1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Infrastructure for migratable timers 4 * 5 * Copyright(C) 2022 linutronix GmbH 6 */ 7 #include <linux/cpuhotplug.h> 8 #include <linux/slab.h> 9 #include <linux/smp.h> 10 #include <linux/spinlock.h> 11 #include <linux/timerqueue.h> 12 #include <trace/events/ipi.h> 13 #include <linux/sched/isolation.h> 14 15 #include "timer_migration.h" 16 #include "tick-internal.h" 17 18 #define CREATE_TRACE_POINTS 19 #include <trace/events/timer_migration.h> 20 21 /* 22 * The timer migration mechanism is built on a hierarchy of groups. The 23 * lowest level group contains CPUs, the next level groups of CPU groups 24 * and so forth. The CPU groups are kept per node so for the normal case 25 * lock contention won't happen across nodes. Depending on the number of 26 * CPUs per node even the next level might be kept as groups of CPU groups 27 * per node and only the levels above cross the node topology. 28 * 29 * Example topology for a two node system with 24 CPUs each. 30 * 31 * LVL 2 [GRP2:0] 32 * GRP1:0 = GRP1:M 33 * 34 * LVL 1 [GRP1:0] [GRP1:1] 35 * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5 36 * 37 * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5] 38 * CPUS 0-7 8-15 16-23 24-31 32-39 40-47 39 * 40 * The groups hold a timer queue of events sorted by expiry time. These 41 * queues are updated when CPUs go in idle. When they come out of idle 42 * ignore flag of events is set. 43 * 44 * Each group has a designated migrator CPU/group as long as a CPU/group is 45 * active in the group. This designated role is necessary to avoid that all 46 * active CPUs in a group try to migrate expired timers from other CPUs, 47 * which would result in massive lock bouncing. 48 * 49 * When a CPU is awake, it checks in it's own timer tick the group 50 * hierarchy up to the point where it is assigned the migrator role or if 51 * no CPU is active, it also checks the groups where no migrator is set 52 * (TMIGR_NONE). 53 * 54 * If it finds expired timers in one of the group queues it pulls them over 55 * from the idle CPU and runs the timer function. After that it updates the 56 * group and the parent groups if required. 57 * 58 * CPUs which go idle arm their CPU local timer hardware for the next local 59 * (pinned) timer event. If the next migratable timer expires after the 60 * next local timer or the CPU has no migratable timer pending then the 61 * CPU does not queue an event in the LVL0 group. If the next migratable 62 * timer expires before the next local timer then the CPU queues that timer 63 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0 64 * group. 65 * 66 * When CPU comes out of idle and when a group has at least a single active 67 * child, the ignore flag of the tmigr_event is set. This indicates, that 68 * the event is ignored even if it is still enqueued in the parent groups 69 * timer queue. It will be removed when touching the timer queue the next 70 * time. This spares locking in active path as the lock protects (after 71 * setup) only event information. For more information about locking, 72 * please read the section "Locking rules". 73 * 74 * If the CPU is the migrator of the group then it delegates that role to 75 * the next active CPU in the group or sets migrator to TMIGR_NONE when 76 * there is no active CPU in the group. This delegation needs to be 77 * propagated up the hierarchy so hand over from other leaves can happen at 78 * all hierarchy levels w/o doing a search. 79 * 80 * When the last CPU in the system goes idle, then it drops all migrator 81 * duties up to the top level of the hierarchy (LVL2 in the example). It 82 * then has to make sure, that it arms it's own local hardware timer for 83 * the earliest event in the system. 84 * 85 * 86 * Lifetime rules: 87 * --------------- 88 * 89 * The groups are built up at init time or when CPUs come online. They are 90 * not destroyed when a group becomes empty due to offlining. The group 91 * just won't participate in the hierarchy management anymore. Destroying 92 * groups would result in interesting race conditions which would just make 93 * the whole mechanism slow and complex. 94 * 95 * 96 * Locking rules: 97 * -------------- 98 * 99 * For setting up new groups and handling events it's required to lock both 100 * child and parent group. The lock ordering is always bottom up. This also 101 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and 102 * active CPU/group information atomic_try_cmpxchg() is used instead and only 103 * the per CPU tmigr_cpu->lock is held. 104 * 105 * During the setup of groups tmigr_level_list is required. It is protected by 106 * @tmigr_mutex. 107 * 108 * When @timer_base->lock as well as tmigr related locks are required, the lock 109 * ordering is: first @timer_base->lock, afterwards tmigr related locks. 110 * 111 * 112 * Protection of the tmigr group state information: 113 * ------------------------------------------------ 114 * 115 * The state information with the list of active children and migrator needs to 116 * be protected by a sequence counter. It prevents a race when updates in child 117 * groups are propagated in changed order. The state update is performed 118 * lockless and group wise. The following scenario describes what happens 119 * without updating the sequence counter: 120 * 121 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well 122 * as GRP0:1 will not change during the scenario): 123 * 124 * LVL 1 [GRP1:0] 125 * migrator = GRP0:1 126 * active = GRP0:0, GRP0:1 127 * / \ 128 * LVL 0 [GRP0:0] [GRP0:1] 129 * migrator = CPU0 migrator = CPU2 130 * active = CPU0 active = CPU2 131 * / \ / \ 132 * CPUs 0 1 2 3 133 * active idle active idle 134 * 135 * 136 * 1. CPU0 goes idle. As the update is performed group wise, in the first step 137 * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to 138 * walk the hierarchy. 139 * 140 * LVL 1 [GRP1:0] 141 * migrator = GRP0:1 142 * active = GRP0:0, GRP0:1 143 * / \ 144 * LVL 0 [GRP0:0] [GRP0:1] 145 * --> migrator = TMIGR_NONE migrator = CPU2 146 * --> active = active = CPU2 147 * / \ / \ 148 * CPUs 0 1 2 3 149 * --> idle idle active idle 150 * 151 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of 152 * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also 153 * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the 154 * hierarchy to perform the needed update from their point of view. The 155 * currently visible state looks the following: 156 * 157 * LVL 1 [GRP1:0] 158 * migrator = GRP0:1 159 * active = GRP0:0, GRP0:1 160 * / \ 161 * LVL 0 [GRP0:0] [GRP0:1] 162 * --> migrator = CPU1 migrator = CPU2 163 * --> active = CPU1 active = CPU2 164 * / \ / \ 165 * CPUs 0 1 2 3 166 * idle --> active active idle 167 * 168 * 3. Here is the race condition: CPU1 managed to propagate its changes (from 169 * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The 170 * active members of GRP1:0 remain unchanged after the update since it is 171 * still valid from CPU1 current point of view: 172 * 173 * LVL 1 [GRP1:0] 174 * --> migrator = GRP0:1 175 * --> active = GRP0:0, GRP0:1 176 * / \ 177 * LVL 0 [GRP0:0] [GRP0:1] 178 * migrator = CPU1 migrator = CPU2 179 * active = CPU1 active = CPU2 180 * / \ / \ 181 * CPUs 0 1 2 3 182 * idle active active idle 183 * 184 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0. 185 * 186 * LVL 1 [GRP1:0] 187 * --> migrator = GRP0:1 188 * --> active = GRP0:1 189 * / \ 190 * LVL 0 [GRP0:0] [GRP0:1] 191 * migrator = CPU1 migrator = CPU2 192 * active = CPU1 active = CPU2 193 * / \ / \ 194 * CPUs 0 1 2 3 195 * idle active active idle 196 * 197 * 198 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is 199 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not 200 * have GRP0:0 listed as active, which is wrong. The sequence counter has been 201 * added to avoid inconsistent states during updates. The state is updated 202 * atomically only if all members, including the sequence counter, match the 203 * expected value (compare-and-exchange). 204 * 205 * Looking back at the previous example with the addition of the sequence 206 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed 207 * the sequence number during the update in step 3 so the expected old value (as 208 * seen by CPU0 before starting the walk) does not match. 209 * 210 * Prevent race between new event and last CPU going inactive 211 * ---------------------------------------------------------- 212 * 213 * When the last CPU is going idle and there is a concurrent update of a new 214 * first global timer of an idle CPU, the group and child states have to be read 215 * while holding the lock in tmigr_update_events(). The following scenario shows 216 * what happens, when this is not done. 217 * 218 * 1. Only CPU2 is active: 219 * 220 * LVL 1 [GRP1:0] 221 * migrator = GRP0:1 222 * active = GRP0:1 223 * next_expiry = KTIME_MAX 224 * / \ 225 * LVL 0 [GRP0:0] [GRP0:1] 226 * migrator = TMIGR_NONE migrator = CPU2 227 * active = active = CPU2 228 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 229 * / \ / \ 230 * CPUs 0 1 2 3 231 * idle idle active idle 232 * 233 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and 234 * propagates that to GRP0:1: 235 * 236 * LVL 1 [GRP1:0] 237 * migrator = GRP0:1 238 * active = GRP0:1 239 * next_expiry = KTIME_MAX 240 * / \ 241 * LVL 0 [GRP0:0] [GRP0:1] 242 * migrator = TMIGR_NONE --> migrator = TMIGR_NONE 243 * active = --> active = 244 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 245 * / \ / \ 246 * CPUs 0 1 2 3 247 * idle idle --> idle idle 248 * 249 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last 250 * child going idle in top level group, the expiry of the next group event 251 * has to be handed back to make sure no event is lost. As there is no event 252 * enqueued, KTIME_MAX is handed back to CPU2. 253 * 254 * LVL 1 [GRP1:0] 255 * --> migrator = TMIGR_NONE 256 * --> active = 257 * next_expiry = KTIME_MAX 258 * / \ 259 * LVL 0 [GRP0:0] [GRP0:1] 260 * migrator = TMIGR_NONE migrator = TMIGR_NONE 261 * active = active = 262 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 263 * / \ / \ 264 * CPUs 0 1 2 3 265 * idle idle --> idle idle 266 * 267 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0 268 * propagates that to GRP0:0: 269 * 270 * LVL 1 [GRP1:0] 271 * migrator = TMIGR_NONE 272 * active = 273 * next_expiry = KTIME_MAX 274 * / \ 275 * LVL 0 [GRP0:0] [GRP0:1] 276 * migrator = TMIGR_NONE migrator = TMIGR_NONE 277 * active = active = 278 * --> next_expiry = TIMER0 next_expiry = KTIME_MAX 279 * / \ / \ 280 * CPUs 0 1 2 3 281 * idle idle idle idle 282 * 283 * 5. GRP0:0 is not active, so the new timer has to be propagated to 284 * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value 285 * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is 286 * handed back to CPU0, as it seems that there is still an active child in 287 * top level group. 288 * 289 * LVL 1 [GRP1:0] 290 * migrator = TMIGR_NONE 291 * active = 292 * --> next_expiry = TIMER0 293 * / \ 294 * LVL 0 [GRP0:0] [GRP0:1] 295 * migrator = TMIGR_NONE migrator = TMIGR_NONE 296 * active = active = 297 * next_expiry = TIMER0 next_expiry = KTIME_MAX 298 * / \ / \ 299 * CPUs 0 1 2 3 300 * idle idle idle idle 301 * 302 * This is prevented by reading the state when holding the lock (when a new 303 * timer has to be propagated from idle path):: 304 * 305 * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up()) 306 * -------------------------- --------------------------- 307 * // step 3: 308 * cmpxchg(&GRP1:0->state); 309 * tmigr_update_events() { 310 * spin_lock(&GRP1:0->lock); 311 * // ... update events ... 312 * // hand back first expiry when GRP1:0 is idle 313 * spin_unlock(&GRP1:0->lock); 314 * // ^^^ release state modification 315 * } 316 * tmigr_update_events() { 317 * spin_lock(&GRP1:0->lock) 318 * // ^^^ acquire state modification 319 * group_state = atomic_read(&GRP1:0->state) 320 * // .... update events ... 321 * // hand back first expiry when GRP1:0 is idle 322 * spin_unlock(&GRP1:0->lock) <3> 323 * // ^^^ makes state visible for other 324 * // callers of tmigr_new_timer_up() 325 * } 326 * 327 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported 328 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent 329 * update of the group state from active path is no problem, as the upcoming CPU 330 * will take care of the group events. 331 * 332 * Required event and timerqueue update after a remote expiry: 333 * ----------------------------------------------------------- 334 * 335 * After expiring timers of a remote CPU, a walk through the hierarchy and 336 * update of events and timerqueues is required. It is obviously needed if there 337 * is a 'new' global timer but also if there is no new global timer but the 338 * remote CPU is still idle. 339 * 340 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same 341 * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is 342 * also idle and has no global timer pending. CPU2 is the only active CPU and 343 * thus also the migrator: 344 * 345 * LVL 1 [GRP1:0] 346 * migrator = GRP0:1 347 * active = GRP0:1 348 * --> timerqueue = evt-GRP0:0 349 * / \ 350 * LVL 0 [GRP0:0] [GRP0:1] 351 * migrator = TMIGR_NONE migrator = CPU2 352 * active = active = CPU2 353 * groupevt.ignore = false groupevt.ignore = true 354 * groupevt.cpu = CPU0 groupevt.cpu = 355 * timerqueue = evt-CPU0, timerqueue = 356 * evt-CPU1 357 * / \ / \ 358 * CPUs 0 1 2 3 359 * idle idle active idle 360 * 361 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group 362 * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with 363 * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It 364 * looks at tmigr_event::cpu struct member and expires the pending timer(s) 365 * of CPU0. 366 * 367 * LVL 1 [GRP1:0] 368 * migrator = GRP0:1 369 * active = GRP0:1 370 * --> timerqueue = 371 * / \ 372 * LVL 0 [GRP0:0] [GRP0:1] 373 * migrator = TMIGR_NONE migrator = CPU2 374 * active = active = CPU2 375 * groupevt.ignore = false groupevt.ignore = true 376 * --> groupevt.cpu = CPU0 groupevt.cpu = 377 * timerqueue = evt-CPU0, timerqueue = 378 * evt-CPU1 379 * / \ / \ 380 * CPUs 0 1 2 3 381 * idle idle active idle 382 * 383 * 3. Some work has to be done after expiring the timers of CPU0. If we stop 384 * here, then CPU1's pending global timer(s) will not expire in time and the 385 * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just 386 * been processed. So it is required to walk the hierarchy from CPU0's point 387 * of view and update it accordingly. CPU0's event will be removed from the 388 * timerqueue because it has no pending timer. If CPU0 would have a timer 389 * pending then it has to expire after CPU1's first timer because all timers 390 * from this period were just expired. Either way CPU1's event will be first 391 * in GRP0:0's timerqueue and therefore set in the CPU field of the group 392 * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not 393 * active: 394 * 395 * LVL 1 [GRP1:0] 396 * migrator = GRP0:1 397 * active = GRP0:1 398 * --> timerqueue = evt-GRP0:0 399 * / \ 400 * LVL 0 [GRP0:0] [GRP0:1] 401 * migrator = TMIGR_NONE migrator = CPU2 402 * active = active = CPU2 403 * groupevt.ignore = false groupevt.ignore = true 404 * --> groupevt.cpu = CPU1 groupevt.cpu = 405 * --> timerqueue = evt-CPU1 timerqueue = 406 * / \ / \ 407 * CPUs 0 1 2 3 408 * idle idle active idle 409 * 410 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the 411 * timer(s) of CPU1. 412 * 413 * The hierarchy walk in step 3 can be skipped if the migrator notices that a 414 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care 415 * of the group as migrator and any needed updates within the hierarchy. 416 */ 417 418 static DEFINE_MUTEX(tmigr_mutex); 419 static struct list_head *tmigr_level_list __read_mostly; 420 421 static unsigned int tmigr_hierarchy_levels __read_mostly; 422 static unsigned int tmigr_crossnode_level __read_mostly; 423 424 static struct tmigr_group *tmigr_root; 425 426 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu); 427 428 /* 429 * CPUs available for timer migration. 430 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. 431 * Additionally tmigr_available_mutex serializes set/clear operations with each other. 432 */ 433 static cpumask_var_t tmigr_available_cpumask; 434 static DEFINE_MUTEX(tmigr_available_mutex); 435 436 /* Enabled during late initcall */ 437 static DEFINE_STATIC_KEY_FALSE(tmigr_exclude_isolated); 438 439 #define TMIGR_NONE 0xFF 440 #define BIT_CNT 8 441 442 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc) 443 { 444 return !(tmc->tmgroup && tmc->available); 445 } 446 447 /* 448 * Returns true if @cpu should be excluded from the hierarchy as isolated. 449 * Domain isolated CPUs don't participate in timer migration, nohz_full CPUs 450 * are still part of the hierarchy but become idle (from a tick and timer 451 * migration perspective) when they stop their tick. This lets the timekeeping 452 * CPU handle their global timers. Marking also isolated CPUs as idle would be 453 * too costly, hence they are completely excluded from the hierarchy. 454 * This check is necessary, for instance, to prevent offline isolated CPUs from 455 * being incorrectly marked as available once getting back online. 456 * 457 * This function returns false during early boot and the isolation logic is 458 * enabled only after isolated CPUs are marked as unavailable at late boot. 459 * The tick CPU can be isolated at boot, however we cannot mark it as 460 * unavailable to avoid having no global migrator for the nohz_full CPUs. This 461 * should be ensured by the callers of this function: implicitly from hotplug 462 * callbacks and explicitly in tmigr_init_isolation() and 463 * tmigr_isolated_exclude_cpumask(). 464 */ 465 static inline bool tmigr_is_isolated(int cpu) 466 { 467 if (!static_branch_unlikely(&tmigr_exclude_isolated)) 468 return false; 469 return (!housekeeping_cpu(cpu, HK_TYPE_DOMAIN) || 470 cpuset_cpu_is_isolated(cpu)) && 471 housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE); 472 } 473 474 /* 475 * Returns true, when @childmask corresponds to the group migrator or when the 476 * group is not active - so no migrator is set. 477 */ 478 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask) 479 { 480 union tmigr_state s; 481 482 s.state = atomic_read(&group->migr_state); 483 484 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 485 return true; 486 487 return false; 488 } 489 490 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask) 491 { 492 bool lonely, migrator = false; 493 unsigned long active; 494 union tmigr_state s; 495 496 s.state = atomic_read(&group->migr_state); 497 498 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 499 migrator = true; 500 501 active = s.active; 502 lonely = bitmap_weight(&active, BIT_CNT) <= 1; 503 504 return (migrator && lonely); 505 } 506 507 static bool tmigr_check_lonely(struct tmigr_group *group) 508 { 509 unsigned long active; 510 union tmigr_state s; 511 512 s.state = atomic_read(&group->migr_state); 513 514 active = s.active; 515 516 return bitmap_weight(&active, BIT_CNT) <= 1; 517 } 518 519 /** 520 * struct tmigr_walk - data required for walking the hierarchy 521 * @nextexp: Next CPU event expiry information which is handed into 522 * the timer migration code by the timer code 523 * (get_next_timer_interrupt()) 524 * @firstexp: Contains the first event expiry information when 525 * hierarchy is completely idle. When CPU itself was the 526 * last going idle, information makes sure, that CPU will 527 * be back in time. When using this value in the remote 528 * expiry case, firstexp is stored in the per CPU tmigr_cpu 529 * struct of CPU which expires remote timers. It is updated 530 * in top level group only. Be aware, there could occur a 531 * new top level of the hierarchy between the 'top level 532 * call' in tmigr_update_events() and the check for the 533 * parent group in walk_groups(). Then @firstexp might 534 * contain a value != KTIME_MAX even if it was not the 535 * final top level. This is not a problem, as the worst 536 * outcome is a CPU which might wake up a little early. 537 * @evt: Pointer to tmigr_event which needs to be queued (of idle 538 * child group) 539 * @childmask: groupmask of child group 540 * @remote: Is set, when the new timer path is executed in 541 * tmigr_handle_remote_cpu() 542 * @basej: timer base in jiffies 543 * @now: timer base monotonic 544 * @check: is set if there is the need to handle remote timers; 545 * required in tmigr_requires_handle_remote() only 546 */ 547 struct tmigr_walk { 548 u64 nextexp; 549 u64 firstexp; 550 struct tmigr_event *evt; 551 u8 childmask; 552 bool remote; 553 unsigned long basej; 554 u64 now; 555 bool check; 556 }; 557 558 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, struct tmigr_walk *); 559 560 static void __walk_groups_from(up_f up, struct tmigr_walk *data, 561 struct tmigr_group *child, struct tmigr_group *group) 562 { 563 do { 564 WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels); 565 566 if (up(group, child, data)) 567 break; 568 569 child = group; 570 /* 571 * Pairs with the store release on group connection 572 * to make sure group initialization is visible. 573 */ 574 group = READ_ONCE(group->parent); 575 data->childmask = child->groupmask; 576 WARN_ON_ONCE(!data->childmask); 577 } while (group); 578 } 579 580 static void __walk_groups(up_f up, struct tmigr_walk *data, 581 struct tmigr_cpu *tmc) 582 { 583 __walk_groups_from(up, data, NULL, tmc->tmgroup); 584 } 585 586 static void walk_groups(up_f up, struct tmigr_walk *data, struct tmigr_cpu *tmc) 587 { 588 lockdep_assert_held(&tmc->lock); 589 590 __walk_groups(up, data, tmc); 591 } 592 593 /* 594 * Returns the next event of the timerqueue @group->events 595 * 596 * Removes timers with ignore flag and update next_expiry of the group. Values 597 * of the group event are updated in tmigr_update_events() only. 598 */ 599 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group) 600 { 601 struct timerqueue_node *node = NULL; 602 struct tmigr_event *evt = NULL; 603 604 lockdep_assert_held(&group->lock); 605 606 WRITE_ONCE(group->next_expiry, KTIME_MAX); 607 608 while ((node = timerqueue_getnext(&group->events))) { 609 evt = container_of(node, struct tmigr_event, nextevt); 610 611 if (!READ_ONCE(evt->ignore)) { 612 WRITE_ONCE(group->next_expiry, evt->nextevt.expires); 613 return evt; 614 } 615 616 /* 617 * Remove next timers with ignore flag, because the group lock 618 * is held anyway 619 */ 620 if (!timerqueue_del(&group->events, node)) 621 break; 622 } 623 624 return NULL; 625 } 626 627 /* 628 * Return the next event (with the expiry equal or before @now) 629 * 630 * Event, which is returned, is also removed from the queue. 631 */ 632 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group, 633 u64 now) 634 { 635 struct tmigr_event *evt = tmigr_next_groupevt(group); 636 637 if (!evt || now < evt->nextevt.expires) 638 return NULL; 639 640 /* 641 * The event is ready to expire. Remove it and update next group event. 642 */ 643 timerqueue_del(&group->events, &evt->nextevt); 644 tmigr_next_groupevt(group); 645 646 return evt; 647 } 648 649 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group) 650 { 651 struct tmigr_event *evt; 652 653 evt = tmigr_next_groupevt(group); 654 655 if (!evt) 656 return KTIME_MAX; 657 else 658 return evt->nextevt.expires; 659 } 660 661 static bool tmigr_active_up(struct tmigr_group *group, 662 struct tmigr_group *child, 663 struct tmigr_walk *data) 664 { 665 union tmigr_state curstate, newstate; 666 bool walk_done; 667 u8 childmask; 668 669 childmask = data->childmask; 670 /* 671 * No memory barrier is required here in contrast to 672 * tmigr_inactive_up(), as the group state change does not depend on the 673 * child state. 674 */ 675 curstate.state = atomic_read(&group->migr_state); 676 677 do { 678 newstate = curstate; 679 walk_done = true; 680 681 if (newstate.migrator == TMIGR_NONE) { 682 newstate.migrator = childmask; 683 684 /* Changes need to be propagated */ 685 walk_done = false; 686 } 687 688 newstate.active |= childmask; 689 newstate.seq++; 690 691 } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)); 692 693 trace_tmigr_group_set_cpu_active(group, newstate, childmask); 694 695 /* 696 * The group is active (again). The group event might be still queued 697 * into the parent group's timerqueue but can now be handled by the 698 * migrator of this group. Therefore the ignore flag for the group event 699 * is updated to reflect this. 700 * 701 * The update of the ignore flag in the active path is done lockless. In 702 * worst case the migrator of the parent group observes the change too 703 * late and expires remotely all events belonging to this group. The 704 * lock is held while updating the ignore flag in idle path. So this 705 * state change will not be lost. 706 */ 707 WRITE_ONCE(group->groupevt.ignore, true); 708 709 return walk_done; 710 } 711 712 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc) 713 { 714 struct tmigr_walk data; 715 716 data.childmask = tmc->groupmask; 717 718 trace_tmigr_cpu_active(tmc); 719 720 tmc->cpuevt.ignore = true; 721 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 722 723 walk_groups(&tmigr_active_up, &data, tmc); 724 } 725 726 /** 727 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy 728 * 729 * Call site timer_clear_idle() is called with interrupts disabled. 730 */ 731 void tmigr_cpu_activate(void) 732 { 733 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 734 735 if (tmigr_is_not_available(tmc)) 736 return; 737 738 if (WARN_ON_ONCE(!tmc->idle)) 739 return; 740 741 raw_spin_lock(&tmc->lock); 742 tmc->idle = false; 743 __tmigr_cpu_activate(tmc); 744 raw_spin_unlock(&tmc->lock); 745 } 746 747 /* 748 * Returns true, if there is nothing to be propagated to the next level 749 * 750 * @data->firstexp is set to expiry of first global event of the (top level of 751 * the) hierarchy, but only when hierarchy is completely idle. 752 * 753 * The child and group states need to be read under the lock, to prevent a race 754 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See 755 * also section "Prevent race between new event and last CPU going inactive" in 756 * the documentation at the top. 757 * 758 * This is the only place where the group event expiry value is set. 759 */ 760 static 761 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child, 762 struct tmigr_walk *data) 763 { 764 struct tmigr_event *evt, *first_childevt; 765 union tmigr_state childstate, groupstate; 766 bool remote = data->remote; 767 bool walk_done = false; 768 bool ignore; 769 u64 nextexp; 770 771 if (child) { 772 raw_spin_lock(&child->lock); 773 raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING); 774 775 childstate.state = atomic_read(&child->migr_state); 776 groupstate.state = atomic_read(&group->migr_state); 777 778 if (childstate.active) { 779 walk_done = true; 780 goto unlock; 781 } 782 783 first_childevt = tmigr_next_groupevt(child); 784 nextexp = child->next_expiry; 785 evt = &child->groupevt; 786 787 /* 788 * This can race with concurrent idle exit (activate). 789 * If the current writer wins, a useless remote expiration may 790 * be scheduled. If the activate wins, the event is properly 791 * ignored. 792 */ 793 ignore = (nextexp == KTIME_MAX) ? true : false; 794 WRITE_ONCE(evt->ignore, ignore); 795 } else { 796 nextexp = data->nextexp; 797 798 first_childevt = evt = data->evt; 799 ignore = evt->ignore; 800 801 /* 802 * Walking the hierarchy is required in any case when a 803 * remote expiry was done before. This ensures to not lose 804 * already queued events in non active groups (see section 805 * "Required event and timerqueue update after a remote 806 * expiry" in the documentation at the top). 807 * 808 * The two call sites which are executed without a remote expiry 809 * before, are not prevented from propagating changes through 810 * the hierarchy by the return: 811 * - When entering this path by tmigr_new_timer(), @evt->ignore 812 * is never set. 813 * - tmigr_inactive_up() takes care of the propagation by 814 * itself and ignores the return value. But an immediate 815 * return is possible if there is a parent, sparing group 816 * locking at this level, because the upper walking call to 817 * the parent will take care about removing this event from 818 * within the group and update next_expiry accordingly. 819 * 820 * However if there is no parent, ie: the hierarchy has only a 821 * single level so @group is the top level group, make sure the 822 * first event information of the group is updated properly and 823 * also handled properly, so skip this fast return path. 824 */ 825 if (ignore && !remote && group->parent) 826 return true; 827 828 raw_spin_lock(&group->lock); 829 830 childstate.state = 0; 831 groupstate.state = atomic_read(&group->migr_state); 832 } 833 834 /* 835 * If the child event is already queued in the group, remove it from the 836 * queue when the expiry time changed only or when it could be ignored. 837 */ 838 if (timerqueue_node_queued(&evt->nextevt)) { 839 if ((evt->nextevt.expires == nextexp) && !ignore) { 840 /* Make sure not to miss a new CPU event with the same expiry */ 841 evt->cpu = first_childevt->cpu; 842 goto check_toplvl; 843 } 844 845 if (!timerqueue_del(&group->events, &evt->nextevt)) 846 WRITE_ONCE(group->next_expiry, KTIME_MAX); 847 } 848 849 if (ignore) { 850 /* 851 * When the next child event could be ignored (nextexp is 852 * KTIME_MAX) and there was no remote timer handling before or 853 * the group is already active, there is no need to walk the 854 * hierarchy even if there is a parent group. 855 * 856 * The other way round: even if the event could be ignored, but 857 * if a remote timer handling was executed before and the group 858 * is not active, walking the hierarchy is required to not miss 859 * an enqueued timer in the non active group. The enqueued timer 860 * of the group needs to be propagated to a higher level to 861 * ensure it is handled. 862 */ 863 if (!remote || groupstate.active) 864 walk_done = true; 865 } else { 866 evt->nextevt.expires = nextexp; 867 evt->cpu = first_childevt->cpu; 868 869 if (timerqueue_add(&group->events, &evt->nextevt)) 870 WRITE_ONCE(group->next_expiry, nextexp); 871 } 872 873 check_toplvl: 874 if (!group->parent && (groupstate.migrator == TMIGR_NONE)) { 875 walk_done = true; 876 877 /* 878 * Nothing to do when update was done during remote timer 879 * handling. First timer in top level group which needs to be 880 * handled when top level group is not active, is calculated 881 * directly in tmigr_handle_remote_up(). 882 */ 883 if (remote) 884 goto unlock; 885 886 /* 887 * The top level group is idle and it has to be ensured the 888 * global timers are handled in time. (This could be optimized 889 * by keeping track of the last global scheduled event and only 890 * arming it on the CPU if the new event is earlier. Not sure if 891 * its worth the complexity.) 892 */ 893 data->firstexp = tmigr_next_groupevt_expires(group); 894 } 895 896 trace_tmigr_update_events(child, group, childstate, groupstate, 897 nextexp); 898 899 unlock: 900 raw_spin_unlock(&group->lock); 901 902 if (child) 903 raw_spin_unlock(&child->lock); 904 905 return walk_done; 906 } 907 908 static bool tmigr_new_timer_up(struct tmigr_group *group, 909 struct tmigr_group *child, 910 struct tmigr_walk *data) 911 { 912 return tmigr_update_events(group, child, data); 913 } 914 915 /* 916 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is 917 * returned, if an active CPU will handle all the timer migration hierarchy 918 * timers. 919 */ 920 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp) 921 { 922 struct tmigr_walk data = { .nextexp = nextexp, 923 .firstexp = KTIME_MAX, 924 .evt = &tmc->cpuevt }; 925 926 lockdep_assert_held(&tmc->lock); 927 928 if (tmc->remote) 929 return KTIME_MAX; 930 931 trace_tmigr_cpu_new_timer(tmc); 932 933 tmc->cpuevt.ignore = false; 934 data.remote = false; 935 936 walk_groups(&tmigr_new_timer_up, &data, tmc); 937 938 /* If there is a new first global event, make sure it is handled */ 939 return data.firstexp; 940 } 941 942 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now, 943 unsigned long jif) 944 { 945 struct timer_events tevt; 946 struct tmigr_walk data; 947 struct tmigr_cpu *tmc; 948 949 tmc = per_cpu_ptr(&tmigr_cpu, cpu); 950 951 raw_spin_lock_irq(&tmc->lock); 952 953 /* 954 * If the remote CPU is offline then the timers have been migrated to 955 * another CPU. 956 * 957 * If tmigr_cpu::remote is set, at the moment another CPU already 958 * expires the timers of the remote CPU. 959 * 960 * If tmigr_event::ignore is set, then the CPU returns from idle and 961 * takes care of its timers. 962 * 963 * If the next event expires in the future, then the event has been 964 * updated and there are no timers to expire right now. The CPU which 965 * updated the event takes care when hierarchy is completely 966 * idle. Otherwise the migrator does it as the event is enqueued. 967 */ 968 if (!tmc->available || tmc->remote || tmc->cpuevt.ignore || 969 now < tmc->cpuevt.nextevt.expires) { 970 raw_spin_unlock_irq(&tmc->lock); 971 return; 972 } 973 974 trace_tmigr_handle_remote_cpu(tmc); 975 976 tmc->remote = true; 977 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 978 979 /* Drop the lock to allow the remote CPU to exit idle */ 980 raw_spin_unlock_irq(&tmc->lock); 981 982 if (cpu != smp_processor_id()) 983 timer_expire_remote(cpu); 984 985 /* 986 * Lock ordering needs to be preserved - timer_base locks before tmigr 987 * related locks (see section "Locking rules" in the documentation at 988 * the top). During fetching the next timer interrupt, also tmc->lock 989 * needs to be held. Otherwise there is a possible race window against 990 * the CPU itself when it comes out of idle, updates the first timer in 991 * the hierarchy and goes back to idle. 992 * 993 * timer base locks are dropped as fast as possible: After checking 994 * whether the remote CPU went offline in the meantime and after 995 * fetching the next remote timer interrupt. Dropping the locks as fast 996 * as possible keeps the locking region small and prevents holding 997 * several (unnecessary) locks during walking the hierarchy for updating 998 * the timerqueue and group events. 999 */ 1000 local_irq_disable(); 1001 timer_lock_remote_bases(cpu); 1002 raw_spin_lock(&tmc->lock); 1003 1004 /* 1005 * When the CPU went offline in the meantime, no hierarchy walk has to 1006 * be done for updating the queued events, because the walk was 1007 * already done during marking the CPU offline in the hierarchy. 1008 * 1009 * When the CPU is no longer idle, the CPU takes care of the timers and 1010 * also of the timers in the hierarchy. 1011 * 1012 * (See also section "Required event and timerqueue update after a 1013 * remote expiry" in the documentation at the top) 1014 */ 1015 if (!tmc->available || !tmc->idle) { 1016 timer_unlock_remote_bases(cpu); 1017 goto unlock; 1018 } 1019 1020 /* next event of CPU */ 1021 fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu); 1022 timer_unlock_remote_bases(cpu); 1023 1024 data.nextexp = tevt.global; 1025 data.firstexp = KTIME_MAX; 1026 data.evt = &tmc->cpuevt; 1027 data.remote = true; 1028 1029 /* 1030 * The update is done even when there is no 'new' global timer pending 1031 * on the remote CPU (see section "Required event and timerqueue update 1032 * after a remote expiry" in the documentation at the top) 1033 */ 1034 walk_groups(&tmigr_new_timer_up, &data, tmc); 1035 1036 unlock: 1037 tmc->remote = false; 1038 raw_spin_unlock_irq(&tmc->lock); 1039 } 1040 1041 static bool tmigr_handle_remote_up(struct tmigr_group *group, 1042 struct tmigr_group *child, 1043 struct tmigr_walk *data) 1044 { 1045 struct tmigr_event *evt; 1046 unsigned long jif; 1047 u8 childmask; 1048 u64 now; 1049 1050 jif = data->basej; 1051 now = data->now; 1052 1053 childmask = data->childmask; 1054 1055 trace_tmigr_handle_remote(group); 1056 again: 1057 /* 1058 * Handle the group only if @childmask is the migrator or if the 1059 * group has no migrator. Otherwise the group is active and is 1060 * handled by its own migrator. 1061 */ 1062 if (!tmigr_check_migrator(group, childmask)) 1063 return true; 1064 1065 raw_spin_lock_irq(&group->lock); 1066 1067 evt = tmigr_next_expired_groupevt(group, now); 1068 1069 if (evt) { 1070 unsigned int remote_cpu = evt->cpu; 1071 1072 raw_spin_unlock_irq(&group->lock); 1073 1074 tmigr_handle_remote_cpu(remote_cpu, now, jif); 1075 1076 /* check if there is another event, that needs to be handled */ 1077 goto again; 1078 } 1079 1080 /* 1081 * Keep track of the expiry of the first event that needs to be handled 1082 * (group->next_expiry was updated by tmigr_next_expired_groupevt(), 1083 * next was set by tmigr_handle_remote_cpu()). 1084 */ 1085 data->firstexp = group->next_expiry; 1086 1087 raw_spin_unlock_irq(&group->lock); 1088 1089 return false; 1090 } 1091 1092 /** 1093 * tmigr_handle_remote() - Handle global timers of remote idle CPUs 1094 * 1095 * Called from the timer soft interrupt with interrupts enabled. 1096 */ 1097 void tmigr_handle_remote(void) 1098 { 1099 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1100 struct tmigr_walk data; 1101 1102 if (tmigr_is_not_available(tmc)) 1103 return; 1104 1105 data.childmask = tmc->groupmask; 1106 data.firstexp = KTIME_MAX; 1107 1108 /* 1109 * NOTE: This is a doubled check because the migrator test will be done 1110 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the 1111 * return when nothing has to be done. 1112 */ 1113 if (!tmigr_check_migrator(tmc->tmgroup, tmc->groupmask)) { 1114 /* 1115 * If this CPU was an idle migrator, make sure to clear its wakeup 1116 * value so it won't chase timers that have already expired elsewhere. 1117 * This avoids endless requeue from tmigr_new_timer(). 1118 */ 1119 if (READ_ONCE(tmc->wakeup) == KTIME_MAX) 1120 return; 1121 } 1122 1123 data.now = get_jiffies_update(&data.basej); 1124 1125 /* 1126 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to 1127 * KTIME_MAX. Even if tmc->lock is not held during the whole remote 1128 * handling, tmc->wakeup is fine to be stale as it is called in 1129 * interrupt context and tick_nohz_next_event() is executed in interrupt 1130 * exit path only after processing the last pending interrupt. 1131 */ 1132 1133 __walk_groups(&tmigr_handle_remote_up, &data, tmc); 1134 1135 raw_spin_lock_irq(&tmc->lock); 1136 WRITE_ONCE(tmc->wakeup, data.firstexp); 1137 raw_spin_unlock_irq(&tmc->lock); 1138 } 1139 1140 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group, 1141 struct tmigr_group *child, 1142 struct tmigr_walk *data) 1143 { 1144 u8 childmask; 1145 1146 childmask = data->childmask; 1147 1148 /* 1149 * Handle the group only if the child is the migrator or if the group 1150 * has no migrator. Otherwise the group is active and is handled by its 1151 * own migrator. 1152 */ 1153 if (!tmigr_check_migrator(group, childmask)) 1154 return true; 1155 /* 1156 * The lock is required on 32bit architectures to read the variable 1157 * consistently with a concurrent writer. On 64bit the lock is not 1158 * required because the read operation is not split and so it is always 1159 * consistent. 1160 */ 1161 if (IS_ENABLED(CONFIG_64BIT)) { 1162 data->firstexp = READ_ONCE(group->next_expiry); 1163 if (data->now >= data->firstexp) { 1164 data->check = true; 1165 return true; 1166 } 1167 } else { 1168 raw_spin_lock(&group->lock); 1169 data->firstexp = group->next_expiry; 1170 if (data->now >= group->next_expiry) { 1171 data->check = true; 1172 raw_spin_unlock(&group->lock); 1173 return true; 1174 } 1175 raw_spin_unlock(&group->lock); 1176 } 1177 1178 return false; 1179 } 1180 1181 /** 1182 * tmigr_requires_handle_remote() - Check the need of remote timer handling 1183 * 1184 * Must be called with interrupts disabled. 1185 */ 1186 bool tmigr_requires_handle_remote(void) 1187 { 1188 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1189 struct tmigr_walk data; 1190 unsigned long jif; 1191 bool ret = false; 1192 1193 if (tmigr_is_not_available(tmc)) 1194 return ret; 1195 1196 data.now = get_jiffies_update(&jif); 1197 data.childmask = tmc->groupmask; 1198 data.firstexp = KTIME_MAX; 1199 data.check = false; 1200 1201 /* 1202 * If the CPU is active, walk the hierarchy to check whether a remote 1203 * expiry is required. 1204 * 1205 * Check is done lockless as interrupts are disabled and @tmc->idle is 1206 * set only by the local CPU. 1207 */ 1208 if (!tmc->idle) { 1209 __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc); 1210 1211 return data.check; 1212 } 1213 1214 /* 1215 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock 1216 * is required on 32bit architectures to read the variable consistently 1217 * with a concurrent writer. On 64bit the lock is not required because 1218 * the read operation is not split and so it is always consistent. 1219 */ 1220 if (IS_ENABLED(CONFIG_64BIT)) { 1221 if (data.now >= READ_ONCE(tmc->wakeup)) 1222 return true; 1223 } else { 1224 raw_spin_lock(&tmc->lock); 1225 if (data.now >= tmc->wakeup) 1226 ret = true; 1227 raw_spin_unlock(&tmc->lock); 1228 } 1229 1230 return ret; 1231 } 1232 1233 /** 1234 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc) 1235 * @nextexp: Next expiry of global timer (or KTIME_MAX if not) 1236 * 1237 * The CPU is already deactivated in the timer migration 1238 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event() 1239 * and thereby the timer idle path is executed once more. @tmc->wakeup 1240 * holds the first timer, when the timer migration hierarchy is 1241 * completely idle. 1242 * 1243 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if 1244 * nothing needs to be done. 1245 */ 1246 u64 tmigr_cpu_new_timer(u64 nextexp) 1247 { 1248 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1249 u64 ret; 1250 1251 if (tmigr_is_not_available(tmc)) 1252 return nextexp; 1253 1254 raw_spin_lock(&tmc->lock); 1255 1256 ret = READ_ONCE(tmc->wakeup); 1257 if (nextexp != KTIME_MAX) { 1258 if (nextexp != tmc->cpuevt.nextevt.expires || 1259 tmc->cpuevt.ignore) { 1260 ret = tmigr_new_timer(tmc, nextexp); 1261 /* 1262 * Make sure the reevaluation of timers in idle path 1263 * will not miss an event. 1264 */ 1265 WRITE_ONCE(tmc->wakeup, ret); 1266 } 1267 } 1268 trace_tmigr_cpu_new_timer_idle(tmc, nextexp); 1269 raw_spin_unlock(&tmc->lock); 1270 return ret; 1271 } 1272 1273 static bool tmigr_inactive_up(struct tmigr_group *group, 1274 struct tmigr_group *child, 1275 struct tmigr_walk *data) 1276 { 1277 union tmigr_state curstate, newstate, childstate; 1278 bool walk_done; 1279 u8 childmask; 1280 1281 childmask = data->childmask; 1282 childstate.state = 0; 1283 1284 /* 1285 * The memory barrier is paired with the cmpxchg() in tmigr_active_up() 1286 * to make sure the updates of child and group states are ordered. The 1287 * ordering is mandatory, as the group state change depends on the child 1288 * state. 1289 */ 1290 curstate.state = atomic_read_acquire(&group->migr_state); 1291 1292 for (;;) { 1293 if (child) 1294 childstate.state = atomic_read(&child->migr_state); 1295 1296 newstate = curstate; 1297 walk_done = true; 1298 1299 /* Reset active bit when the child is no longer active */ 1300 if (!childstate.active) 1301 newstate.active &= ~childmask; 1302 1303 if (newstate.migrator == childmask) { 1304 /* 1305 * Find a new migrator for the group, because the child 1306 * group is idle! 1307 */ 1308 if (!childstate.active) { 1309 unsigned long new_migr_bit, active = newstate.active; 1310 1311 new_migr_bit = find_first_bit(&active, BIT_CNT); 1312 1313 if (new_migr_bit != BIT_CNT) { 1314 newstate.migrator = BIT(new_migr_bit); 1315 } else { 1316 newstate.migrator = TMIGR_NONE; 1317 1318 /* Changes need to be propagated */ 1319 walk_done = false; 1320 } 1321 } 1322 } 1323 1324 newstate.seq++; 1325 1326 WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active)); 1327 1328 if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)) { 1329 trace_tmigr_group_set_cpu_inactive(group, newstate, childmask); 1330 break; 1331 } 1332 1333 /* 1334 * The memory barrier is paired with the cmpxchg() in 1335 * tmigr_active_up() to make sure the updates of child and group 1336 * states are ordered. It is required only when the above 1337 * try_cmpxchg() fails. 1338 */ 1339 smp_mb__after_atomic(); 1340 } 1341 1342 data->remote = false; 1343 1344 /* Event Handling */ 1345 tmigr_update_events(group, child, data); 1346 1347 return walk_done; 1348 } 1349 1350 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp) 1351 { 1352 struct tmigr_walk data = { .nextexp = nextexp, 1353 .firstexp = KTIME_MAX, 1354 .evt = &tmc->cpuevt, 1355 .childmask = tmc->groupmask }; 1356 1357 /* 1358 * If nextexp is KTIME_MAX, the CPU event will be ignored because the 1359 * local timer expires before the global timer, no global timer is set 1360 * or CPU goes offline. 1361 */ 1362 if (nextexp != KTIME_MAX) 1363 tmc->cpuevt.ignore = false; 1364 1365 walk_groups(&tmigr_inactive_up, &data, tmc); 1366 return data.firstexp; 1367 } 1368 1369 /** 1370 * tmigr_cpu_deactivate() - Put current CPU into inactive state 1371 * @nextexp: The next global timer expiry of the current CPU 1372 * 1373 * Must be called with interrupts disabled. 1374 * 1375 * Return: the next event expiry of the current CPU or the next event expiry 1376 * from the hierarchy if this CPU is the top level migrator or the hierarchy is 1377 * completely idle. 1378 */ 1379 u64 tmigr_cpu_deactivate(u64 nextexp) 1380 { 1381 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1382 u64 ret; 1383 1384 if (tmigr_is_not_available(tmc)) 1385 return nextexp; 1386 1387 raw_spin_lock(&tmc->lock); 1388 1389 ret = __tmigr_cpu_deactivate(tmc, nextexp); 1390 1391 tmc->idle = true; 1392 1393 /* 1394 * Make sure the reevaluation of timers in idle path will not miss an 1395 * event. 1396 */ 1397 WRITE_ONCE(tmc->wakeup, ret); 1398 1399 trace_tmigr_cpu_idle(tmc, nextexp); 1400 raw_spin_unlock(&tmc->lock); 1401 return ret; 1402 } 1403 1404 /** 1405 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to 1406 * go idle 1407 * @nextevt: The next global timer expiry of the current CPU 1408 * 1409 * Return: 1410 * * KTIME_MAX - when it is probable that nothing has to be done (not 1411 * the only one in the level 0 group; and if it is the 1412 * only one in level 0 group, but there are more than a 1413 * single group active on the way to top level) 1414 * * nextevt - when CPU is offline and has to handle timer on its own 1415 * or when on the way to top in every group only a single 1416 * child is active but @nextevt is before the lowest 1417 * next_expiry encountered while walking up to top level. 1418 * * next_expiry - value of lowest expiry encountered while walking groups 1419 * if only a single child is active on each and @nextevt 1420 * is after this lowest expiry. 1421 */ 1422 u64 tmigr_quick_check(u64 nextevt) 1423 { 1424 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1425 struct tmigr_group *group = tmc->tmgroup; 1426 1427 if (tmigr_is_not_available(tmc)) 1428 return nextevt; 1429 1430 if (WARN_ON_ONCE(tmc->idle)) 1431 return nextevt; 1432 1433 if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->groupmask)) 1434 return KTIME_MAX; 1435 1436 do { 1437 if (!tmigr_check_lonely(group)) 1438 return KTIME_MAX; 1439 1440 /* 1441 * Since current CPU is active, events may not be sorted 1442 * from bottom to the top because the CPU's event is ignored 1443 * up to the top and its sibling's events not propagated upwards. 1444 * Thus keep track of the lowest observed expiry. 1445 */ 1446 nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry)); 1447 group = group->parent; 1448 } while (group); 1449 1450 return nextevt; 1451 } 1452 1453 /* 1454 * tmigr_trigger_active() - trigger a CPU to become active again 1455 * 1456 * This function is executed on a CPU which is part of cpu_online_mask, when the 1457 * last active CPU in the hierarchy is offlining. With this, it is ensured that 1458 * the other CPU is active and takes over the migrator duty. 1459 */ 1460 static long tmigr_trigger_active(void *unused) 1461 { 1462 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1463 1464 WARN_ON_ONCE(!tmc->available || tmc->idle); 1465 1466 return 0; 1467 } 1468 1469 static int tmigr_clear_cpu_available(unsigned int cpu) 1470 { 1471 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1472 int migrator; 1473 u64 firstexp; 1474 1475 guard(mutex)(&tmigr_available_mutex); 1476 1477 cpumask_clear_cpu(cpu, tmigr_available_cpumask); 1478 scoped_guard(raw_spinlock_irq, &tmc->lock) { 1479 if (!tmc->available) 1480 return 0; 1481 tmc->available = false; 1482 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1483 1484 /* 1485 * CPU has to handle the local events on his own, when on the way to 1486 * offline; Therefore nextevt value is set to KTIME_MAX 1487 */ 1488 firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX); 1489 trace_tmigr_cpu_unavailable(tmc); 1490 } 1491 1492 if (firstexp != KTIME_MAX) { 1493 migrator = cpumask_any(tmigr_available_cpumask); 1494 work_on_cpu(migrator, tmigr_trigger_active, NULL); 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int tmigr_set_cpu_available(unsigned int cpu) 1501 { 1502 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1503 1504 /* Check whether CPU data was successfully initialized */ 1505 if (WARN_ON_ONCE(!tmc->tmgroup)) 1506 return -EINVAL; 1507 1508 if (tmigr_is_isolated(cpu)) 1509 return 0; 1510 1511 guard(mutex)(&tmigr_available_mutex); 1512 1513 cpumask_set_cpu(cpu, tmigr_available_cpumask); 1514 scoped_guard(raw_spinlock_irq, &tmc->lock) { 1515 if (tmc->available) 1516 return 0; 1517 trace_tmigr_cpu_available(tmc); 1518 tmc->idle = timer_base_is_idle(); 1519 if (!tmc->idle) 1520 __tmigr_cpu_activate(tmc); 1521 tmc->available = true; 1522 } 1523 return 0; 1524 } 1525 1526 static void tmigr_cpu_isolate(struct work_struct *ignored) 1527 { 1528 tmigr_clear_cpu_available(smp_processor_id()); 1529 } 1530 1531 static void tmigr_cpu_unisolate(struct work_struct *ignored) 1532 { 1533 tmigr_set_cpu_available(smp_processor_id()); 1534 } 1535 1536 /** 1537 * tmigr_isolated_exclude_cpumask - Exclude given CPUs from hierarchy 1538 * @exclude_cpumask: the cpumask to be excluded from timer migration hierarchy 1539 * 1540 * This function can be called from cpuset code to provide the new set of 1541 * isolated CPUs that should be excluded from the hierarchy. 1542 * Online CPUs not present in exclude_cpumask but already excluded are brought 1543 * back to the hierarchy. 1544 * Functions to isolate/unisolate need to be called locally and can sleep. 1545 */ 1546 int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask) 1547 { 1548 struct work_struct __percpu *works __free(free_percpu) = 1549 alloc_percpu(struct work_struct); 1550 cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL; 1551 int cpu; 1552 1553 lockdep_assert_cpus_held(); 1554 1555 if (!works) 1556 return -ENOMEM; 1557 if (!alloc_cpumask_var(&cpumask, GFP_KERNEL)) 1558 return -ENOMEM; 1559 1560 /* 1561 * First set previously isolated CPUs as available (unisolate). 1562 * This cpumask contains only CPUs that switched to available now. 1563 */ 1564 cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask); 1565 cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask); 1566 1567 for_each_cpu(cpu, cpumask) { 1568 struct work_struct *work = per_cpu_ptr(works, cpu); 1569 1570 INIT_WORK(work, tmigr_cpu_unisolate); 1571 schedule_work_on(cpu, work); 1572 } 1573 for_each_cpu(cpu, cpumask) 1574 flush_work(per_cpu_ptr(works, cpu)); 1575 1576 /* 1577 * Then clear previously available CPUs (isolate). 1578 * This cpumask contains only CPUs that switched to not available now. 1579 * There cannot be overlap with the newly available ones. 1580 */ 1581 cpumask_and(cpumask, exclude_cpumask, tmigr_available_cpumask); 1582 cpumask_and(cpumask, cpumask, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE)); 1583 /* 1584 * Handle this here and not in the cpuset code because exclude_cpumask 1585 * might include also the tick CPU if included in isolcpus. 1586 */ 1587 for_each_cpu(cpu, cpumask) { 1588 if (!tick_nohz_cpu_hotpluggable(cpu)) { 1589 cpumask_clear_cpu(cpu, cpumask); 1590 break; 1591 } 1592 } 1593 1594 for_each_cpu(cpu, cpumask) { 1595 struct work_struct *work = per_cpu_ptr(works, cpu); 1596 1597 INIT_WORK(work, tmigr_cpu_isolate); 1598 schedule_work_on(cpu, work); 1599 } 1600 for_each_cpu(cpu, cpumask) 1601 flush_work(per_cpu_ptr(works, cpu)); 1602 1603 return 0; 1604 } 1605 1606 static int __init tmigr_init_isolation(void) 1607 { 1608 cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL; 1609 1610 static_branch_enable(&tmigr_exclude_isolated); 1611 1612 if (!housekeeping_enabled(HK_TYPE_DOMAIN)) 1613 return 0; 1614 if (!alloc_cpumask_var(&cpumask, GFP_KERNEL)) 1615 return -ENOMEM; 1616 1617 cpumask_andnot(cpumask, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1618 1619 /* Protect against RCU torture hotplug testing */ 1620 guard(cpus_read_lock)(); 1621 return tmigr_isolated_exclude_cpumask(cpumask); 1622 } 1623 late_initcall(tmigr_init_isolation); 1624 1625 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl, 1626 int node) 1627 { 1628 union tmigr_state s; 1629 1630 raw_spin_lock_init(&group->lock); 1631 1632 group->level = lvl; 1633 group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE; 1634 1635 group->num_children = 0; 1636 1637 s.migrator = TMIGR_NONE; 1638 s.active = 0; 1639 s.seq = 0; 1640 atomic_set(&group->migr_state, s.state); 1641 1642 timerqueue_init_head(&group->events); 1643 timerqueue_init(&group->groupevt.nextevt); 1644 group->groupevt.nextevt.expires = KTIME_MAX; 1645 WRITE_ONCE(group->next_expiry, KTIME_MAX); 1646 group->groupevt.ignore = true; 1647 } 1648 1649 static struct tmigr_group *tmigr_get_group(int node, unsigned int lvl) 1650 { 1651 struct tmigr_group *tmp, *group = NULL; 1652 1653 lockdep_assert_held(&tmigr_mutex); 1654 1655 /* Try to attach to an existing group first */ 1656 list_for_each_entry(tmp, &tmigr_level_list[lvl], list) { 1657 /* 1658 * If @lvl is below the cross NUMA node level, check whether 1659 * this group belongs to the same NUMA node. 1660 */ 1661 if (lvl < tmigr_crossnode_level && tmp->numa_node != node) 1662 continue; 1663 1664 /* Capacity left? */ 1665 if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP) 1666 continue; 1667 1668 /* 1669 * TODO: A possible further improvement: Make sure that all CPU 1670 * siblings end up in the same group of the lowest level of the 1671 * hierarchy. Rely on the topology sibling mask would be a 1672 * reasonable solution. 1673 */ 1674 1675 group = tmp; 1676 break; 1677 } 1678 1679 if (group) 1680 return group; 1681 1682 /* Allocate and set up a new group */ 1683 group = kzalloc_node(sizeof(*group), GFP_KERNEL, node); 1684 if (!group) 1685 return ERR_PTR(-ENOMEM); 1686 1687 tmigr_init_group(group, lvl, node); 1688 1689 /* Setup successful. Add it to the hierarchy */ 1690 list_add(&group->list, &tmigr_level_list[lvl]); 1691 trace_tmigr_group_set(group); 1692 return group; 1693 } 1694 1695 static bool tmigr_init_root(struct tmigr_group *group, bool activate) 1696 { 1697 if (!group->parent && group != tmigr_root) { 1698 /* 1699 * This is the new top-level, prepare its groupmask in advance 1700 * to avoid accidents where yet another new top-level is 1701 * created in the future and made visible before this groupmask. 1702 */ 1703 group->groupmask = BIT(0); 1704 WARN_ON_ONCE(activate); 1705 1706 return true; 1707 } 1708 1709 return false; 1710 1711 } 1712 1713 static void tmigr_connect_child_parent(struct tmigr_group *child, 1714 struct tmigr_group *parent, 1715 bool activate) 1716 { 1717 if (tmigr_init_root(parent, activate)) { 1718 /* 1719 * The previous top level had prepared its groupmask already, 1720 * simply account it in advance as the first child. If some groups 1721 * have been created between the old and new root due to node 1722 * mismatch, the new root's child will be intialized accordingly. 1723 */ 1724 parent->num_children = 1; 1725 } 1726 1727 /* Connecting old root to new root ? */ 1728 if (!parent->parent && activate) { 1729 /* 1730 * @child is the old top, or in case of node mismatch, some 1731 * intermediate group between the old top and the new one in 1732 * @parent. In this case the @child must be pre-accounted above 1733 * as the first child. Its new inactive sibling corresponding 1734 * to the CPU going up has been accounted as the second child. 1735 */ 1736 WARN_ON_ONCE(parent->num_children != 2); 1737 child->groupmask = BIT(0); 1738 } else { 1739 /* Common case adding @child for the CPU going up to @parent. */ 1740 child->groupmask = BIT(parent->num_children++); 1741 } 1742 1743 /* 1744 * Make sure parent initialization is visible before publishing it to a 1745 * racing CPU entering/exiting idle. This RELEASE barrier enforces an 1746 * address dependency that pairs with the READ_ONCE() in __walk_groups(). 1747 */ 1748 smp_store_release(&child->parent, parent); 1749 1750 trace_tmigr_connect_child_parent(child); 1751 } 1752 1753 static int tmigr_setup_groups(unsigned int cpu, unsigned int node, 1754 struct tmigr_group *start, bool activate) 1755 { 1756 struct tmigr_group *group, *child, **stack; 1757 int i, top = 0, err = 0, start_lvl = 0; 1758 bool root_mismatch = false; 1759 1760 stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL); 1761 if (!stack) 1762 return -ENOMEM; 1763 1764 if (start) { 1765 stack[start->level] = start; 1766 start_lvl = start->level + 1; 1767 } 1768 1769 if (tmigr_root) 1770 root_mismatch = tmigr_root->numa_node != node; 1771 1772 for (i = start_lvl; i < tmigr_hierarchy_levels; i++) { 1773 group = tmigr_get_group(node, i); 1774 if (IS_ERR(group)) { 1775 err = PTR_ERR(group); 1776 i--; 1777 break; 1778 } 1779 1780 top = i; 1781 stack[i] = group; 1782 1783 /* 1784 * When booting only less CPUs of a system than CPUs are 1785 * available, not all calculated hierarchy levels are required, 1786 * unless a node mismatch is detected. 1787 * 1788 * The loop is aborted as soon as the highest level, which might 1789 * be different from tmigr_hierarchy_levels, contains only a 1790 * single group, unless the nodes mismatch below tmigr_crossnode_level 1791 */ 1792 if (group->parent) 1793 break; 1794 if ((!root_mismatch || i >= tmigr_crossnode_level) && 1795 list_is_singular(&tmigr_level_list[i])) 1796 break; 1797 } 1798 1799 /* Assert single root without parent */ 1800 if (WARN_ON_ONCE(i >= tmigr_hierarchy_levels)) 1801 return -EINVAL; 1802 1803 for (; i >= start_lvl; i--) { 1804 group = stack[i]; 1805 1806 if (err < 0) { 1807 list_del(&group->list); 1808 kfree(group); 1809 continue; 1810 } 1811 1812 WARN_ON_ONCE(i != group->level); 1813 1814 /* 1815 * Update tmc -> group / child -> group connection 1816 */ 1817 if (i == 0) { 1818 struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu); 1819 1820 tmc->tmgroup = group; 1821 tmc->groupmask = BIT(group->num_children++); 1822 1823 tmigr_init_root(group, activate); 1824 1825 trace_tmigr_connect_cpu_parent(tmc); 1826 1827 /* There are no children that need to be connected */ 1828 continue; 1829 } else { 1830 child = stack[i - 1]; 1831 tmigr_connect_child_parent(child, group, activate); 1832 } 1833 } 1834 1835 if (err < 0) 1836 goto out; 1837 1838 if (activate) { 1839 struct tmigr_walk data; 1840 union tmigr_state state; 1841 1842 /* 1843 * To prevent inconsistent states, active children need to be active in 1844 * the new parent as well. Inactive children are already marked inactive 1845 * in the parent group: 1846 * 1847 * * When new groups were created by tmigr_setup_groups() starting from 1848 * the lowest level, then they are not active. They will be set active 1849 * when the new online CPU comes active. 1850 * 1851 * * But if new groups above the current top level are required, it is 1852 * mandatory to propagate the active state of the already existing 1853 * child to the new parents. So tmigr_active_up() activates the 1854 * new parents while walking up from the old root to the new. 1855 * 1856 * * It is ensured that @start is active, as this setup path is 1857 * executed in hotplug prepare callback. This is executed by an 1858 * already connected and !idle CPU. Even if all other CPUs go idle, 1859 * the CPU executing the setup will be responsible up to current top 1860 * level group. And the next time it goes inactive, it will release 1861 * the new childmask and parent to subsequent walkers through this 1862 * @child. Therefore propagate active state unconditionally. 1863 */ 1864 state.state = atomic_read(&start->migr_state); 1865 WARN_ON_ONCE(!state.active); 1866 WARN_ON_ONCE(!start->parent); 1867 data.childmask = start->groupmask; 1868 __walk_groups_from(tmigr_active_up, &data, start, start->parent); 1869 } 1870 1871 /* Root update */ 1872 if (list_is_singular(&tmigr_level_list[top])) { 1873 group = list_first_entry(&tmigr_level_list[top], 1874 typeof(*group), list); 1875 WARN_ON_ONCE(group->parent); 1876 if (tmigr_root) { 1877 /* Old root should be the same or below */ 1878 WARN_ON_ONCE(tmigr_root->level > top); 1879 } 1880 tmigr_root = group; 1881 } 1882 out: 1883 kfree(stack); 1884 1885 return err; 1886 } 1887 1888 static int tmigr_add_cpu(unsigned int cpu) 1889 { 1890 struct tmigr_group *old_root = tmigr_root; 1891 int node = cpu_to_node(cpu); 1892 int ret; 1893 1894 guard(mutex)(&tmigr_mutex); 1895 1896 ret = tmigr_setup_groups(cpu, node, NULL, false); 1897 1898 /* Root has changed? Connect the old one to the new */ 1899 if (ret >= 0 && old_root && old_root != tmigr_root) { 1900 /* 1901 * The target CPU must never do the prepare work, except 1902 * on early boot when the boot CPU is the target. Otherwise 1903 * it may spuriously activate the old top level group inside 1904 * the new one (nevertheless whether old top level group is 1905 * active or not) and/or release an uninitialized childmask. 1906 */ 1907 WARN_ON_ONCE(cpu == raw_smp_processor_id()); 1908 /* 1909 * The (likely) current CPU is expected to be online in the hierarchy, 1910 * otherwise the old root may not be active as expected. 1911 */ 1912 WARN_ON_ONCE(!per_cpu_ptr(&tmigr_cpu, raw_smp_processor_id())->available); 1913 ret = tmigr_setup_groups(-1, old_root->numa_node, old_root, true); 1914 } 1915 1916 return ret; 1917 } 1918 1919 static int tmigr_cpu_prepare(unsigned int cpu) 1920 { 1921 struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu); 1922 int ret = 0; 1923 1924 /* Not first online attempt? */ 1925 if (tmc->tmgroup) 1926 return ret; 1927 1928 raw_spin_lock_init(&tmc->lock); 1929 timerqueue_init(&tmc->cpuevt.nextevt); 1930 tmc->cpuevt.nextevt.expires = KTIME_MAX; 1931 tmc->cpuevt.ignore = true; 1932 tmc->cpuevt.cpu = cpu; 1933 tmc->remote = false; 1934 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1935 1936 ret = tmigr_add_cpu(cpu); 1937 if (ret < 0) 1938 return ret; 1939 1940 if (tmc->groupmask == 0) 1941 return -EINVAL; 1942 1943 return ret; 1944 } 1945 1946 static int __init tmigr_init(void) 1947 { 1948 unsigned int cpulvl, nodelvl, cpus_per_node, i; 1949 unsigned int nnodes = num_possible_nodes(); 1950 unsigned int ncpus = num_possible_cpus(); 1951 int ret = -ENOMEM; 1952 1953 BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP); 1954 1955 /* Nothing to do if running on UP */ 1956 if (ncpus == 1) 1957 return 0; 1958 1959 if (!zalloc_cpumask_var(&tmigr_available_cpumask, GFP_KERNEL)) { 1960 ret = -ENOMEM; 1961 goto err; 1962 } 1963 1964 /* 1965 * Calculate the required hierarchy levels. Unfortunately there is no 1966 * reliable information available, unless all possible CPUs have been 1967 * brought up and all NUMA nodes are populated. 1968 * 1969 * Estimate the number of levels with the number of possible nodes and 1970 * the number of possible CPUs. Assume CPUs are spread evenly across 1971 * nodes. We cannot rely on cpumask_of_node() because it only works for 1972 * online CPUs. 1973 */ 1974 cpus_per_node = DIV_ROUND_UP(ncpus, nnodes); 1975 1976 /* Calc the hierarchy levels required to hold the CPUs of a node */ 1977 cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node), 1978 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1979 1980 /* Calculate the extra levels to connect all nodes */ 1981 nodelvl = DIV_ROUND_UP(order_base_2(nnodes), 1982 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1983 1984 tmigr_hierarchy_levels = cpulvl + nodelvl; 1985 1986 /* 1987 * If a NUMA node spawns more than one CPU level group then the next 1988 * level(s) of the hierarchy contains groups which handle all CPU groups 1989 * of the same NUMA node. The level above goes across NUMA nodes. Store 1990 * this information for the setup code to decide in which level node 1991 * matching is no longer required. 1992 */ 1993 tmigr_crossnode_level = cpulvl; 1994 1995 tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL); 1996 if (!tmigr_level_list) 1997 goto err; 1998 1999 for (i = 0; i < tmigr_hierarchy_levels; i++) 2000 INIT_LIST_HEAD(&tmigr_level_list[i]); 2001 2002 pr_info("Timer migration: %d hierarchy levels; %d children per group;" 2003 " %d crossnode level\n", 2004 tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP, 2005 tmigr_crossnode_level); 2006 2007 ret = cpuhp_setup_state(CPUHP_TMIGR_PREPARE, "tmigr:prepare", 2008 tmigr_cpu_prepare, NULL); 2009 if (ret) 2010 goto err; 2011 2012 ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online", 2013 tmigr_set_cpu_available, tmigr_clear_cpu_available); 2014 if (ret) 2015 goto err; 2016 2017 return 0; 2018 2019 err: 2020 pr_err("Timer migration setup failed\n"); 2021 return ret; 2022 } 2023 early_initcall(tmigr_init); 2024