1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Infrastructure for migratable timers 4 * 5 * Copyright(C) 2022 linutronix GmbH 6 */ 7 #include <linux/cpuhotplug.h> 8 #include <linux/slab.h> 9 #include <linux/smp.h> 10 #include <linux/spinlock.h> 11 #include <linux/timerqueue.h> 12 #include <trace/events/ipi.h> 13 14 #include "timer_migration.h" 15 #include "tick-internal.h" 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/timer_migration.h> 19 20 /* 21 * The timer migration mechanism is built on a hierarchy of groups. The 22 * lowest level group contains CPUs, the next level groups of CPU groups 23 * and so forth. The CPU groups are kept per node so for the normal case 24 * lock contention won't happen across nodes. Depending on the number of 25 * CPUs per node even the next level might be kept as groups of CPU groups 26 * per node and only the levels above cross the node topology. 27 * 28 * Example topology for a two node system with 24 CPUs each. 29 * 30 * LVL 2 [GRP2:0] 31 * GRP1:0 = GRP1:M 32 * 33 * LVL 1 [GRP1:0] [GRP1:1] 34 * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5 35 * 36 * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5] 37 * CPUS 0-7 8-15 16-23 24-31 32-39 40-47 38 * 39 * The groups hold a timer queue of events sorted by expiry time. These 40 * queues are updated when CPUs go in idle. When they come out of idle 41 * ignore flag of events is set. 42 * 43 * Each group has a designated migrator CPU/group as long as a CPU/group is 44 * active in the group. This designated role is necessary to avoid that all 45 * active CPUs in a group try to migrate expired timers from other CPUs, 46 * which would result in massive lock bouncing. 47 * 48 * When a CPU is awake, it checks in it's own timer tick the group 49 * hierarchy up to the point where it is assigned the migrator role or if 50 * no CPU is active, it also checks the groups where no migrator is set 51 * (TMIGR_NONE). 52 * 53 * If it finds expired timers in one of the group queues it pulls them over 54 * from the idle CPU and runs the timer function. After that it updates the 55 * group and the parent groups if required. 56 * 57 * CPUs which go idle arm their CPU local timer hardware for the next local 58 * (pinned) timer event. If the next migratable timer expires after the 59 * next local timer or the CPU has no migratable timer pending then the 60 * CPU does not queue an event in the LVL0 group. If the next migratable 61 * timer expires before the next local timer then the CPU queues that timer 62 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0 63 * group. 64 * 65 * When CPU comes out of idle and when a group has at least a single active 66 * child, the ignore flag of the tmigr_event is set. This indicates, that 67 * the event is ignored even if it is still enqueued in the parent groups 68 * timer queue. It will be removed when touching the timer queue the next 69 * time. This spares locking in active path as the lock protects (after 70 * setup) only event information. For more information about locking, 71 * please read the section "Locking rules". 72 * 73 * If the CPU is the migrator of the group then it delegates that role to 74 * the next active CPU in the group or sets migrator to TMIGR_NONE when 75 * there is no active CPU in the group. This delegation needs to be 76 * propagated up the hierarchy so hand over from other leaves can happen at 77 * all hierarchy levels w/o doing a search. 78 * 79 * When the last CPU in the system goes idle, then it drops all migrator 80 * duties up to the top level of the hierarchy (LVL2 in the example). It 81 * then has to make sure, that it arms it's own local hardware timer for 82 * the earliest event in the system. 83 * 84 * 85 * Lifetime rules: 86 * --------------- 87 * 88 * The groups are built up at init time or when CPUs come online. They are 89 * not destroyed when a group becomes empty due to offlining. The group 90 * just won't participate in the hierarchy management anymore. Destroying 91 * groups would result in interesting race conditions which would just make 92 * the whole mechanism slow and complex. 93 * 94 * 95 * Locking rules: 96 * -------------- 97 * 98 * For setting up new groups and handling events it's required to lock both 99 * child and parent group. The lock ordering is always bottom up. This also 100 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and 101 * active CPU/group information atomic_try_cmpxchg() is used instead and only 102 * the per CPU tmigr_cpu->lock is held. 103 * 104 * During the setup of groups tmigr_level_list is required. It is protected by 105 * @tmigr_mutex. 106 * 107 * When @timer_base->lock as well as tmigr related locks are required, the lock 108 * ordering is: first @timer_base->lock, afterwards tmigr related locks. 109 * 110 * 111 * Protection of the tmigr group state information: 112 * ------------------------------------------------ 113 * 114 * The state information with the list of active children and migrator needs to 115 * be protected by a sequence counter. It prevents a race when updates in child 116 * groups are propagated in changed order. The state update is performed 117 * lockless and group wise. The following scenario describes what happens 118 * without updating the sequence counter: 119 * 120 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well 121 * as GRP0:1 will not change during the scenario): 122 * 123 * LVL 1 [GRP1:0] 124 * migrator = GRP0:1 125 * active = GRP0:0, GRP0:1 126 * / \ 127 * LVL 0 [GRP0:0] [GRP0:1] 128 * migrator = CPU0 migrator = CPU2 129 * active = CPU0 active = CPU2 130 * / \ / \ 131 * CPUs 0 1 2 3 132 * active idle active idle 133 * 134 * 135 * 1. CPU0 goes idle. As the update is performed group wise, in the first step 136 * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to 137 * walk the hierarchy. 138 * 139 * LVL 1 [GRP1:0] 140 * migrator = GRP0:1 141 * active = GRP0:0, GRP0:1 142 * / \ 143 * LVL 0 [GRP0:0] [GRP0:1] 144 * --> migrator = TMIGR_NONE migrator = CPU2 145 * --> active = active = CPU2 146 * / \ / \ 147 * CPUs 0 1 2 3 148 * --> idle idle active idle 149 * 150 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of 151 * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also 152 * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the 153 * hierarchy to perform the needed update from their point of view. The 154 * currently visible state looks the following: 155 * 156 * LVL 1 [GRP1:0] 157 * migrator = GRP0:1 158 * active = GRP0:0, GRP0:1 159 * / \ 160 * LVL 0 [GRP0:0] [GRP0:1] 161 * --> migrator = CPU1 migrator = CPU2 162 * --> active = CPU1 active = CPU2 163 * / \ / \ 164 * CPUs 0 1 2 3 165 * idle --> active active idle 166 * 167 * 3. Here is the race condition: CPU1 managed to propagate its changes (from 168 * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The 169 * active members of GRP1:0 remain unchanged after the update since it is 170 * still valid from CPU1 current point of view: 171 * 172 * LVL 1 [GRP1:0] 173 * --> migrator = GRP0:1 174 * --> active = GRP0:0, GRP0:1 175 * / \ 176 * LVL 0 [GRP0:0] [GRP0:1] 177 * migrator = CPU1 migrator = CPU2 178 * active = CPU1 active = CPU2 179 * / \ / \ 180 * CPUs 0 1 2 3 181 * idle active active idle 182 * 183 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0. 184 * 185 * LVL 1 [GRP1:0] 186 * --> migrator = GRP0:1 187 * --> active = GRP0:1 188 * / \ 189 * LVL 0 [GRP0:0] [GRP0:1] 190 * migrator = CPU1 migrator = CPU2 191 * active = CPU1 active = CPU2 192 * / \ / \ 193 * CPUs 0 1 2 3 194 * idle active active idle 195 * 196 * 197 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is 198 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not 199 * have GRP0:0 listed as active, which is wrong. The sequence counter has been 200 * added to avoid inconsistent states during updates. The state is updated 201 * atomically only if all members, including the sequence counter, match the 202 * expected value (compare-and-exchange). 203 * 204 * Looking back at the previous example with the addition of the sequence 205 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed 206 * the sequence number during the update in step 3 so the expected old value (as 207 * seen by CPU0 before starting the walk) does not match. 208 * 209 * Prevent race between new event and last CPU going inactive 210 * ---------------------------------------------------------- 211 * 212 * When the last CPU is going idle and there is a concurrent update of a new 213 * first global timer of an idle CPU, the group and child states have to be read 214 * while holding the lock in tmigr_update_events(). The following scenario shows 215 * what happens, when this is not done. 216 * 217 * 1. Only CPU2 is active: 218 * 219 * LVL 1 [GRP1:0] 220 * migrator = GRP0:1 221 * active = GRP0:1 222 * next_expiry = KTIME_MAX 223 * / \ 224 * LVL 0 [GRP0:0] [GRP0:1] 225 * migrator = TMIGR_NONE migrator = CPU2 226 * active = active = CPU2 227 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 228 * / \ / \ 229 * CPUs 0 1 2 3 230 * idle idle active idle 231 * 232 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and 233 * propagates that to GRP0:1: 234 * 235 * LVL 1 [GRP1:0] 236 * migrator = GRP0:1 237 * active = GRP0:1 238 * next_expiry = KTIME_MAX 239 * / \ 240 * LVL 0 [GRP0:0] [GRP0:1] 241 * migrator = TMIGR_NONE --> migrator = TMIGR_NONE 242 * active = --> active = 243 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 244 * / \ / \ 245 * CPUs 0 1 2 3 246 * idle idle --> idle idle 247 * 248 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last 249 * child going idle in top level group, the expiry of the next group event 250 * has to be handed back to make sure no event is lost. As there is no event 251 * enqueued, KTIME_MAX is handed back to CPU2. 252 * 253 * LVL 1 [GRP1:0] 254 * --> migrator = TMIGR_NONE 255 * --> active = 256 * next_expiry = KTIME_MAX 257 * / \ 258 * LVL 0 [GRP0:0] [GRP0:1] 259 * migrator = TMIGR_NONE migrator = TMIGR_NONE 260 * active = active = 261 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 262 * / \ / \ 263 * CPUs 0 1 2 3 264 * idle idle --> idle idle 265 * 266 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0 267 * propagates that to GRP0:0: 268 * 269 * LVL 1 [GRP1:0] 270 * migrator = TMIGR_NONE 271 * active = 272 * next_expiry = KTIME_MAX 273 * / \ 274 * LVL 0 [GRP0:0] [GRP0:1] 275 * migrator = TMIGR_NONE migrator = TMIGR_NONE 276 * active = active = 277 * --> next_expiry = TIMER0 next_expiry = KTIME_MAX 278 * / \ / \ 279 * CPUs 0 1 2 3 280 * idle idle idle idle 281 * 282 * 5. GRP0:0 is not active, so the new timer has to be propagated to 283 * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value 284 * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is 285 * handed back to CPU0, as it seems that there is still an active child in 286 * top level group. 287 * 288 * LVL 1 [GRP1:0] 289 * migrator = TMIGR_NONE 290 * active = 291 * --> next_expiry = TIMER0 292 * / \ 293 * LVL 0 [GRP0:0] [GRP0:1] 294 * migrator = TMIGR_NONE migrator = TMIGR_NONE 295 * active = active = 296 * next_expiry = TIMER0 next_expiry = KTIME_MAX 297 * / \ / \ 298 * CPUs 0 1 2 3 299 * idle idle idle idle 300 * 301 * This is prevented by reading the state when holding the lock (when a new 302 * timer has to be propagated from idle path):: 303 * 304 * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up()) 305 * -------------------------- --------------------------- 306 * // step 3: 307 * cmpxchg(&GRP1:0->state); 308 * tmigr_update_events() { 309 * spin_lock(&GRP1:0->lock); 310 * // ... update events ... 311 * // hand back first expiry when GRP1:0 is idle 312 * spin_unlock(&GRP1:0->lock); 313 * // ^^^ release state modification 314 * } 315 * tmigr_update_events() { 316 * spin_lock(&GRP1:0->lock) 317 * // ^^^ acquire state modification 318 * group_state = atomic_read(&GRP1:0->state) 319 * // .... update events ... 320 * // hand back first expiry when GRP1:0 is idle 321 * spin_unlock(&GRP1:0->lock) <3> 322 * // ^^^ makes state visible for other 323 * // callers of tmigr_new_timer_up() 324 * } 325 * 326 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported 327 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent 328 * update of the group state from active path is no problem, as the upcoming CPU 329 * will take care of the group events. 330 * 331 * Required event and timerqueue update after a remote expiry: 332 * ----------------------------------------------------------- 333 * 334 * After expiring timers of a remote CPU, a walk through the hierarchy and 335 * update of events and timerqueues is required. It is obviously needed if there 336 * is a 'new' global timer but also if there is no new global timer but the 337 * remote CPU is still idle. 338 * 339 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same 340 * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is 341 * also idle and has no global timer pending. CPU2 is the only active CPU and 342 * thus also the migrator: 343 * 344 * LVL 1 [GRP1:0] 345 * migrator = GRP0:1 346 * active = GRP0:1 347 * --> timerqueue = evt-GRP0:0 348 * / \ 349 * LVL 0 [GRP0:0] [GRP0:1] 350 * migrator = TMIGR_NONE migrator = CPU2 351 * active = active = CPU2 352 * groupevt.ignore = false groupevt.ignore = true 353 * groupevt.cpu = CPU0 groupevt.cpu = 354 * timerqueue = evt-CPU0, timerqueue = 355 * evt-CPU1 356 * / \ / \ 357 * CPUs 0 1 2 3 358 * idle idle active idle 359 * 360 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group 361 * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with 362 * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It 363 * looks at tmigr_event::cpu struct member and expires the pending timer(s) 364 * of CPU0. 365 * 366 * LVL 1 [GRP1:0] 367 * migrator = GRP0:1 368 * active = GRP0:1 369 * --> timerqueue = 370 * / \ 371 * LVL 0 [GRP0:0] [GRP0:1] 372 * migrator = TMIGR_NONE migrator = CPU2 373 * active = active = CPU2 374 * groupevt.ignore = false groupevt.ignore = true 375 * --> groupevt.cpu = CPU0 groupevt.cpu = 376 * timerqueue = evt-CPU0, timerqueue = 377 * evt-CPU1 378 * / \ / \ 379 * CPUs 0 1 2 3 380 * idle idle active idle 381 * 382 * 3. Some work has to be done after expiring the timers of CPU0. If we stop 383 * here, then CPU1's pending global timer(s) will not expire in time and the 384 * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just 385 * been processed. So it is required to walk the hierarchy from CPU0's point 386 * of view and update it accordingly. CPU0's event will be removed from the 387 * timerqueue because it has no pending timer. If CPU0 would have a timer 388 * pending then it has to expire after CPU1's first timer because all timers 389 * from this period were just expired. Either way CPU1's event will be first 390 * in GRP0:0's timerqueue and therefore set in the CPU field of the group 391 * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not 392 * active: 393 * 394 * LVL 1 [GRP1:0] 395 * migrator = GRP0:1 396 * active = GRP0:1 397 * --> timerqueue = evt-GRP0:0 398 * / \ 399 * LVL 0 [GRP0:0] [GRP0:1] 400 * migrator = TMIGR_NONE migrator = CPU2 401 * active = active = CPU2 402 * groupevt.ignore = false groupevt.ignore = true 403 * --> groupevt.cpu = CPU1 groupevt.cpu = 404 * --> timerqueue = evt-CPU1 timerqueue = 405 * / \ / \ 406 * CPUs 0 1 2 3 407 * idle idle active idle 408 * 409 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the 410 * timer(s) of CPU1. 411 * 412 * The hierarchy walk in step 3 can be skipped if the migrator notices that a 413 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care 414 * of the group as migrator and any needed updates within the hierarchy. 415 */ 416 417 static DEFINE_MUTEX(tmigr_mutex); 418 static struct list_head *tmigr_level_list __read_mostly; 419 420 static unsigned int tmigr_hierarchy_levels __read_mostly; 421 static unsigned int tmigr_crossnode_level __read_mostly; 422 423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu); 424 425 #define TMIGR_NONE 0xFF 426 #define BIT_CNT 8 427 428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc) 429 { 430 return !(tmc->tmgroup && tmc->online); 431 } 432 433 /* 434 * Returns true, when @childmask corresponds to the group migrator or when the 435 * group is not active - so no migrator is set. 436 */ 437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask) 438 { 439 union tmigr_state s; 440 441 s.state = atomic_read(&group->migr_state); 442 443 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 444 return true; 445 446 return false; 447 } 448 449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask) 450 { 451 bool lonely, migrator = false; 452 unsigned long active; 453 union tmigr_state s; 454 455 s.state = atomic_read(&group->migr_state); 456 457 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 458 migrator = true; 459 460 active = s.active; 461 lonely = bitmap_weight(&active, BIT_CNT) <= 1; 462 463 return (migrator && lonely); 464 } 465 466 static bool tmigr_check_lonely(struct tmigr_group *group) 467 { 468 unsigned long active; 469 union tmigr_state s; 470 471 s.state = atomic_read(&group->migr_state); 472 473 active = s.active; 474 475 return bitmap_weight(&active, BIT_CNT) <= 1; 476 } 477 478 /** 479 * struct tmigr_walk - data required for walking the hierarchy 480 * @nextexp: Next CPU event expiry information which is handed into 481 * the timer migration code by the timer code 482 * (get_next_timer_interrupt()) 483 * @firstexp: Contains the first event expiry information when 484 * hierarchy is completely idle. When CPU itself was the 485 * last going idle, information makes sure, that CPU will 486 * be back in time. When using this value in the remote 487 * expiry case, firstexp is stored in the per CPU tmigr_cpu 488 * struct of CPU which expires remote timers. It is updated 489 * in top level group only. Be aware, there could occur a 490 * new top level of the hierarchy between the 'top level 491 * call' in tmigr_update_events() and the check for the 492 * parent group in walk_groups(). Then @firstexp might 493 * contain a value != KTIME_MAX even if it was not the 494 * final top level. This is not a problem, as the worst 495 * outcome is a CPU which might wake up a little early. 496 * @evt: Pointer to tmigr_event which needs to be queued (of idle 497 * child group) 498 * @childmask: groupmask of child group 499 * @remote: Is set, when the new timer path is executed in 500 * tmigr_handle_remote_cpu() 501 * @basej: timer base in jiffies 502 * @now: timer base monotonic 503 * @check: is set if there is the need to handle remote timers; 504 * required in tmigr_requires_handle_remote() only 505 * @tmc_active: this flag indicates, whether the CPU which triggers 506 * the hierarchy walk is !idle in the timer migration 507 * hierarchy. When the CPU is idle and the whole hierarchy is 508 * idle, only the first event of the top level has to be 509 * considered. 510 */ 511 struct tmigr_walk { 512 u64 nextexp; 513 u64 firstexp; 514 struct tmigr_event *evt; 515 u8 childmask; 516 bool remote; 517 unsigned long basej; 518 u64 now; 519 bool check; 520 bool tmc_active; 521 }; 522 523 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, struct tmigr_walk *); 524 525 static void __walk_groups(up_f up, struct tmigr_walk *data, 526 struct tmigr_cpu *tmc) 527 { 528 struct tmigr_group *child = NULL, *group = tmc->tmgroup; 529 530 do { 531 WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels); 532 533 if (up(group, child, data)) 534 break; 535 536 child = group; 537 group = group->parent; 538 data->childmask = child->groupmask; 539 } while (group); 540 } 541 542 static void walk_groups(up_f up, struct tmigr_walk *data, struct tmigr_cpu *tmc) 543 { 544 lockdep_assert_held(&tmc->lock); 545 546 __walk_groups(up, data, tmc); 547 } 548 549 /* 550 * Returns the next event of the timerqueue @group->events 551 * 552 * Removes timers with ignore flag and update next_expiry of the group. Values 553 * of the group event are updated in tmigr_update_events() only. 554 */ 555 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group) 556 { 557 struct timerqueue_node *node = NULL; 558 struct tmigr_event *evt = NULL; 559 560 lockdep_assert_held(&group->lock); 561 562 WRITE_ONCE(group->next_expiry, KTIME_MAX); 563 564 while ((node = timerqueue_getnext(&group->events))) { 565 evt = container_of(node, struct tmigr_event, nextevt); 566 567 if (!evt->ignore) { 568 WRITE_ONCE(group->next_expiry, evt->nextevt.expires); 569 return evt; 570 } 571 572 /* 573 * Remove next timers with ignore flag, because the group lock 574 * is held anyway 575 */ 576 if (!timerqueue_del(&group->events, node)) 577 break; 578 } 579 580 return NULL; 581 } 582 583 /* 584 * Return the next event (with the expiry equal or before @now) 585 * 586 * Event, which is returned, is also removed from the queue. 587 */ 588 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group, 589 u64 now) 590 { 591 struct tmigr_event *evt = tmigr_next_groupevt(group); 592 593 if (!evt || now < evt->nextevt.expires) 594 return NULL; 595 596 /* 597 * The event is ready to expire. Remove it and update next group event. 598 */ 599 timerqueue_del(&group->events, &evt->nextevt); 600 tmigr_next_groupevt(group); 601 602 return evt; 603 } 604 605 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group) 606 { 607 struct tmigr_event *evt; 608 609 evt = tmigr_next_groupevt(group); 610 611 if (!evt) 612 return KTIME_MAX; 613 else 614 return evt->nextevt.expires; 615 } 616 617 static bool tmigr_active_up(struct tmigr_group *group, 618 struct tmigr_group *child, 619 struct tmigr_walk *data) 620 { 621 union tmigr_state curstate, newstate; 622 bool walk_done; 623 u8 childmask; 624 625 childmask = data->childmask; 626 /* 627 * No memory barrier is required here in contrast to 628 * tmigr_inactive_up(), as the group state change does not depend on the 629 * child state. 630 */ 631 curstate.state = atomic_read(&group->migr_state); 632 633 do { 634 newstate = curstate; 635 walk_done = true; 636 637 if (newstate.migrator == TMIGR_NONE) { 638 newstate.migrator = childmask; 639 640 /* Changes need to be propagated */ 641 walk_done = false; 642 } 643 644 newstate.active |= childmask; 645 newstate.seq++; 646 647 } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)); 648 649 trace_tmigr_group_set_cpu_active(group, newstate, childmask); 650 651 /* 652 * The group is active (again). The group event might be still queued 653 * into the parent group's timerqueue but can now be handled by the 654 * migrator of this group. Therefore the ignore flag for the group event 655 * is updated to reflect this. 656 * 657 * The update of the ignore flag in the active path is done lockless. In 658 * worst case the migrator of the parent group observes the change too 659 * late and expires remotely all events belonging to this group. The 660 * lock is held while updating the ignore flag in idle path. So this 661 * state change will not be lost. 662 */ 663 group->groupevt.ignore = true; 664 665 return walk_done; 666 } 667 668 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc) 669 { 670 struct tmigr_walk data; 671 672 data.childmask = tmc->groupmask; 673 674 trace_tmigr_cpu_active(tmc); 675 676 tmc->cpuevt.ignore = true; 677 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 678 679 walk_groups(&tmigr_active_up, &data, tmc); 680 } 681 682 /** 683 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy 684 * 685 * Call site timer_clear_idle() is called with interrupts disabled. 686 */ 687 void tmigr_cpu_activate(void) 688 { 689 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 690 691 if (tmigr_is_not_available(tmc)) 692 return; 693 694 if (WARN_ON_ONCE(!tmc->idle)) 695 return; 696 697 raw_spin_lock(&tmc->lock); 698 tmc->idle = false; 699 __tmigr_cpu_activate(tmc); 700 raw_spin_unlock(&tmc->lock); 701 } 702 703 /* 704 * Returns true, if there is nothing to be propagated to the next level 705 * 706 * @data->firstexp is set to expiry of first gobal event of the (top level of 707 * the) hierarchy, but only when hierarchy is completely idle. 708 * 709 * The child and group states need to be read under the lock, to prevent a race 710 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See 711 * also section "Prevent race between new event and last CPU going inactive" in 712 * the documentation at the top. 713 * 714 * This is the only place where the group event expiry value is set. 715 */ 716 static 717 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child, 718 struct tmigr_walk *data) 719 { 720 struct tmigr_event *evt, *first_childevt; 721 union tmigr_state childstate, groupstate; 722 bool remote = data->remote; 723 bool walk_done = false; 724 u64 nextexp; 725 726 if (child) { 727 raw_spin_lock(&child->lock); 728 raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING); 729 730 childstate.state = atomic_read(&child->migr_state); 731 groupstate.state = atomic_read(&group->migr_state); 732 733 if (childstate.active) { 734 walk_done = true; 735 goto unlock; 736 } 737 738 first_childevt = tmigr_next_groupevt(child); 739 nextexp = child->next_expiry; 740 evt = &child->groupevt; 741 742 evt->ignore = (nextexp == KTIME_MAX) ? true : false; 743 } else { 744 nextexp = data->nextexp; 745 746 first_childevt = evt = data->evt; 747 748 /* 749 * Walking the hierarchy is required in any case when a 750 * remote expiry was done before. This ensures to not lose 751 * already queued events in non active groups (see section 752 * "Required event and timerqueue update after a remote 753 * expiry" in the documentation at the top). 754 * 755 * The two call sites which are executed without a remote expiry 756 * before, are not prevented from propagating changes through 757 * the hierarchy by the return: 758 * - When entering this path by tmigr_new_timer(), @evt->ignore 759 * is never set. 760 * - tmigr_inactive_up() takes care of the propagation by 761 * itself and ignores the return value. But an immediate 762 * return is possible if there is a parent, sparing group 763 * locking at this level, because the upper walking call to 764 * the parent will take care about removing this event from 765 * within the group and update next_expiry accordingly. 766 * 767 * However if there is no parent, ie: the hierarchy has only a 768 * single level so @group is the top level group, make sure the 769 * first event information of the group is updated properly and 770 * also handled properly, so skip this fast return path. 771 */ 772 if (evt->ignore && !remote && group->parent) 773 return true; 774 775 raw_spin_lock(&group->lock); 776 777 childstate.state = 0; 778 groupstate.state = atomic_read(&group->migr_state); 779 } 780 781 /* 782 * If the child event is already queued in the group, remove it from the 783 * queue when the expiry time changed only or when it could be ignored. 784 */ 785 if (timerqueue_node_queued(&evt->nextevt)) { 786 if ((evt->nextevt.expires == nextexp) && !evt->ignore) { 787 /* Make sure not to miss a new CPU event with the same expiry */ 788 evt->cpu = first_childevt->cpu; 789 goto check_toplvl; 790 } 791 792 if (!timerqueue_del(&group->events, &evt->nextevt)) 793 WRITE_ONCE(group->next_expiry, KTIME_MAX); 794 } 795 796 if (evt->ignore) { 797 /* 798 * When the next child event could be ignored (nextexp is 799 * KTIME_MAX) and there was no remote timer handling before or 800 * the group is already active, there is no need to walk the 801 * hierarchy even if there is a parent group. 802 * 803 * The other way round: even if the event could be ignored, but 804 * if a remote timer handling was executed before and the group 805 * is not active, walking the hierarchy is required to not miss 806 * an enqueued timer in the non active group. The enqueued timer 807 * of the group needs to be propagated to a higher level to 808 * ensure it is handled. 809 */ 810 if (!remote || groupstate.active) 811 walk_done = true; 812 } else { 813 evt->nextevt.expires = nextexp; 814 evt->cpu = first_childevt->cpu; 815 816 if (timerqueue_add(&group->events, &evt->nextevt)) 817 WRITE_ONCE(group->next_expiry, nextexp); 818 } 819 820 check_toplvl: 821 if (!group->parent && (groupstate.migrator == TMIGR_NONE)) { 822 walk_done = true; 823 824 /* 825 * Nothing to do when update was done during remote timer 826 * handling. First timer in top level group which needs to be 827 * handled when top level group is not active, is calculated 828 * directly in tmigr_handle_remote_up(). 829 */ 830 if (remote) 831 goto unlock; 832 833 /* 834 * The top level group is idle and it has to be ensured the 835 * global timers are handled in time. (This could be optimized 836 * by keeping track of the last global scheduled event and only 837 * arming it on the CPU if the new event is earlier. Not sure if 838 * its worth the complexity.) 839 */ 840 data->firstexp = tmigr_next_groupevt_expires(group); 841 } 842 843 trace_tmigr_update_events(child, group, childstate, groupstate, 844 nextexp); 845 846 unlock: 847 raw_spin_unlock(&group->lock); 848 849 if (child) 850 raw_spin_unlock(&child->lock); 851 852 return walk_done; 853 } 854 855 static bool tmigr_new_timer_up(struct tmigr_group *group, 856 struct tmigr_group *child, 857 struct tmigr_walk *data) 858 { 859 return tmigr_update_events(group, child, data); 860 } 861 862 /* 863 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is 864 * returned, if an active CPU will handle all the timer migration hierarchy 865 * timers. 866 */ 867 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp) 868 { 869 struct tmigr_walk data = { .nextexp = nextexp, 870 .firstexp = KTIME_MAX, 871 .evt = &tmc->cpuevt }; 872 873 lockdep_assert_held(&tmc->lock); 874 875 if (tmc->remote) 876 return KTIME_MAX; 877 878 trace_tmigr_cpu_new_timer(tmc); 879 880 tmc->cpuevt.ignore = false; 881 data.remote = false; 882 883 walk_groups(&tmigr_new_timer_up, &data, tmc); 884 885 /* If there is a new first global event, make sure it is handled */ 886 return data.firstexp; 887 } 888 889 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now, 890 unsigned long jif) 891 { 892 struct timer_events tevt; 893 struct tmigr_walk data; 894 struct tmigr_cpu *tmc; 895 896 tmc = per_cpu_ptr(&tmigr_cpu, cpu); 897 898 raw_spin_lock_irq(&tmc->lock); 899 900 /* 901 * If the remote CPU is offline then the timers have been migrated to 902 * another CPU. 903 * 904 * If tmigr_cpu::remote is set, at the moment another CPU already 905 * expires the timers of the remote CPU. 906 * 907 * If tmigr_event::ignore is set, then the CPU returns from idle and 908 * takes care of its timers. 909 * 910 * If the next event expires in the future, then the event has been 911 * updated and there are no timers to expire right now. The CPU which 912 * updated the event takes care when hierarchy is completely 913 * idle. Otherwise the migrator does it as the event is enqueued. 914 */ 915 if (!tmc->online || tmc->remote || tmc->cpuevt.ignore || 916 now < tmc->cpuevt.nextevt.expires) { 917 raw_spin_unlock_irq(&tmc->lock); 918 return; 919 } 920 921 trace_tmigr_handle_remote_cpu(tmc); 922 923 tmc->remote = true; 924 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 925 926 /* Drop the lock to allow the remote CPU to exit idle */ 927 raw_spin_unlock_irq(&tmc->lock); 928 929 if (cpu != smp_processor_id()) 930 timer_expire_remote(cpu); 931 932 /* 933 * Lock ordering needs to be preserved - timer_base locks before tmigr 934 * related locks (see section "Locking rules" in the documentation at 935 * the top). During fetching the next timer interrupt, also tmc->lock 936 * needs to be held. Otherwise there is a possible race window against 937 * the CPU itself when it comes out of idle, updates the first timer in 938 * the hierarchy and goes back to idle. 939 * 940 * timer base locks are dropped as fast as possible: After checking 941 * whether the remote CPU went offline in the meantime and after 942 * fetching the next remote timer interrupt. Dropping the locks as fast 943 * as possible keeps the locking region small and prevents holding 944 * several (unnecessary) locks during walking the hierarchy for updating 945 * the timerqueue and group events. 946 */ 947 local_irq_disable(); 948 timer_lock_remote_bases(cpu); 949 raw_spin_lock(&tmc->lock); 950 951 /* 952 * When the CPU went offline in the meantime, no hierarchy walk has to 953 * be done for updating the queued events, because the walk was 954 * already done during marking the CPU offline in the hierarchy. 955 * 956 * When the CPU is no longer idle, the CPU takes care of the timers and 957 * also of the timers in the hierarchy. 958 * 959 * (See also section "Required event and timerqueue update after a 960 * remote expiry" in the documentation at the top) 961 */ 962 if (!tmc->online || !tmc->idle) { 963 timer_unlock_remote_bases(cpu); 964 goto unlock; 965 } 966 967 /* next event of CPU */ 968 fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu); 969 timer_unlock_remote_bases(cpu); 970 971 data.nextexp = tevt.global; 972 data.firstexp = KTIME_MAX; 973 data.evt = &tmc->cpuevt; 974 data.remote = true; 975 976 /* 977 * The update is done even when there is no 'new' global timer pending 978 * on the remote CPU (see section "Required event and timerqueue update 979 * after a remote expiry" in the documentation at the top) 980 */ 981 walk_groups(&tmigr_new_timer_up, &data, tmc); 982 983 unlock: 984 tmc->remote = false; 985 raw_spin_unlock_irq(&tmc->lock); 986 } 987 988 static bool tmigr_handle_remote_up(struct tmigr_group *group, 989 struct tmigr_group *child, 990 struct tmigr_walk *data) 991 { 992 struct tmigr_event *evt; 993 unsigned long jif; 994 u8 childmask; 995 u64 now; 996 997 jif = data->basej; 998 now = data->now; 999 1000 childmask = data->childmask; 1001 1002 trace_tmigr_handle_remote(group); 1003 again: 1004 /* 1005 * Handle the group only if @childmask is the migrator or if the 1006 * group has no migrator. Otherwise the group is active and is 1007 * handled by its own migrator. 1008 */ 1009 if (!tmigr_check_migrator(group, childmask)) 1010 return true; 1011 1012 raw_spin_lock_irq(&group->lock); 1013 1014 evt = tmigr_next_expired_groupevt(group, now); 1015 1016 if (evt) { 1017 unsigned int remote_cpu = evt->cpu; 1018 1019 raw_spin_unlock_irq(&group->lock); 1020 1021 tmigr_handle_remote_cpu(remote_cpu, now, jif); 1022 1023 /* check if there is another event, that needs to be handled */ 1024 goto again; 1025 } 1026 1027 /* 1028 * Keep track of the expiry of the first event that needs to be handled 1029 * (group->next_expiry was updated by tmigr_next_expired_groupevt(), 1030 * next was set by tmigr_handle_remote_cpu()). 1031 */ 1032 data->firstexp = group->next_expiry; 1033 1034 raw_spin_unlock_irq(&group->lock); 1035 1036 return false; 1037 } 1038 1039 /** 1040 * tmigr_handle_remote() - Handle global timers of remote idle CPUs 1041 * 1042 * Called from the timer soft interrupt with interrupts enabled. 1043 */ 1044 void tmigr_handle_remote(void) 1045 { 1046 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1047 struct tmigr_walk data; 1048 1049 if (tmigr_is_not_available(tmc)) 1050 return; 1051 1052 data.childmask = tmc->groupmask; 1053 data.firstexp = KTIME_MAX; 1054 1055 /* 1056 * NOTE: This is a doubled check because the migrator test will be done 1057 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the 1058 * return when nothing has to be done. 1059 */ 1060 if (!tmigr_check_migrator(tmc->tmgroup, tmc->groupmask)) { 1061 /* 1062 * If this CPU was an idle migrator, make sure to clear its wakeup 1063 * value so it won't chase timers that have already expired elsewhere. 1064 * This avoids endless requeue from tmigr_new_timer(). 1065 */ 1066 if (READ_ONCE(tmc->wakeup) == KTIME_MAX) 1067 return; 1068 } 1069 1070 data.now = get_jiffies_update(&data.basej); 1071 1072 /* 1073 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to 1074 * KTIME_MAX. Even if tmc->lock is not held during the whole remote 1075 * handling, tmc->wakeup is fine to be stale as it is called in 1076 * interrupt context and tick_nohz_next_event() is executed in interrupt 1077 * exit path only after processing the last pending interrupt. 1078 */ 1079 1080 __walk_groups(&tmigr_handle_remote_up, &data, tmc); 1081 1082 raw_spin_lock_irq(&tmc->lock); 1083 WRITE_ONCE(tmc->wakeup, data.firstexp); 1084 raw_spin_unlock_irq(&tmc->lock); 1085 } 1086 1087 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group, 1088 struct tmigr_group *child, 1089 struct tmigr_walk *data) 1090 { 1091 u8 childmask; 1092 1093 childmask = data->childmask; 1094 1095 /* 1096 * Handle the group only if the child is the migrator or if the group 1097 * has no migrator. Otherwise the group is active and is handled by its 1098 * own migrator. 1099 */ 1100 if (!tmigr_check_migrator(group, childmask)) 1101 return true; 1102 1103 /* 1104 * When there is a parent group and the CPU which triggered the 1105 * hierarchy walk is not active, proceed the walk to reach the top level 1106 * group before reading the next_expiry value. 1107 */ 1108 if (group->parent && !data->tmc_active) 1109 return false; 1110 1111 /* 1112 * The lock is required on 32bit architectures to read the variable 1113 * consistently with a concurrent writer. On 64bit the lock is not 1114 * required because the read operation is not split and so it is always 1115 * consistent. 1116 */ 1117 if (IS_ENABLED(CONFIG_64BIT)) { 1118 data->firstexp = READ_ONCE(group->next_expiry); 1119 if (data->now >= data->firstexp) { 1120 data->check = true; 1121 return true; 1122 } 1123 } else { 1124 raw_spin_lock(&group->lock); 1125 data->firstexp = group->next_expiry; 1126 if (data->now >= group->next_expiry) { 1127 data->check = true; 1128 raw_spin_unlock(&group->lock); 1129 return true; 1130 } 1131 raw_spin_unlock(&group->lock); 1132 } 1133 1134 return false; 1135 } 1136 1137 /** 1138 * tmigr_requires_handle_remote() - Check the need of remote timer handling 1139 * 1140 * Must be called with interrupts disabled. 1141 */ 1142 bool tmigr_requires_handle_remote(void) 1143 { 1144 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1145 struct tmigr_walk data; 1146 unsigned long jif; 1147 bool ret = false; 1148 1149 if (tmigr_is_not_available(tmc)) 1150 return ret; 1151 1152 data.now = get_jiffies_update(&jif); 1153 data.childmask = tmc->groupmask; 1154 data.firstexp = KTIME_MAX; 1155 data.tmc_active = !tmc->idle; 1156 data.check = false; 1157 1158 /* 1159 * If the CPU is active, walk the hierarchy to check whether a remote 1160 * expiry is required. 1161 * 1162 * Check is done lockless as interrupts are disabled and @tmc->idle is 1163 * set only by the local CPU. 1164 */ 1165 if (!tmc->idle) { 1166 __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc); 1167 1168 return data.check; 1169 } 1170 1171 /* 1172 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock 1173 * is required on 32bit architectures to read the variable consistently 1174 * with a concurrent writer. On 64bit the lock is not required because 1175 * the read operation is not split and so it is always consistent. 1176 */ 1177 if (IS_ENABLED(CONFIG_64BIT)) { 1178 if (data.now >= READ_ONCE(tmc->wakeup)) 1179 return true; 1180 } else { 1181 raw_spin_lock(&tmc->lock); 1182 if (data.now >= tmc->wakeup) 1183 ret = true; 1184 raw_spin_unlock(&tmc->lock); 1185 } 1186 1187 return ret; 1188 } 1189 1190 /** 1191 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc) 1192 * @nextexp: Next expiry of global timer (or KTIME_MAX if not) 1193 * 1194 * The CPU is already deactivated in the timer migration 1195 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event() 1196 * and thereby the timer idle path is executed once more. @tmc->wakeup 1197 * holds the first timer, when the timer migration hierarchy is 1198 * completely idle. 1199 * 1200 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if 1201 * nothing needs to be done. 1202 */ 1203 u64 tmigr_cpu_new_timer(u64 nextexp) 1204 { 1205 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1206 u64 ret; 1207 1208 if (tmigr_is_not_available(tmc)) 1209 return nextexp; 1210 1211 raw_spin_lock(&tmc->lock); 1212 1213 ret = READ_ONCE(tmc->wakeup); 1214 if (nextexp != KTIME_MAX) { 1215 if (nextexp != tmc->cpuevt.nextevt.expires || 1216 tmc->cpuevt.ignore) { 1217 ret = tmigr_new_timer(tmc, nextexp); 1218 /* 1219 * Make sure the reevaluation of timers in idle path 1220 * will not miss an event. 1221 */ 1222 WRITE_ONCE(tmc->wakeup, ret); 1223 } 1224 } 1225 trace_tmigr_cpu_new_timer_idle(tmc, nextexp); 1226 raw_spin_unlock(&tmc->lock); 1227 return ret; 1228 } 1229 1230 static bool tmigr_inactive_up(struct tmigr_group *group, 1231 struct tmigr_group *child, 1232 struct tmigr_walk *data) 1233 { 1234 union tmigr_state curstate, newstate, childstate; 1235 bool walk_done; 1236 u8 childmask; 1237 1238 childmask = data->childmask; 1239 childstate.state = 0; 1240 1241 /* 1242 * The memory barrier is paired with the cmpxchg() in tmigr_active_up() 1243 * to make sure the updates of child and group states are ordered. The 1244 * ordering is mandatory, as the group state change depends on the child 1245 * state. 1246 */ 1247 curstate.state = atomic_read_acquire(&group->migr_state); 1248 1249 for (;;) { 1250 if (child) 1251 childstate.state = atomic_read(&child->migr_state); 1252 1253 newstate = curstate; 1254 walk_done = true; 1255 1256 /* Reset active bit when the child is no longer active */ 1257 if (!childstate.active) 1258 newstate.active &= ~childmask; 1259 1260 if (newstate.migrator == childmask) { 1261 /* 1262 * Find a new migrator for the group, because the child 1263 * group is idle! 1264 */ 1265 if (!childstate.active) { 1266 unsigned long new_migr_bit, active = newstate.active; 1267 1268 new_migr_bit = find_first_bit(&active, BIT_CNT); 1269 1270 if (new_migr_bit != BIT_CNT) { 1271 newstate.migrator = BIT(new_migr_bit); 1272 } else { 1273 newstate.migrator = TMIGR_NONE; 1274 1275 /* Changes need to be propagated */ 1276 walk_done = false; 1277 } 1278 } 1279 } 1280 1281 newstate.seq++; 1282 1283 WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active)); 1284 1285 if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)) { 1286 trace_tmigr_group_set_cpu_inactive(group, newstate, childmask); 1287 break; 1288 } 1289 1290 /* 1291 * The memory barrier is paired with the cmpxchg() in 1292 * tmigr_active_up() to make sure the updates of child and group 1293 * states are ordered. It is required only when the above 1294 * try_cmpxchg() fails. 1295 */ 1296 smp_mb__after_atomic(); 1297 } 1298 1299 data->remote = false; 1300 1301 /* Event Handling */ 1302 tmigr_update_events(group, child, data); 1303 1304 return walk_done; 1305 } 1306 1307 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp) 1308 { 1309 struct tmigr_walk data = { .nextexp = nextexp, 1310 .firstexp = KTIME_MAX, 1311 .evt = &tmc->cpuevt, 1312 .childmask = tmc->groupmask }; 1313 1314 /* 1315 * If nextexp is KTIME_MAX, the CPU event will be ignored because the 1316 * local timer expires before the global timer, no global timer is set 1317 * or CPU goes offline. 1318 */ 1319 if (nextexp != KTIME_MAX) 1320 tmc->cpuevt.ignore = false; 1321 1322 walk_groups(&tmigr_inactive_up, &data, tmc); 1323 return data.firstexp; 1324 } 1325 1326 /** 1327 * tmigr_cpu_deactivate() - Put current CPU into inactive state 1328 * @nextexp: The next global timer expiry of the current CPU 1329 * 1330 * Must be called with interrupts disabled. 1331 * 1332 * Return: the next event expiry of the current CPU or the next event expiry 1333 * from the hierarchy if this CPU is the top level migrator or the hierarchy is 1334 * completely idle. 1335 */ 1336 u64 tmigr_cpu_deactivate(u64 nextexp) 1337 { 1338 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1339 u64 ret; 1340 1341 if (tmigr_is_not_available(tmc)) 1342 return nextexp; 1343 1344 raw_spin_lock(&tmc->lock); 1345 1346 ret = __tmigr_cpu_deactivate(tmc, nextexp); 1347 1348 tmc->idle = true; 1349 1350 /* 1351 * Make sure the reevaluation of timers in idle path will not miss an 1352 * event. 1353 */ 1354 WRITE_ONCE(tmc->wakeup, ret); 1355 1356 trace_tmigr_cpu_idle(tmc, nextexp); 1357 raw_spin_unlock(&tmc->lock); 1358 return ret; 1359 } 1360 1361 /** 1362 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to 1363 * go idle 1364 * @nextevt: The next global timer expiry of the current CPU 1365 * 1366 * Return: 1367 * * KTIME_MAX - when it is probable that nothing has to be done (not 1368 * the only one in the level 0 group; and if it is the 1369 * only one in level 0 group, but there are more than a 1370 * single group active on the way to top level) 1371 * * nextevt - when CPU is offline and has to handle timer on its own 1372 * or when on the way to top in every group only a single 1373 * child is active but @nextevt is before the lowest 1374 * next_expiry encountered while walking up to top level. 1375 * * next_expiry - value of lowest expiry encountered while walking groups 1376 * if only a single child is active on each and @nextevt 1377 * is after this lowest expiry. 1378 */ 1379 u64 tmigr_quick_check(u64 nextevt) 1380 { 1381 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1382 struct tmigr_group *group = tmc->tmgroup; 1383 1384 if (tmigr_is_not_available(tmc)) 1385 return nextevt; 1386 1387 if (WARN_ON_ONCE(tmc->idle)) 1388 return nextevt; 1389 1390 if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->groupmask)) 1391 return KTIME_MAX; 1392 1393 do { 1394 if (!tmigr_check_lonely(group)) { 1395 return KTIME_MAX; 1396 } else { 1397 /* 1398 * Since current CPU is active, events may not be sorted 1399 * from bottom to the top because the CPU's event is ignored 1400 * up to the top and its sibling's events not propagated upwards. 1401 * Thus keep track of the lowest observed expiry. 1402 */ 1403 nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry)); 1404 if (!group->parent) 1405 return nextevt; 1406 } 1407 group = group->parent; 1408 } while (group); 1409 1410 return KTIME_MAX; 1411 } 1412 1413 /* 1414 * tmigr_trigger_active() - trigger a CPU to become active again 1415 * 1416 * This function is executed on a CPU which is part of cpu_online_mask, when the 1417 * last active CPU in the hierarchy is offlining. With this, it is ensured that 1418 * the other CPU is active and takes over the migrator duty. 1419 */ 1420 static long tmigr_trigger_active(void *unused) 1421 { 1422 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1423 1424 WARN_ON_ONCE(!tmc->online || tmc->idle); 1425 1426 return 0; 1427 } 1428 1429 static int tmigr_cpu_offline(unsigned int cpu) 1430 { 1431 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1432 int migrator; 1433 u64 firstexp; 1434 1435 raw_spin_lock_irq(&tmc->lock); 1436 tmc->online = false; 1437 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1438 1439 /* 1440 * CPU has to handle the local events on his own, when on the way to 1441 * offline; Therefore nextevt value is set to KTIME_MAX 1442 */ 1443 firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX); 1444 trace_tmigr_cpu_offline(tmc); 1445 raw_spin_unlock_irq(&tmc->lock); 1446 1447 if (firstexp != KTIME_MAX) { 1448 migrator = cpumask_any_but(cpu_online_mask, cpu); 1449 work_on_cpu(migrator, tmigr_trigger_active, NULL); 1450 } 1451 1452 return 0; 1453 } 1454 1455 static int tmigr_cpu_online(unsigned int cpu) 1456 { 1457 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1458 1459 /* Check whether CPU data was successfully initialized */ 1460 if (WARN_ON_ONCE(!tmc->tmgroup)) 1461 return -EINVAL; 1462 1463 raw_spin_lock_irq(&tmc->lock); 1464 trace_tmigr_cpu_online(tmc); 1465 tmc->idle = timer_base_is_idle(); 1466 if (!tmc->idle) 1467 __tmigr_cpu_activate(tmc); 1468 tmc->online = true; 1469 raw_spin_unlock_irq(&tmc->lock); 1470 return 0; 1471 } 1472 1473 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl, 1474 int node) 1475 { 1476 union tmigr_state s; 1477 1478 raw_spin_lock_init(&group->lock); 1479 1480 group->level = lvl; 1481 group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE; 1482 1483 group->num_children = 0; 1484 1485 s.migrator = TMIGR_NONE; 1486 s.active = 0; 1487 s.seq = 0; 1488 atomic_set(&group->migr_state, s.state); 1489 1490 timerqueue_init_head(&group->events); 1491 timerqueue_init(&group->groupevt.nextevt); 1492 group->groupevt.nextevt.expires = KTIME_MAX; 1493 WRITE_ONCE(group->next_expiry, KTIME_MAX); 1494 group->groupevt.ignore = true; 1495 } 1496 1497 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node, 1498 unsigned int lvl) 1499 { 1500 struct tmigr_group *tmp, *group = NULL; 1501 1502 lockdep_assert_held(&tmigr_mutex); 1503 1504 /* Try to attach to an existing group first */ 1505 list_for_each_entry(tmp, &tmigr_level_list[lvl], list) { 1506 /* 1507 * If @lvl is below the cross NUMA node level, check whether 1508 * this group belongs to the same NUMA node. 1509 */ 1510 if (lvl < tmigr_crossnode_level && tmp->numa_node != node) 1511 continue; 1512 1513 /* Capacity left? */ 1514 if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP) 1515 continue; 1516 1517 /* 1518 * TODO: A possible further improvement: Make sure that all CPU 1519 * siblings end up in the same group of the lowest level of the 1520 * hierarchy. Rely on the topology sibling mask would be a 1521 * reasonable solution. 1522 */ 1523 1524 group = tmp; 1525 break; 1526 } 1527 1528 if (group) 1529 return group; 1530 1531 /* Allocate and set up a new group */ 1532 group = kzalloc_node(sizeof(*group), GFP_KERNEL, node); 1533 if (!group) 1534 return ERR_PTR(-ENOMEM); 1535 1536 tmigr_init_group(group, lvl, node); 1537 1538 /* Setup successful. Add it to the hierarchy */ 1539 list_add(&group->list, &tmigr_level_list[lvl]); 1540 trace_tmigr_group_set(group); 1541 return group; 1542 } 1543 1544 static void tmigr_connect_child_parent(struct tmigr_group *child, 1545 struct tmigr_group *parent, 1546 bool activate) 1547 { 1548 struct tmigr_walk data; 1549 1550 raw_spin_lock_irq(&child->lock); 1551 raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING); 1552 1553 child->parent = parent; 1554 child->groupmask = BIT(parent->num_children++); 1555 1556 raw_spin_unlock(&parent->lock); 1557 raw_spin_unlock_irq(&child->lock); 1558 1559 trace_tmigr_connect_child_parent(child); 1560 1561 if (!activate) 1562 return; 1563 1564 /* 1565 * To prevent inconsistent states, active children need to be active in 1566 * the new parent as well. Inactive children are already marked inactive 1567 * in the parent group: 1568 * 1569 * * When new groups were created by tmigr_setup_groups() starting from 1570 * the lowest level (and not higher then one level below the current 1571 * top level), then they are not active. They will be set active when 1572 * the new online CPU comes active. 1573 * 1574 * * But if a new group above the current top level is required, it is 1575 * mandatory to propagate the active state of the already existing 1576 * child to the new parent. So tmigr_connect_child_parent() is 1577 * executed with the formerly top level group (child) and the newly 1578 * created group (parent). 1579 * 1580 * * It is ensured that the child is active, as this setup path is 1581 * executed in hotplug prepare callback. This is exectued by an 1582 * already connected and !idle CPU. Even if all other CPUs go idle, 1583 * the CPU executing the setup will be responsible up to current top 1584 * level group. And the next time it goes inactive, it will release 1585 * the new childmask and parent to subsequent walkers through this 1586 * @child. Therefore propagate active state unconditionally. 1587 */ 1588 data.childmask = child->groupmask; 1589 1590 /* 1591 * There is only one new level per time (which is protected by 1592 * tmigr_mutex). When connecting the child and the parent and set the 1593 * child active when the parent is inactive, the parent needs to be the 1594 * uppermost level. Otherwise there went something wrong! 1595 */ 1596 WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent); 1597 } 1598 1599 static int tmigr_setup_groups(unsigned int cpu, unsigned int node) 1600 { 1601 struct tmigr_group *group, *child, **stack; 1602 int top = 0, err = 0, i = 0; 1603 struct list_head *lvllist; 1604 1605 stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL); 1606 if (!stack) 1607 return -ENOMEM; 1608 1609 do { 1610 group = tmigr_get_group(cpu, node, i); 1611 if (IS_ERR(group)) { 1612 err = PTR_ERR(group); 1613 break; 1614 } 1615 1616 top = i; 1617 stack[i++] = group; 1618 1619 /* 1620 * When booting only less CPUs of a system than CPUs are 1621 * available, not all calculated hierarchy levels are required. 1622 * 1623 * The loop is aborted as soon as the highest level, which might 1624 * be different from tmigr_hierarchy_levels, contains only a 1625 * single group. 1626 */ 1627 if (group->parent || i == tmigr_hierarchy_levels || 1628 (list_empty(&tmigr_level_list[i]) && 1629 list_is_singular(&tmigr_level_list[i - 1]))) 1630 break; 1631 1632 } while (i < tmigr_hierarchy_levels); 1633 1634 while (i > 0) { 1635 group = stack[--i]; 1636 1637 if (err < 0) { 1638 list_del(&group->list); 1639 kfree(group); 1640 continue; 1641 } 1642 1643 WARN_ON_ONCE(i != group->level); 1644 1645 /* 1646 * Update tmc -> group / child -> group connection 1647 */ 1648 if (i == 0) { 1649 struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu); 1650 1651 raw_spin_lock_irq(&group->lock); 1652 1653 tmc->tmgroup = group; 1654 tmc->groupmask = BIT(group->num_children++); 1655 1656 raw_spin_unlock_irq(&group->lock); 1657 1658 trace_tmigr_connect_cpu_parent(tmc); 1659 1660 /* There are no children that need to be connected */ 1661 continue; 1662 } else { 1663 child = stack[i - 1]; 1664 /* Will be activated at online time */ 1665 tmigr_connect_child_parent(child, group, false); 1666 } 1667 1668 /* check if uppermost level was newly created */ 1669 if (top != i) 1670 continue; 1671 1672 WARN_ON_ONCE(top == 0); 1673 1674 lvllist = &tmigr_level_list[top]; 1675 if (group->num_children == 1 && list_is_singular(lvllist)) { 1676 /* 1677 * The target CPU must never do the prepare work, except 1678 * on early boot when the boot CPU is the target. Otherwise 1679 * it may spuriously activate the old top level group inside 1680 * the new one (nevertheless whether old top level group is 1681 * active or not) and/or release an uninitialized childmask. 1682 */ 1683 WARN_ON_ONCE(cpu == raw_smp_processor_id()); 1684 1685 lvllist = &tmigr_level_list[top - 1]; 1686 list_for_each_entry(child, lvllist, list) { 1687 if (child->parent) 1688 continue; 1689 1690 tmigr_connect_child_parent(child, group, true); 1691 } 1692 } 1693 } 1694 1695 kfree(stack); 1696 1697 return err; 1698 } 1699 1700 static int tmigr_add_cpu(unsigned int cpu) 1701 { 1702 int node = cpu_to_node(cpu); 1703 int ret; 1704 1705 mutex_lock(&tmigr_mutex); 1706 ret = tmigr_setup_groups(cpu, node); 1707 mutex_unlock(&tmigr_mutex); 1708 1709 return ret; 1710 } 1711 1712 static int tmigr_cpu_prepare(unsigned int cpu) 1713 { 1714 struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu); 1715 int ret = 0; 1716 1717 /* Not first online attempt? */ 1718 if (tmc->tmgroup) 1719 return ret; 1720 1721 raw_spin_lock_init(&tmc->lock); 1722 timerqueue_init(&tmc->cpuevt.nextevt); 1723 tmc->cpuevt.nextevt.expires = KTIME_MAX; 1724 tmc->cpuevt.ignore = true; 1725 tmc->cpuevt.cpu = cpu; 1726 tmc->remote = false; 1727 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1728 1729 ret = tmigr_add_cpu(cpu); 1730 if (ret < 0) 1731 return ret; 1732 1733 if (tmc->groupmask == 0) 1734 return -EINVAL; 1735 1736 return ret; 1737 } 1738 1739 static int __init tmigr_init(void) 1740 { 1741 unsigned int cpulvl, nodelvl, cpus_per_node, i; 1742 unsigned int nnodes = num_possible_nodes(); 1743 unsigned int ncpus = num_possible_cpus(); 1744 int ret = -ENOMEM; 1745 1746 BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP); 1747 1748 /* Nothing to do if running on UP */ 1749 if (ncpus == 1) 1750 return 0; 1751 1752 /* 1753 * Calculate the required hierarchy levels. Unfortunately there is no 1754 * reliable information available, unless all possible CPUs have been 1755 * brought up and all NUMA nodes are populated. 1756 * 1757 * Estimate the number of levels with the number of possible nodes and 1758 * the number of possible CPUs. Assume CPUs are spread evenly across 1759 * nodes. We cannot rely on cpumask_of_node() because it only works for 1760 * online CPUs. 1761 */ 1762 cpus_per_node = DIV_ROUND_UP(ncpus, nnodes); 1763 1764 /* Calc the hierarchy levels required to hold the CPUs of a node */ 1765 cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node), 1766 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1767 1768 /* Calculate the extra levels to connect all nodes */ 1769 nodelvl = DIV_ROUND_UP(order_base_2(nnodes), 1770 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1771 1772 tmigr_hierarchy_levels = cpulvl + nodelvl; 1773 1774 /* 1775 * If a NUMA node spawns more than one CPU level group then the next 1776 * level(s) of the hierarchy contains groups which handle all CPU groups 1777 * of the same NUMA node. The level above goes across NUMA nodes. Store 1778 * this information for the setup code to decide in which level node 1779 * matching is no longer required. 1780 */ 1781 tmigr_crossnode_level = cpulvl; 1782 1783 tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL); 1784 if (!tmigr_level_list) 1785 goto err; 1786 1787 for (i = 0; i < tmigr_hierarchy_levels; i++) 1788 INIT_LIST_HEAD(&tmigr_level_list[i]); 1789 1790 pr_info("Timer migration: %d hierarchy levels; %d children per group;" 1791 " %d crossnode level\n", 1792 tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP, 1793 tmigr_crossnode_level); 1794 1795 ret = cpuhp_setup_state(CPUHP_TMIGR_PREPARE, "tmigr:prepare", 1796 tmigr_cpu_prepare, NULL); 1797 if (ret) 1798 goto err; 1799 1800 ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online", 1801 tmigr_cpu_online, tmigr_cpu_offline); 1802 if (ret) 1803 goto err; 1804 1805 return 0; 1806 1807 err: 1808 pr_err("Timer migration setup failed\n"); 1809 return ret; 1810 } 1811 early_initcall(tmigr_init); 1812