1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Infrastructure for migratable timers 4 * 5 * Copyright(C) 2022 linutronix GmbH 6 */ 7 #include <linux/cpuhotplug.h> 8 #include <linux/slab.h> 9 #include <linux/smp.h> 10 #include <linux/spinlock.h> 11 #include <linux/timerqueue.h> 12 #include <trace/events/ipi.h> 13 14 #include "timer_migration.h" 15 #include "tick-internal.h" 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/timer_migration.h> 19 20 /* 21 * The timer migration mechanism is built on a hierarchy of groups. The 22 * lowest level group contains CPUs, the next level groups of CPU groups 23 * and so forth. The CPU groups are kept per node so for the normal case 24 * lock contention won't happen across nodes. Depending on the number of 25 * CPUs per node even the next level might be kept as groups of CPU groups 26 * per node and only the levels above cross the node topology. 27 * 28 * Example topology for a two node system with 24 CPUs each. 29 * 30 * LVL 2 [GRP2:0] 31 * GRP1:0 = GRP1:M 32 * 33 * LVL 1 [GRP1:0] [GRP1:1] 34 * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5 35 * 36 * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5] 37 * CPUS 0-7 8-15 16-23 24-31 32-39 40-47 38 * 39 * The groups hold a timer queue of events sorted by expiry time. These 40 * queues are updated when CPUs go in idle. When they come out of idle 41 * ignore flag of events is set. 42 * 43 * Each group has a designated migrator CPU/group as long as a CPU/group is 44 * active in the group. This designated role is necessary to avoid that all 45 * active CPUs in a group try to migrate expired timers from other CPUs, 46 * which would result in massive lock bouncing. 47 * 48 * When a CPU is awake, it checks in it's own timer tick the group 49 * hierarchy up to the point where it is assigned the migrator role or if 50 * no CPU is active, it also checks the groups where no migrator is set 51 * (TMIGR_NONE). 52 * 53 * If it finds expired timers in one of the group queues it pulls them over 54 * from the idle CPU and runs the timer function. After that it updates the 55 * group and the parent groups if required. 56 * 57 * CPUs which go idle arm their CPU local timer hardware for the next local 58 * (pinned) timer event. If the next migratable timer expires after the 59 * next local timer or the CPU has no migratable timer pending then the 60 * CPU does not queue an event in the LVL0 group. If the next migratable 61 * timer expires before the next local timer then the CPU queues that timer 62 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0 63 * group. 64 * 65 * When CPU comes out of idle and when a group has at least a single active 66 * child, the ignore flag of the tmigr_event is set. This indicates, that 67 * the event is ignored even if it is still enqueued in the parent groups 68 * timer queue. It will be removed when touching the timer queue the next 69 * time. This spares locking in active path as the lock protects (after 70 * setup) only event information. For more information about locking, 71 * please read the section "Locking rules". 72 * 73 * If the CPU is the migrator of the group then it delegates that role to 74 * the next active CPU in the group or sets migrator to TMIGR_NONE when 75 * there is no active CPU in the group. This delegation needs to be 76 * propagated up the hierarchy so hand over from other leaves can happen at 77 * all hierarchy levels w/o doing a search. 78 * 79 * When the last CPU in the system goes idle, then it drops all migrator 80 * duties up to the top level of the hierarchy (LVL2 in the example). It 81 * then has to make sure, that it arms it's own local hardware timer for 82 * the earliest event in the system. 83 * 84 * 85 * Lifetime rules: 86 * --------------- 87 * 88 * The groups are built up at init time or when CPUs come online. They are 89 * not destroyed when a group becomes empty due to offlining. The group 90 * just won't participate in the hierarchy management anymore. Destroying 91 * groups would result in interesting race conditions which would just make 92 * the whole mechanism slow and complex. 93 * 94 * 95 * Locking rules: 96 * -------------- 97 * 98 * For setting up new groups and handling events it's required to lock both 99 * child and parent group. The lock ordering is always bottom up. This also 100 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and 101 * active CPU/group information atomic_try_cmpxchg() is used instead and only 102 * the per CPU tmigr_cpu->lock is held. 103 * 104 * During the setup of groups tmigr_level_list is required. It is protected by 105 * @tmigr_mutex. 106 * 107 * When @timer_base->lock as well as tmigr related locks are required, the lock 108 * ordering is: first @timer_base->lock, afterwards tmigr related locks. 109 * 110 * 111 * Protection of the tmigr group state information: 112 * ------------------------------------------------ 113 * 114 * The state information with the list of active children and migrator needs to 115 * be protected by a sequence counter. It prevents a race when updates in child 116 * groups are propagated in changed order. The state update is performed 117 * lockless and group wise. The following scenario describes what happens 118 * without updating the sequence counter: 119 * 120 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well 121 * as GRP0:1 will not change during the scenario): 122 * 123 * LVL 1 [GRP1:0] 124 * migrator = GRP0:1 125 * active = GRP0:0, GRP0:1 126 * / \ 127 * LVL 0 [GRP0:0] [GRP0:1] 128 * migrator = CPU0 migrator = CPU2 129 * active = CPU0 active = CPU2 130 * / \ / \ 131 * CPUs 0 1 2 3 132 * active idle active idle 133 * 134 * 135 * 1. CPU0 goes idle. As the update is performed group wise, in the first step 136 * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to 137 * walk the hierarchy. 138 * 139 * LVL 1 [GRP1:0] 140 * migrator = GRP0:1 141 * active = GRP0:0, GRP0:1 142 * / \ 143 * LVL 0 [GRP0:0] [GRP0:1] 144 * --> migrator = TMIGR_NONE migrator = CPU2 145 * --> active = active = CPU2 146 * / \ / \ 147 * CPUs 0 1 2 3 148 * --> idle idle active idle 149 * 150 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of 151 * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also 152 * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the 153 * hierarchy to perform the needed update from their point of view. The 154 * currently visible state looks the following: 155 * 156 * LVL 1 [GRP1:0] 157 * migrator = GRP0:1 158 * active = GRP0:0, GRP0:1 159 * / \ 160 * LVL 0 [GRP0:0] [GRP0:1] 161 * --> migrator = CPU1 migrator = CPU2 162 * --> active = CPU1 active = CPU2 163 * / \ / \ 164 * CPUs 0 1 2 3 165 * idle --> active active idle 166 * 167 * 3. Here is the race condition: CPU1 managed to propagate its changes (from 168 * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The 169 * active members of GRP1:0 remain unchanged after the update since it is 170 * still valid from CPU1 current point of view: 171 * 172 * LVL 1 [GRP1:0] 173 * --> migrator = GRP0:1 174 * --> active = GRP0:0, GRP0:1 175 * / \ 176 * LVL 0 [GRP0:0] [GRP0:1] 177 * migrator = CPU1 migrator = CPU2 178 * active = CPU1 active = CPU2 179 * / \ / \ 180 * CPUs 0 1 2 3 181 * idle active active idle 182 * 183 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0. 184 * 185 * LVL 1 [GRP1:0] 186 * --> migrator = GRP0:1 187 * --> active = GRP0:1 188 * / \ 189 * LVL 0 [GRP0:0] [GRP0:1] 190 * migrator = CPU1 migrator = CPU2 191 * active = CPU1 active = CPU2 192 * / \ / \ 193 * CPUs 0 1 2 3 194 * idle active active idle 195 * 196 * 197 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is 198 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not 199 * have GRP0:0 listed as active, which is wrong. The sequence counter has been 200 * added to avoid inconsistent states during updates. The state is updated 201 * atomically only if all members, including the sequence counter, match the 202 * expected value (compare-and-exchange). 203 * 204 * Looking back at the previous example with the addition of the sequence 205 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed 206 * the sequence number during the update in step 3 so the expected old value (as 207 * seen by CPU0 before starting the walk) does not match. 208 * 209 * Prevent race between new event and last CPU going inactive 210 * ---------------------------------------------------------- 211 * 212 * When the last CPU is going idle and there is a concurrent update of a new 213 * first global timer of an idle CPU, the group and child states have to be read 214 * while holding the lock in tmigr_update_events(). The following scenario shows 215 * what happens, when this is not done. 216 * 217 * 1. Only CPU2 is active: 218 * 219 * LVL 1 [GRP1:0] 220 * migrator = GRP0:1 221 * active = GRP0:1 222 * next_expiry = KTIME_MAX 223 * / \ 224 * LVL 0 [GRP0:0] [GRP0:1] 225 * migrator = TMIGR_NONE migrator = CPU2 226 * active = active = CPU2 227 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 228 * / \ / \ 229 * CPUs 0 1 2 3 230 * idle idle active idle 231 * 232 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and 233 * propagates that to GRP0:1: 234 * 235 * LVL 1 [GRP1:0] 236 * migrator = GRP0:1 237 * active = GRP0:1 238 * next_expiry = KTIME_MAX 239 * / \ 240 * LVL 0 [GRP0:0] [GRP0:1] 241 * migrator = TMIGR_NONE --> migrator = TMIGR_NONE 242 * active = --> active = 243 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 244 * / \ / \ 245 * CPUs 0 1 2 3 246 * idle idle --> idle idle 247 * 248 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last 249 * child going idle in top level group, the expiry of the next group event 250 * has to be handed back to make sure no event is lost. As there is no event 251 * enqueued, KTIME_MAX is handed back to CPU2. 252 * 253 * LVL 1 [GRP1:0] 254 * --> migrator = TMIGR_NONE 255 * --> active = 256 * next_expiry = KTIME_MAX 257 * / \ 258 * LVL 0 [GRP0:0] [GRP0:1] 259 * migrator = TMIGR_NONE migrator = TMIGR_NONE 260 * active = active = 261 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 262 * / \ / \ 263 * CPUs 0 1 2 3 264 * idle idle --> idle idle 265 * 266 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0 267 * propagates that to GRP0:0: 268 * 269 * LVL 1 [GRP1:0] 270 * migrator = TMIGR_NONE 271 * active = 272 * next_expiry = KTIME_MAX 273 * / \ 274 * LVL 0 [GRP0:0] [GRP0:1] 275 * migrator = TMIGR_NONE migrator = TMIGR_NONE 276 * active = active = 277 * --> next_expiry = TIMER0 next_expiry = KTIME_MAX 278 * / \ / \ 279 * CPUs 0 1 2 3 280 * idle idle idle idle 281 * 282 * 5. GRP0:0 is not active, so the new timer has to be propagated to 283 * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value 284 * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is 285 * handed back to CPU0, as it seems that there is still an active child in 286 * top level group. 287 * 288 * LVL 1 [GRP1:0] 289 * migrator = TMIGR_NONE 290 * active = 291 * --> next_expiry = TIMER0 292 * / \ 293 * LVL 0 [GRP0:0] [GRP0:1] 294 * migrator = TMIGR_NONE migrator = TMIGR_NONE 295 * active = active = 296 * next_expiry = TIMER0 next_expiry = KTIME_MAX 297 * / \ / \ 298 * CPUs 0 1 2 3 299 * idle idle idle idle 300 * 301 * This is prevented by reading the state when holding the lock (when a new 302 * timer has to be propagated from idle path):: 303 * 304 * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up()) 305 * -------------------------- --------------------------- 306 * // step 3: 307 * cmpxchg(&GRP1:0->state); 308 * tmigr_update_events() { 309 * spin_lock(&GRP1:0->lock); 310 * // ... update events ... 311 * // hand back first expiry when GRP1:0 is idle 312 * spin_unlock(&GRP1:0->lock); 313 * // ^^^ release state modification 314 * } 315 * tmigr_update_events() { 316 * spin_lock(&GRP1:0->lock) 317 * // ^^^ acquire state modification 318 * group_state = atomic_read(&GRP1:0->state) 319 * // .... update events ... 320 * // hand back first expiry when GRP1:0 is idle 321 * spin_unlock(&GRP1:0->lock) <3> 322 * // ^^^ makes state visible for other 323 * // callers of tmigr_new_timer_up() 324 * } 325 * 326 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported 327 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent 328 * update of the group state from active path is no problem, as the upcoming CPU 329 * will take care of the group events. 330 * 331 * Required event and timerqueue update after a remote expiry: 332 * ----------------------------------------------------------- 333 * 334 * After expiring timers of a remote CPU, a walk through the hierarchy and 335 * update of events and timerqueues is required. It is obviously needed if there 336 * is a 'new' global timer but also if there is no new global timer but the 337 * remote CPU is still idle. 338 * 339 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same 340 * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is 341 * also idle and has no global timer pending. CPU2 is the only active CPU and 342 * thus also the migrator: 343 * 344 * LVL 1 [GRP1:0] 345 * migrator = GRP0:1 346 * active = GRP0:1 347 * --> timerqueue = evt-GRP0:0 348 * / \ 349 * LVL 0 [GRP0:0] [GRP0:1] 350 * migrator = TMIGR_NONE migrator = CPU2 351 * active = active = CPU2 352 * groupevt.ignore = false groupevt.ignore = true 353 * groupevt.cpu = CPU0 groupevt.cpu = 354 * timerqueue = evt-CPU0, timerqueue = 355 * evt-CPU1 356 * / \ / \ 357 * CPUs 0 1 2 3 358 * idle idle active idle 359 * 360 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group 361 * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with 362 * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It 363 * looks at tmigr_event::cpu struct member and expires the pending timer(s) 364 * of CPU0. 365 * 366 * LVL 1 [GRP1:0] 367 * migrator = GRP0:1 368 * active = GRP0:1 369 * --> timerqueue = 370 * / \ 371 * LVL 0 [GRP0:0] [GRP0:1] 372 * migrator = TMIGR_NONE migrator = CPU2 373 * active = active = CPU2 374 * groupevt.ignore = false groupevt.ignore = true 375 * --> groupevt.cpu = CPU0 groupevt.cpu = 376 * timerqueue = evt-CPU0, timerqueue = 377 * evt-CPU1 378 * / \ / \ 379 * CPUs 0 1 2 3 380 * idle idle active idle 381 * 382 * 3. Some work has to be done after expiring the timers of CPU0. If we stop 383 * here, then CPU1's pending global timer(s) will not expire in time and the 384 * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just 385 * been processed. So it is required to walk the hierarchy from CPU0's point 386 * of view and update it accordingly. CPU0's event will be removed from the 387 * timerqueue because it has no pending timer. If CPU0 would have a timer 388 * pending then it has to expire after CPU1's first timer because all timers 389 * from this period were just expired. Either way CPU1's event will be first 390 * in GRP0:0's timerqueue and therefore set in the CPU field of the group 391 * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not 392 * active: 393 * 394 * LVL 1 [GRP1:0] 395 * migrator = GRP0:1 396 * active = GRP0:1 397 * --> timerqueue = evt-GRP0:0 398 * / \ 399 * LVL 0 [GRP0:0] [GRP0:1] 400 * migrator = TMIGR_NONE migrator = CPU2 401 * active = active = CPU2 402 * groupevt.ignore = false groupevt.ignore = true 403 * --> groupevt.cpu = CPU1 groupevt.cpu = 404 * --> timerqueue = evt-CPU1 timerqueue = 405 * / \ / \ 406 * CPUs 0 1 2 3 407 * idle idle active idle 408 * 409 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the 410 * timer(s) of CPU1. 411 * 412 * The hierarchy walk in step 3 can be skipped if the migrator notices that a 413 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care 414 * of the group as migrator and any needed updates within the hierarchy. 415 */ 416 417 static DEFINE_MUTEX(tmigr_mutex); 418 static struct list_head *tmigr_level_list __read_mostly; 419 420 static unsigned int tmigr_hierarchy_levels __read_mostly; 421 static unsigned int tmigr_crossnode_level __read_mostly; 422 423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu); 424 425 #define TMIGR_NONE 0xFF 426 #define BIT_CNT 8 427 428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc) 429 { 430 return !(tmc->tmgroup && tmc->online); 431 } 432 433 /* 434 * Returns true, when @childmask corresponds to the group migrator or when the 435 * group is not active - so no migrator is set. 436 */ 437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask) 438 { 439 union tmigr_state s; 440 441 s.state = atomic_read(&group->migr_state); 442 443 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 444 return true; 445 446 return false; 447 } 448 449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask) 450 { 451 bool lonely, migrator = false; 452 unsigned long active; 453 union tmigr_state s; 454 455 s.state = atomic_read(&group->migr_state); 456 457 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 458 migrator = true; 459 460 active = s.active; 461 lonely = bitmap_weight(&active, BIT_CNT) <= 1; 462 463 return (migrator && lonely); 464 } 465 466 static bool tmigr_check_lonely(struct tmigr_group *group) 467 { 468 unsigned long active; 469 union tmigr_state s; 470 471 s.state = atomic_read(&group->migr_state); 472 473 active = s.active; 474 475 return bitmap_weight(&active, BIT_CNT) <= 1; 476 } 477 478 /** 479 * struct tmigr_walk - data required for walking the hierarchy 480 * @nextexp: Next CPU event expiry information which is handed into 481 * the timer migration code by the timer code 482 * (get_next_timer_interrupt()) 483 * @firstexp: Contains the first event expiry information when 484 * hierarchy is completely idle. When CPU itself was the 485 * last going idle, information makes sure, that CPU will 486 * be back in time. When using this value in the remote 487 * expiry case, firstexp is stored in the per CPU tmigr_cpu 488 * struct of CPU which expires remote timers. It is updated 489 * in top level group only. Be aware, there could occur a 490 * new top level of the hierarchy between the 'top level 491 * call' in tmigr_update_events() and the check for the 492 * parent group in walk_groups(). Then @firstexp might 493 * contain a value != KTIME_MAX even if it was not the 494 * final top level. This is not a problem, as the worst 495 * outcome is a CPU which might wake up a little early. 496 * @evt: Pointer to tmigr_event which needs to be queued (of idle 497 * child group) 498 * @childmask: groupmask of child group 499 * @remote: Is set, when the new timer path is executed in 500 * tmigr_handle_remote_cpu() 501 * @basej: timer base in jiffies 502 * @now: timer base monotonic 503 * @check: is set if there is the need to handle remote timers; 504 * required in tmigr_requires_handle_remote() only 505 * @tmc_active: this flag indicates, whether the CPU which triggers 506 * the hierarchy walk is !idle in the timer migration 507 * hierarchy. When the CPU is idle and the whole hierarchy is 508 * idle, only the first event of the top level has to be 509 * considered. 510 */ 511 struct tmigr_walk { 512 u64 nextexp; 513 u64 firstexp; 514 struct tmigr_event *evt; 515 u8 childmask; 516 bool remote; 517 unsigned long basej; 518 u64 now; 519 bool check; 520 bool tmc_active; 521 }; 522 523 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, struct tmigr_walk *); 524 525 static void __walk_groups(up_f up, struct tmigr_walk *data, 526 struct tmigr_cpu *tmc) 527 { 528 struct tmigr_group *child = NULL, *group = tmc->tmgroup; 529 530 do { 531 WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels); 532 533 if (up(group, child, data)) 534 break; 535 536 child = group; 537 /* 538 * Pairs with the store release on group connection 539 * to make sure group initialization is visible. 540 */ 541 group = READ_ONCE(group->parent); 542 data->childmask = child->groupmask; 543 WARN_ON_ONCE(!data->childmask); 544 } while (group); 545 } 546 547 static void walk_groups(up_f up, struct tmigr_walk *data, struct tmigr_cpu *tmc) 548 { 549 lockdep_assert_held(&tmc->lock); 550 551 __walk_groups(up, data, tmc); 552 } 553 554 /* 555 * Returns the next event of the timerqueue @group->events 556 * 557 * Removes timers with ignore flag and update next_expiry of the group. Values 558 * of the group event are updated in tmigr_update_events() only. 559 */ 560 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group) 561 { 562 struct timerqueue_node *node = NULL; 563 struct tmigr_event *evt = NULL; 564 565 lockdep_assert_held(&group->lock); 566 567 WRITE_ONCE(group->next_expiry, KTIME_MAX); 568 569 while ((node = timerqueue_getnext(&group->events))) { 570 evt = container_of(node, struct tmigr_event, nextevt); 571 572 if (!READ_ONCE(evt->ignore)) { 573 WRITE_ONCE(group->next_expiry, evt->nextevt.expires); 574 return evt; 575 } 576 577 /* 578 * Remove next timers with ignore flag, because the group lock 579 * is held anyway 580 */ 581 if (!timerqueue_del(&group->events, node)) 582 break; 583 } 584 585 return NULL; 586 } 587 588 /* 589 * Return the next event (with the expiry equal or before @now) 590 * 591 * Event, which is returned, is also removed from the queue. 592 */ 593 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group, 594 u64 now) 595 { 596 struct tmigr_event *evt = tmigr_next_groupevt(group); 597 598 if (!evt || now < evt->nextevt.expires) 599 return NULL; 600 601 /* 602 * The event is ready to expire. Remove it and update next group event. 603 */ 604 timerqueue_del(&group->events, &evt->nextevt); 605 tmigr_next_groupevt(group); 606 607 return evt; 608 } 609 610 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group) 611 { 612 struct tmigr_event *evt; 613 614 evt = tmigr_next_groupevt(group); 615 616 if (!evt) 617 return KTIME_MAX; 618 else 619 return evt->nextevt.expires; 620 } 621 622 static bool tmigr_active_up(struct tmigr_group *group, 623 struct tmigr_group *child, 624 struct tmigr_walk *data) 625 { 626 union tmigr_state curstate, newstate; 627 bool walk_done; 628 u8 childmask; 629 630 childmask = data->childmask; 631 /* 632 * No memory barrier is required here in contrast to 633 * tmigr_inactive_up(), as the group state change does not depend on the 634 * child state. 635 */ 636 curstate.state = atomic_read(&group->migr_state); 637 638 do { 639 newstate = curstate; 640 walk_done = true; 641 642 if (newstate.migrator == TMIGR_NONE) { 643 newstate.migrator = childmask; 644 645 /* Changes need to be propagated */ 646 walk_done = false; 647 } 648 649 newstate.active |= childmask; 650 newstate.seq++; 651 652 } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)); 653 654 trace_tmigr_group_set_cpu_active(group, newstate, childmask); 655 656 /* 657 * The group is active (again). The group event might be still queued 658 * into the parent group's timerqueue but can now be handled by the 659 * migrator of this group. Therefore the ignore flag for the group event 660 * is updated to reflect this. 661 * 662 * The update of the ignore flag in the active path is done lockless. In 663 * worst case the migrator of the parent group observes the change too 664 * late and expires remotely all events belonging to this group. The 665 * lock is held while updating the ignore flag in idle path. So this 666 * state change will not be lost. 667 */ 668 WRITE_ONCE(group->groupevt.ignore, true); 669 670 return walk_done; 671 } 672 673 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc) 674 { 675 struct tmigr_walk data; 676 677 data.childmask = tmc->groupmask; 678 679 trace_tmigr_cpu_active(tmc); 680 681 tmc->cpuevt.ignore = true; 682 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 683 684 walk_groups(&tmigr_active_up, &data, tmc); 685 } 686 687 /** 688 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy 689 * 690 * Call site timer_clear_idle() is called with interrupts disabled. 691 */ 692 void tmigr_cpu_activate(void) 693 { 694 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 695 696 if (tmigr_is_not_available(tmc)) 697 return; 698 699 if (WARN_ON_ONCE(!tmc->idle)) 700 return; 701 702 raw_spin_lock(&tmc->lock); 703 tmc->idle = false; 704 __tmigr_cpu_activate(tmc); 705 raw_spin_unlock(&tmc->lock); 706 } 707 708 /* 709 * Returns true, if there is nothing to be propagated to the next level 710 * 711 * @data->firstexp is set to expiry of first gobal event of the (top level of 712 * the) hierarchy, but only when hierarchy is completely idle. 713 * 714 * The child and group states need to be read under the lock, to prevent a race 715 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See 716 * also section "Prevent race between new event and last CPU going inactive" in 717 * the documentation at the top. 718 * 719 * This is the only place where the group event expiry value is set. 720 */ 721 static 722 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child, 723 struct tmigr_walk *data) 724 { 725 struct tmigr_event *evt, *first_childevt; 726 union tmigr_state childstate, groupstate; 727 bool remote = data->remote; 728 bool walk_done = false; 729 bool ignore; 730 u64 nextexp; 731 732 if (child) { 733 raw_spin_lock(&child->lock); 734 raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING); 735 736 childstate.state = atomic_read(&child->migr_state); 737 groupstate.state = atomic_read(&group->migr_state); 738 739 if (childstate.active) { 740 walk_done = true; 741 goto unlock; 742 } 743 744 first_childevt = tmigr_next_groupevt(child); 745 nextexp = child->next_expiry; 746 evt = &child->groupevt; 747 748 /* 749 * This can race with concurrent idle exit (activate). 750 * If the current writer wins, a useless remote expiration may 751 * be scheduled. If the activate wins, the event is properly 752 * ignored. 753 */ 754 ignore = (nextexp == KTIME_MAX) ? true : false; 755 WRITE_ONCE(evt->ignore, ignore); 756 } else { 757 nextexp = data->nextexp; 758 759 first_childevt = evt = data->evt; 760 ignore = evt->ignore; 761 762 /* 763 * Walking the hierarchy is required in any case when a 764 * remote expiry was done before. This ensures to not lose 765 * already queued events in non active groups (see section 766 * "Required event and timerqueue update after a remote 767 * expiry" in the documentation at the top). 768 * 769 * The two call sites which are executed without a remote expiry 770 * before, are not prevented from propagating changes through 771 * the hierarchy by the return: 772 * - When entering this path by tmigr_new_timer(), @evt->ignore 773 * is never set. 774 * - tmigr_inactive_up() takes care of the propagation by 775 * itself and ignores the return value. But an immediate 776 * return is possible if there is a parent, sparing group 777 * locking at this level, because the upper walking call to 778 * the parent will take care about removing this event from 779 * within the group and update next_expiry accordingly. 780 * 781 * However if there is no parent, ie: the hierarchy has only a 782 * single level so @group is the top level group, make sure the 783 * first event information of the group is updated properly and 784 * also handled properly, so skip this fast return path. 785 */ 786 if (ignore && !remote && group->parent) 787 return true; 788 789 raw_spin_lock(&group->lock); 790 791 childstate.state = 0; 792 groupstate.state = atomic_read(&group->migr_state); 793 } 794 795 /* 796 * If the child event is already queued in the group, remove it from the 797 * queue when the expiry time changed only or when it could be ignored. 798 */ 799 if (timerqueue_node_queued(&evt->nextevt)) { 800 if ((evt->nextevt.expires == nextexp) && !ignore) { 801 /* Make sure not to miss a new CPU event with the same expiry */ 802 evt->cpu = first_childevt->cpu; 803 goto check_toplvl; 804 } 805 806 if (!timerqueue_del(&group->events, &evt->nextevt)) 807 WRITE_ONCE(group->next_expiry, KTIME_MAX); 808 } 809 810 if (ignore) { 811 /* 812 * When the next child event could be ignored (nextexp is 813 * KTIME_MAX) and there was no remote timer handling before or 814 * the group is already active, there is no need to walk the 815 * hierarchy even if there is a parent group. 816 * 817 * The other way round: even if the event could be ignored, but 818 * if a remote timer handling was executed before and the group 819 * is not active, walking the hierarchy is required to not miss 820 * an enqueued timer in the non active group. The enqueued timer 821 * of the group needs to be propagated to a higher level to 822 * ensure it is handled. 823 */ 824 if (!remote || groupstate.active) 825 walk_done = true; 826 } else { 827 evt->nextevt.expires = nextexp; 828 evt->cpu = first_childevt->cpu; 829 830 if (timerqueue_add(&group->events, &evt->nextevt)) 831 WRITE_ONCE(group->next_expiry, nextexp); 832 } 833 834 check_toplvl: 835 if (!group->parent && (groupstate.migrator == TMIGR_NONE)) { 836 walk_done = true; 837 838 /* 839 * Nothing to do when update was done during remote timer 840 * handling. First timer in top level group which needs to be 841 * handled when top level group is not active, is calculated 842 * directly in tmigr_handle_remote_up(). 843 */ 844 if (remote) 845 goto unlock; 846 847 /* 848 * The top level group is idle and it has to be ensured the 849 * global timers are handled in time. (This could be optimized 850 * by keeping track of the last global scheduled event and only 851 * arming it on the CPU if the new event is earlier. Not sure if 852 * its worth the complexity.) 853 */ 854 data->firstexp = tmigr_next_groupevt_expires(group); 855 } 856 857 trace_tmigr_update_events(child, group, childstate, groupstate, 858 nextexp); 859 860 unlock: 861 raw_spin_unlock(&group->lock); 862 863 if (child) 864 raw_spin_unlock(&child->lock); 865 866 return walk_done; 867 } 868 869 static bool tmigr_new_timer_up(struct tmigr_group *group, 870 struct tmigr_group *child, 871 struct tmigr_walk *data) 872 { 873 return tmigr_update_events(group, child, data); 874 } 875 876 /* 877 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is 878 * returned, if an active CPU will handle all the timer migration hierarchy 879 * timers. 880 */ 881 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp) 882 { 883 struct tmigr_walk data = { .nextexp = nextexp, 884 .firstexp = KTIME_MAX, 885 .evt = &tmc->cpuevt }; 886 887 lockdep_assert_held(&tmc->lock); 888 889 if (tmc->remote) 890 return KTIME_MAX; 891 892 trace_tmigr_cpu_new_timer(tmc); 893 894 tmc->cpuevt.ignore = false; 895 data.remote = false; 896 897 walk_groups(&tmigr_new_timer_up, &data, tmc); 898 899 /* If there is a new first global event, make sure it is handled */ 900 return data.firstexp; 901 } 902 903 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now, 904 unsigned long jif) 905 { 906 struct timer_events tevt; 907 struct tmigr_walk data; 908 struct tmigr_cpu *tmc; 909 910 tmc = per_cpu_ptr(&tmigr_cpu, cpu); 911 912 raw_spin_lock_irq(&tmc->lock); 913 914 /* 915 * If the remote CPU is offline then the timers have been migrated to 916 * another CPU. 917 * 918 * If tmigr_cpu::remote is set, at the moment another CPU already 919 * expires the timers of the remote CPU. 920 * 921 * If tmigr_event::ignore is set, then the CPU returns from idle and 922 * takes care of its timers. 923 * 924 * If the next event expires in the future, then the event has been 925 * updated and there are no timers to expire right now. The CPU which 926 * updated the event takes care when hierarchy is completely 927 * idle. Otherwise the migrator does it as the event is enqueued. 928 */ 929 if (!tmc->online || tmc->remote || tmc->cpuevt.ignore || 930 now < tmc->cpuevt.nextevt.expires) { 931 raw_spin_unlock_irq(&tmc->lock); 932 return; 933 } 934 935 trace_tmigr_handle_remote_cpu(tmc); 936 937 tmc->remote = true; 938 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 939 940 /* Drop the lock to allow the remote CPU to exit idle */ 941 raw_spin_unlock_irq(&tmc->lock); 942 943 if (cpu != smp_processor_id()) 944 timer_expire_remote(cpu); 945 946 /* 947 * Lock ordering needs to be preserved - timer_base locks before tmigr 948 * related locks (see section "Locking rules" in the documentation at 949 * the top). During fetching the next timer interrupt, also tmc->lock 950 * needs to be held. Otherwise there is a possible race window against 951 * the CPU itself when it comes out of idle, updates the first timer in 952 * the hierarchy and goes back to idle. 953 * 954 * timer base locks are dropped as fast as possible: After checking 955 * whether the remote CPU went offline in the meantime and after 956 * fetching the next remote timer interrupt. Dropping the locks as fast 957 * as possible keeps the locking region small and prevents holding 958 * several (unnecessary) locks during walking the hierarchy for updating 959 * the timerqueue and group events. 960 */ 961 local_irq_disable(); 962 timer_lock_remote_bases(cpu); 963 raw_spin_lock(&tmc->lock); 964 965 /* 966 * When the CPU went offline in the meantime, no hierarchy walk has to 967 * be done for updating the queued events, because the walk was 968 * already done during marking the CPU offline in the hierarchy. 969 * 970 * When the CPU is no longer idle, the CPU takes care of the timers and 971 * also of the timers in the hierarchy. 972 * 973 * (See also section "Required event and timerqueue update after a 974 * remote expiry" in the documentation at the top) 975 */ 976 if (!tmc->online || !tmc->idle) { 977 timer_unlock_remote_bases(cpu); 978 goto unlock; 979 } 980 981 /* next event of CPU */ 982 fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu); 983 timer_unlock_remote_bases(cpu); 984 985 data.nextexp = tevt.global; 986 data.firstexp = KTIME_MAX; 987 data.evt = &tmc->cpuevt; 988 data.remote = true; 989 990 /* 991 * The update is done even when there is no 'new' global timer pending 992 * on the remote CPU (see section "Required event and timerqueue update 993 * after a remote expiry" in the documentation at the top) 994 */ 995 walk_groups(&tmigr_new_timer_up, &data, tmc); 996 997 unlock: 998 tmc->remote = false; 999 raw_spin_unlock_irq(&tmc->lock); 1000 } 1001 1002 static bool tmigr_handle_remote_up(struct tmigr_group *group, 1003 struct tmigr_group *child, 1004 struct tmigr_walk *data) 1005 { 1006 struct tmigr_event *evt; 1007 unsigned long jif; 1008 u8 childmask; 1009 u64 now; 1010 1011 jif = data->basej; 1012 now = data->now; 1013 1014 childmask = data->childmask; 1015 1016 trace_tmigr_handle_remote(group); 1017 again: 1018 /* 1019 * Handle the group only if @childmask is the migrator or if the 1020 * group has no migrator. Otherwise the group is active and is 1021 * handled by its own migrator. 1022 */ 1023 if (!tmigr_check_migrator(group, childmask)) 1024 return true; 1025 1026 raw_spin_lock_irq(&group->lock); 1027 1028 evt = tmigr_next_expired_groupevt(group, now); 1029 1030 if (evt) { 1031 unsigned int remote_cpu = evt->cpu; 1032 1033 raw_spin_unlock_irq(&group->lock); 1034 1035 tmigr_handle_remote_cpu(remote_cpu, now, jif); 1036 1037 /* check if there is another event, that needs to be handled */ 1038 goto again; 1039 } 1040 1041 /* 1042 * Keep track of the expiry of the first event that needs to be handled 1043 * (group->next_expiry was updated by tmigr_next_expired_groupevt(), 1044 * next was set by tmigr_handle_remote_cpu()). 1045 */ 1046 data->firstexp = group->next_expiry; 1047 1048 raw_spin_unlock_irq(&group->lock); 1049 1050 return false; 1051 } 1052 1053 /** 1054 * tmigr_handle_remote() - Handle global timers of remote idle CPUs 1055 * 1056 * Called from the timer soft interrupt with interrupts enabled. 1057 */ 1058 void tmigr_handle_remote(void) 1059 { 1060 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1061 struct tmigr_walk data; 1062 1063 if (tmigr_is_not_available(tmc)) 1064 return; 1065 1066 data.childmask = tmc->groupmask; 1067 data.firstexp = KTIME_MAX; 1068 1069 /* 1070 * NOTE: This is a doubled check because the migrator test will be done 1071 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the 1072 * return when nothing has to be done. 1073 */ 1074 if (!tmigr_check_migrator(tmc->tmgroup, tmc->groupmask)) { 1075 /* 1076 * If this CPU was an idle migrator, make sure to clear its wakeup 1077 * value so it won't chase timers that have already expired elsewhere. 1078 * This avoids endless requeue from tmigr_new_timer(). 1079 */ 1080 if (READ_ONCE(tmc->wakeup) == KTIME_MAX) 1081 return; 1082 } 1083 1084 data.now = get_jiffies_update(&data.basej); 1085 1086 /* 1087 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to 1088 * KTIME_MAX. Even if tmc->lock is not held during the whole remote 1089 * handling, tmc->wakeup is fine to be stale as it is called in 1090 * interrupt context and tick_nohz_next_event() is executed in interrupt 1091 * exit path only after processing the last pending interrupt. 1092 */ 1093 1094 __walk_groups(&tmigr_handle_remote_up, &data, tmc); 1095 1096 raw_spin_lock_irq(&tmc->lock); 1097 WRITE_ONCE(tmc->wakeup, data.firstexp); 1098 raw_spin_unlock_irq(&tmc->lock); 1099 } 1100 1101 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group, 1102 struct tmigr_group *child, 1103 struct tmigr_walk *data) 1104 { 1105 u8 childmask; 1106 1107 childmask = data->childmask; 1108 1109 /* 1110 * Handle the group only if the child is the migrator or if the group 1111 * has no migrator. Otherwise the group is active and is handled by its 1112 * own migrator. 1113 */ 1114 if (!tmigr_check_migrator(group, childmask)) 1115 return true; 1116 1117 /* 1118 * When there is a parent group and the CPU which triggered the 1119 * hierarchy walk is not active, proceed the walk to reach the top level 1120 * group before reading the next_expiry value. 1121 */ 1122 if (group->parent && !data->tmc_active) 1123 return false; 1124 1125 /* 1126 * The lock is required on 32bit architectures to read the variable 1127 * consistently with a concurrent writer. On 64bit the lock is not 1128 * required because the read operation is not split and so it is always 1129 * consistent. 1130 */ 1131 if (IS_ENABLED(CONFIG_64BIT)) { 1132 data->firstexp = READ_ONCE(group->next_expiry); 1133 if (data->now >= data->firstexp) { 1134 data->check = true; 1135 return true; 1136 } 1137 } else { 1138 raw_spin_lock(&group->lock); 1139 data->firstexp = group->next_expiry; 1140 if (data->now >= group->next_expiry) { 1141 data->check = true; 1142 raw_spin_unlock(&group->lock); 1143 return true; 1144 } 1145 raw_spin_unlock(&group->lock); 1146 } 1147 1148 return false; 1149 } 1150 1151 /** 1152 * tmigr_requires_handle_remote() - Check the need of remote timer handling 1153 * 1154 * Must be called with interrupts disabled. 1155 */ 1156 bool tmigr_requires_handle_remote(void) 1157 { 1158 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1159 struct tmigr_walk data; 1160 unsigned long jif; 1161 bool ret = false; 1162 1163 if (tmigr_is_not_available(tmc)) 1164 return ret; 1165 1166 data.now = get_jiffies_update(&jif); 1167 data.childmask = tmc->groupmask; 1168 data.firstexp = KTIME_MAX; 1169 data.tmc_active = !tmc->idle; 1170 data.check = false; 1171 1172 /* 1173 * If the CPU is active, walk the hierarchy to check whether a remote 1174 * expiry is required. 1175 * 1176 * Check is done lockless as interrupts are disabled and @tmc->idle is 1177 * set only by the local CPU. 1178 */ 1179 if (!tmc->idle) { 1180 __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc); 1181 1182 return data.check; 1183 } 1184 1185 /* 1186 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock 1187 * is required on 32bit architectures to read the variable consistently 1188 * with a concurrent writer. On 64bit the lock is not required because 1189 * the read operation is not split and so it is always consistent. 1190 */ 1191 if (IS_ENABLED(CONFIG_64BIT)) { 1192 if (data.now >= READ_ONCE(tmc->wakeup)) 1193 return true; 1194 } else { 1195 raw_spin_lock(&tmc->lock); 1196 if (data.now >= tmc->wakeup) 1197 ret = true; 1198 raw_spin_unlock(&tmc->lock); 1199 } 1200 1201 return ret; 1202 } 1203 1204 /** 1205 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc) 1206 * @nextexp: Next expiry of global timer (or KTIME_MAX if not) 1207 * 1208 * The CPU is already deactivated in the timer migration 1209 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event() 1210 * and thereby the timer idle path is executed once more. @tmc->wakeup 1211 * holds the first timer, when the timer migration hierarchy is 1212 * completely idle. 1213 * 1214 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if 1215 * nothing needs to be done. 1216 */ 1217 u64 tmigr_cpu_new_timer(u64 nextexp) 1218 { 1219 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1220 u64 ret; 1221 1222 if (tmigr_is_not_available(tmc)) 1223 return nextexp; 1224 1225 raw_spin_lock(&tmc->lock); 1226 1227 ret = READ_ONCE(tmc->wakeup); 1228 if (nextexp != KTIME_MAX) { 1229 if (nextexp != tmc->cpuevt.nextevt.expires || 1230 tmc->cpuevt.ignore) { 1231 ret = tmigr_new_timer(tmc, nextexp); 1232 /* 1233 * Make sure the reevaluation of timers in idle path 1234 * will not miss an event. 1235 */ 1236 WRITE_ONCE(tmc->wakeup, ret); 1237 } 1238 } 1239 trace_tmigr_cpu_new_timer_idle(tmc, nextexp); 1240 raw_spin_unlock(&tmc->lock); 1241 return ret; 1242 } 1243 1244 static bool tmigr_inactive_up(struct tmigr_group *group, 1245 struct tmigr_group *child, 1246 struct tmigr_walk *data) 1247 { 1248 union tmigr_state curstate, newstate, childstate; 1249 bool walk_done; 1250 u8 childmask; 1251 1252 childmask = data->childmask; 1253 childstate.state = 0; 1254 1255 /* 1256 * The memory barrier is paired with the cmpxchg() in tmigr_active_up() 1257 * to make sure the updates of child and group states are ordered. The 1258 * ordering is mandatory, as the group state change depends on the child 1259 * state. 1260 */ 1261 curstate.state = atomic_read_acquire(&group->migr_state); 1262 1263 for (;;) { 1264 if (child) 1265 childstate.state = atomic_read(&child->migr_state); 1266 1267 newstate = curstate; 1268 walk_done = true; 1269 1270 /* Reset active bit when the child is no longer active */ 1271 if (!childstate.active) 1272 newstate.active &= ~childmask; 1273 1274 if (newstate.migrator == childmask) { 1275 /* 1276 * Find a new migrator for the group, because the child 1277 * group is idle! 1278 */ 1279 if (!childstate.active) { 1280 unsigned long new_migr_bit, active = newstate.active; 1281 1282 new_migr_bit = find_first_bit(&active, BIT_CNT); 1283 1284 if (new_migr_bit != BIT_CNT) { 1285 newstate.migrator = BIT(new_migr_bit); 1286 } else { 1287 newstate.migrator = TMIGR_NONE; 1288 1289 /* Changes need to be propagated */ 1290 walk_done = false; 1291 } 1292 } 1293 } 1294 1295 newstate.seq++; 1296 1297 WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active)); 1298 1299 if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)) { 1300 trace_tmigr_group_set_cpu_inactive(group, newstate, childmask); 1301 break; 1302 } 1303 1304 /* 1305 * The memory barrier is paired with the cmpxchg() in 1306 * tmigr_active_up() to make sure the updates of child and group 1307 * states are ordered. It is required only when the above 1308 * try_cmpxchg() fails. 1309 */ 1310 smp_mb__after_atomic(); 1311 } 1312 1313 data->remote = false; 1314 1315 /* Event Handling */ 1316 tmigr_update_events(group, child, data); 1317 1318 return walk_done; 1319 } 1320 1321 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp) 1322 { 1323 struct tmigr_walk data = { .nextexp = nextexp, 1324 .firstexp = KTIME_MAX, 1325 .evt = &tmc->cpuevt, 1326 .childmask = tmc->groupmask }; 1327 1328 /* 1329 * If nextexp is KTIME_MAX, the CPU event will be ignored because the 1330 * local timer expires before the global timer, no global timer is set 1331 * or CPU goes offline. 1332 */ 1333 if (nextexp != KTIME_MAX) 1334 tmc->cpuevt.ignore = false; 1335 1336 walk_groups(&tmigr_inactive_up, &data, tmc); 1337 return data.firstexp; 1338 } 1339 1340 /** 1341 * tmigr_cpu_deactivate() - Put current CPU into inactive state 1342 * @nextexp: The next global timer expiry of the current CPU 1343 * 1344 * Must be called with interrupts disabled. 1345 * 1346 * Return: the next event expiry of the current CPU or the next event expiry 1347 * from the hierarchy if this CPU is the top level migrator or the hierarchy is 1348 * completely idle. 1349 */ 1350 u64 tmigr_cpu_deactivate(u64 nextexp) 1351 { 1352 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1353 u64 ret; 1354 1355 if (tmigr_is_not_available(tmc)) 1356 return nextexp; 1357 1358 raw_spin_lock(&tmc->lock); 1359 1360 ret = __tmigr_cpu_deactivate(tmc, nextexp); 1361 1362 tmc->idle = true; 1363 1364 /* 1365 * Make sure the reevaluation of timers in idle path will not miss an 1366 * event. 1367 */ 1368 WRITE_ONCE(tmc->wakeup, ret); 1369 1370 trace_tmigr_cpu_idle(tmc, nextexp); 1371 raw_spin_unlock(&tmc->lock); 1372 return ret; 1373 } 1374 1375 /** 1376 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to 1377 * go idle 1378 * @nextevt: The next global timer expiry of the current CPU 1379 * 1380 * Return: 1381 * * KTIME_MAX - when it is probable that nothing has to be done (not 1382 * the only one in the level 0 group; and if it is the 1383 * only one in level 0 group, but there are more than a 1384 * single group active on the way to top level) 1385 * * nextevt - when CPU is offline and has to handle timer on its own 1386 * or when on the way to top in every group only a single 1387 * child is active but @nextevt is before the lowest 1388 * next_expiry encountered while walking up to top level. 1389 * * next_expiry - value of lowest expiry encountered while walking groups 1390 * if only a single child is active on each and @nextevt 1391 * is after this lowest expiry. 1392 */ 1393 u64 tmigr_quick_check(u64 nextevt) 1394 { 1395 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1396 struct tmigr_group *group = tmc->tmgroup; 1397 1398 if (tmigr_is_not_available(tmc)) 1399 return nextevt; 1400 1401 if (WARN_ON_ONCE(tmc->idle)) 1402 return nextevt; 1403 1404 if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->groupmask)) 1405 return KTIME_MAX; 1406 1407 do { 1408 if (!tmigr_check_lonely(group)) { 1409 return KTIME_MAX; 1410 } else { 1411 /* 1412 * Since current CPU is active, events may not be sorted 1413 * from bottom to the top because the CPU's event is ignored 1414 * up to the top and its sibling's events not propagated upwards. 1415 * Thus keep track of the lowest observed expiry. 1416 */ 1417 nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry)); 1418 if (!group->parent) 1419 return nextevt; 1420 } 1421 group = group->parent; 1422 } while (group); 1423 1424 return KTIME_MAX; 1425 } 1426 1427 /* 1428 * tmigr_trigger_active() - trigger a CPU to become active again 1429 * 1430 * This function is executed on a CPU which is part of cpu_online_mask, when the 1431 * last active CPU in the hierarchy is offlining. With this, it is ensured that 1432 * the other CPU is active and takes over the migrator duty. 1433 */ 1434 static long tmigr_trigger_active(void *unused) 1435 { 1436 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1437 1438 WARN_ON_ONCE(!tmc->online || tmc->idle); 1439 1440 return 0; 1441 } 1442 1443 static int tmigr_cpu_offline(unsigned int cpu) 1444 { 1445 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1446 int migrator; 1447 u64 firstexp; 1448 1449 raw_spin_lock_irq(&tmc->lock); 1450 tmc->online = false; 1451 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1452 1453 /* 1454 * CPU has to handle the local events on his own, when on the way to 1455 * offline; Therefore nextevt value is set to KTIME_MAX 1456 */ 1457 firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX); 1458 trace_tmigr_cpu_offline(tmc); 1459 raw_spin_unlock_irq(&tmc->lock); 1460 1461 if (firstexp != KTIME_MAX) { 1462 migrator = cpumask_any_but(cpu_online_mask, cpu); 1463 work_on_cpu(migrator, tmigr_trigger_active, NULL); 1464 } 1465 1466 return 0; 1467 } 1468 1469 static int tmigr_cpu_online(unsigned int cpu) 1470 { 1471 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1472 1473 /* Check whether CPU data was successfully initialized */ 1474 if (WARN_ON_ONCE(!tmc->tmgroup)) 1475 return -EINVAL; 1476 1477 raw_spin_lock_irq(&tmc->lock); 1478 trace_tmigr_cpu_online(tmc); 1479 tmc->idle = timer_base_is_idle(); 1480 if (!tmc->idle) 1481 __tmigr_cpu_activate(tmc); 1482 tmc->online = true; 1483 raw_spin_unlock_irq(&tmc->lock); 1484 return 0; 1485 } 1486 1487 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl, 1488 int node) 1489 { 1490 union tmigr_state s; 1491 1492 raw_spin_lock_init(&group->lock); 1493 1494 group->level = lvl; 1495 group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE; 1496 1497 group->num_children = 0; 1498 1499 s.migrator = TMIGR_NONE; 1500 s.active = 0; 1501 s.seq = 0; 1502 atomic_set(&group->migr_state, s.state); 1503 1504 /* 1505 * If this is a new top-level, prepare its groupmask in advance. 1506 * This avoids accidents where yet another new top-level is 1507 * created in the future and made visible before the current groupmask. 1508 */ 1509 if (list_empty(&tmigr_level_list[lvl])) { 1510 group->groupmask = BIT(0); 1511 /* 1512 * The previous top level has prepared its groupmask already, 1513 * simply account it as the first child. 1514 */ 1515 if (lvl > 0) 1516 group->num_children = 1; 1517 } 1518 1519 timerqueue_init_head(&group->events); 1520 timerqueue_init(&group->groupevt.nextevt); 1521 group->groupevt.nextevt.expires = KTIME_MAX; 1522 WRITE_ONCE(group->next_expiry, KTIME_MAX); 1523 group->groupevt.ignore = true; 1524 } 1525 1526 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node, 1527 unsigned int lvl) 1528 { 1529 struct tmigr_group *tmp, *group = NULL; 1530 1531 lockdep_assert_held(&tmigr_mutex); 1532 1533 /* Try to attach to an existing group first */ 1534 list_for_each_entry(tmp, &tmigr_level_list[lvl], list) { 1535 /* 1536 * If @lvl is below the cross NUMA node level, check whether 1537 * this group belongs to the same NUMA node. 1538 */ 1539 if (lvl < tmigr_crossnode_level && tmp->numa_node != node) 1540 continue; 1541 1542 /* Capacity left? */ 1543 if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP) 1544 continue; 1545 1546 /* 1547 * TODO: A possible further improvement: Make sure that all CPU 1548 * siblings end up in the same group of the lowest level of the 1549 * hierarchy. Rely on the topology sibling mask would be a 1550 * reasonable solution. 1551 */ 1552 1553 group = tmp; 1554 break; 1555 } 1556 1557 if (group) 1558 return group; 1559 1560 /* Allocate and set up a new group */ 1561 group = kzalloc_node(sizeof(*group), GFP_KERNEL, node); 1562 if (!group) 1563 return ERR_PTR(-ENOMEM); 1564 1565 tmigr_init_group(group, lvl, node); 1566 1567 /* Setup successful. Add it to the hierarchy */ 1568 list_add(&group->list, &tmigr_level_list[lvl]); 1569 trace_tmigr_group_set(group); 1570 return group; 1571 } 1572 1573 static void tmigr_connect_child_parent(struct tmigr_group *child, 1574 struct tmigr_group *parent, 1575 bool activate) 1576 { 1577 struct tmigr_walk data; 1578 1579 raw_spin_lock_irq(&child->lock); 1580 raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING); 1581 1582 if (activate) { 1583 /* 1584 * @child is the old top and @parent the new one. In this 1585 * case groupmask is pre-initialized and @child already 1586 * accounted, along with its new sibling corresponding to the 1587 * CPU going up. 1588 */ 1589 WARN_ON_ONCE(child->groupmask != BIT(0) || parent->num_children != 2); 1590 } else { 1591 /* Adding @child for the CPU going up to @parent. */ 1592 child->groupmask = BIT(parent->num_children++); 1593 } 1594 1595 /* 1596 * Make sure parent initialization is visible before publishing it to a 1597 * racing CPU entering/exiting idle. This RELEASE barrier enforces an 1598 * address dependency that pairs with the READ_ONCE() in __walk_groups(). 1599 */ 1600 smp_store_release(&child->parent, parent); 1601 1602 raw_spin_unlock(&parent->lock); 1603 raw_spin_unlock_irq(&child->lock); 1604 1605 trace_tmigr_connect_child_parent(child); 1606 1607 if (!activate) 1608 return; 1609 1610 /* 1611 * To prevent inconsistent states, active children need to be active in 1612 * the new parent as well. Inactive children are already marked inactive 1613 * in the parent group: 1614 * 1615 * * When new groups were created by tmigr_setup_groups() starting from 1616 * the lowest level (and not higher then one level below the current 1617 * top level), then they are not active. They will be set active when 1618 * the new online CPU comes active. 1619 * 1620 * * But if a new group above the current top level is required, it is 1621 * mandatory to propagate the active state of the already existing 1622 * child to the new parent. So tmigr_connect_child_parent() is 1623 * executed with the formerly top level group (child) and the newly 1624 * created group (parent). 1625 * 1626 * * It is ensured that the child is active, as this setup path is 1627 * executed in hotplug prepare callback. This is exectued by an 1628 * already connected and !idle CPU. Even if all other CPUs go idle, 1629 * the CPU executing the setup will be responsible up to current top 1630 * level group. And the next time it goes inactive, it will release 1631 * the new childmask and parent to subsequent walkers through this 1632 * @child. Therefore propagate active state unconditionally. 1633 */ 1634 data.childmask = child->groupmask; 1635 1636 /* 1637 * There is only one new level per time (which is protected by 1638 * tmigr_mutex). When connecting the child and the parent and set the 1639 * child active when the parent is inactive, the parent needs to be the 1640 * uppermost level. Otherwise there went something wrong! 1641 */ 1642 WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent); 1643 } 1644 1645 static int tmigr_setup_groups(unsigned int cpu, unsigned int node) 1646 { 1647 struct tmigr_group *group, *child, **stack; 1648 int top = 0, err = 0, i = 0; 1649 struct list_head *lvllist; 1650 1651 stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL); 1652 if (!stack) 1653 return -ENOMEM; 1654 1655 do { 1656 group = tmigr_get_group(cpu, node, i); 1657 if (IS_ERR(group)) { 1658 err = PTR_ERR(group); 1659 break; 1660 } 1661 1662 top = i; 1663 stack[i++] = group; 1664 1665 /* 1666 * When booting only less CPUs of a system than CPUs are 1667 * available, not all calculated hierarchy levels are required. 1668 * 1669 * The loop is aborted as soon as the highest level, which might 1670 * be different from tmigr_hierarchy_levels, contains only a 1671 * single group. 1672 */ 1673 if (group->parent || i == tmigr_hierarchy_levels || 1674 (list_empty(&tmigr_level_list[i]) && 1675 list_is_singular(&tmigr_level_list[i - 1]))) 1676 break; 1677 1678 } while (i < tmigr_hierarchy_levels); 1679 1680 while (i > 0) { 1681 group = stack[--i]; 1682 1683 if (err < 0) { 1684 list_del(&group->list); 1685 kfree(group); 1686 continue; 1687 } 1688 1689 WARN_ON_ONCE(i != group->level); 1690 1691 /* 1692 * Update tmc -> group / child -> group connection 1693 */ 1694 if (i == 0) { 1695 struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu); 1696 1697 raw_spin_lock_irq(&group->lock); 1698 1699 tmc->tmgroup = group; 1700 tmc->groupmask = BIT(group->num_children++); 1701 1702 raw_spin_unlock_irq(&group->lock); 1703 1704 trace_tmigr_connect_cpu_parent(tmc); 1705 1706 /* There are no children that need to be connected */ 1707 continue; 1708 } else { 1709 child = stack[i - 1]; 1710 /* Will be activated at online time */ 1711 tmigr_connect_child_parent(child, group, false); 1712 } 1713 1714 /* check if uppermost level was newly created */ 1715 if (top != i) 1716 continue; 1717 1718 WARN_ON_ONCE(top == 0); 1719 1720 lvllist = &tmigr_level_list[top]; 1721 if (group->num_children == 1 && list_is_singular(lvllist)) { 1722 /* 1723 * The target CPU must never do the prepare work, except 1724 * on early boot when the boot CPU is the target. Otherwise 1725 * it may spuriously activate the old top level group inside 1726 * the new one (nevertheless whether old top level group is 1727 * active or not) and/or release an uninitialized childmask. 1728 */ 1729 WARN_ON_ONCE(cpu == raw_smp_processor_id()); 1730 1731 lvllist = &tmigr_level_list[top - 1]; 1732 list_for_each_entry(child, lvllist, list) { 1733 if (child->parent) 1734 continue; 1735 1736 tmigr_connect_child_parent(child, group, true); 1737 } 1738 } 1739 } 1740 1741 kfree(stack); 1742 1743 return err; 1744 } 1745 1746 static int tmigr_add_cpu(unsigned int cpu) 1747 { 1748 int node = cpu_to_node(cpu); 1749 int ret; 1750 1751 mutex_lock(&tmigr_mutex); 1752 ret = tmigr_setup_groups(cpu, node); 1753 mutex_unlock(&tmigr_mutex); 1754 1755 return ret; 1756 } 1757 1758 static int tmigr_cpu_prepare(unsigned int cpu) 1759 { 1760 struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu); 1761 int ret = 0; 1762 1763 /* Not first online attempt? */ 1764 if (tmc->tmgroup) 1765 return ret; 1766 1767 raw_spin_lock_init(&tmc->lock); 1768 timerqueue_init(&tmc->cpuevt.nextevt); 1769 tmc->cpuevt.nextevt.expires = KTIME_MAX; 1770 tmc->cpuevt.ignore = true; 1771 tmc->cpuevt.cpu = cpu; 1772 tmc->remote = false; 1773 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1774 1775 ret = tmigr_add_cpu(cpu); 1776 if (ret < 0) 1777 return ret; 1778 1779 if (tmc->groupmask == 0) 1780 return -EINVAL; 1781 1782 return ret; 1783 } 1784 1785 static int __init tmigr_init(void) 1786 { 1787 unsigned int cpulvl, nodelvl, cpus_per_node, i; 1788 unsigned int nnodes = num_possible_nodes(); 1789 unsigned int ncpus = num_possible_cpus(); 1790 int ret = -ENOMEM; 1791 1792 BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP); 1793 1794 /* Nothing to do if running on UP */ 1795 if (ncpus == 1) 1796 return 0; 1797 1798 /* 1799 * Calculate the required hierarchy levels. Unfortunately there is no 1800 * reliable information available, unless all possible CPUs have been 1801 * brought up and all NUMA nodes are populated. 1802 * 1803 * Estimate the number of levels with the number of possible nodes and 1804 * the number of possible CPUs. Assume CPUs are spread evenly across 1805 * nodes. We cannot rely on cpumask_of_node() because it only works for 1806 * online CPUs. 1807 */ 1808 cpus_per_node = DIV_ROUND_UP(ncpus, nnodes); 1809 1810 /* Calc the hierarchy levels required to hold the CPUs of a node */ 1811 cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node), 1812 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1813 1814 /* Calculate the extra levels to connect all nodes */ 1815 nodelvl = DIV_ROUND_UP(order_base_2(nnodes), 1816 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1817 1818 tmigr_hierarchy_levels = cpulvl + nodelvl; 1819 1820 /* 1821 * If a NUMA node spawns more than one CPU level group then the next 1822 * level(s) of the hierarchy contains groups which handle all CPU groups 1823 * of the same NUMA node. The level above goes across NUMA nodes. Store 1824 * this information for the setup code to decide in which level node 1825 * matching is no longer required. 1826 */ 1827 tmigr_crossnode_level = cpulvl; 1828 1829 tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL); 1830 if (!tmigr_level_list) 1831 goto err; 1832 1833 for (i = 0; i < tmigr_hierarchy_levels; i++) 1834 INIT_LIST_HEAD(&tmigr_level_list[i]); 1835 1836 pr_info("Timer migration: %d hierarchy levels; %d children per group;" 1837 " %d crossnode level\n", 1838 tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP, 1839 tmigr_crossnode_level); 1840 1841 ret = cpuhp_setup_state(CPUHP_TMIGR_PREPARE, "tmigr:prepare", 1842 tmigr_cpu_prepare, NULL); 1843 if (ret) 1844 goto err; 1845 1846 ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online", 1847 tmigr_cpu_online, tmigr_cpu_offline); 1848 if (ret) 1849 goto err; 1850 1851 return 0; 1852 1853 err: 1854 pr_err("Timer migration setup failed\n"); 1855 return ret; 1856 } 1857 early_initcall(tmigr_init); 1858