:0]
157  *                     migrator = GRP0:1
158  *                     active   = GRP0:0, GRP0:1
159  *                   /                \
160  *    LVL 0  [GRP0:0]                  [GRP0:1]
161  *       --> migrator = CPU1           migrator = CPU2
162  *       --> active   = CPU1           active   = CPU2
163  *              /         \                /         \
164  *    CPUs     0           1              2           3
165  *             idle    --> active         active      idle
166  *
167  * 3. Here is the race condition: CPU1 managed to propagate its changes (from
168  *    step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The
169  *    active members of GRP1:0 remain unchanged after the update since it is
170  *    still valid from CPU1 current point of view:
171  *
172  *    LVL 1            [GRP1:0]
173  *                 --> migrator = GRP0:1
174  *                 --> active   = GRP0:0, GRP0:1
175  *                   /                \
176  *    LVL 0  [GRP0:0]                  [GRP0:1]
177  *           migrator = CPU1           migrator = CPU2
178  *           active   = CPU1           active   = CPU2
179  *              /         \                /         \
180  *    CPUs     0           1              2           3
181  *             idle        active         active      idle
182  *
183  * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0.
184  *
185  *    LVL 1            [GRP1:0]
186  *                 --> migrator = GRP0:1
187  *                 --> active   = GRP0:1
188  *                   /                \
189  *    LVL 0  [GRP0:0]                  [GRP0:1]
190  *           migrator = CPU1           migrator = CPU2
191  *           active   = CPU1           active   = CPU2
192  *              /         \                /         \
193  *    CPUs     0           1              2           3
194  *             idle        active         active      idle
195  *
196  *
197  * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is
198  * active and is correctly listed as active in GRP0:0. However GRP1:0 does not
199  * have GRP0:0 listed as active, which is wrong. The sequence counter has been
200  * added to avoid inconsistent states during updates. The state is updated
201  * atomically only if all members, including the sequence counter, match the
202  * expected value (compare-and-exchange).
203  *
204  * Looking back at the previous example with the addition of the sequence
205  * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed
206  * the sequence number during the update in step 3 so the expected old value (as
207  * seen by CPU0 before starting the walk) does not match.
208  *
209  * Prevent race between new event and last CPU going inactive
210  * ----------------------------------------------------------
211  *
212  * When the last CPU is going idle and there is a concurrent update of a new
213  * first global timer of an idle CPU, the group and child states have to be read
214  * while holding the lock in tmigr_update_events(). The following scenario shows
215  * what happens, when this is not done.
216  *
217  * 1. Only CPU2 is active:
218  *
219  *    LVL 1            [GRP1:0]
220  *                     migrator = GRP0:1
221  *                     active   = GRP0:1
222  *                     next_expiry = KTIME_MAX
223  *                   /                \
224  *    LVL 0  [GRP0:0]                  [GRP0:1]
225  *           migrator = TMIGR_NONE     migrator = CPU2
226  *           active   =                active   = CPU2
227  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
228  *              /         \                /         \
229  *    CPUs     0           1              2           3
230  *             idle        idle           active      idle
231  *
232  * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and
233  *    propagates that to GRP0:1:
234  *
235  *    LVL 1            [GRP1:0]
236  *                     migrator = GRP0:1
237  *                     active   = GRP0:1
238  *                     next_expiry = KTIME_MAX
239  *                   /                \
240  *    LVL 0  [GRP0:0]                  [GRP0:1]
241  *           migrator = TMIGR_NONE --> migrator = TMIGR_NONE
242  *           active   =            --> active   =
243  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
244  *              /         \                /         \
245  *    CPUs     0           1              2           3
246  *             idle        idle       --> idle        idle
247  *
248  * 3. Now the idle state is propagated up to GRP1:0. As this is now the last
249  *    child going idle in top level group, the expiry of the next group event
250  *    has to be handed back to make sure no event is lost. As there is no event
251  *    enqueued, KTIME_MAX is handed back to CPU2.
252  *
253  *    LVL 1            [GRP1:0]
254  *                 --> migrator = TMIGR_NONE
255  *                 --> active   =
256  *                     next_expiry = KTIME_MAX
257  *                   /                \
258  *    LVL 0  [GRP0:0]                  [GRP0:1]
259  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
260  *           active   =                active   =
261  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
262  *              /         \                /         \
263  *    CPUs     0           1              2           3
264  *             idle        idle       --> idle        idle
265  *
266  * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0
267  *    propagates that to GRP0:0:
268  *
269  *    LVL 1            [GRP1:0]
270  *                     migrator = TMIGR_NONE
271  *                     active   =
272  *                     next_expiry = KTIME_MAX
273  *                   /                \
274  *    LVL 0  [GRP0:0]                  [GRP0:1]
275  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
276  *           active   =                active   =
277  *       --> next_expiry = TIMER0      next_expiry  = KTIME_MAX
278  *              /         \                /         \
279  *    CPUs     0           1              2           3
280  *             idle        idle           idle        idle
281  *
282  * 5. GRP0:0 is not active, so the new timer has to be propagated to
283  *    GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value
284  *    (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is
285  *    handed back to CPU0, as it seems that there is still an active child in
286  *    top level group.
287  *
288  *    LVL 1            [GRP1:0]
289  *                     migrator = TMIGR_NONE
290  *                     active   =
291  *                 --> next_expiry = TIMER0
292  *                   /                \
293  *    LVL 0  [GRP0:0]                  [GRP0:1]
294  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
295  *           active   =                active   =
296  *           next_expiry = TIMER0      next_expiry  = KTIME_MAX
297  *              /         \                /         \
298  *    CPUs     0           1              2           3
299  *             idle        idle           idle        idle
300  *
301  * This is prevented by reading the state when holding the lock (when a new
302  * timer has to be propagated from idle path)::
303  *
304  *   CPU2 (tmigr_inactive_up())          CPU0 (tmigr_new_timer_up())
305  *   --------------------------          ---------------------------
306  *   // step 3:
307  *   cmpxchg(&GRP1:0->state);
308  *   tmigr_update_events() {
309  *       spin_lock(&GRP1:0->lock);
310  *       // ... update events ...
311  *       // hand back first expiry when GRP1:0 is idle
312  *       spin_unlock(&GRP1:0->lock);
313  *       // ^^^ release state modification
314  *   }
315  *                                       tmigr_update_events() {
316  *                                           spin_lock(&GRP1:0->lock)
317  *                                           // ^^^ acquire state modification
318  *                                           group_state = atomic_read(&GRP1:0->state)
319  *                                           // .... update events ...
320  *                                           // hand back first expiry when GRP1:0 is idle
321  *                                           spin_unlock(&GRP1:0->lock) <3>
322  *                                           // ^^^ makes state visible for other
323  *                                           // callers of tmigr_new_timer_up()
324  *                                       }
325  *
326  * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported
327  * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent
328  * update of the group state from active path is no problem, as the upcoming CPU
329  * will take care of the group events.
330  *
331  * Required event and timerqueue update after a remote expiry:
332  * -----------------------------------------------------------
333  *
334  * After expiring timers of a remote CPU, a walk through the hierarchy and
335  * update of events and timerqueues is required. It is obviously needed if there
336  * is a 'new' global timer but also if there is no new global timer but the
337  * remote CPU is still idle.
338  *
339  * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same
340  *    time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is
341  *    also idle and has no global timer pending. CPU2 is the only active CPU and
342  *    thus also the migrator:
343  *
344  *    LVL 1            [GRP1:0]
345  *                     migrator = GRP0:1
346  *                     active   = GRP0:1
347  *                 --> timerqueue = evt-GRP0:0
348  *                   /                \
349  *    LVL 0  [GRP0:0]                  [GRP0:1]
350  *           migrator = TMIGR_NONE     migrator = CPU2
351  *           active   =                active   = CPU2
352  *           groupevt.ignore = false   groupevt.ignore = true
353  *           groupevt.cpu = CPU0       groupevt.cpu =
354  *           timerqueue = evt-CPU0,    timerqueue =
355  *                        evt-CPU1
356  *              /         \                /         \
357  *    CPUs     0           1              2           3
358  *             idle        idle           active      idle
359  *
360  * 2. CPU2 starts to expire remote timers. It starts with LVL0 group
361  *    GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with
362  *    the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It
363  *    looks at tmigr_event::cpu struct member and expires the pending timer(s)
364  *    of CPU0.
365  *
366  *    LVL 1            [GRP1:0]
367  *                     migrator = GRP0:1
368  *                     active   = GRP0:1
369  *                 --> timerqueue =
370  *                   /                \
371  *    LVL 0  [GRP0:0]                  [GRP0:1]
372  *           migrator = TMIGR_NONE     migrator = CPU2
373  *           active   =                active   = CPU2
374  *           groupevt.ignore = false   groupevt.ignore = true
375  *       --> groupevt.cpu = CPU0       groupevt.cpu =
376  *           timerqueue = evt-CPU0,    timerqueue =
377  *                        evt-CPU1
378  *              /         \                /         \
379  *    CPUs     0           1              2           3
380  *             idle        idle           active      idle
381  *
382  * 3. Some work has to be done after expiring the timers of CPU0. If we stop
383  *    here, then CPU1's pending global timer(s) will not expire in time and the
384  *    timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just
385  *    been processed. So it is required to walk the hierarchy from CPU0's point
386  *    of view and update it accordingly. CPU0's event will be removed from the
387  *    timerqueue because it has no pending timer. If CPU0 would have a timer
388  *    pending then it has to expire after CPU1's first timer because all timers
389  *    from this period were just expired. Either way CPU1's event will be first
390  *    in GRP0:0's timerqueue and therefore set in the CPU field of the group
391  *    event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not
392  *    active:
393  *
394  *    LVL 1            [GRP1:0]
395  *                     migrator = GRP0:1
396  *                     active   = GRP0:1
397  *                 --> timerqueue = evt-GRP0:0
398  *                   /                \
399  *    LVL 0  [GRP0:0]                  [GRP0:1]
400  *           migrator = TMIGR_NONE     migrator = CPU2
401  *           active   =                active   = CPU2
402  *           groupevt.ignore = false   groupevt.ignore = true
403  *       --> groupevt.cpu = CPU1       groupevt.cpu =
404  *       --> timerqueue = evt-CPU1     timerqueue =
405  *              /         \                /         \
406  *    CPUs     0           1              2           3
407  *             idle        idle           active      idle
408  *
409  * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the
410  * timer(s) of CPU1.
411  *
412  * The hierarchy walk in step 3 can be skipped if the migrator notices that a
413  * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care
414  * of the group as migrator and any needed updates within the hierarchy.
415  */
416 
417 static DEFINE_MUTEX(tmigr_mutex);
418 static struct list_head *tmigr_level_list __read_mostly;
419 
420 static unsigned int tmigr_hierarchy_levels __read_mostly;
421 static unsigned int tmigr_crossnode_level __read_mostly;
422 
423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu);
424 
425 #define TMIGR_NONE	0xFF
426 #define BIT_CNT		8
427 
428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc)
429 {
430 	return !(tmc->tmgroup && tmc->online);
431 }
432 
433 /*
434  * Returns true, when @childmask corresponds to the group migrator or when the
435  * group is not active - so no migrator is set.
436  */
437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask)
438 {
439 	union tmigr_state s;
440 
441 	s.state = atomic_read(&group->migr_state);
442 
443 	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
444 		return true;
445 
446 	return false;
447 }
448 
449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask)
450 {
451 	bool lonely, migrator = false;
452 	unsigned long active;
453 	union tmigr_state s;
454 
455 	s.state = atomic_read(&group->migr_state);
456 
457 	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
458 		migrator = true;
459 
460 	active = s.active;
461 	lonely = bitmap_weight(&active, BIT_CNT) <= 1;
462 
463 	return (migrator && lonely);
464 }
465 
466 static bool tmigr_check_lonely(struct tmigr_group *group)
467 {
468 	unsigned long active;
469 	union tmigr_state s;
470 
471 	s.state = atomic_read(&group->migr_state);
472 
473 	active = s.active;
474 
475 	return bitmap_weight(&active, BIT_CNT) <= 1;
476 }
477 
478 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *);
479 
480 static void __walk_groups(up_f up, void *data,
481 			  struct tmigr_cpu *tmc)
482 {
483 	struct tmigr_group *child = NULL, *group = tmc->tmgroup;
484 
485 	do {
486 		WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels);
487 
488 		if (up(group, child, data))
489 			break;
490 
491 		child = group;
492 		group = group->parent;
493 	} while (group);
494 }
495 
496 static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc)
497 {
498 	lockdep_assert_held(&tmc->lock);
499 
500 	__walk_groups(up, data, tmc);
501 }
502 
503 /**
504  * struct tmigr_walk - data required for walking the hierarchy
505  * @nextexp:		Next CPU event expiry information which is handed into
506  *			the timer migration code by the timer code
507  *			(get_next_timer_interrupt())
508  * @firstexp:		Contains the first event expiry information when last
509  *			active CPU of hierarchy is on the way to idle to make
510  *			sure CPU will be back in time.
511  * @evt:		Pointer to tmigr_event which needs to be queued (of idle
512  *			child group)
513  * @childmask:		childmask of child group
514  * @remote:		Is set, when the new timer path is executed in
515  *			tmigr_handle_remote_cpu()
516  */
517 struct tmigr_walk {
518 	u64			nextexp;
519 	u64			firstexp;
520 	struct tmigr_event	*evt;
521 	u8			childmask;
522 	bool			remote;
523 };
524 
525 /**
526  * struct tmigr_remote_data - data required for remote expiry hierarchy walk
527  * @basej:		timer base in jiffies
528  * @now:		timer base monotonic
529  * @firstexp:		returns expiry of the first timer in the idle timer
530  *			migration hierarchy to make sure the timer is handled in
531  *			time; it is stored in the per CPU tmigr_cpu struct of
532  *			CPU which expires remote timers
533  * @childmask:		childmask of child group
534  * @check:		is set if there is the need to handle remote timers;
535  *			required in tmigr_requires_handle_remote() only
536  * @tmc_active:		this flag indicates, whether the CPU which triggers
537  *			the hierarchy walk is !idle in the timer migration
538  *			hierarchy. When the CPU is idle and the whole hierarchy is
539  *			idle, only the first event of the top level has to be
540  *			considered.
541  */
542 struct tmigr_remote_data {
543 	unsigned long	basej;
544 	u64		now;
545 	u64		firstexp;
546 	u8		childmask;
547 	bool		check;
548 	bool		tmc_active;
549 };
550 
551 /*
552  * Returns the next event of the timerqueue @group->events
553  *
554  * Removes timers with ignore flag and update next_expiry of the group. Values
555  * of the group event are updated in tmigr_update_events() only.
556  */
557 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group)
558 {
559 	struct timerqueue_node *node = NULL;
560 	struct tmigr_event *evt = NULL;
561 
562 	lockdep_assert_held(&group->lock);
563 
564 	WRITE_ONCE(group->next_expiry, KTIME_MAX);
565 
566 	while ((node = timerqueue_getnext(&group->events))) {
567 		evt = container_of(node, struct tmigr_event, nextevt);
568 
569 		if (!evt->ignore) {
570 			WRITE_ONCE(group->next_expiry, evt->nextevt.expires);
571 			return evt;
572 		}
573 
574 		/*
575 		 * Remove next timers with ignore flag, because the group lock
576 		 * is held anyway
577 		 */
578 		if (!timerqueue_del(&group->events, node))
579 			break;
580 	}
581 
582 	return NULL;
583 }
584 
585 /*
586  * Return the next event (with the expiry equal or before @now)
587  *
588  * Event, which is returned, is also removed from the queue.
589  */
590 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group,
591 						       u64 now)
592 {
593 	struct tmigr_event *evt = tmigr_next_groupevt(group);
594 
595 	if (!evt || now < evt->nextevt.expires)
596 		return NULL;
597 
598 	/*
599 	 * The event is ready to expire. Remove it and update next group event.
600 	 */
601 	timerqueue_del(&group->events, &evt->nextevt);
602 	tmigr_next_groupevt(group);
603 
604 	return evt;
605 }
606 
607 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group)
608 {
609 	struct tmigr_event *evt;
610 
611 	evt = tmigr_next_groupevt(group);
612 
613 	if (!evt)
614 		return KTIME_MAX;
615 	else
616 		return evt->nextevt.expires;
617 }
618 
619 static bool tmigr_active_up(struct tmigr_group *group,
620 			    struct tmigr_group *child,
621 			    void *ptr)
622 {
623 	union tmigr_state curstate, newstate;
624 	struct tmigr_walk *data = ptr;
625 	bool walk_done;
626 	u8 childmask;
627 
628 	childmask = data->childmask;
629 	/*
630 	 * No memory barrier is required here in contrast to
631 	 * tmigr_inactive_up(), as the group state change does not depend on the
632 	 * child state.
633 	 */
634 	curstate.state = atomic_read(&group->migr_state);
635 
636 	do {
637 		newstate = curstate;
638 		walk_done = true;
639 
640 		if (newstate.migrator == TMIGR_NONE) {
641 			newstate.migrator = childmask;
642 
643 			/* Changes need to be propagated */
644 			walk_done = false;
645 		}
646 
647 		newstate.active |= childmask;
648 		newstate.seq++;
649 
650 	} while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state));
651 
652 	if ((walk_done == false) && group->parent)
653 		data->childmask = group->childmask;
654 
655 	/*
656 	 * The group is active (again). The group event might be still queued
657 	 * into the parent group's timerqueue but can now be handled by the
658 	 * migrator of this group. Therefore the ignore flag for the group event
659 	 * is updated to reflect this.
660 	 *
661 	 * The update of the ignore flag in the active path is done lockless. In
662 	 * worst case the migrator of the parent group observes the change too
663 	 * late and expires remotely all events belonging to this group. The
664 	 * lock is held while updating the ignore flag in idle path. So this
665 	 * state change will not be lost.
666 	 */
667 	group->groupevt.ignore = true;
668 
669 	trace_tmigr_group_set_cpu_active(group, newstate, childmask);
670 
671 	return walk_done;
672 }
673 
674 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc)
675 {
676 	struct tmigr_walk data;
677 
678 	data.childmask = tmc->childmask;
679 
680 	trace_tmigr_cpu_active(tmc);
681 
682 	tmc->cpuevt.ignore = true;
683 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
684 
685 	walk_groups(&tmigr_active_up, &data, tmc);
686 }
687 
688 /**
689  * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy
690  *
691  * Call site timer_clear_idle() is called with interrupts disabled.
692  */
693 void tmigr_cpu_activate(void)
694 {
695 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
696 
697 	if (tmigr_is_not_available(tmc))
698 		return;
699 
700 	if (WARN_ON_ONCE(!tmc->idle))
701 		return;
702 
703 	raw_spin_lock(&tmc->lock);
704 	tmc->idle = false;
705 	__tmigr_cpu_activate(tmc);
706 	raw_spin_unlock(&tmc->lock);
707 }
708 
709 /*
710  * Returns true, if there is nothing to be propagated to the next level
711  *
712  * @data->firstexp is set to expiry of first gobal event of the (top level of
713  * the) hierarchy, but only when hierarchy is completely idle.
714  *
715  * The child and group states need to be read under the lock, to prevent a race
716  * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See
717  * also section "Prevent race between new event and last CPU going inactive" in
718  * the documentation at the top.
719  *
720  * This is the only place where the group event expiry value is set.
721  */
722 static
723 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child,
724 			 struct tmigr_walk *data)
725 {
726 	struct tmigr_event *evt, *first_childevt;
727 	union tmigr_state childstate, groupstate;
728 	bool remote = data->remote;
729 	bool walk_done = false;
730 	u64 nextexp;
731 
732 	if (child) {
733 		raw_spin_lock(&child->lock);
734 		raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING);
735 
736 		childstate.state = atomic_read(&child->migr_state);
737 		groupstate.state = atomic_read(&group->migr_state);
738 
739 		if (childstate.active) {
740 			walk_done = true;
741 			goto unlock;
742 		}
743 
744 		first_childevt = tmigr_next_groupevt(child);
745 		nextexp = child->next_expiry;
746 		evt = &child->groupevt;
747 
748 		evt->ignore = (nextexp == KTIME_MAX) ? true : false;
749 	} else {
750 		nextexp = data->nextexp;
751 
752 		first_childevt = evt = data->evt;
753 
754 		raw_spin_lock(&group->lock);
755 
756 		childstate.state = 0;
757 		groupstate.state = atomic_read(&group->migr_state);
758 	}
759 
760 	/*
761 	 * If the child event is already queued in the group, remove it from the
762 	 * queue when the expiry time changed only or when it could be ignored.
763 	 */
764 	if (timerqueue_node_queued(&evt->nextevt)) {
765 		if ((evt->nextevt.expires == nextexp) && !evt->ignore)
766 			goto check_toplvl;
767 
768 		if (!timerqueue_del(&group->events, &evt->nextevt))
769 			WRITE_ONCE(group->next_expiry, KTIME_MAX);
770 	}
771 
772 	if (evt->ignore) {
773 		/*
774 		 * When the next child event could be ignored (nextexp is
775 		 * KTIME_MAX) and there was no remote timer handling before or
776 		 * the group is already active, there is no need to walk the
777 		 * hierarchy even if there is a parent group.
778 		 *
779 		 * The other way round: even if the event could be ignored, but
780 		 * if a remote timer handling was executed before and the group
781 		 * is not active, walking the hierarchy is required to not miss
782 		 * an enqueued timer in the non active group. The enqueued timer
783 		 * of the group needs to be propagated to a higher level to
784 		 * ensure it is handled.
785 		 */
786 		if (!remote || groupstate.active)
787 			walk_done = true;
788 	} else {
789 		evt->nextevt.expires = nextexp;
790 		evt->cpu = first_childevt->cpu;
791 
792 		if (timerqueue_add(&group->events, &evt->nextevt))
793 			WRITE_ONCE(group->next_expiry, nextexp);
794 	}
795 
796 check_toplvl:
797 	if (!group->parent && (groupstate.migrator == TMIGR_NONE)) {
798 		walk_done = true;
799 
800 		/*
801 		 * Nothing to do when update was done during remote timer
802 		 * handling. First timer in top level group which needs to be
803 		 * handled when top level group is not active, is calculated
804 		 * directly in tmigr_handle_remote_up().
805 		 */
806 		if (remote)
807 			goto unlock;
808 
809 		/*
810 		 * The top level group is idle and it has to be ensured the
811 		 * global timers are handled in time. (This could be optimized
812 		 * by keeping track of the last global scheduled event and only
813 		 * arming it on the CPU if the new event is earlier. Not sure if
814 		 * its worth the complexity.)
815 		 */
816 		data->firstexp = tmigr_next_groupevt_expires(group);
817 	}
818 
819 	trace_tmigr_update_events(child, group, childstate, groupstate,
820 				  nextexp);
821 
822 unlock:
823 	raw_spin_unlock(&group->lock);
824 
825 	if (child)
826 		raw_spin_unlock(&child->lock);
827 
828 	return walk_done;
829 }
830 
831 static bool tmigr_new_timer_up(struct tmigr_group *group,
832 			       struct tmigr_group *child,
833 			       void *ptr)
834 {
835 	struct tmigr_walk *data = ptr;
836 
837 	return tmigr_update_events(group, child, data);
838 }
839 
840 /*
841  * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is
842  * returned, if an active CPU will handle all the timer migration hierarchy
843  * timers.
844  */
845 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp)
846 {
847 	struct tmigr_walk data = { .nextexp = nextexp,
848 				   .firstexp = KTIME_MAX,
849 				   .evt = &tmc->cpuevt };
850 
851 	lockdep_assert_held(&tmc->lock);
852 
853 	if (tmc->remote)
854 		return KTIME_MAX;
855 
856 	trace_tmigr_cpu_new_timer(tmc);
857 
858 	tmc->cpuevt.ignore = false;
859 	data.remote = false;
860 
861 	walk_groups(&tmigr_new_timer_up, &data, tmc);
862 
863 	/* If there is a new first global event, make sure it is handled */
864 	return data.firstexp;
865 }
866 
867 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now,
868 				    unsigned long jif)
869 {
870 	struct timer_events tevt;
871 	struct tmigr_walk data;
872 	struct tmigr_cpu *tmc;
873 
874 	tmc = per_cpu_ptr(&tmigr_cpu, cpu);
875 
876 	raw_spin_lock_irq(&tmc->lock);
877 
878 	/*
879 	 * If the remote CPU is offline then the timers have been migrated to
880 	 * another CPU.
881 	 *
882 	 * If tmigr_cpu::remote is set, at the moment another CPU already
883 	 * expires the timers of the remote CPU.
884 	 *
885 	 * If tmigr_event::ignore is set, then the CPU returns from idle and
886 	 * takes care of its timers.
887 	 *
888 	 * If the next event expires in the future, then the event has been
889 	 * updated and there are no timers to expire right now. The CPU which
890 	 * updated the event takes care when hierarchy is completely
891 	 * idle. Otherwise the migrator does it as the event is enqueued.
892 	 */
893 	if (!tmc->online || tmc->remote || tmc->cpuevt.ignore ||
894 	    now < tmc->cpuevt.nextevt.expires) {
895 		raw_spin_unlock_irq(&tmc->lock);
896 		return;
897 	}
898 
899 	trace_tmigr_handle_remote_cpu(tmc);
900 
901 	tmc->remote = true;
902 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
903 
904 	/* Drop the lock to allow the remote CPU to exit idle */
905 	raw_spin_unlock_irq(&tmc->lock);
906 
907 	if (cpu != smp_processor_id())
908 		timer_expire_remote(cpu);
909 
910 	/*
911 	 * Lock ordering needs to be preserved - timer_base locks before tmigr
912 	 * related locks (see section "Locking rules" in the documentation at
913 	 * the top). During fetching the next timer interrupt, also tmc->lock
914 	 * needs to be held. Otherwise there is a possible race window against
915 	 * the CPU itself when it comes out of idle, updates the first timer in
916 	 * the hierarchy and goes back to idle.
917 	 *
918 	 * timer base locks are dropped as fast as possible: After checking
919 	 * whether the remote CPU went offline in the meantime and after
920 	 * fetching the next remote timer interrupt. Dropping the locks as fast
921 	 * as possible keeps the locking region small and prevents holding
922 	 * several (unnecessary) locks during walking the hierarchy for updating
923 	 * the timerqueue and group events.
924 	 */
925 	local_irq_disable();
926 	timer_lock_remote_bases(cpu);
927 	raw_spin_lock(&tmc->lock);
928 
929 	/*
930 	 * When the CPU went offline in the meantime, no hierarchy walk has to
931 	 * be done for updating the queued events, because the walk was
932 	 * already done during marking the CPU offline in the hierarchy.
933 	 *
934 	 * When the CPU is no longer idle, the CPU takes care of the timers and
935 	 * also of the timers in the hierarchy.
936 	 *
937 	 * (See also section "Required event and timerqueue update after a
938 	 * remote expiry" in the documentation at the top)
939 	 */
940 	if (!tmc->online || !tmc->idle) {
941 		timer_unlock_remote_bases(cpu);
942 		goto unlock;
943 	}
944 
945 	/* next	event of CPU */
946 	fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu);
947 	timer_unlock_remote_bases(cpu);
948 
949 	data.nextexp = tevt.global;
950 	data.firstexp = KTIME_MAX;
951 	data.evt = &tmc->cpuevt;
952 	data.remote = true;
953 
954 	/*
955 	 * The update is done even when there is no 'new' global timer pending
956 	 * on the remote CPU (see section "Required event and timerqueue update
957 	 * after a remote expiry" in the documentation at the top)
958 	 */
959 	walk_groups(&tmigr_new_timer_up, &data, tmc);
960 
961 unlock:
962 	tmc->remote = false;
963 	raw_spin_unlock_irq(&tmc->lock);
964 }
965 
966 static bool tmigr_handle_remote_up(struct tmigr_group *group,
967 				   struct tmigr_group *child,
968 				   void *ptr)
969 {
970 	struct tmigr_remote_data *data = ptr;
971 	struct tmigr_event *evt;
972 	unsigned long jif;
973 	u8 childmask;
974 	u64 now;
975 
976 	jif = data->basej;
977 	now = data->now;
978 
979 	childmask = data->childmask;
980 
981 	trace_tmigr_handle_remote(group);
982 again:
983 	/*
984 	 * Handle the group only if @childmask is the migrator or if the
985 	 * group has no migrator. Otherwise the group is active and is
986 	 * handled by its own migrator.
987 	 */
988 	if (!tmigr_check_migrator(group, childmask))
989 		return true;
990 
991 	raw_spin_lock_irq(&group->lock);
992 
993 	evt = tmigr_next_expired_groupevt(group, now);
994 
995 	if (evt) {
996 		unsigned int remote_cpu = evt->cpu;
997 
998 		raw_spin_unlock_irq(&group->lock);
999 
1000 		tmigr_handle_remote_cpu(remote_cpu, now, jif);
1001 
1002 		/* check if there is another event, that needs to be handled */
1003 		goto again;
1004 	}
1005 
1006 	/*
1007 	 * Update of childmask for the next level and keep track of the expiry
1008 	 * of the first event that needs to be handled (group->next_expiry was
1009 	 * updated by tmigr_next_expired_groupevt(), next was set by
1010 	 * tmigr_handle_remote_cpu()).
1011 	 */
1012 	data->childmask = group->childmask;
1013 	data->firstexp = group->next_expiry;
1014 
1015 	raw_spin_unlock_irq(&group->lock);
1016 
1017 	return false;
1018 }
1019 
1020 /**
1021  * tmigr_handle_remote() - Handle global timers of remote idle CPUs
1022  *
1023  * Called from the timer soft interrupt with interrupts enabled.
1024  */
1025 void tmigr_handle_remote(void)
1026 {
1027 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1028 	struct tmigr_remote_data data;
1029 
1030 	if (tmigr_is_not_available(tmc))
1031 		return;
1032 
1033 	data.childmask = tmc->childmask;
1034 	data.firstexp = KTIME_MAX;
1035 
1036 	/*
1037 	 * NOTE: This is a doubled check because the migrator test will be done
1038 	 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the
1039 	 * return when nothing has to be done.
1040 	 */
1041 	if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) {
1042 		/*
1043 		 * If this CPU was an idle migrator, make sure to clear its wakeup
1044 		 * value so it won't chase timers that have already expired elsewhere.
1045 		 * This avoids endless requeue from tmigr_new_timer().
1046 		 */
1047 		if (READ_ONCE(tmc->wakeup) == KTIME_MAX)
1048 			return;
1049 	}
1050 
1051 	data.now = get_jiffies_update(&data.basej);
1052 
1053 	/*
1054 	 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to
1055 	 * KTIME_MAX. Even if tmc->lock is not held during the whole remote
1056 	 * handling, tmc->wakeup is fine to be stale as it is called in
1057 	 * interrupt context and tick_nohz_next_event() is executed in interrupt
1058 	 * exit path only after processing the last pending interrupt.
1059 	 */
1060 
1061 	__walk_groups(&tmigr_handle_remote_up, &data, tmc);
1062 
1063 	raw_spin_lock_irq(&tmc->lock);
1064 	WRITE_ONCE(tmc->wakeup, data.firstexp);
1065 	raw_spin_unlock_irq(&tmc->lock);
1066 }
1067 
1068 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
1069 					    struct tmigr_group *child,
1070 					    void *ptr)
1071 {
1072 	struct tmigr_remote_data *data = ptr;
1073 	u8 childmask;
1074 
1075 	childmask = data->childmask;
1076 
1077 	/*
1078 	 * Handle the group only if the child is the migrator or if the group
1079 	 * has no migrator. Otherwise the group is active and is handled by its
1080 	 * own migrator.
1081 	 */
1082 	if (!tmigr_check_migrator(group, childmask))
1083 		return true;
1084 
1085 	/*
1086 	 * When there is a parent group and the CPU which triggered the
1087 	 * hierarchy walk is not active, proceed the walk to reach the top level
1088 	 * group before reading the next_expiry value.
1089 	 */
1090 	if (group->parent && !data->tmc_active)
1091 		goto out;
1092 
1093 	/*
1094 	 * The lock is required on 32bit architectures to read the variable
1095 	 * consistently with a concurrent writer. On 64bit the lock is not
1096 	 * required because the read operation is not split and so it is always
1097 	 * consistent.
1098 	 */
1099 	if (IS_ENABLED(CONFIG_64BIT)) {
1100 		data->firstexp = READ_ONCE(group->next_expiry);
1101 		if (data->now >= data->firstexp) {
1102 			data->check = true;
1103 			return true;
1104 		}
1105 	} else {
1106 		raw_spin_lock(&group->lock);
1107 		data->firstexp = group->next_expiry;
1108 		if (data->now >= group->next_expiry) {
1109 			data->check = true;
1110 			raw_spin_unlock(&group->lock);
1111 			return true;
1112 		}
1113 		raw_spin_unlock(&group->lock);
1114 	}
1115 
1116 out:
1117 	/* Update of childmask for the next level */
1118 	data->childmask = group->childmask;
1119 	return false;
1120 }
1121 
1122 /**
1123  * tmigr_requires_handle_remote() - Check the need of remote timer handling
1124  *
1125  * Must be called with interrupts disabled.
1126  */
1127 bool tmigr_requires_handle_remote(void)
1128 {
1129 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1130 	struct tmigr_remote_data data;
1131 	unsigned long jif;
1132 	bool ret = false;
1133 
1134 	if (tmigr_is_not_available(tmc))
1135 		return ret;
1136 
1137 	data.now = get_jiffies_update(&jif);
1138 	data.childmask = tmc->childmask;
1139 	data.firstexp = KTIME_MAX;
1140 	data.tmc_active = !tmc->idle;
1141 	data.check = false;
1142 
1143 	/*
1144 	 * If the CPU is active, walk the hierarchy to check whether a remote
1145 	 * expiry is required.
1146 	 *
1147 	 * Check is done lockless as interrupts are disabled and @tmc->idle is
1148 	 * set only by the local CPU.
1149 	 */
1150 	if (!tmc->idle) {
1151 		__walk_groups(&tmigr_requires_handle_remote_up, &data, tmc);
1152 
1153 		return data.check;
1154 	}
1155 
1156 	/*
1157 	 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock
1158 	 * is required on 32bit architectures to read the variable consistently
1159 	 * with a concurrent writer. On 64bit the lock is not required because
1160 	 * the read operation is not split and so it is always consistent.
1161 	 */
1162 	if (IS_ENABLED(CONFIG_64BIT)) {
1163 		if (data.now >= READ_ONCE(tmc->wakeup))
1164 			return true;
1165 	} else {
1166 		raw_spin_lock(&tmc->lock);
1167 		if (data.now >= tmc->wakeup)
1168 			ret = true;
1169 		raw_spin_unlock(&tmc->lock);
1170 	}
1171 
1172 	return ret;
1173 }
1174 
1175 /**
1176  * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc)
1177  * @nextexp:	Next expiry of global timer (or KTIME_MAX if not)
1178  *
1179  * The CPU is already deactivated in the timer migration
1180  * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event()
1181  * and thereby the timer idle path is executed once more. @tmc->wakeup
1182  * holds the first timer, when the timer migration hierarchy is
1183  * completely idle.
1184  *
1185  * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if
1186  * nothing needs to be done.
1187  */
1188 u64 tmigr_cpu_new_timer(u64 nextexp)
1189 {
1190 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1191 	u64 ret;
1192 
1193 	if (tmigr_is_not_available(tmc))
1194 		return nextexp;
1195 
1196 	raw_spin_lock(&tmc->lock);
1197 
1198 	ret = READ_ONCE(tmc->wakeup);
1199 	if (nextexp != KTIME_MAX) {
1200 		if (nextexp != tmc->cpuevt.nextevt.expires ||
1201 		    tmc->cpuevt.ignore) {
1202 			ret = tmigr_new_timer(tmc, nextexp);
1203 		}
1204 	}
1205 	/*
1206 	 * Make sure the reevaluation of timers in idle path will not miss an
1207 	 * event.
1208 	 */
1209 	WRITE_ONCE(tmc->wakeup, ret);
1210 
1211 	trace_tmigr_cpu_new_timer_idle(tmc, nextexp);
1212 	raw_spin_unlock(&tmc->lock);
1213 	return ret;
1214 }
1215 
1216 static bool tmigr_inactive_up(struct tmigr_group *group,
1217 			      struct tmigr_group *child,
1218 			      void *ptr)
1219 {
1220 	union tmigr_state curstate, newstate, childstate;
1221 	struct tmigr_walk *data = ptr;
1222 	bool walk_done;
1223 	u8 childmask;
1224 
1225 	childmask = data->childmask;
1226 	childstate.state = 0;
1227 
1228 	/*
1229 	 * The memory barrier is paired with the cmpxchg() in tmigr_active_up()
1230 	 * to make sure the updates of child and group states are ordered. The
1231 	 * ordering is mandatory, as the group state change depends on the child
1232 	 * state.
1233 	 */
1234 	curstate.state = atomic_read_acquire(&group->migr_state);
1235 
1236 	for (;;) {
1237 		if (child)
1238 			childstate.state = atomic_read(&child->migr_state);
1239 
1240 		newstate = curstate;
1241 		walk_done = true;
1242 
1243 		/* Reset active bit when the child is no longer active */
1244 		if (!childstate.active)
1245 			newstate.active &= ~childmask;
1246 
1247 		if (newstate.migrator == childmask) {
1248 			/*
1249 			 * Find a new migrator for the group, because the child
1250 			 * group is idle!
1251 			 */
1252 			if (!childstate.active) {
1253 				unsigned long new_migr_bit, active = newstate.active;
1254 
1255 				new_migr_bit = find_first_bit(&active, BIT_CNT);
1256 
1257 				if (new_migr_bit != BIT_CNT) {
1258 					newstate.migrator = BIT(new_migr_bit);
1259 				} else {
1260 					newstate.migrator = TMIGR_NONE;
1261 
1262 					/* Changes need to be propagated */
1263 					walk_done = false;
1264 				}
1265 			}
1266 		}
1267 
1268 		newstate.seq++;
1269 
1270 		WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active));
1271 
1272 		if (atomic_try_cmpxchg(&group->migr_state, &curstate.state,
1273 				       newstate.state))
1274 			break;
1275 
1276 		/*
1277 		 * The memory barrier is paired with the cmpxchg() in
1278 		 * tmigr_active_up() to make sure the updates of child and group
1279 		 * states are ordered. It is required only when the above
1280 		 * try_cmpxchg() fails.
1281 		 */
1282 		smp_mb__after_atomic();
1283 	}
1284 
1285 	data->remote = false;
1286 
1287 	/* Event Handling */
1288 	tmigr_update_events(group, child, data);
1289 
1290 	if (group->parent && (walk_done == false))
1291 		data->childmask = group->childmask;
1292 
1293 	/*
1294 	 * data->firstexp was set by tmigr_update_events() and contains the
1295 	 * expiry of the first global event which needs to be handled. It
1296 	 * differs from KTIME_MAX if:
1297 	 * - group is the top level group and
1298 	 * - group is idle (which means CPU was the last active CPU in the
1299 	 *   hierarchy) and
1300 	 * - there is a pending event in the hierarchy
1301 	 */
1302 	WARN_ON_ONCE(data->firstexp != KTIME_MAX && group->parent);
1303 
1304 	trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
1305 
1306 	return walk_done;
1307 }
1308 
1309 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp)
1310 {
1311 	struct tmigr_walk data = { .nextexp = nextexp,
1312 				   .firstexp = KTIME_MAX,
1313 				   .evt = &tmc->cpuevt,
1314 				   .childmask = tmc->childmask };
1315 
1316 	/*
1317 	 * If nextexp is KTIME_MAX, the CPU event will be ignored because the
1318 	 * local timer expires before the global timer, no global timer is set
1319 	 * or CPU goes offline.
1320 	 */
1321 	if (nextexp != KTIME_MAX)
1322 		tmc->cpuevt.ignore = false;
1323 
1324 	walk_groups(&tmigr_inactive_up, &data, tmc);
1325 	return data.firstexp;
1326 }
1327 
1328 /**
1329  * tmigr_cpu_deactivate() - Put current CPU into inactive state
1330  * @nextexp:	The next global timer expiry of the current CPU
1331  *
1332  * Must be called with interrupts disabled.
1333  *
1334  * Return: the next event expiry of the current CPU or the next event expiry
1335  * from the hierarchy if this CPU is the top level migrator or the hierarchy is
1336  * completely idle.
1337  */
1338 u64 tmigr_cpu_deactivate(u64 nextexp)
1339 {
1340 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1341 	u64 ret;
1342 
1343 	if (tmigr_is_not_available(tmc))
1344 		return nextexp;
1345 
1346 	raw_spin_lock(&tmc->lock);
1347 
1348 	ret = __tmigr_cpu_deactivate(tmc, nextexp);
1349 
1350 	tmc->idle = true;
1351 
1352 	/*
1353 	 * Make sure the reevaluation of timers in idle path will not miss an
1354 	 * event.
1355 	 */
1356 	WRITE_ONCE(tmc->wakeup, ret);
1357 
1358 	trace_tmigr_cpu_idle(tmc, nextexp);
1359 	raw_spin_unlock(&tmc->lock);
1360 	return ret;
1361 }
1362 
1363 /**
1364  * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to
1365  *			 go idle
1366  * @nextevt:	The next global timer expiry of the current CPU
1367  *
1368  * Return:
1369  * * KTIME_MAX		- when it is probable that nothing has to be done (not
1370  *			  the only one in the level 0 group; and if it is the
1371  *			  only one in level 0 group, but there are more than a
1372  *			  single group active on the way to top level)
1373  * * nextevt		- when CPU is offline and has to handle timer on his own
1374  *			  or when on the way to top in every group only a single
1375  *			  child is active but @nextevt is before the lowest
1376  *			  next_expiry encountered while walking up to top level.
1377  * * next_expiry	- value of lowest expiry encountered while walking groups
1378  *			  if only a single child is active on each and @nextevt
1379  *			  is after this lowest expiry.
1380  */
1381 u64 tmigr_quick_check(u64 nextevt)
1382 {
1383 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1384 	struct tmigr_group *group = tmc->tmgroup;
1385 
1386 	if (tmigr_is_not_available(tmc))
1387 		return nextevt;
1388 
1389 	if (WARN_ON_ONCE(tmc->idle))
1390 		return nextevt;
1391 
1392 	if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask))
1393 		return KTIME_MAX;
1394 
1395 	do {
1396 		if (!tmigr_check_lonely(group)) {
1397 			return KTIME_MAX;
1398 		} else {
1399 			/*
1400 			 * Since current CPU is active, events may not be sorted
1401 			 * from bottom to the top because the CPU's event is ignored
1402 			 * up to the top and its sibling's events not propagated upwards.
1403 			 * Thus keep track of the lowest observed expiry.
1404 			 */
1405 			nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry));
1406 			if (!group->parent)
1407 				return nextevt;
1408 		}
1409 		group = group->parent;
1410 	} while (group);
1411 
1412 	return KTIME_MAX;
1413 }
1414 
1415 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl,
1416 			     int node)
1417 {
1418 	union tmigr_state s;
1419 
1420 	raw_spin_lock_init(&group->lock);
1421 
1422 	group->level = lvl;
1423 	group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE;
1424 
1425 	group->num_children = 0;
1426 
1427 	s.migrator = TMIGR_NONE;
1428 	s.active = 0;
1429 	s.seq = 0;
1430 	atomic_set(&group->migr_state, s.state);
1431 
1432 	timerqueue_init_head(&group->events);
1433 	timerqueue_init(&group->groupevt.nextevt);
1434 	group->groupevt.nextevt.expires = KTIME_MAX;
1435 	WRITE_ONCE(group->next_expiry, KTIME_MAX);
1436 	group->groupevt.ignore = true;
1437 }
1438 
1439 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node,
1440 					   unsigned int lvl)
1441 {
1442 	struct tmigr_group *tmp, *group = NULL;
1443 
1444 	lockdep_assert_held(&tmigr_mutex);
1445 
1446 	/* Try to attach to an existing group first */
1447 	list_for_each_entry(tmp, &tmigr_level_list[lvl], list) {
1448 		/*
1449 		 * If @lvl is below the cross NUMA node level, check whether
1450 		 * this group belongs to the same NUMA node.
1451 		 */
1452 		if (lvl < tmigr_crossnode_level && tmp->numa_node != node)
1453 			continue;
1454 
1455 		/* Capacity left? */
1456 		if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP)
1457 			continue;
1458 
1459 		/*
1460 		 * TODO: A possible further improvement: Make sure that all CPU
1461 		 * siblings end up in the same group of the lowest level of the
1462 		 * hierarchy. Rely on the topology sibling mask would be a
1463 		 * reasonable solution.
1464 		 */
1465 
1466 		group = tmp;
1467 		break;
1468 	}
1469 
1470 	if (group)
1471 		return group;
1472 
1473 	/* Allocate and	set up a new group */
1474 	group = kzalloc_node(sizeof(*group), GFP_KERNEL, node);
1475 	if (!group)
1476 		return ERR_PTR(-ENOMEM);
1477 
1478 	tmigr_init_group(group, lvl, node);
1479 
1480 	/* Setup successful. Add it to the hierarchy */
1481 	list_add(&group->list, &tmigr_level_list[lvl]);
1482 	trace_tmigr_group_set(group);
1483 	return group;
1484 }
1485 
1486 static void tmigr_connect_child_parent(struct tmigr_group *child,
1487 				       struct tmigr_group *parent)
1488 {
1489 	union tmigr_state childstate;
1490 
1491 	raw_spin_lock_irq(&child->lock);
1492 	raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING);
1493 
1494 	child->parent = parent;
1495 	child->childmask = BIT(parent->num_children++);
1496 
1497 	raw_spin_unlock(&parent->lock);
1498 	raw_spin_unlock_irq(&child->lock);
1499 
1500 	trace_tmigr_connect_child_parent(child);
1501 
1502 	/*
1503 	 * To prevent inconsistent states, active children need to be active in
1504 	 * the new parent as well. Inactive children are already marked inactive
1505 	 * in the parent group:
1506 	 *
1507 	 * * When new groups were created by tmigr_setup_groups() starting from
1508 	 *   the lowest level (and not higher then one level below the current
1509 	 *   top level), then they are not active. They will be set active when
1510 	 *   the new online CPU comes active.
1511 	 *
1512 	 * * But if a new group above the current top level is required, it is
1513 	 *   mandatory to propagate the active state of the already existing
1514 	 *   child to the new parent. So tmigr_connect_child_parent() is
1515 	 *   executed with the formerly top level group (child) and the newly
1516 	 *   created group (parent).
1517 	 */
1518 	childstate.state = atomic_read(&child->migr_state);
1519 	if (childstate.migrator != TMIGR_NONE) {
1520 		struct tmigr_walk data;
1521 
1522 		data.childmask = child->childmask;
1523 
1524 		/*
1525 		 * There is only one new level per time. When connecting the
1526 		 * child and the parent and set the child active when the parent
1527 		 * is inactive, the parent needs to be the uppermost
1528 		 * level. Otherwise there went something wrong!
1529 		 */
1530 		WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
1531 	}
1532 }
1533 
1534 static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
1535 {
1536 	struct tmigr_group *group, *child, **stack;
1537 	int top = 0, err = 0, i = 0;
1538 	struct list_head *lvllist;
1539 
1540 	stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL);
1541 	if (!stack)
1542 		return -ENOMEM;
1543 
1544 	do {
1545 		group = tmigr_get_group(cpu, node, i);
1546 		if (IS_ERR(group)) {
1547 			err = PTR_ERR(group);
1548 			break;
1549 		}
1550 
1551 		top = i;
1552 		stack[i++] = group;
1553 
1554 		/*
1555 		 * When booting only less CPUs of a system than CPUs are
1556 		 * available, not all calculated hierarchy levels are required.
1557 		 *
1558 		 * The loop is aborted as soon as the highest level, which might
1559 		 * be different from tmigr_hierarchy_levels, contains only a
1560 		 * single group.
1561 		 */
1562 		if (group->parent || i == tmigr_hierarchy_levels ||
1563 		    (list_empty(&tmigr_level_list[i]) &&
1564 		     list_is_singular(&tmigr_level_list[i - 1])))
1565 			break;
1566 
1567 	} while (i < tmigr_hierarchy_levels);
1568 
1569 	do {
1570 		group = stack[--i];
1571 
1572 		if (err < 0) {
1573 			list_del(&group->list);
1574 			kfree(group);
1575 			continue;
1576 		}
1577 
1578 		WARN_ON_ONCE(i != group->level);
1579 
1580 		/*
1581 		 * Update tmc -> group / child -> group connection
1582 		 */
1583 		if (i == 0) {
1584 			struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1585 
1586 			raw_spin_lock_irq(&group->lock);
1587 
1588 			tmc->tmgroup = group;
1589 			tmc->childmask = BIT(group->num_children++);
1590 
1591 			raw_spin_unlock_irq(&group->lock);
1592 
1593 			trace_tmigr_connect_cpu_parent(tmc);
1594 
1595 			/* There are no children that need to be connected */
1596 			continue;
1597 		} else {
1598 			child = stack[i - 1];
1599 			tmigr_connect_child_parent(child, group);
1600 		}
1601 
1602 		/* check if uppermost level was newly created */
1603 		if (top != i)
1604 			continue;
1605 
1606 		WARN_ON_ONCE(top == 0);
1607 
1608 		lvllist = &tmigr_level_list[top];
1609 		if (group->num_children == 1 && list_is_singular(lvllist)) {
1610 			lvllist = &tmigr_level_list[top - 1];
1611 			list_for_each_entry(child, lvllist, list) {
1612 				if (child->parent)
1613 					continue;
1614 
1615 				tmigr_connect_child_parent(child, group);
1616 			}
1617 		}
1618 	} while (i > 0);
1619 
1620 	kfree(stack);
1621 
1622 	return err;
1623 }
1624 
1625 static int tmigr_add_cpu(unsigned int cpu)
1626 {
1627 	int node = cpu_to_node(cpu);
1628 	int ret;
1629 
1630 	mutex_lock(&tmigr_mutex);
1631 	ret = tmigr_setup_groups(cpu, node);
1632 	mutex_unlock(&tmigr_mutex);
1633 
1634 	return ret;
1635 }
1636 
1637 static int tmigr_cpu_online(unsigned int cpu)
1638 {
1639 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1640 	int ret;
1641 
1642 	/* First online attempt? Initialize CPU data */
1643 	if (!tmc->tmgroup) {
1644 		raw_spin_lock_init(&tmc->lock);
1645 
1646 		ret = tmigr_add_cpu(cpu);
1647 		if (ret < 0)
1648 			return ret;
1649 
1650 		if (tmc->childmask == 0)
1651 			return -EINVAL;
1652 
1653 		timerqueue_init(&tmc->cpuevt.nextevt);
1654 		tmc->cpuevt.nextevt.expires = KTIME_MAX;
1655 		tmc->cpuevt.ignore = true;
1656 		tmc->cpuevt.cpu = cpu;
1657 
1658 		tmc->remote = false;
1659 		WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1660 	}
1661 	raw_spin_lock_irq(&tmc->lock);
1662 	trace_tmigr_cpu_online(tmc);
1663 	tmc->idle = timer_base_is_idle();
1664 	if (!tmc->idle)
1665 		__tmigr_cpu_activate(tmc);
1666 	tmc->online = true;
1667 	raw_spin_unlock_irq(&tmc->lock);
1668 	return 0;
1669 }
1670 
1671 /*
1672  * tmigr_trigger_active() - trigger a CPU to become active again
1673  *
1674  * This function is executed on a CPU which is part of cpu_online_mask, when the
1675  * last active CPU in the hierarchy is offlining. With this, it is ensured that
1676  * the other CPU is active and takes over the migrator duty.
1677  */
1678 static long tmigr_trigger_active(void *unused)
1679 {
1680 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1681 
1682 	WARN_ON_ONCE(!tmc->online || tmc->idle);
1683 
1684 	return 0;
1685 }
1686 
1687 static int tmigr_cpu_offline(unsigned int cpu)
1688 {
1689 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1690 	int migrator;
1691 	u64 firstexp;
1692 
1693 	raw_spin_lock_irq(&tmc->lock);
1694 	tmc->online = false;
1695 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1696 
1697 	/*
1698 	 * CPU has to handle the local events on his own, when on the way to
1699 	 * offline; Therefore nextevt value is set to KTIME_MAX
1700 	 */
1701 	firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
1702 	trace_tmigr_cpu_offline(tmc);
1703 	raw_spin_unlock_irq(&tmc->lock);
1704 
1705 	if (firstexp != KTIME_MAX) {
1706 		migrator = cpumask_any_but(cpu_online_mask, cpu);
1707 		work_on_cpu(migrator, tmigr_trigger_active, NULL);
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 static int __init tmigr_init(void)
1714 {
1715 	unsigned int cpulvl, nodelvl, cpus_per_node, i;
1716 	unsigned int nnodes = num_possible_nodes();
1717 	unsigned int ncpus = num_possible_cpus();
1718 	int ret = -ENOMEM;
1719 
1720 	BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP);
1721 
1722 	/* Nothing to do if running on UP */
1723 	if (ncpus == 1)
1724 		return 0;
1725 
1726 	/*
1727 	 * Calculate the required hierarchy levels. Unfortunately there is no
1728 	 * reliable information available, unless all possible CPUs have been
1729 	 * brought up and all NUMA nodes are populated.
1730 	 *
1731 	 * Estimate the number of levels with the number of possible nodes and
1732 	 * the number of possible CPUs. Assume CPUs are spread evenly across
1733 	 * nodes. We cannot rely on cpumask_of_node() because it only works for
1734 	 * online CPUs.
1735 	 */
1736 	cpus_per_node = DIV_ROUND_UP(ncpus, nnodes);
1737 
1738 	/* Calc the hierarchy levels required to hold the CPUs of a node */
1739 	cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node),
1740 			      ilog2(TMIGR_CHILDREN_PER_GROUP));
1741 
1742 	/* Calculate the extra levels to connect all nodes */
1743 	nodelvl = DIV_ROUND_UP(order_base_2(nnodes),
1744 			       ilog2(TMIGR_CHILDREN_PER_GROUP));
1745 
1746 	tmigr_hierarchy_levels = cpulvl + nodelvl;
1747 
1748 	/*
1749 	 * If a NUMA node spawns more than one CPU level group then the next
1750 	 * level(s) of the hierarchy contains groups which handle all CPU groups
1751 	 * of the same NUMA node. The level above goes across NUMA nodes. Store
1752 	 * this information for the setup code to decide in which level node
1753 	 * matching is no longer required.
1754 	 */
1755 	tmigr_crossnode_level = cpulvl;
1756 
1757 	tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL);
1758 	if (!tmigr_level_list)
1759 		goto err;
1760 
1761 	for (i = 0; i < tmigr_hierarchy_levels; i++)
1762 		INIT_LIST_HEAD(&tmigr_level_list[i]);
1763 
1764 	pr_info("Timer migration: %d hierarchy levels; %d children per group;"
1765 		" %d crossnode level\n",
1766 		tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP,
1767 		tmigr_crossnode_level);
1768 
1769 	ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online",
1770 				tmigr_cpu_online, tmigr_cpu_offline);
1771 	if (ret)
1772 		goto err;
1773 
1774 	return 0;
1775 
1776 err:
1777 	pr_err("Timer migration setup failed\n");
1778 	return ret;
1779 }
1780 late_initcall(tmigr_init);
1781