1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Infrastructure for migratable timers 4 * 5 * Copyright(C) 2022 linutronix GmbH 6 */ 7 #include <linux/cpuhotplug.h> 8 #include <linux/slab.h> 9 #include <linux/smp.h> 10 #include <linux/spinlock.h> 11 #include <linux/timerqueue.h> 12 #include <trace/events/ipi.h> 13 14 #include "timer_migration.h" 15 #include "tick-internal.h" 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/timer_migration.h> 19 20 /* 21 * The timer migration mechanism is built on a hierarchy of groups. The 22 * lowest level group contains CPUs, the next level groups of CPU groups 23 * and so forth. The CPU groups are kept per node so for the normal case 24 * lock contention won't happen across nodes. Depending on the number of 25 * CPUs per node even the next level might be kept as groups of CPU groups 26 * per node and only the levels above cross the node topology. 27 * 28 * Example topology for a two node system with 24 CPUs each. 29 * 30 * LVL 2 [GRP2:0] 31 * GRP1:0 = GRP1:M 32 * 33 * LVL 1 [GRP1:0] [GRP1:1] 34 * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5 35 * 36 * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5] 37 * CPUS 0-7 8-15 16-23 24-31 32-39 40-47 38 * 39 * The groups hold a timer queue of events sorted by expiry time. These 40 * queues are updated when CPUs go in idle. When they come out of idle 41 * ignore flag of events is set. 42 * 43 * Each group has a designated migrator CPU/group as long as a CPU/group is 44 * active in the group. This designated role is necessary to avoid that all 45 * active CPUs in a group try to migrate expired timers from other CPUs, 46 * which would result in massive lock bouncing. 47 * 48 * When a CPU is awake, it checks in it's own timer tick the group 49 * hierarchy up to the point where it is assigned the migrator role or if 50 * no CPU is active, it also checks the groups where no migrator is set 51 * (TMIGR_NONE). 52 * 53 * If it finds expired timers in one of the group queues it pulls them over 54 * from the idle CPU and runs the timer function. After that it updates the 55 * group and the parent groups if required. 56 * 57 * CPUs which go idle arm their CPU local timer hardware for the next local 58 * (pinned) timer event. If the next migratable timer expires after the 59 * next local timer or the CPU has no migratable timer pending then the 60 * CPU does not queue an event in the LVL0 group. If the next migratable 61 * timer expires before the next local timer then the CPU queues that timer 62 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0 63 * group. 64 * 65 * When CPU comes out of idle and when a group has at least a single active 66 * child, the ignore flag of the tmigr_event is set. This indicates, that 67 * the event is ignored even if it is still enqueued in the parent groups 68 * timer queue. It will be removed when touching the timer queue the next 69 * time. This spares locking in active path as the lock protects (after 70 * setup) only event information. For more information about locking, 71 * please read the section "Locking rules". 72 * 73 * If the CPU is the migrator of the group then it delegates that role to 74 * the next active CPU in the group or sets migrator to TMIGR_NONE when 75 * there is no active CPU in the group. This delegation needs to be 76 * propagated up the hierarchy so hand over from other leaves can happen at 77 * all hierarchy levels w/o doing a search. 78 * 79 * When the last CPU in the system goes idle, then it drops all migrator 80 * duties up to the top level of the hierarchy (LVL2 in the example). It 81 * then has to make sure, that it arms it's own local hardware timer for 82 * the earliest event in the system. 83 * 84 * 85 * Lifetime rules: 86 * --------------- 87 * 88 * The groups are built up at init time or when CPUs come online. They are 89 * not destroyed when a group becomes empty due to offlining. The group 90 * just won't participate in the hierarchy management anymore. Destroying 91 * groups would result in interesting race conditions which would just make 92 * the whole mechanism slow and complex. 93 * 94 * 95 * Locking rules: 96 * -------------- 97 * 98 * For setting up new groups and handling events it's required to lock both 99 * child and parent group. The lock ordering is always bottom up. This also 100 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and 101 * active CPU/group information atomic_try_cmpxchg() is used instead and only 102 * the per CPU tmigr_cpu->lock is held. 103 * 104 * During the setup of groups tmigr_level_list is required. It is protected by 105 * @tmigr_mutex. 106 * 107 * When @timer_base->lock as well as tmigr related locks are required, the lock 108 * ordering is: first @timer_base->lock, afterwards tmigr related locks. 109 * 110 * 111 * Protection of the tmigr group state information: 112 * ------------------------------------------------ 113 * 114 * The state information with the list of active children and migrator needs to 115 * be protected by a sequence counter. It prevents a race when updates in child 116 * groups are propagated in changed order. The state update is performed 117 * lockless and group wise. The following scenario describes what happens 118 * without updating the sequence counter: 119 * 120 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well 121 * as GRP0:1 will not change during the scenario): 122 * 123 * LVL 1 [GRP1:0] 124 * migrator = GRP0:1 125 * active = GRP0:0, GRP0:1 126 * / \ 127 * LVL 0 [GRP0:0] [GRP0:1] 128 * migrator = CPU0 migrator = CPU2 129 * active = CPU0 active = CPU2 130 * / \ / \ 131 * CPUs 0 1 2 3 132 * active idle active idle 133 * 134 * 135 * 1. CPU0 goes idle. As the update is performed group wise, in the first step 136 * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to 137 * walk the hierarchy. 138 * 139 * LVL 1 [GRP1:0] 140 * migrator = GRP0:1 141 * active = GRP0:0, GRP0:1 142 * / \ 143 * LVL 0 [GRP0:0] [GRP0:1] 144 * --> migrator = TMIGR_NONE migrator = CPU2 145 * --> active = active = CPU2 146 * / \ / \ 147 * CPUs 0 1 2 3 148 * --> idle idle active idle 149 * 150 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of 151 * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also 152 * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the 153 * hierarchy to perform the needed update from their point of view. The 154 * currently visible state looks the following: 155 * 156 * LVL 1 [GRP1:0] 157 * migrator = GRP0:1 158 * active = GRP0:0, GRP0:1 159 * / \ 160 * LVL 0 [GRP0:0] [GRP0:1] 161 * --> migrator = CPU1 migrator = CPU2 162 * --> active = CPU1 active = CPU2 163 * / \ / \ 164 * CPUs 0 1 2 3 165 * idle --> active active idle 166 * 167 * 3. Here is the race condition: CPU1 managed to propagate its changes (from 168 * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The 169 * active members of GRP1:0 remain unchanged after the update since it is 170 * still valid from CPU1 current point of view: 171 * 172 * LVL 1 [GRP1:0] 173 * --> migrator = GRP0:1 174 * --> active = GRP0:0, GRP0:1 175 * / \ 176 * LVL 0 [GRP0:0] [GRP0:1] 177 * migrator = CPU1 migrator = CPU2 178 * active = CPU1 active = CPU2 179 * / \ / \ 180 * CPUs 0 1 2 3 181 * idle active active idle 182 * 183 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0. 184 * 185 * LVL 1 [GRP1:0] 186 * --> migrator = GRP0:1 187 * --> active = GRP0:1 188 * / \ 189 * LVL 0 [GRP0:0] [GRP0:1] 190 * migrator = CPU1 migrator = CPU2 191 * active = CPU1 active = CPU2 192 * / \ / \ 193 * CPUs 0 1 2 3 194 * idle active active idle 195 * 196 * 197 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is 198 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not 199 * have GRP0:0 listed as active, which is wrong. The sequence counter has been 200 * added to avoid inconsistent states during updates. The state is updated 201 * atomically only if all members, including the sequence counter, match the 202 * expected value (compare-and-exchange). 203 * 204 * Looking back at the previous example with the addition of the sequence 205 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed 206 * the sequence number during the update in step 3 so the expected old value (as 207 * seen by CPU0 before starting the walk) does not match. 208 * 209 * Prevent race between new event and last CPU going inactive 210 * ---------------------------------------------------------- 211 * 212 * When the last CPU is going idle and there is a concurrent update of a new 213 * first global timer of an idle CPU, the group and child states have to be read 214 * while holding the lock in tmigr_update_events(). The following scenario shows 215 * what happens, when this is not done. 216 * 217 * 1. Only CPU2 is active: 218 * 219 * LVL 1 [GRP1:0] 220 * migrator = GRP0:1 221 * active = GRP0:1 222 * next_expiry = KTIME_MAX 223 * / \ 224 * LVL 0 [GRP0:0] [GRP0:1] 225 * migrator = TMIGR_NONE migrator = CPU2 226 * active = active = CPU2 227 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 228 * / \ / \ 229 * CPUs 0 1 2 3 230 * idle idle active idle 231 * 232 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and 233 * propagates that to GRP0:1: 234 * 235 * LVL 1 [GRP1:0] 236 * migrator = GRP0:1 237 * active = GRP0:1 238 * next_expiry = KTIME_MAX 239 * / \ 240 * LVL 0 [GRP0:0] [GRP0:1] 241 * migrator = TMIGR_NONE --> migrator = TMIGR_NONE 242 * active = --> active = 243 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 244 * / \ / \ 245 * CPUs 0 1 2 3 246 * idle idle --> idle idle 247 * 248 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last 249 * child going idle in top level group, the expiry of the next group event 250 * has to be handed back to make sure no event is lost. As there is no event 251 * enqueued, KTIME_MAX is handed back to CPU2. 252 * 253 * LVL 1 [GRP1:0] 254 * --> migrator = TMIGR_NONE 255 * --> active = 256 * next_expiry = KTIME_MAX 257 * / \ 258 * LVL 0 [GRP0:0] [GRP0:1] 259 * migrator = TMIGR_NONE migrator = TMIGR_NONE 260 * active = active = 261 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 262 * / \ / \ 263 * CPUs 0 1 2 3 264 * idle idle --> idle idle 265 * 266 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0 267 * propagates that to GRP0:0: 268 * 269 * LVL 1 [GRP1:0] 270 * migrator = TMIGR_NONE 271 * active = 272 * next_expiry = KTIME_MAX 273 * / \ 274 * LVL 0 [GRP0:0] [GRP0:1] 275 * migrator = TMIGR_NONE migrator = TMIGR_NONE 276 * active = active = 277 * --> next_expiry = TIMER0 next_expiry = KTIME_MAX 278 * / \ / \ 279 * CPUs 0 1 2 3 280 * idle idle idle idle 281 * 282 * 5. GRP0:0 is not active, so the new timer has to be propagated to 283 * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value 284 * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is 285 * handed back to CPU0, as it seems that there is still an active child in 286 * top level group. 287 * 288 * LVL 1 [GRP1:0] 289 * migrator = TMIGR_NONE 290 * active = 291 * --> next_expiry = TIMER0 292 * / \ 293 * LVL 0 [GRP0:0] [GRP0:1] 294 * migrator = TMIGR_NONE migrator = TMIGR_NONE 295 * active = active = 296 * next_expiry = TIMER0 next_expiry = KTIME_MAX 297 * / \ / \ 298 * CPUs 0 1 2 3 299 * idle idle idle idle 300 * 301 * This is prevented by reading the state when holding the lock (when a new 302 * timer has to be propagated from idle path):: 303 * 304 * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up()) 305 * -------------------------- --------------------------- 306 * // step 3: 307 * cmpxchg(&GRP1:0->state); 308 * tmigr_update_events() { 309 * spin_lock(&GRP1:0->lock); 310 * // ... update events ... 311 * // hand back first expiry when GRP1:0 is idle 312 * spin_unlock(&GRP1:0->lock); 313 * // ^^^ release state modification 314 * } 315 * tmigr_update_events() { 316 * spin_lock(&GRP1:0->lock) 317 * // ^^^ acquire state modification 318 * group_state = atomic_read(&GRP1:0->state) 319 * // .... update events ... 320 * // hand back first expiry when GRP1:0 is idle 321 * spin_unlock(&GRP1:0->lock) <3> 322 * // ^^^ makes state visible for other 323 * // callers of tmigr_new_timer_up() 324 * } 325 * 326 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported 327 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent 328 * update of the group state from active path is no problem, as the upcoming CPU 329 * will take care of the group events. 330 * 331 * Required event and timerqueue update after a remote expiry: 332 * ----------------------------------------------------------- 333 * 334 * After expiring timers of a remote CPU, a walk through the hierarchy and 335 * update of events and timerqueues is required. It is obviously needed if there 336 * is a 'new' global timer but also if there is no new global timer but the 337 * remote CPU is still idle. 338 * 339 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same 340 * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is 341 * also idle and has no global timer pending. CPU2 is the only active CPU and 342 * thus also the migrator: 343 * 344 * LVL 1 [GRP1:0] 345 * migrator = GRP0:1 346 * active = GRP0:1 347 * --> timerqueue = evt-GRP0:0 348 * / \ 349 * LVL 0 [GRP0:0] [GRP0:1] 350 * migrator = TMIGR_NONE migrator = CPU2 351 * active = active = CPU2 352 * groupevt.ignore = false groupevt.ignore = true 353 * groupevt.cpu = CPU0 groupevt.cpu = 354 * timerqueue = evt-CPU0, timerqueue = 355 * evt-CPU1 356 * / \ / \ 357 * CPUs 0 1 2 3 358 * idle idle active idle 359 * 360 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group 361 * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with 362 * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It 363 * looks at tmigr_event::cpu struct member and expires the pending timer(s) 364 * of CPU0. 365 * 366 * LVL 1 [GRP1:0] 367 * migrator = GRP0:1 368 * active = GRP0:1 369 * --> timerqueue = 370 * / \ 371 * LVL 0 [GRP0:0] [GRP0:1] 372 * migrator = TMIGR_NONE migrator = CPU2 373 * active = active = CPU2 374 * groupevt.ignore = false groupevt.ignore = true 375 * --> groupevt.cpu = CPU0 groupevt.cpu = 376 * timerqueue = evt-CPU0, timerqueue = 377 * evt-CPU1 378 * / \ / \ 379 * CPUs 0 1 2 3 380 * idle idle active idle 381 * 382 * 3. Some work has to be done after expiring the timers of CPU0. If we stop 383 * here, then CPU1's pending global timer(s) will not expire in time and the 384 * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just 385 * been processed. So it is required to walk the hierarchy from CPU0's point 386 * of view and update it accordingly. CPU0's event will be removed from the 387 * timerqueue because it has no pending timer. If CPU0 would have a timer 388 * pending then it has to expire after CPU1's first timer because all timers 389 * from this period were just expired. Either way CPU1's event will be first 390 * in GRP0:0's timerqueue and therefore set in the CPU field of the group 391 * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not 392 * active: 393 * 394 * LVL 1 [GRP1:0] 395 * migrator = GRP0:1 396 * active = GRP0:1 397 * --> timerqueue = evt-GRP0:0 398 * / \ 399 * LVL 0 [GRP0:0] [GRP0:1] 400 * migrator = TMIGR_NONE migrator = CPU2 401 * active = active = CPU2 402 * groupevt.ignore = false groupevt.ignore = true 403 * --> groupevt.cpu = CPU1 groupevt.cpu = 404 * --> timerqueue = evt-CPU1 timerqueue = 405 * / \ / \ 406 * CPUs 0 1 2 3 407 * idle idle active idle 408 * 409 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the 410 * timer(s) of CPU1. 411 * 412 * The hierarchy walk in step 3 can be skipped if the migrator notices that a 413 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care 414 * of the group as migrator and any needed updates within the hierarchy. 415 */ 416 417 static DEFINE_MUTEX(tmigr_mutex); 418 static struct list_head *tmigr_level_list __read_mostly; 419 420 static unsigned int tmigr_hierarchy_levels __read_mostly; 421 static unsigned int tmigr_crossnode_level __read_mostly; 422 423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu); 424 425 #define TMIGR_NONE 0xFF 426 #define BIT_CNT 8 427 428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc) 429 { 430 return !(tmc->tmgroup && tmc->online); 431 } 432 433 /* 434 * Returns true, when @childmask corresponds to the group migrator or when the 435 * group is not active - so no migrator is set. 436 */ 437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask) 438 { 439 union tmigr_state s; 440 441 s.state = atomic_read(&group->migr_state); 442 443 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 444 return true; 445 446 return false; 447 } 448 449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask) 450 { 451 bool lonely, migrator = false; 452 unsigned long active; 453 union tmigr_state s; 454 455 s.state = atomic_read(&group->migr_state); 456 457 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 458 migrator = true; 459 460 active = s.active; 461 lonely = bitmap_weight(&active, BIT_CNT) <= 1; 462 463 return (migrator && lonely); 464 } 465 466 static bool tmigr_check_lonely(struct tmigr_group *group) 467 { 468 unsigned long active; 469 union tmigr_state s; 470 471 s.state = atomic_read(&group->migr_state); 472 473 active = s.active; 474 475 return bitmap_weight(&active, BIT_CNT) <= 1; 476 } 477 478 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *); 479 480 static void __walk_groups(up_f up, void *data, 481 struct tmigr_cpu *tmc) 482 { 483 struct tmigr_group *child = NULL, *group = tmc->tmgroup; 484 485 do { 486 WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels); 487 488 if (up(group, child, data)) 489 break; 490 491 child = group; 492 group = group->parent; 493 } while (group); 494 } 495 496 static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc) 497 { 498 lockdep_assert_held(&tmc->lock); 499 500 __walk_groups(up, data, tmc); 501 } 502 503 /** 504 * struct tmigr_walk - data required for walking the hierarchy 505 * @nextexp: Next CPU event expiry information which is handed into 506 * the timer migration code by the timer code 507 * (get_next_timer_interrupt()) 508 * @firstexp: Contains the first event expiry information when last 509 * active CPU of hierarchy is on the way to idle to make 510 * sure CPU will be back in time. 511 * @evt: Pointer to tmigr_event which needs to be queued (of idle 512 * child group) 513 * @childmask: childmask of child group 514 * @remote: Is set, when the new timer path is executed in 515 * tmigr_handle_remote_cpu() 516 */ 517 struct tmigr_walk { 518 u64 nextexp; 519 u64 firstexp; 520 struct tmigr_event *evt; 521 u8 childmask; 522 bool remote; 523 }; 524 525 /** 526 * struct tmigr_remote_data - data required for remote expiry hierarchy walk 527 * @basej: timer base in jiffies 528 * @now: timer base monotonic 529 * @firstexp: returns expiry of the first timer in the idle timer 530 * migration hierarchy to make sure the timer is handled in 531 * time; it is stored in the per CPU tmigr_cpu struct of 532 * CPU which expires remote timers 533 * @childmask: childmask of child group 534 * @check: is set if there is the need to handle remote timers; 535 * required in tmigr_requires_handle_remote() only 536 * @tmc_active: this flag indicates, whether the CPU which triggers 537 * the hierarchy walk is !idle in the timer migration 538 * hierarchy. When the CPU is idle and the whole hierarchy is 539 * idle, only the first event of the top level has to be 540 * considered. 541 */ 542 struct tmigr_remote_data { 543 unsigned long basej; 544 u64 now; 545 u64 firstexp; 546 u8 childmask; 547 bool check; 548 bool tmc_active; 549 }; 550 551 /* 552 * Returns the next event of the timerqueue @group->events 553 * 554 * Removes timers with ignore flag and update next_expiry of the group. Values 555 * of the group event are updated in tmigr_update_events() only. 556 */ 557 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group) 558 { 559 struct timerqueue_node *node = NULL; 560 struct tmigr_event *evt = NULL; 561 562 lockdep_assert_held(&group->lock); 563 564 WRITE_ONCE(group->next_expiry, KTIME_MAX); 565 566 while ((node = timerqueue_getnext(&group->events))) { 567 evt = container_of(node, struct tmigr_event, nextevt); 568 569 if (!evt->ignore) { 570 WRITE_ONCE(group->next_expiry, evt->nextevt.expires); 571 return evt; 572 } 573 574 /* 575 * Remove next timers with ignore flag, because the group lock 576 * is held anyway 577 */ 578 if (!timerqueue_del(&group->events, node)) 579 break; 580 } 581 582 return NULL; 583 } 584 585 /* 586 * Return the next event (with the expiry equal or before @now) 587 * 588 * Event, which is returned, is also removed from the queue. 589 */ 590 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group, 591 u64 now) 592 { 593 struct tmigr_event *evt = tmigr_next_groupevt(group); 594 595 if (!evt || now < evt->nextevt.expires) 596 return NULL; 597 598 /* 599 * The event is ready to expire. Remove it and update next group event. 600 */ 601 timerqueue_del(&group->events, &evt->nextevt); 602 tmigr_next_groupevt(group); 603 604 return evt; 605 } 606 607 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group) 608 { 609 struct tmigr_event *evt; 610 611 evt = tmigr_next_groupevt(group); 612 613 if (!evt) 614 return KTIME_MAX; 615 else 616 return evt->nextevt.expires; 617 } 618 619 static bool tmigr_active_up(struct tmigr_group *group, 620 struct tmigr_group *child, 621 void *ptr) 622 { 623 union tmigr_state curstate, newstate; 624 struct tmigr_walk *data = ptr; 625 bool walk_done; 626 u8 childmask; 627 628 childmask = data->childmask; 629 /* 630 * No memory barrier is required here in contrast to 631 * tmigr_inactive_up(), as the group state change does not depend on the 632 * child state. 633 */ 634 curstate.state = atomic_read(&group->migr_state); 635 636 do { 637 newstate = curstate; 638 walk_done = true; 639 640 if (newstate.migrator == TMIGR_NONE) { 641 newstate.migrator = childmask; 642 643 /* Changes need to be propagated */ 644 walk_done = false; 645 } 646 647 newstate.active |= childmask; 648 newstate.seq++; 649 650 } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)); 651 652 if ((walk_done == false) && group->parent) 653 data->childmask = group->childmask; 654 655 /* 656 * The group is active (again). The group event might be still queued 657 * into the parent group's timerqueue but can now be handled by the 658 * migrator of this group. Therefore the ignore flag for the group event 659 * is updated to reflect this. 660 * 661 * The update of the ignore flag in the active path is done lockless. In 662 * worst case the migrator of the parent group observes the change too 663 * late and expires remotely all events belonging to this group. The 664 * lock is held while updating the ignore flag in idle path. So this 665 * state change will not be lost. 666 */ 667 group->groupevt.ignore = true; 668 669 trace_tmigr_group_set_cpu_active(group, newstate, childmask); 670 671 return walk_done; 672 } 673 674 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc) 675 { 676 struct tmigr_walk data; 677 678 data.childmask = tmc->childmask; 679 680 trace_tmigr_cpu_active(tmc); 681 682 tmc->cpuevt.ignore = true; 683 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 684 685 walk_groups(&tmigr_active_up, &data, tmc); 686 } 687 688 /** 689 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy 690 * 691 * Call site timer_clear_idle() is called with interrupts disabled. 692 */ 693 void tmigr_cpu_activate(void) 694 { 695 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 696 697 if (tmigr_is_not_available(tmc)) 698 return; 699 700 if (WARN_ON_ONCE(!tmc->idle)) 701 return; 702 703 raw_spin_lock(&tmc->lock); 704 tmc->idle = false; 705 __tmigr_cpu_activate(tmc); 706 raw_spin_unlock(&tmc->lock); 707 } 708 709 /* 710 * Returns true, if there is nothing to be propagated to the next level 711 * 712 * @data->firstexp is set to expiry of first gobal event of the (top level of 713 * the) hierarchy, but only when hierarchy is completely idle. 714 * 715 * The child and group states need to be read under the lock, to prevent a race 716 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See 717 * also section "Prevent race between new event and last CPU going inactive" in 718 * the documentation at the top. 719 * 720 * This is the only place where the group event expiry value is set. 721 */ 722 static 723 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child, 724 struct tmigr_walk *data) 725 { 726 struct tmigr_event *evt, *first_childevt; 727 union tmigr_state childstate, groupstate; 728 bool remote = data->remote; 729 bool walk_done = false; 730 u64 nextexp; 731 732 if (child) { 733 raw_spin_lock(&child->lock); 734 raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING); 735 736 childstate.state = atomic_read(&child->migr_state); 737 groupstate.state = atomic_read(&group->migr_state); 738 739 if (childstate.active) { 740 walk_done = true; 741 goto unlock; 742 } 743 744 first_childevt = tmigr_next_groupevt(child); 745 nextexp = child->next_expiry; 746 evt = &child->groupevt; 747 748 evt->ignore = (nextexp == KTIME_MAX) ? true : false; 749 } else { 750 nextexp = data->nextexp; 751 752 first_childevt = evt = data->evt; 753 754 raw_spin_lock(&group->lock); 755 756 childstate.state = 0; 757 groupstate.state = atomic_read(&group->migr_state); 758 } 759 760 /* 761 * If the child event is already queued in the group, remove it from the 762 * queue when the expiry time changed only or when it could be ignored. 763 */ 764 if (timerqueue_node_queued(&evt->nextevt)) { 765 if ((evt->nextevt.expires == nextexp) && !evt->ignore) 766 goto check_toplvl; 767 768 if (!timerqueue_del(&group->events, &evt->nextevt)) 769 WRITE_ONCE(group->next_expiry, KTIME_MAX); 770 } 771 772 if (evt->ignore) { 773 /* 774 * When the next child event could be ignored (nextexp is 775 * KTIME_MAX) and there was no remote timer handling before or 776 * the group is already active, there is no need to walk the 777 * hierarchy even if there is a parent group. 778 * 779 * The other way round: even if the event could be ignored, but 780 * if a remote timer handling was executed before and the group 781 * is not active, walking the hierarchy is required to not miss 782 * an enqueued timer in the non active group. The enqueued timer 783 * of the group needs to be propagated to a higher level to 784 * ensure it is handled. 785 */ 786 if (!remote || groupstate.active) 787 walk_done = true; 788 } else { 789 evt->nextevt.expires = nextexp; 790 evt->cpu = first_childevt->cpu; 791 792 if (timerqueue_add(&group->events, &evt->nextevt)) 793 WRITE_ONCE(group->next_expiry, nextexp); 794 } 795 796 check_toplvl: 797 if (!group->parent && (groupstate.migrator == TMIGR_NONE)) { 798 walk_done = true; 799 800 /* 801 * Nothing to do when update was done during remote timer 802 * handling. First timer in top level group which needs to be 803 * handled when top level group is not active, is calculated 804 * directly in tmigr_handle_remote_up(). 805 */ 806 if (remote) 807 goto unlock; 808 809 /* 810 * The top level group is idle and it has to be ensured the 811 * global timers are handled in time. (This could be optimized 812 * by keeping track of the last global scheduled event and only 813 * arming it on the CPU if the new event is earlier. Not sure if 814 * its worth the complexity.) 815 */ 816 data->firstexp = tmigr_next_groupevt_expires(group); 817 } 818 819 trace_tmigr_update_events(child, group, childstate, groupstate, 820 nextexp); 821 822 unlock: 823 raw_spin_unlock(&group->lock); 824 825 if (child) 826 raw_spin_unlock(&child->lock); 827 828 return walk_done; 829 } 830 831 static bool tmigr_new_timer_up(struct tmigr_group *group, 832 struct tmigr_group *child, 833 void *ptr) 834 { 835 struct tmigr_walk *data = ptr; 836 837 return tmigr_update_events(group, child, data); 838 } 839 840 /* 841 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is 842 * returned, if an active CPU will handle all the timer migration hierarchy 843 * timers. 844 */ 845 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp) 846 { 847 struct tmigr_walk data = { .nextexp = nextexp, 848 .firstexp = KTIME_MAX, 849 .evt = &tmc->cpuevt }; 850 851 lockdep_assert_held(&tmc->lock); 852 853 if (tmc->remote) 854 return KTIME_MAX; 855 856 trace_tmigr_cpu_new_timer(tmc); 857 858 tmc->cpuevt.ignore = false; 859 data.remote = false; 860 861 walk_groups(&tmigr_new_timer_up, &data, tmc); 862 863 /* If there is a new first global event, make sure it is handled */ 864 return data.firstexp; 865 } 866 867 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now, 868 unsigned long jif) 869 { 870 struct timer_events tevt; 871 struct tmigr_walk data; 872 struct tmigr_cpu *tmc; 873 874 tmc = per_cpu_ptr(&tmigr_cpu, cpu); 875 876 raw_spin_lock_irq(&tmc->lock); 877 878 /* 879 * If the remote CPU is offline then the timers have been migrated to 880 * another CPU. 881 * 882 * If tmigr_cpu::remote is set, at the moment another CPU already 883 * expires the timers of the remote CPU. 884 * 885 * If tmigr_event::ignore is set, then the CPU returns from idle and 886 * takes care of its timers. 887 * 888 * If the next event expires in the future, then the event has been 889 * updated and there are no timers to expire right now. The CPU which 890 * updated the event takes care when hierarchy is completely 891 * idle. Otherwise the migrator does it as the event is enqueued. 892 */ 893 if (!tmc->online || tmc->remote || tmc->cpuevt.ignore || 894 now < tmc->cpuevt.nextevt.expires) { 895 raw_spin_unlock_irq(&tmc->lock); 896 return; 897 } 898 899 trace_tmigr_handle_remote_cpu(tmc); 900 901 tmc->remote = true; 902 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 903 904 /* Drop the lock to allow the remote CPU to exit idle */ 905 raw_spin_unlock_irq(&tmc->lock); 906 907 if (cpu != smp_processor_id()) 908 timer_expire_remote(cpu); 909 910 /* 911 * Lock ordering needs to be preserved - timer_base locks before tmigr 912 * related locks (see section "Locking rules" in the documentation at 913 * the top). During fetching the next timer interrupt, also tmc->lock 914 * needs to be held. Otherwise there is a possible race window against 915 * the CPU itself when it comes out of idle, updates the first timer in 916 * the hierarchy and goes back to idle. 917 * 918 * timer base locks are dropped as fast as possible: After checking 919 * whether the remote CPU went offline in the meantime and after 920 * fetching the next remote timer interrupt. Dropping the locks as fast 921 * as possible keeps the locking region small and prevents holding 922 * several (unnecessary) locks during walking the hierarchy for updating 923 * the timerqueue and group events. 924 */ 925 local_irq_disable(); 926 timer_lock_remote_bases(cpu); 927 raw_spin_lock(&tmc->lock); 928 929 /* 930 * When the CPU went offline in the meantime, no hierarchy walk has to 931 * be done for updating the queued events, because the walk was 932 * already done during marking the CPU offline in the hierarchy. 933 * 934 * When the CPU is no longer idle, the CPU takes care of the timers and 935 * also of the timers in the hierarchy. 936 * 937 * (See also section "Required event and timerqueue update after a 938 * remote expiry" in the documentation at the top) 939 */ 940 if (!tmc->online || !tmc->idle) { 941 timer_unlock_remote_bases(cpu); 942 goto unlock; 943 } 944 945 /* next event of CPU */ 946 fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu); 947 timer_unlock_remote_bases(cpu); 948 949 data.nextexp = tevt.global; 950 data.firstexp = KTIME_MAX; 951 data.evt = &tmc->cpuevt; 952 data.remote = true; 953 954 /* 955 * The update is done even when there is no 'new' global timer pending 956 * on the remote CPU (see section "Required event and timerqueue update 957 * after a remote expiry" in the documentation at the top) 958 */ 959 walk_groups(&tmigr_new_timer_up, &data, tmc); 960 961 unlock: 962 tmc->remote = false; 963 raw_spin_unlock_irq(&tmc->lock); 964 } 965 966 static bool tmigr_handle_remote_up(struct tmigr_group *group, 967 struct tmigr_group *child, 968 void *ptr) 969 { 970 struct tmigr_remote_data *data = ptr; 971 struct tmigr_event *evt; 972 unsigned long jif; 973 u8 childmask; 974 u64 now; 975 976 jif = data->basej; 977 now = data->now; 978 979 childmask = data->childmask; 980 981 trace_tmigr_handle_remote(group); 982 again: 983 /* 984 * Handle the group only if @childmask is the migrator or if the 985 * group has no migrator. Otherwise the group is active and is 986 * handled by its own migrator. 987 */ 988 if (!tmigr_check_migrator(group, childmask)) 989 return true; 990 991 raw_spin_lock_irq(&group->lock); 992 993 evt = tmigr_next_expired_groupevt(group, now); 994 995 if (evt) { 996 unsigned int remote_cpu = evt->cpu; 997 998 raw_spin_unlock_irq(&group->lock); 999 1000 tmigr_handle_remote_cpu(remote_cpu, now, jif); 1001 1002 /* check if there is another event, that needs to be handled */ 1003 goto again; 1004 } 1005 1006 /* 1007 * Update of childmask for the next level and keep track of the expiry 1008 * of the first event that needs to be handled (group->next_expiry was 1009 * updated by tmigr_next_expired_groupevt(), next was set by 1010 * tmigr_handle_remote_cpu()). 1011 */ 1012 data->childmask = group->childmask; 1013 data->firstexp = group->next_expiry; 1014 1015 raw_spin_unlock_irq(&group->lock); 1016 1017 return false; 1018 } 1019 1020 /** 1021 * tmigr_handle_remote() - Handle global timers of remote idle CPUs 1022 * 1023 * Called from the timer soft interrupt with interrupts enabled. 1024 */ 1025 void tmigr_handle_remote(void) 1026 { 1027 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1028 struct tmigr_remote_data data; 1029 1030 if (tmigr_is_not_available(tmc)) 1031 return; 1032 1033 data.childmask = tmc->childmask; 1034 data.firstexp = KTIME_MAX; 1035 1036 /* 1037 * NOTE: This is a doubled check because the migrator test will be done 1038 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the 1039 * return when nothing has to be done. 1040 */ 1041 if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) 1042 return; 1043 1044 data.now = get_jiffies_update(&data.basej); 1045 1046 /* 1047 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to 1048 * KTIME_MAX. Even if tmc->lock is not held during the whole remote 1049 * handling, tmc->wakeup is fine to be stale as it is called in 1050 * interrupt context and tick_nohz_next_event() is executed in interrupt 1051 * exit path only after processing the last pending interrupt. 1052 */ 1053 1054 __walk_groups(&tmigr_handle_remote_up, &data, tmc); 1055 1056 raw_spin_lock_irq(&tmc->lock); 1057 WRITE_ONCE(tmc->wakeup, data.firstexp); 1058 raw_spin_unlock_irq(&tmc->lock); 1059 } 1060 1061 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group, 1062 struct tmigr_group *child, 1063 void *ptr) 1064 { 1065 struct tmigr_remote_data *data = ptr; 1066 u8 childmask; 1067 1068 childmask = data->childmask; 1069 1070 /* 1071 * Handle the group only if the child is the migrator or if the group 1072 * has no migrator. Otherwise the group is active and is handled by its 1073 * own migrator. 1074 */ 1075 if (!tmigr_check_migrator(group, childmask)) 1076 return true; 1077 1078 /* 1079 * When there is a parent group and the CPU which triggered the 1080 * hierarchy walk is not active, proceed the walk to reach the top level 1081 * group before reading the next_expiry value. 1082 */ 1083 if (group->parent && !data->tmc_active) 1084 goto out; 1085 1086 /* 1087 * The lock is required on 32bit architectures to read the variable 1088 * consistently with a concurrent writer. On 64bit the lock is not 1089 * required because the read operation is not split and so it is always 1090 * consistent. 1091 */ 1092 if (IS_ENABLED(CONFIG_64BIT)) { 1093 data->firstexp = READ_ONCE(group->next_expiry); 1094 if (data->now >= data->firstexp) { 1095 data->check = true; 1096 return true; 1097 } 1098 } else { 1099 raw_spin_lock(&group->lock); 1100 data->firstexp = group->next_expiry; 1101 if (data->now >= group->next_expiry) { 1102 data->check = true; 1103 raw_spin_unlock(&group->lock); 1104 return true; 1105 } 1106 raw_spin_unlock(&group->lock); 1107 } 1108 1109 out: 1110 /* Update of childmask for the next level */ 1111 data->childmask = group->childmask; 1112 return false; 1113 } 1114 1115 /** 1116 * tmigr_requires_handle_remote() - Check the need of remote timer handling 1117 * 1118 * Must be called with interrupts disabled. 1119 */ 1120 bool tmigr_requires_handle_remote(void) 1121 { 1122 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1123 struct tmigr_remote_data data; 1124 unsigned long jif; 1125 bool ret = false; 1126 1127 if (tmigr_is_not_available(tmc)) 1128 return ret; 1129 1130 data.now = get_jiffies_update(&jif); 1131 data.childmask = tmc->childmask; 1132 data.firstexp = KTIME_MAX; 1133 data.tmc_active = !tmc->idle; 1134 data.check = false; 1135 1136 /* 1137 * If the CPU is active, walk the hierarchy to check whether a remote 1138 * expiry is required. 1139 * 1140 * Check is done lockless as interrupts are disabled and @tmc->idle is 1141 * set only by the local CPU. 1142 */ 1143 if (!tmc->idle) { 1144 __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc); 1145 1146 return data.check; 1147 } 1148 1149 /* 1150 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock 1151 * is required on 32bit architectures to read the variable consistently 1152 * with a concurrent writer. On 64bit the lock is not required because 1153 * the read operation is not split and so it is always consistent. 1154 */ 1155 if (IS_ENABLED(CONFIG_64BIT)) { 1156 if (data.now >= READ_ONCE(tmc->wakeup)) 1157 return true; 1158 } else { 1159 raw_spin_lock(&tmc->lock); 1160 if (data.now >= tmc->wakeup) 1161 ret = true; 1162 raw_spin_unlock(&tmc->lock); 1163 } 1164 1165 return ret; 1166 } 1167 1168 /** 1169 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc) 1170 * @nextexp: Next expiry of global timer (or KTIME_MAX if not) 1171 * 1172 * The CPU is already deactivated in the timer migration 1173 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event() 1174 * and thereby the timer idle path is executed once more. @tmc->wakeup 1175 * holds the first timer, when the timer migration hierarchy is 1176 * completely idle. 1177 * 1178 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if 1179 * nothing needs to be done. 1180 */ 1181 u64 tmigr_cpu_new_timer(u64 nextexp) 1182 { 1183 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1184 u64 ret; 1185 1186 if (tmigr_is_not_available(tmc)) 1187 return nextexp; 1188 1189 raw_spin_lock(&tmc->lock); 1190 1191 ret = READ_ONCE(tmc->wakeup); 1192 if (nextexp != KTIME_MAX) { 1193 if (nextexp != tmc->cpuevt.nextevt.expires || 1194 tmc->cpuevt.ignore) { 1195 ret = tmigr_new_timer(tmc, nextexp); 1196 } 1197 } 1198 /* 1199 * Make sure the reevaluation of timers in idle path will not miss an 1200 * event. 1201 */ 1202 WRITE_ONCE(tmc->wakeup, ret); 1203 1204 trace_tmigr_cpu_new_timer_idle(tmc, nextexp); 1205 raw_spin_unlock(&tmc->lock); 1206 return ret; 1207 } 1208 1209 static bool tmigr_inactive_up(struct tmigr_group *group, 1210 struct tmigr_group *child, 1211 void *ptr) 1212 { 1213 union tmigr_state curstate, newstate, childstate; 1214 struct tmigr_walk *data = ptr; 1215 bool walk_done; 1216 u8 childmask; 1217 1218 childmask = data->childmask; 1219 childstate.state = 0; 1220 1221 /* 1222 * The memory barrier is paired with the cmpxchg() in tmigr_active_up() 1223 * to make sure the updates of child and group states are ordered. The 1224 * ordering is mandatory, as the group state change depends on the child 1225 * state. 1226 */ 1227 curstate.state = atomic_read_acquire(&group->migr_state); 1228 1229 for (;;) { 1230 if (child) 1231 childstate.state = atomic_read(&child->migr_state); 1232 1233 newstate = curstate; 1234 walk_done = true; 1235 1236 /* Reset active bit when the child is no longer active */ 1237 if (!childstate.active) 1238 newstate.active &= ~childmask; 1239 1240 if (newstate.migrator == childmask) { 1241 /* 1242 * Find a new migrator for the group, because the child 1243 * group is idle! 1244 */ 1245 if (!childstate.active) { 1246 unsigned long new_migr_bit, active = newstate.active; 1247 1248 new_migr_bit = find_first_bit(&active, BIT_CNT); 1249 1250 if (new_migr_bit != BIT_CNT) { 1251 newstate.migrator = BIT(new_migr_bit); 1252 } else { 1253 newstate.migrator = TMIGR_NONE; 1254 1255 /* Changes need to be propagated */ 1256 walk_done = false; 1257 } 1258 } 1259 } 1260 1261 newstate.seq++; 1262 1263 WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active)); 1264 1265 if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, 1266 newstate.state)) 1267 break; 1268 1269 /* 1270 * The memory barrier is paired with the cmpxchg() in 1271 * tmigr_active_up() to make sure the updates of child and group 1272 * states are ordered. It is required only when the above 1273 * try_cmpxchg() fails. 1274 */ 1275 smp_mb__after_atomic(); 1276 } 1277 1278 data->remote = false; 1279 1280 /* Event Handling */ 1281 tmigr_update_events(group, child, data); 1282 1283 if (group->parent && (walk_done == false)) 1284 data->childmask = group->childmask; 1285 1286 /* 1287 * data->firstexp was set by tmigr_update_events() and contains the 1288 * expiry of the first global event which needs to be handled. It 1289 * differs from KTIME_MAX if: 1290 * - group is the top level group and 1291 * - group is idle (which means CPU was the last active CPU in the 1292 * hierarchy) and 1293 * - there is a pending event in the hierarchy 1294 */ 1295 WARN_ON_ONCE(data->firstexp != KTIME_MAX && group->parent); 1296 1297 trace_tmigr_group_set_cpu_inactive(group, newstate, childmask); 1298 1299 return walk_done; 1300 } 1301 1302 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp) 1303 { 1304 struct tmigr_walk data = { .nextexp = nextexp, 1305 .firstexp = KTIME_MAX, 1306 .evt = &tmc->cpuevt, 1307 .childmask = tmc->childmask }; 1308 1309 /* 1310 * If nextexp is KTIME_MAX, the CPU event will be ignored because the 1311 * local timer expires before the global timer, no global timer is set 1312 * or CPU goes offline. 1313 */ 1314 if (nextexp != KTIME_MAX) 1315 tmc->cpuevt.ignore = false; 1316 1317 walk_groups(&tmigr_inactive_up, &data, tmc); 1318 return data.firstexp; 1319 } 1320 1321 /** 1322 * tmigr_cpu_deactivate() - Put current CPU into inactive state 1323 * @nextexp: The next global timer expiry of the current CPU 1324 * 1325 * Must be called with interrupts disabled. 1326 * 1327 * Return: the next event expiry of the current CPU or the next event expiry 1328 * from the hierarchy if this CPU is the top level migrator or the hierarchy is 1329 * completely idle. 1330 */ 1331 u64 tmigr_cpu_deactivate(u64 nextexp) 1332 { 1333 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1334 u64 ret; 1335 1336 if (tmigr_is_not_available(tmc)) 1337 return nextexp; 1338 1339 raw_spin_lock(&tmc->lock); 1340 1341 ret = __tmigr_cpu_deactivate(tmc, nextexp); 1342 1343 tmc->idle = true; 1344 1345 /* 1346 * Make sure the reevaluation of timers in idle path will not miss an 1347 * event. 1348 */ 1349 WRITE_ONCE(tmc->wakeup, ret); 1350 1351 trace_tmigr_cpu_idle(tmc, nextexp); 1352 raw_spin_unlock(&tmc->lock); 1353 return ret; 1354 } 1355 1356 /** 1357 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to 1358 * go idle 1359 * @nextevt: The next global timer expiry of the current CPU 1360 * 1361 * Return: 1362 * * KTIME_MAX - when it is probable that nothing has to be done (not 1363 * the only one in the level 0 group; and if it is the 1364 * only one in level 0 group, but there are more than a 1365 * single group active on the way to top level) 1366 * * nextevt - when CPU is offline and has to handle timer on his own 1367 * or when on the way to top in every group only a single 1368 * child is active but @nextevt is before the lowest 1369 * next_expiry encountered while walking up to top level. 1370 * * next_expiry - value of lowest expiry encountered while walking groups 1371 * if only a single child is active on each and @nextevt 1372 * is after this lowest expiry. 1373 */ 1374 u64 tmigr_quick_check(u64 nextevt) 1375 { 1376 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1377 struct tmigr_group *group = tmc->tmgroup; 1378 1379 if (tmigr_is_not_available(tmc)) 1380 return nextevt; 1381 1382 if (WARN_ON_ONCE(tmc->idle)) 1383 return nextevt; 1384 1385 if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask)) 1386 return KTIME_MAX; 1387 1388 do { 1389 if (!tmigr_check_lonely(group)) { 1390 return KTIME_MAX; 1391 } else { 1392 /* 1393 * Since current CPU is active, events may not be sorted 1394 * from bottom to the top because the CPU's event is ignored 1395 * up to the top and its sibling's events not propagated upwards. 1396 * Thus keep track of the lowest observed expiry. 1397 */ 1398 nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry)); 1399 if (!group->parent) 1400 return nextevt; 1401 } 1402 group = group->parent; 1403 } while (group); 1404 1405 return KTIME_MAX; 1406 } 1407 1408 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl, 1409 int node) 1410 { 1411 union tmigr_state s; 1412 1413 raw_spin_lock_init(&group->lock); 1414 1415 group->level = lvl; 1416 group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE; 1417 1418 group->num_children = 0; 1419 1420 s.migrator = TMIGR_NONE; 1421 s.active = 0; 1422 s.seq = 0; 1423 atomic_set(&group->migr_state, s.state); 1424 1425 timerqueue_init_head(&group->events); 1426 timerqueue_init(&group->groupevt.nextevt); 1427 group->groupevt.nextevt.expires = KTIME_MAX; 1428 WRITE_ONCE(group->next_expiry, KTIME_MAX); 1429 group->groupevt.ignore = true; 1430 } 1431 1432 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node, 1433 unsigned int lvl) 1434 { 1435 struct tmigr_group *tmp, *group = NULL; 1436 1437 lockdep_assert_held(&tmigr_mutex); 1438 1439 /* Try to attach to an existing group first */ 1440 list_for_each_entry(tmp, &tmigr_level_list[lvl], list) { 1441 /* 1442 * If @lvl is below the cross NUMA node level, check whether 1443 * this group belongs to the same NUMA node. 1444 */ 1445 if (lvl < tmigr_crossnode_level && tmp->numa_node != node) 1446 continue; 1447 1448 /* Capacity left? */ 1449 if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP) 1450 continue; 1451 1452 /* 1453 * TODO: A possible further improvement: Make sure that all CPU 1454 * siblings end up in the same group of the lowest level of the 1455 * hierarchy. Rely on the topology sibling mask would be a 1456 * reasonable solution. 1457 */ 1458 1459 group = tmp; 1460 break; 1461 } 1462 1463 if (group) 1464 return group; 1465 1466 /* Allocate and set up a new group */ 1467 group = kzalloc_node(sizeof(*group), GFP_KERNEL, node); 1468 if (!group) 1469 return ERR_PTR(-ENOMEM); 1470 1471 tmigr_init_group(group, lvl, node); 1472 1473 /* Setup successful. Add it to the hierarchy */ 1474 list_add(&group->list, &tmigr_level_list[lvl]); 1475 trace_tmigr_group_set(group); 1476 return group; 1477 } 1478 1479 static void tmigr_connect_child_parent(struct tmigr_group *child, 1480 struct tmigr_group *parent) 1481 { 1482 union tmigr_state childstate; 1483 1484 raw_spin_lock_irq(&child->lock); 1485 raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING); 1486 1487 child->parent = parent; 1488 child->childmask = BIT(parent->num_children++); 1489 1490 raw_spin_unlock(&parent->lock); 1491 raw_spin_unlock_irq(&child->lock); 1492 1493 trace_tmigr_connect_child_parent(child); 1494 1495 /* 1496 * To prevent inconsistent states, active children need to be active in 1497 * the new parent as well. Inactive children are already marked inactive 1498 * in the parent group: 1499 * 1500 * * When new groups were created by tmigr_setup_groups() starting from 1501 * the lowest level (and not higher then one level below the current 1502 * top level), then they are not active. They will be set active when 1503 * the new online CPU comes active. 1504 * 1505 * * But if a new group above the current top level is required, it is 1506 * mandatory to propagate the active state of the already existing 1507 * child to the new parent. So tmigr_connect_child_parent() is 1508 * executed with the formerly top level group (child) and the newly 1509 * created group (parent). 1510 */ 1511 childstate.state = atomic_read(&child->migr_state); 1512 if (childstate.migrator != TMIGR_NONE) { 1513 struct tmigr_walk data; 1514 1515 data.childmask = child->childmask; 1516 1517 /* 1518 * There is only one new level per time. When connecting the 1519 * child and the parent and set the child active when the parent 1520 * is inactive, the parent needs to be the uppermost 1521 * level. Otherwise there went something wrong! 1522 */ 1523 WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent); 1524 } 1525 } 1526 1527 static int tmigr_setup_groups(unsigned int cpu, unsigned int node) 1528 { 1529 struct tmigr_group *group, *child, **stack; 1530 int top = 0, err = 0, i = 0; 1531 struct list_head *lvllist; 1532 1533 stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL); 1534 if (!stack) 1535 return -ENOMEM; 1536 1537 do { 1538 group = tmigr_get_group(cpu, node, i); 1539 if (IS_ERR(group)) { 1540 err = PTR_ERR(group); 1541 break; 1542 } 1543 1544 top = i; 1545 stack[i++] = group; 1546 1547 /* 1548 * When booting only less CPUs of a system than CPUs are 1549 * available, not all calculated hierarchy levels are required. 1550 * 1551 * The loop is aborted as soon as the highest level, which might 1552 * be different from tmigr_hierarchy_levels, contains only a 1553 * single group. 1554 */ 1555 if (group->parent || i == tmigr_hierarchy_levels || 1556 (list_empty(&tmigr_level_list[i]) && 1557 list_is_singular(&tmigr_level_list[i - 1]))) 1558 break; 1559 1560 } while (i < tmigr_hierarchy_levels); 1561 1562 do { 1563 group = stack[--i]; 1564 1565 if (err < 0) { 1566 list_del(&group->list); 1567 kfree(group); 1568 continue; 1569 } 1570 1571 WARN_ON_ONCE(i != group->level); 1572 1573 /* 1574 * Update tmc -> group / child -> group connection 1575 */ 1576 if (i == 0) { 1577 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1578 1579 raw_spin_lock_irq(&group->lock); 1580 1581 tmc->tmgroup = group; 1582 tmc->childmask = BIT(group->num_children++); 1583 1584 raw_spin_unlock_irq(&group->lock); 1585 1586 trace_tmigr_connect_cpu_parent(tmc); 1587 1588 /* There are no children that need to be connected */ 1589 continue; 1590 } else { 1591 child = stack[i - 1]; 1592 tmigr_connect_child_parent(child, group); 1593 } 1594 1595 /* check if uppermost level was newly created */ 1596 if (top != i) 1597 continue; 1598 1599 WARN_ON_ONCE(top == 0); 1600 1601 lvllist = &tmigr_level_list[top]; 1602 if (group->num_children == 1 && list_is_singular(lvllist)) { 1603 lvllist = &tmigr_level_list[top - 1]; 1604 list_for_each_entry(child, lvllist, list) { 1605 if (child->parent) 1606 continue; 1607 1608 tmigr_connect_child_parent(child, group); 1609 } 1610 } 1611 } while (i > 0); 1612 1613 kfree(stack); 1614 1615 return err; 1616 } 1617 1618 static int tmigr_add_cpu(unsigned int cpu) 1619 { 1620 int node = cpu_to_node(cpu); 1621 int ret; 1622 1623 mutex_lock(&tmigr_mutex); 1624 ret = tmigr_setup_groups(cpu, node); 1625 mutex_unlock(&tmigr_mutex); 1626 1627 return ret; 1628 } 1629 1630 static int tmigr_cpu_online(unsigned int cpu) 1631 { 1632 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1633 int ret; 1634 1635 /* First online attempt? Initialize CPU data */ 1636 if (!tmc->tmgroup) { 1637 raw_spin_lock_init(&tmc->lock); 1638 1639 ret = tmigr_add_cpu(cpu); 1640 if (ret < 0) 1641 return ret; 1642 1643 if (tmc->childmask == 0) 1644 return -EINVAL; 1645 1646 timerqueue_init(&tmc->cpuevt.nextevt); 1647 tmc->cpuevt.nextevt.expires = KTIME_MAX; 1648 tmc->cpuevt.ignore = true; 1649 tmc->cpuevt.cpu = cpu; 1650 1651 tmc->remote = false; 1652 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1653 } 1654 raw_spin_lock_irq(&tmc->lock); 1655 trace_tmigr_cpu_online(tmc); 1656 tmc->idle = timer_base_is_idle(); 1657 if (!tmc->idle) 1658 __tmigr_cpu_activate(tmc); 1659 tmc->online = true; 1660 raw_spin_unlock_irq(&tmc->lock); 1661 return 0; 1662 } 1663 1664 /* 1665 * tmigr_trigger_active() - trigger a CPU to become active again 1666 * 1667 * This function is executed on a CPU which is part of cpu_online_mask, when the 1668 * last active CPU in the hierarchy is offlining. With this, it is ensured that 1669 * the other CPU is active and takes over the migrator duty. 1670 */ 1671 static long tmigr_trigger_active(void *unused) 1672 { 1673 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1674 1675 WARN_ON_ONCE(!tmc->online || tmc->idle); 1676 1677 return 0; 1678 } 1679 1680 static int tmigr_cpu_offline(unsigned int cpu) 1681 { 1682 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1683 int migrator; 1684 u64 firstexp; 1685 1686 raw_spin_lock_irq(&tmc->lock); 1687 tmc->online = false; 1688 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1689 1690 /* 1691 * CPU has to handle the local events on his own, when on the way to 1692 * offline; Therefore nextevt value is set to KTIME_MAX 1693 */ 1694 firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX); 1695 trace_tmigr_cpu_offline(tmc); 1696 raw_spin_unlock_irq(&tmc->lock); 1697 1698 if (firstexp != KTIME_MAX) { 1699 migrator = cpumask_any_but(cpu_online_mask, cpu); 1700 work_on_cpu(migrator, tmigr_trigger_active, NULL); 1701 } 1702 1703 return 0; 1704 } 1705 1706 static int __init tmigr_init(void) 1707 { 1708 unsigned int cpulvl, nodelvl, cpus_per_node, i; 1709 unsigned int nnodes = num_possible_nodes(); 1710 unsigned int ncpus = num_possible_cpus(); 1711 int ret = -ENOMEM; 1712 1713 BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP); 1714 1715 /* Nothing to do if running on UP */ 1716 if (ncpus == 1) 1717 return 0; 1718 1719 /* 1720 * Calculate the required hierarchy levels. Unfortunately there is no 1721 * reliable information available, unless all possible CPUs have been 1722 * brought up and all NUMA nodes are populated. 1723 * 1724 * Estimate the number of levels with the number of possible nodes and 1725 * the number of possible CPUs. Assume CPUs are spread evenly across 1726 * nodes. We cannot rely on cpumask_of_node() because it only works for 1727 * online CPUs. 1728 */ 1729 cpus_per_node = DIV_ROUND_UP(ncpus, nnodes); 1730 1731 /* Calc the hierarchy levels required to hold the CPUs of a node */ 1732 cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node), 1733 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1734 1735 /* Calculate the extra levels to connect all nodes */ 1736 nodelvl = DIV_ROUND_UP(order_base_2(nnodes), 1737 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1738 1739 tmigr_hierarchy_levels = cpulvl + nodelvl; 1740 1741 /* 1742 * If a NUMA node spawns more than one CPU level group then the next 1743 * level(s) of the hierarchy contains groups which handle all CPU groups 1744 * of the same NUMA node. The level above goes across NUMA nodes. Store 1745 * this information for the setup code to decide in which level node 1746 * matching is no longer required. 1747 */ 1748 tmigr_crossnode_level = cpulvl; 1749 1750 tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL); 1751 if (!tmigr_level_list) 1752 goto err; 1753 1754 for (i = 0; i < tmigr_hierarchy_levels; i++) 1755 INIT_LIST_HEAD(&tmigr_level_list[i]); 1756 1757 pr_info("Timer migration: %d hierarchy levels; %d children per group;" 1758 " %d crossnode level\n", 1759 tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP, 1760 tmigr_crossnode_level); 1761 1762 ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online", 1763 tmigr_cpu_online, tmigr_cpu_offline); 1764 if (ret) 1765 goto err; 1766 1767 return 0; 1768 1769 err: 1770 pr_err("Timer migration setup failed\n"); 1771 return ret; 1772 } 1773 late_initcall(tmigr_init); 1774