1 /* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22 #include <linux/kernel_stat.h> 23 #include <linux/export.h> 24 #include <linux/interrupt.h> 25 #include <linux/percpu.h> 26 #include <linux/init.h> 27 #include <linux/mm.h> 28 #include <linux/swap.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/notifier.h> 31 #include <linux/thread_info.h> 32 #include <linux/time.h> 33 #include <linux/jiffies.h> 34 #include <linux/posix-timers.h> 35 #include <linux/cpu.h> 36 #include <linux/syscalls.h> 37 #include <linux/delay.h> 38 #include <linux/tick.h> 39 #include <linux/kallsyms.h> 40 #include <linux/irq_work.h> 41 #include <linux/sched/signal.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/sched/nohz.h> 44 #include <linux/sched/debug.h> 45 #include <linux/slab.h> 46 #include <linux/compat.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/div64.h> 51 #include <asm/timex.h> 52 #include <asm/io.h> 53 54 #include "tick-internal.h" 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/timer.h> 58 59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 60 61 EXPORT_SYMBOL(jiffies_64); 62 63 /* 64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 66 * level has a different granularity. 67 * 68 * The level granularity is: LVL_CLK_DIV ^ lvl 69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 70 * 71 * The array level of a newly armed timer depends on the relative expiry 72 * time. The farther the expiry time is away the higher the array level and 73 * therefor the granularity becomes. 74 * 75 * Contrary to the original timer wheel implementation, which aims for 'exact' 76 * expiry of the timers, this implementation removes the need for recascading 77 * the timers into the lower array levels. The previous 'classic' timer wheel 78 * implementation of the kernel already violated the 'exact' expiry by adding 79 * slack to the expiry time to provide batched expiration. The granularity 80 * levels provide implicit batching. 81 * 82 * This is an optimization of the original timer wheel implementation for the 83 * majority of the timer wheel use cases: timeouts. The vast majority of 84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 85 * the timeout expires it indicates that normal operation is disturbed, so it 86 * does not matter much whether the timeout comes with a slight delay. 87 * 88 * The only exception to this are networking timers with a small expiry 89 * time. They rely on the granularity. Those fit into the first wheel level, 90 * which has HZ granularity. 91 * 92 * We don't have cascading anymore. timers with a expiry time above the 93 * capacity of the last wheel level are force expired at the maximum timeout 94 * value of the last wheel level. From data sampling we know that the maximum 95 * value observed is 5 days (network connection tracking), so this should not 96 * be an issue. 97 * 98 * The currently chosen array constants values are a good compromise between 99 * array size and granularity. 100 * 101 * This results in the following granularity and range levels: 102 * 103 * HZ 1000 steps 104 * Level Offset Granularity Range 105 * 0 0 1 ms 0 ms - 63 ms 106 * 1 64 8 ms 64 ms - 511 ms 107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 114 * 115 * HZ 300 116 * Level Offset Granularity Range 117 * 0 0 3 ms 0 ms - 210 ms 118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 126 * 127 * HZ 250 128 * Level Offset Granularity Range 129 * 0 0 4 ms 0 ms - 255 ms 130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 138 * 139 * HZ 100 140 * Level Offset Granularity Range 141 * 0 0 10 ms 0 ms - 630 ms 142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 149 */ 150 151 /* Clock divisor for the next level */ 152 #define LVL_CLK_SHIFT 3 153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 157 158 /* 159 * The time start value for each level to select the bucket at enqueue 160 * time. 161 */ 162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 163 164 /* Size of each clock level */ 165 #define LVL_BITS 6 166 #define LVL_SIZE (1UL << LVL_BITS) 167 #define LVL_MASK (LVL_SIZE - 1) 168 #define LVL_OFFS(n) ((n) * LVL_SIZE) 169 170 /* Level depth */ 171 #if HZ > 100 172 # define LVL_DEPTH 9 173 # else 174 # define LVL_DEPTH 8 175 #endif 176 177 /* The cutoff (max. capacity of the wheel) */ 178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 180 181 /* 182 * The resulting wheel size. If NOHZ is configured we allocate two 183 * wheels so we have a separate storage for the deferrable timers. 184 */ 185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 186 187 #ifdef CONFIG_NO_HZ_COMMON 188 # define NR_BASES 2 189 # define BASE_STD 0 190 # define BASE_DEF 1 191 #else 192 # define NR_BASES 1 193 # define BASE_STD 0 194 # define BASE_DEF 0 195 #endif 196 197 struct timer_base { 198 raw_spinlock_t lock; 199 struct timer_list *running_timer; 200 unsigned long clk; 201 unsigned long next_expiry; 202 unsigned int cpu; 203 bool migration_enabled; 204 bool nohz_active; 205 bool is_idle; 206 bool must_forward_clk; 207 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 208 struct hlist_head vectors[WHEEL_SIZE]; 209 } ____cacheline_aligned; 210 211 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 212 213 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 214 unsigned int sysctl_timer_migration = 1; 215 216 void timers_update_migration(bool update_nohz) 217 { 218 bool on = sysctl_timer_migration && tick_nohz_active; 219 unsigned int cpu; 220 221 /* Avoid the loop, if nothing to update */ 222 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on) 223 return; 224 225 for_each_possible_cpu(cpu) { 226 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on; 227 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on; 228 per_cpu(hrtimer_bases.migration_enabled, cpu) = on; 229 if (!update_nohz) 230 continue; 231 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true; 232 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true; 233 per_cpu(hrtimer_bases.nohz_active, cpu) = true; 234 } 235 } 236 237 int timer_migration_handler(struct ctl_table *table, int write, 238 void __user *buffer, size_t *lenp, 239 loff_t *ppos) 240 { 241 static DEFINE_MUTEX(mutex); 242 int ret; 243 244 mutex_lock(&mutex); 245 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 246 if (!ret && write) 247 timers_update_migration(false); 248 mutex_unlock(&mutex); 249 return ret; 250 } 251 #endif 252 253 static unsigned long round_jiffies_common(unsigned long j, int cpu, 254 bool force_up) 255 { 256 int rem; 257 unsigned long original = j; 258 259 /* 260 * We don't want all cpus firing their timers at once hitting the 261 * same lock or cachelines, so we skew each extra cpu with an extra 262 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 263 * already did this. 264 * The skew is done by adding 3*cpunr, then round, then subtract this 265 * extra offset again. 266 */ 267 j += cpu * 3; 268 269 rem = j % HZ; 270 271 /* 272 * If the target jiffie is just after a whole second (which can happen 273 * due to delays of the timer irq, long irq off times etc etc) then 274 * we should round down to the whole second, not up. Use 1/4th second 275 * as cutoff for this rounding as an extreme upper bound for this. 276 * But never round down if @force_up is set. 277 */ 278 if (rem < HZ/4 && !force_up) /* round down */ 279 j = j - rem; 280 else /* round up */ 281 j = j - rem + HZ; 282 283 /* now that we have rounded, subtract the extra skew again */ 284 j -= cpu * 3; 285 286 /* 287 * Make sure j is still in the future. Otherwise return the 288 * unmodified value. 289 */ 290 return time_is_after_jiffies(j) ? j : original; 291 } 292 293 /** 294 * __round_jiffies - function to round jiffies to a full second 295 * @j: the time in (absolute) jiffies that should be rounded 296 * @cpu: the processor number on which the timeout will happen 297 * 298 * __round_jiffies() rounds an absolute time in the future (in jiffies) 299 * up or down to (approximately) full seconds. This is useful for timers 300 * for which the exact time they fire does not matter too much, as long as 301 * they fire approximately every X seconds. 302 * 303 * By rounding these timers to whole seconds, all such timers will fire 304 * at the same time, rather than at various times spread out. The goal 305 * of this is to have the CPU wake up less, which saves power. 306 * 307 * The exact rounding is skewed for each processor to avoid all 308 * processors firing at the exact same time, which could lead 309 * to lock contention or spurious cache line bouncing. 310 * 311 * The return value is the rounded version of the @j parameter. 312 */ 313 unsigned long __round_jiffies(unsigned long j, int cpu) 314 { 315 return round_jiffies_common(j, cpu, false); 316 } 317 EXPORT_SYMBOL_GPL(__round_jiffies); 318 319 /** 320 * __round_jiffies_relative - function to round jiffies to a full second 321 * @j: the time in (relative) jiffies that should be rounded 322 * @cpu: the processor number on which the timeout will happen 323 * 324 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 325 * up or down to (approximately) full seconds. This is useful for timers 326 * for which the exact time they fire does not matter too much, as long as 327 * they fire approximately every X seconds. 328 * 329 * By rounding these timers to whole seconds, all such timers will fire 330 * at the same time, rather than at various times spread out. The goal 331 * of this is to have the CPU wake up less, which saves power. 332 * 333 * The exact rounding is skewed for each processor to avoid all 334 * processors firing at the exact same time, which could lead 335 * to lock contention or spurious cache line bouncing. 336 * 337 * The return value is the rounded version of the @j parameter. 338 */ 339 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 340 { 341 unsigned long j0 = jiffies; 342 343 /* Use j0 because jiffies might change while we run */ 344 return round_jiffies_common(j + j0, cpu, false) - j0; 345 } 346 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 347 348 /** 349 * round_jiffies - function to round jiffies to a full second 350 * @j: the time in (absolute) jiffies that should be rounded 351 * 352 * round_jiffies() rounds an absolute time in the future (in jiffies) 353 * up or down to (approximately) full seconds. This is useful for timers 354 * for which the exact time they fire does not matter too much, as long as 355 * they fire approximately every X seconds. 356 * 357 * By rounding these timers to whole seconds, all such timers will fire 358 * at the same time, rather than at various times spread out. The goal 359 * of this is to have the CPU wake up less, which saves power. 360 * 361 * The return value is the rounded version of the @j parameter. 362 */ 363 unsigned long round_jiffies(unsigned long j) 364 { 365 return round_jiffies_common(j, raw_smp_processor_id(), false); 366 } 367 EXPORT_SYMBOL_GPL(round_jiffies); 368 369 /** 370 * round_jiffies_relative - function to round jiffies to a full second 371 * @j: the time in (relative) jiffies that should be rounded 372 * 373 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 374 * up or down to (approximately) full seconds. This is useful for timers 375 * for which the exact time they fire does not matter too much, as long as 376 * they fire approximately every X seconds. 377 * 378 * By rounding these timers to whole seconds, all such timers will fire 379 * at the same time, rather than at various times spread out. The goal 380 * of this is to have the CPU wake up less, which saves power. 381 * 382 * The return value is the rounded version of the @j parameter. 383 */ 384 unsigned long round_jiffies_relative(unsigned long j) 385 { 386 return __round_jiffies_relative(j, raw_smp_processor_id()); 387 } 388 EXPORT_SYMBOL_GPL(round_jiffies_relative); 389 390 /** 391 * __round_jiffies_up - function to round jiffies up to a full second 392 * @j: the time in (absolute) jiffies that should be rounded 393 * @cpu: the processor number on which the timeout will happen 394 * 395 * This is the same as __round_jiffies() except that it will never 396 * round down. This is useful for timeouts for which the exact time 397 * of firing does not matter too much, as long as they don't fire too 398 * early. 399 */ 400 unsigned long __round_jiffies_up(unsigned long j, int cpu) 401 { 402 return round_jiffies_common(j, cpu, true); 403 } 404 EXPORT_SYMBOL_GPL(__round_jiffies_up); 405 406 /** 407 * __round_jiffies_up_relative - function to round jiffies up to a full second 408 * @j: the time in (relative) jiffies that should be rounded 409 * @cpu: the processor number on which the timeout will happen 410 * 411 * This is the same as __round_jiffies_relative() except that it will never 412 * round down. This is useful for timeouts for which the exact time 413 * of firing does not matter too much, as long as they don't fire too 414 * early. 415 */ 416 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 417 { 418 unsigned long j0 = jiffies; 419 420 /* Use j0 because jiffies might change while we run */ 421 return round_jiffies_common(j + j0, cpu, true) - j0; 422 } 423 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 424 425 /** 426 * round_jiffies_up - function to round jiffies up to a full second 427 * @j: the time in (absolute) jiffies that should be rounded 428 * 429 * This is the same as round_jiffies() except that it will never 430 * round down. This is useful for timeouts for which the exact time 431 * of firing does not matter too much, as long as they don't fire too 432 * early. 433 */ 434 unsigned long round_jiffies_up(unsigned long j) 435 { 436 return round_jiffies_common(j, raw_smp_processor_id(), true); 437 } 438 EXPORT_SYMBOL_GPL(round_jiffies_up); 439 440 /** 441 * round_jiffies_up_relative - function to round jiffies up to a full second 442 * @j: the time in (relative) jiffies that should be rounded 443 * 444 * This is the same as round_jiffies_relative() except that it will never 445 * round down. This is useful for timeouts for which the exact time 446 * of firing does not matter too much, as long as they don't fire too 447 * early. 448 */ 449 unsigned long round_jiffies_up_relative(unsigned long j) 450 { 451 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 452 } 453 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 454 455 456 static inline unsigned int timer_get_idx(struct timer_list *timer) 457 { 458 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 459 } 460 461 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 462 { 463 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 464 idx << TIMER_ARRAYSHIFT; 465 } 466 467 /* 468 * Helper function to calculate the array index for a given expiry 469 * time. 470 */ 471 static inline unsigned calc_index(unsigned expires, unsigned lvl) 472 { 473 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 474 return LVL_OFFS(lvl) + (expires & LVL_MASK); 475 } 476 477 static int calc_wheel_index(unsigned long expires, unsigned long clk) 478 { 479 unsigned long delta = expires - clk; 480 unsigned int idx; 481 482 if (delta < LVL_START(1)) { 483 idx = calc_index(expires, 0); 484 } else if (delta < LVL_START(2)) { 485 idx = calc_index(expires, 1); 486 } else if (delta < LVL_START(3)) { 487 idx = calc_index(expires, 2); 488 } else if (delta < LVL_START(4)) { 489 idx = calc_index(expires, 3); 490 } else if (delta < LVL_START(5)) { 491 idx = calc_index(expires, 4); 492 } else if (delta < LVL_START(6)) { 493 idx = calc_index(expires, 5); 494 } else if (delta < LVL_START(7)) { 495 idx = calc_index(expires, 6); 496 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 497 idx = calc_index(expires, 7); 498 } else if ((long) delta < 0) { 499 idx = clk & LVL_MASK; 500 } else { 501 /* 502 * Force expire obscene large timeouts to expire at the 503 * capacity limit of the wheel. 504 */ 505 if (expires >= WHEEL_TIMEOUT_CUTOFF) 506 expires = WHEEL_TIMEOUT_MAX; 507 508 idx = calc_index(expires, LVL_DEPTH - 1); 509 } 510 return idx; 511 } 512 513 /* 514 * Enqueue the timer into the hash bucket, mark it pending in 515 * the bitmap and store the index in the timer flags. 516 */ 517 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 518 unsigned int idx) 519 { 520 hlist_add_head(&timer->entry, base->vectors + idx); 521 __set_bit(idx, base->pending_map); 522 timer_set_idx(timer, idx); 523 } 524 525 static void 526 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 527 { 528 unsigned int idx; 529 530 idx = calc_wheel_index(timer->expires, base->clk); 531 enqueue_timer(base, timer, idx); 532 } 533 534 static void 535 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 536 { 537 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 538 return; 539 540 /* 541 * TODO: This wants some optimizing similar to the code below, but we 542 * will do that when we switch from push to pull for deferrable timers. 543 */ 544 if (timer->flags & TIMER_DEFERRABLE) { 545 if (tick_nohz_full_cpu(base->cpu)) 546 wake_up_nohz_cpu(base->cpu); 547 return; 548 } 549 550 /* 551 * We might have to IPI the remote CPU if the base is idle and the 552 * timer is not deferrable. If the other CPU is on the way to idle 553 * then it can't set base->is_idle as we hold the base lock: 554 */ 555 if (!base->is_idle) 556 return; 557 558 /* Check whether this is the new first expiring timer: */ 559 if (time_after_eq(timer->expires, base->next_expiry)) 560 return; 561 562 /* 563 * Set the next expiry time and kick the CPU so it can reevaluate the 564 * wheel: 565 */ 566 base->next_expiry = timer->expires; 567 wake_up_nohz_cpu(base->cpu); 568 } 569 570 static void 571 internal_add_timer(struct timer_base *base, struct timer_list *timer) 572 { 573 __internal_add_timer(base, timer); 574 trigger_dyntick_cpu(base, timer); 575 } 576 577 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 578 579 static struct debug_obj_descr timer_debug_descr; 580 581 static void *timer_debug_hint(void *addr) 582 { 583 return ((struct timer_list *) addr)->function; 584 } 585 586 static bool timer_is_static_object(void *addr) 587 { 588 struct timer_list *timer = addr; 589 590 return (timer->entry.pprev == NULL && 591 timer->entry.next == TIMER_ENTRY_STATIC); 592 } 593 594 /* 595 * fixup_init is called when: 596 * - an active object is initialized 597 */ 598 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 599 { 600 struct timer_list *timer = addr; 601 602 switch (state) { 603 case ODEBUG_STATE_ACTIVE: 604 del_timer_sync(timer); 605 debug_object_init(timer, &timer_debug_descr); 606 return true; 607 default: 608 return false; 609 } 610 } 611 612 /* Stub timer callback for improperly used timers. */ 613 static void stub_timer(struct timer_list *unused) 614 { 615 WARN_ON(1); 616 } 617 618 /* 619 * fixup_activate is called when: 620 * - an active object is activated 621 * - an unknown non-static object is activated 622 */ 623 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 624 { 625 struct timer_list *timer = addr; 626 627 switch (state) { 628 case ODEBUG_STATE_NOTAVAILABLE: 629 timer_setup(timer, stub_timer, 0); 630 return true; 631 632 case ODEBUG_STATE_ACTIVE: 633 WARN_ON(1); 634 635 default: 636 return false; 637 } 638 } 639 640 /* 641 * fixup_free is called when: 642 * - an active object is freed 643 */ 644 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 645 { 646 struct timer_list *timer = addr; 647 648 switch (state) { 649 case ODEBUG_STATE_ACTIVE: 650 del_timer_sync(timer); 651 debug_object_free(timer, &timer_debug_descr); 652 return true; 653 default: 654 return false; 655 } 656 } 657 658 /* 659 * fixup_assert_init is called when: 660 * - an untracked/uninit-ed object is found 661 */ 662 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 663 { 664 struct timer_list *timer = addr; 665 666 switch (state) { 667 case ODEBUG_STATE_NOTAVAILABLE: 668 timer_setup(timer, stub_timer, 0); 669 return true; 670 default: 671 return false; 672 } 673 } 674 675 static struct debug_obj_descr timer_debug_descr = { 676 .name = "timer_list", 677 .debug_hint = timer_debug_hint, 678 .is_static_object = timer_is_static_object, 679 .fixup_init = timer_fixup_init, 680 .fixup_activate = timer_fixup_activate, 681 .fixup_free = timer_fixup_free, 682 .fixup_assert_init = timer_fixup_assert_init, 683 }; 684 685 static inline void debug_timer_init(struct timer_list *timer) 686 { 687 debug_object_init(timer, &timer_debug_descr); 688 } 689 690 static inline void debug_timer_activate(struct timer_list *timer) 691 { 692 debug_object_activate(timer, &timer_debug_descr); 693 } 694 695 static inline void debug_timer_deactivate(struct timer_list *timer) 696 { 697 debug_object_deactivate(timer, &timer_debug_descr); 698 } 699 700 static inline void debug_timer_free(struct timer_list *timer) 701 { 702 debug_object_free(timer, &timer_debug_descr); 703 } 704 705 static inline void debug_timer_assert_init(struct timer_list *timer) 706 { 707 debug_object_assert_init(timer, &timer_debug_descr); 708 } 709 710 static void do_init_timer(struct timer_list *timer, 711 void (*func)(struct timer_list *), 712 unsigned int flags, 713 const char *name, struct lock_class_key *key); 714 715 void init_timer_on_stack_key(struct timer_list *timer, 716 void (*func)(struct timer_list *), 717 unsigned int flags, 718 const char *name, struct lock_class_key *key) 719 { 720 debug_object_init_on_stack(timer, &timer_debug_descr); 721 do_init_timer(timer, func, flags, name, key); 722 } 723 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 724 725 void destroy_timer_on_stack(struct timer_list *timer) 726 { 727 debug_object_free(timer, &timer_debug_descr); 728 } 729 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 730 731 #else 732 static inline void debug_timer_init(struct timer_list *timer) { } 733 static inline void debug_timer_activate(struct timer_list *timer) { } 734 static inline void debug_timer_deactivate(struct timer_list *timer) { } 735 static inline void debug_timer_assert_init(struct timer_list *timer) { } 736 #endif 737 738 static inline void debug_init(struct timer_list *timer) 739 { 740 debug_timer_init(timer); 741 trace_timer_init(timer); 742 } 743 744 static inline void 745 debug_activate(struct timer_list *timer, unsigned long expires) 746 { 747 debug_timer_activate(timer); 748 trace_timer_start(timer, expires, timer->flags); 749 } 750 751 static inline void debug_deactivate(struct timer_list *timer) 752 { 753 debug_timer_deactivate(timer); 754 trace_timer_cancel(timer); 755 } 756 757 static inline void debug_assert_init(struct timer_list *timer) 758 { 759 debug_timer_assert_init(timer); 760 } 761 762 static void do_init_timer(struct timer_list *timer, 763 void (*func)(struct timer_list *), 764 unsigned int flags, 765 const char *name, struct lock_class_key *key) 766 { 767 timer->entry.pprev = NULL; 768 timer->function = func; 769 timer->flags = flags | raw_smp_processor_id(); 770 lockdep_init_map(&timer->lockdep_map, name, key, 0); 771 } 772 773 /** 774 * init_timer_key - initialize a timer 775 * @timer: the timer to be initialized 776 * @func: timer callback function 777 * @flags: timer flags 778 * @name: name of the timer 779 * @key: lockdep class key of the fake lock used for tracking timer 780 * sync lock dependencies 781 * 782 * init_timer_key() must be done to a timer prior calling *any* of the 783 * other timer functions. 784 */ 785 void init_timer_key(struct timer_list *timer, 786 void (*func)(struct timer_list *), unsigned int flags, 787 const char *name, struct lock_class_key *key) 788 { 789 debug_init(timer); 790 do_init_timer(timer, func, flags, name, key); 791 } 792 EXPORT_SYMBOL(init_timer_key); 793 794 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 795 { 796 struct hlist_node *entry = &timer->entry; 797 798 debug_deactivate(timer); 799 800 __hlist_del(entry); 801 if (clear_pending) 802 entry->pprev = NULL; 803 entry->next = LIST_POISON2; 804 } 805 806 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 807 bool clear_pending) 808 { 809 unsigned idx = timer_get_idx(timer); 810 811 if (!timer_pending(timer)) 812 return 0; 813 814 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 815 __clear_bit(idx, base->pending_map); 816 817 detach_timer(timer, clear_pending); 818 return 1; 819 } 820 821 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 822 { 823 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 824 825 /* 826 * If the timer is deferrable and nohz is active then we need to use 827 * the deferrable base. 828 */ 829 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active && 830 (tflags & TIMER_DEFERRABLE)) 831 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 832 return base; 833 } 834 835 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 836 { 837 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 838 839 /* 840 * If the timer is deferrable and nohz is active then we need to use 841 * the deferrable base. 842 */ 843 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active && 844 (tflags & TIMER_DEFERRABLE)) 845 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 846 return base; 847 } 848 849 static inline struct timer_base *get_timer_base(u32 tflags) 850 { 851 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 852 } 853 854 #ifdef CONFIG_NO_HZ_COMMON 855 static inline struct timer_base * 856 get_target_base(struct timer_base *base, unsigned tflags) 857 { 858 #ifdef CONFIG_SMP 859 if ((tflags & TIMER_PINNED) || !base->migration_enabled) 860 return get_timer_this_cpu_base(tflags); 861 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 862 #else 863 return get_timer_this_cpu_base(tflags); 864 #endif 865 } 866 867 static inline void forward_timer_base(struct timer_base *base) 868 { 869 unsigned long jnow; 870 871 /* 872 * We only forward the base when we are idle or have just come out of 873 * idle (must_forward_clk logic), and have a delta between base clock 874 * and jiffies. In the common case, run_timers will take care of it. 875 */ 876 if (likely(!base->must_forward_clk)) 877 return; 878 879 jnow = READ_ONCE(jiffies); 880 base->must_forward_clk = base->is_idle; 881 if ((long)(jnow - base->clk) < 2) 882 return; 883 884 /* 885 * If the next expiry value is > jiffies, then we fast forward to 886 * jiffies otherwise we forward to the next expiry value. 887 */ 888 if (time_after(base->next_expiry, jnow)) 889 base->clk = jnow; 890 else 891 base->clk = base->next_expiry; 892 } 893 #else 894 static inline struct timer_base * 895 get_target_base(struct timer_base *base, unsigned tflags) 896 { 897 return get_timer_this_cpu_base(tflags); 898 } 899 900 static inline void forward_timer_base(struct timer_base *base) { } 901 #endif 902 903 904 /* 905 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 906 * that all timers which are tied to this base are locked, and the base itself 907 * is locked too. 908 * 909 * So __run_timers/migrate_timers can safely modify all timers which could 910 * be found in the base->vectors array. 911 * 912 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 913 * to wait until the migration is done. 914 */ 915 static struct timer_base *lock_timer_base(struct timer_list *timer, 916 unsigned long *flags) 917 __acquires(timer->base->lock) 918 { 919 for (;;) { 920 struct timer_base *base; 921 u32 tf; 922 923 /* 924 * We need to use READ_ONCE() here, otherwise the compiler 925 * might re-read @tf between the check for TIMER_MIGRATING 926 * and spin_lock(). 927 */ 928 tf = READ_ONCE(timer->flags); 929 930 if (!(tf & TIMER_MIGRATING)) { 931 base = get_timer_base(tf); 932 raw_spin_lock_irqsave(&base->lock, *flags); 933 if (timer->flags == tf) 934 return base; 935 raw_spin_unlock_irqrestore(&base->lock, *flags); 936 } 937 cpu_relax(); 938 } 939 } 940 941 #define MOD_TIMER_PENDING_ONLY 0x01 942 #define MOD_TIMER_REDUCE 0x02 943 944 static inline int 945 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 946 { 947 struct timer_base *base, *new_base; 948 unsigned int idx = UINT_MAX; 949 unsigned long clk = 0, flags; 950 int ret = 0; 951 952 BUG_ON(!timer->function); 953 954 /* 955 * This is a common optimization triggered by the networking code - if 956 * the timer is re-modified to have the same timeout or ends up in the 957 * same array bucket then just return: 958 */ 959 if (timer_pending(timer)) { 960 /* 961 * The downside of this optimization is that it can result in 962 * larger granularity than you would get from adding a new 963 * timer with this expiry. 964 */ 965 long diff = timer->expires - expires; 966 967 if (!diff) 968 return 1; 969 if (options & MOD_TIMER_REDUCE && diff <= 0) 970 return 1; 971 972 /* 973 * We lock timer base and calculate the bucket index right 974 * here. If the timer ends up in the same bucket, then we 975 * just update the expiry time and avoid the whole 976 * dequeue/enqueue dance. 977 */ 978 base = lock_timer_base(timer, &flags); 979 forward_timer_base(base); 980 981 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 982 time_before_eq(timer->expires, expires)) { 983 ret = 1; 984 goto out_unlock; 985 } 986 987 clk = base->clk; 988 idx = calc_wheel_index(expires, clk); 989 990 /* 991 * Retrieve and compare the array index of the pending 992 * timer. If it matches set the expiry to the new value so a 993 * subsequent call will exit in the expires check above. 994 */ 995 if (idx == timer_get_idx(timer)) { 996 if (!(options & MOD_TIMER_REDUCE)) 997 timer->expires = expires; 998 else if (time_after(timer->expires, expires)) 999 timer->expires = expires; 1000 ret = 1; 1001 goto out_unlock; 1002 } 1003 } else { 1004 base = lock_timer_base(timer, &flags); 1005 forward_timer_base(base); 1006 } 1007 1008 ret = detach_if_pending(timer, base, false); 1009 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1010 goto out_unlock; 1011 1012 debug_activate(timer, expires); 1013 1014 new_base = get_target_base(base, timer->flags); 1015 1016 if (base != new_base) { 1017 /* 1018 * We are trying to schedule the timer on the new base. 1019 * However we can't change timer's base while it is running, 1020 * otherwise del_timer_sync() can't detect that the timer's 1021 * handler yet has not finished. This also guarantees that the 1022 * timer is serialized wrt itself. 1023 */ 1024 if (likely(base->running_timer != timer)) { 1025 /* See the comment in lock_timer_base() */ 1026 timer->flags |= TIMER_MIGRATING; 1027 1028 raw_spin_unlock(&base->lock); 1029 base = new_base; 1030 raw_spin_lock(&base->lock); 1031 WRITE_ONCE(timer->flags, 1032 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1033 forward_timer_base(base); 1034 } 1035 } 1036 1037 timer->expires = expires; 1038 /* 1039 * If 'idx' was calculated above and the base time did not advance 1040 * between calculating 'idx' and possibly switching the base, only 1041 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1042 * we need to (re)calculate the wheel index via 1043 * internal_add_timer(). 1044 */ 1045 if (idx != UINT_MAX && clk == base->clk) { 1046 enqueue_timer(base, timer, idx); 1047 trigger_dyntick_cpu(base, timer); 1048 } else { 1049 internal_add_timer(base, timer); 1050 } 1051 1052 out_unlock: 1053 raw_spin_unlock_irqrestore(&base->lock, flags); 1054 1055 return ret; 1056 } 1057 1058 /** 1059 * mod_timer_pending - modify a pending timer's timeout 1060 * @timer: the pending timer to be modified 1061 * @expires: new timeout in jiffies 1062 * 1063 * mod_timer_pending() is the same for pending timers as mod_timer(), 1064 * but will not re-activate and modify already deleted timers. 1065 * 1066 * It is useful for unserialized use of timers. 1067 */ 1068 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1069 { 1070 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1071 } 1072 EXPORT_SYMBOL(mod_timer_pending); 1073 1074 /** 1075 * mod_timer - modify a timer's timeout 1076 * @timer: the timer to be modified 1077 * @expires: new timeout in jiffies 1078 * 1079 * mod_timer() is a more efficient way to update the expire field of an 1080 * active timer (if the timer is inactive it will be activated) 1081 * 1082 * mod_timer(timer, expires) is equivalent to: 1083 * 1084 * del_timer(timer); timer->expires = expires; add_timer(timer); 1085 * 1086 * Note that if there are multiple unserialized concurrent users of the 1087 * same timer, then mod_timer() is the only safe way to modify the timeout, 1088 * since add_timer() cannot modify an already running timer. 1089 * 1090 * The function returns whether it has modified a pending timer or not. 1091 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1092 * active timer returns 1.) 1093 */ 1094 int mod_timer(struct timer_list *timer, unsigned long expires) 1095 { 1096 return __mod_timer(timer, expires, 0); 1097 } 1098 EXPORT_SYMBOL(mod_timer); 1099 1100 /** 1101 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1102 * @timer: The timer to be modified 1103 * @expires: New timeout in jiffies 1104 * 1105 * timer_reduce() is very similar to mod_timer(), except that it will only 1106 * modify a running timer if that would reduce the expiration time (it will 1107 * start a timer that isn't running). 1108 */ 1109 int timer_reduce(struct timer_list *timer, unsigned long expires) 1110 { 1111 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1112 } 1113 EXPORT_SYMBOL(timer_reduce); 1114 1115 /** 1116 * add_timer - start a timer 1117 * @timer: the timer to be added 1118 * 1119 * The kernel will do a ->function(@timer) callback from the 1120 * timer interrupt at the ->expires point in the future. The 1121 * current time is 'jiffies'. 1122 * 1123 * The timer's ->expires, ->function fields must be set prior calling this 1124 * function. 1125 * 1126 * Timers with an ->expires field in the past will be executed in the next 1127 * timer tick. 1128 */ 1129 void add_timer(struct timer_list *timer) 1130 { 1131 BUG_ON(timer_pending(timer)); 1132 mod_timer(timer, timer->expires); 1133 } 1134 EXPORT_SYMBOL(add_timer); 1135 1136 /** 1137 * add_timer_on - start a timer on a particular CPU 1138 * @timer: the timer to be added 1139 * @cpu: the CPU to start it on 1140 * 1141 * This is not very scalable on SMP. Double adds are not possible. 1142 */ 1143 void add_timer_on(struct timer_list *timer, int cpu) 1144 { 1145 struct timer_base *new_base, *base; 1146 unsigned long flags; 1147 1148 BUG_ON(timer_pending(timer) || !timer->function); 1149 1150 new_base = get_timer_cpu_base(timer->flags, cpu); 1151 1152 /* 1153 * If @timer was on a different CPU, it should be migrated with the 1154 * old base locked to prevent other operations proceeding with the 1155 * wrong base locked. See lock_timer_base(). 1156 */ 1157 base = lock_timer_base(timer, &flags); 1158 if (base != new_base) { 1159 timer->flags |= TIMER_MIGRATING; 1160 1161 raw_spin_unlock(&base->lock); 1162 base = new_base; 1163 raw_spin_lock(&base->lock); 1164 WRITE_ONCE(timer->flags, 1165 (timer->flags & ~TIMER_BASEMASK) | cpu); 1166 } 1167 forward_timer_base(base); 1168 1169 debug_activate(timer, timer->expires); 1170 internal_add_timer(base, timer); 1171 raw_spin_unlock_irqrestore(&base->lock, flags); 1172 } 1173 EXPORT_SYMBOL_GPL(add_timer_on); 1174 1175 /** 1176 * del_timer - deactivate a timer. 1177 * @timer: the timer to be deactivated 1178 * 1179 * del_timer() deactivates a timer - this works on both active and inactive 1180 * timers. 1181 * 1182 * The function returns whether it has deactivated a pending timer or not. 1183 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1184 * active timer returns 1.) 1185 */ 1186 int del_timer(struct timer_list *timer) 1187 { 1188 struct timer_base *base; 1189 unsigned long flags; 1190 int ret = 0; 1191 1192 debug_assert_init(timer); 1193 1194 if (timer_pending(timer)) { 1195 base = lock_timer_base(timer, &flags); 1196 ret = detach_if_pending(timer, base, true); 1197 raw_spin_unlock_irqrestore(&base->lock, flags); 1198 } 1199 1200 return ret; 1201 } 1202 EXPORT_SYMBOL(del_timer); 1203 1204 /** 1205 * try_to_del_timer_sync - Try to deactivate a timer 1206 * @timer: timer to delete 1207 * 1208 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1209 * exit the timer is not queued and the handler is not running on any CPU. 1210 */ 1211 int try_to_del_timer_sync(struct timer_list *timer) 1212 { 1213 struct timer_base *base; 1214 unsigned long flags; 1215 int ret = -1; 1216 1217 debug_assert_init(timer); 1218 1219 base = lock_timer_base(timer, &flags); 1220 1221 if (base->running_timer != timer) 1222 ret = detach_if_pending(timer, base, true); 1223 1224 raw_spin_unlock_irqrestore(&base->lock, flags); 1225 1226 return ret; 1227 } 1228 EXPORT_SYMBOL(try_to_del_timer_sync); 1229 1230 #ifdef CONFIG_SMP 1231 /** 1232 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1233 * @timer: the timer to be deactivated 1234 * 1235 * This function only differs from del_timer() on SMP: besides deactivating 1236 * the timer it also makes sure the handler has finished executing on other 1237 * CPUs. 1238 * 1239 * Synchronization rules: Callers must prevent restarting of the timer, 1240 * otherwise this function is meaningless. It must not be called from 1241 * interrupt contexts unless the timer is an irqsafe one. The caller must 1242 * not hold locks which would prevent completion of the timer's 1243 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1244 * timer is not queued and the handler is not running on any CPU. 1245 * 1246 * Note: For !irqsafe timers, you must not hold locks that are held in 1247 * interrupt context while calling this function. Even if the lock has 1248 * nothing to do with the timer in question. Here's why: 1249 * 1250 * CPU0 CPU1 1251 * ---- ---- 1252 * <SOFTIRQ> 1253 * call_timer_fn(); 1254 * base->running_timer = mytimer; 1255 * spin_lock_irq(somelock); 1256 * <IRQ> 1257 * spin_lock(somelock); 1258 * del_timer_sync(mytimer); 1259 * while (base->running_timer == mytimer); 1260 * 1261 * Now del_timer_sync() will never return and never release somelock. 1262 * The interrupt on the other CPU is waiting to grab somelock but 1263 * it has interrupted the softirq that CPU0 is waiting to finish. 1264 * 1265 * The function returns whether it has deactivated a pending timer or not. 1266 */ 1267 int del_timer_sync(struct timer_list *timer) 1268 { 1269 #ifdef CONFIG_LOCKDEP 1270 unsigned long flags; 1271 1272 /* 1273 * If lockdep gives a backtrace here, please reference 1274 * the synchronization rules above. 1275 */ 1276 local_irq_save(flags); 1277 lock_map_acquire(&timer->lockdep_map); 1278 lock_map_release(&timer->lockdep_map); 1279 local_irq_restore(flags); 1280 #endif 1281 /* 1282 * don't use it in hardirq context, because it 1283 * could lead to deadlock. 1284 */ 1285 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1286 for (;;) { 1287 int ret = try_to_del_timer_sync(timer); 1288 if (ret >= 0) 1289 return ret; 1290 cpu_relax(); 1291 } 1292 } 1293 EXPORT_SYMBOL(del_timer_sync); 1294 #endif 1295 1296 static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *)) 1297 { 1298 int count = preempt_count(); 1299 1300 #ifdef CONFIG_LOCKDEP 1301 /* 1302 * It is permissible to free the timer from inside the 1303 * function that is called from it, this we need to take into 1304 * account for lockdep too. To avoid bogus "held lock freed" 1305 * warnings as well as problems when looking into 1306 * timer->lockdep_map, make a copy and use that here. 1307 */ 1308 struct lockdep_map lockdep_map; 1309 1310 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1311 #endif 1312 /* 1313 * Couple the lock chain with the lock chain at 1314 * del_timer_sync() by acquiring the lock_map around the fn() 1315 * call here and in del_timer_sync(). 1316 */ 1317 lock_map_acquire(&lockdep_map); 1318 1319 trace_timer_expire_entry(timer); 1320 fn(timer); 1321 trace_timer_expire_exit(timer); 1322 1323 lock_map_release(&lockdep_map); 1324 1325 if (count != preempt_count()) { 1326 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1327 fn, count, preempt_count()); 1328 /* 1329 * Restore the preempt count. That gives us a decent 1330 * chance to survive and extract information. If the 1331 * callback kept a lock held, bad luck, but not worse 1332 * than the BUG() we had. 1333 */ 1334 preempt_count_set(count); 1335 } 1336 } 1337 1338 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1339 { 1340 while (!hlist_empty(head)) { 1341 struct timer_list *timer; 1342 void (*fn)(struct timer_list *); 1343 1344 timer = hlist_entry(head->first, struct timer_list, entry); 1345 1346 base->running_timer = timer; 1347 detach_timer(timer, true); 1348 1349 fn = timer->function; 1350 1351 if (timer->flags & TIMER_IRQSAFE) { 1352 raw_spin_unlock(&base->lock); 1353 call_timer_fn(timer, fn); 1354 raw_spin_lock(&base->lock); 1355 } else { 1356 raw_spin_unlock_irq(&base->lock); 1357 call_timer_fn(timer, fn); 1358 raw_spin_lock_irq(&base->lock); 1359 } 1360 } 1361 } 1362 1363 static int __collect_expired_timers(struct timer_base *base, 1364 struct hlist_head *heads) 1365 { 1366 unsigned long clk = base->clk; 1367 struct hlist_head *vec; 1368 int i, levels = 0; 1369 unsigned int idx; 1370 1371 for (i = 0; i < LVL_DEPTH; i++) { 1372 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1373 1374 if (__test_and_clear_bit(idx, base->pending_map)) { 1375 vec = base->vectors + idx; 1376 hlist_move_list(vec, heads++); 1377 levels++; 1378 } 1379 /* Is it time to look at the next level? */ 1380 if (clk & LVL_CLK_MASK) 1381 break; 1382 /* Shift clock for the next level granularity */ 1383 clk >>= LVL_CLK_SHIFT; 1384 } 1385 return levels; 1386 } 1387 1388 #ifdef CONFIG_NO_HZ_COMMON 1389 /* 1390 * Find the next pending bucket of a level. Search from level start (@offset) 1391 * + @clk upwards and if nothing there, search from start of the level 1392 * (@offset) up to @offset + clk. 1393 */ 1394 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1395 unsigned clk) 1396 { 1397 unsigned pos, start = offset + clk; 1398 unsigned end = offset + LVL_SIZE; 1399 1400 pos = find_next_bit(base->pending_map, end, start); 1401 if (pos < end) 1402 return pos - start; 1403 1404 pos = find_next_bit(base->pending_map, start, offset); 1405 return pos < start ? pos + LVL_SIZE - start : -1; 1406 } 1407 1408 /* 1409 * Search the first expiring timer in the various clock levels. Caller must 1410 * hold base->lock. 1411 */ 1412 static unsigned long __next_timer_interrupt(struct timer_base *base) 1413 { 1414 unsigned long clk, next, adj; 1415 unsigned lvl, offset = 0; 1416 1417 next = base->clk + NEXT_TIMER_MAX_DELTA; 1418 clk = base->clk; 1419 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1420 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1421 1422 if (pos >= 0) { 1423 unsigned long tmp = clk + (unsigned long) pos; 1424 1425 tmp <<= LVL_SHIFT(lvl); 1426 if (time_before(tmp, next)) 1427 next = tmp; 1428 } 1429 /* 1430 * Clock for the next level. If the current level clock lower 1431 * bits are zero, we look at the next level as is. If not we 1432 * need to advance it by one because that's going to be the 1433 * next expiring bucket in that level. base->clk is the next 1434 * expiring jiffie. So in case of: 1435 * 1436 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1437 * 0 0 0 0 0 0 1438 * 1439 * we have to look at all levels @index 0. With 1440 * 1441 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1442 * 0 0 0 0 0 2 1443 * 1444 * LVL0 has the next expiring bucket @index 2. The upper 1445 * levels have the next expiring bucket @index 1. 1446 * 1447 * In case that the propagation wraps the next level the same 1448 * rules apply: 1449 * 1450 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1451 * 0 0 0 0 F 2 1452 * 1453 * So after looking at LVL0 we get: 1454 * 1455 * LVL5 LVL4 LVL3 LVL2 LVL1 1456 * 0 0 0 1 0 1457 * 1458 * So no propagation from LVL1 to LVL2 because that happened 1459 * with the add already, but then we need to propagate further 1460 * from LVL2 to LVL3. 1461 * 1462 * So the simple check whether the lower bits of the current 1463 * level are 0 or not is sufficient for all cases. 1464 */ 1465 adj = clk & LVL_CLK_MASK ? 1 : 0; 1466 clk >>= LVL_CLK_SHIFT; 1467 clk += adj; 1468 } 1469 return next; 1470 } 1471 1472 /* 1473 * Check, if the next hrtimer event is before the next timer wheel 1474 * event: 1475 */ 1476 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1477 { 1478 u64 nextevt = hrtimer_get_next_event(); 1479 1480 /* 1481 * If high resolution timers are enabled 1482 * hrtimer_get_next_event() returns KTIME_MAX. 1483 */ 1484 if (expires <= nextevt) 1485 return expires; 1486 1487 /* 1488 * If the next timer is already expired, return the tick base 1489 * time so the tick is fired immediately. 1490 */ 1491 if (nextevt <= basem) 1492 return basem; 1493 1494 /* 1495 * Round up to the next jiffie. High resolution timers are 1496 * off, so the hrtimers are expired in the tick and we need to 1497 * make sure that this tick really expires the timer to avoid 1498 * a ping pong of the nohz stop code. 1499 * 1500 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1501 */ 1502 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1503 } 1504 1505 /** 1506 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1507 * @basej: base time jiffies 1508 * @basem: base time clock monotonic 1509 * 1510 * Returns the tick aligned clock monotonic time of the next pending 1511 * timer or KTIME_MAX if no timer is pending. 1512 */ 1513 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1514 { 1515 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1516 u64 expires = KTIME_MAX; 1517 unsigned long nextevt; 1518 bool is_max_delta; 1519 1520 /* 1521 * Pretend that there is no timer pending if the cpu is offline. 1522 * Possible pending timers will be migrated later to an active cpu. 1523 */ 1524 if (cpu_is_offline(smp_processor_id())) 1525 return expires; 1526 1527 raw_spin_lock(&base->lock); 1528 nextevt = __next_timer_interrupt(base); 1529 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1530 base->next_expiry = nextevt; 1531 /* 1532 * We have a fresh next event. Check whether we can forward the 1533 * base. We can only do that when @basej is past base->clk 1534 * otherwise we might rewind base->clk. 1535 */ 1536 if (time_after(basej, base->clk)) { 1537 if (time_after(nextevt, basej)) 1538 base->clk = basej; 1539 else if (time_after(nextevt, base->clk)) 1540 base->clk = nextevt; 1541 } 1542 1543 if (time_before_eq(nextevt, basej)) { 1544 expires = basem; 1545 base->is_idle = false; 1546 } else { 1547 if (!is_max_delta) 1548 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1549 /* 1550 * If we expect to sleep more than a tick, mark the base idle. 1551 * Also the tick is stopped so any added timer must forward 1552 * the base clk itself to keep granularity small. This idle 1553 * logic is only maintained for the BASE_STD base, deferrable 1554 * timers may still see large granularity skew (by design). 1555 */ 1556 if ((expires - basem) > TICK_NSEC) { 1557 base->must_forward_clk = true; 1558 base->is_idle = true; 1559 } 1560 } 1561 raw_spin_unlock(&base->lock); 1562 1563 return cmp_next_hrtimer_event(basem, expires); 1564 } 1565 1566 /** 1567 * timer_clear_idle - Clear the idle state of the timer base 1568 * 1569 * Called with interrupts disabled 1570 */ 1571 void timer_clear_idle(void) 1572 { 1573 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1574 1575 /* 1576 * We do this unlocked. The worst outcome is a remote enqueue sending 1577 * a pointless IPI, but taking the lock would just make the window for 1578 * sending the IPI a few instructions smaller for the cost of taking 1579 * the lock in the exit from idle path. 1580 */ 1581 base->is_idle = false; 1582 } 1583 1584 static int collect_expired_timers(struct timer_base *base, 1585 struct hlist_head *heads) 1586 { 1587 /* 1588 * NOHZ optimization. After a long idle sleep we need to forward the 1589 * base to current jiffies. Avoid a loop by searching the bitfield for 1590 * the next expiring timer. 1591 */ 1592 if ((long)(jiffies - base->clk) > 2) { 1593 unsigned long next = __next_timer_interrupt(base); 1594 1595 /* 1596 * If the next timer is ahead of time forward to current 1597 * jiffies, otherwise forward to the next expiry time: 1598 */ 1599 if (time_after(next, jiffies)) { 1600 /* 1601 * The call site will increment base->clk and then 1602 * terminate the expiry loop immediately. 1603 */ 1604 base->clk = jiffies; 1605 return 0; 1606 } 1607 base->clk = next; 1608 } 1609 return __collect_expired_timers(base, heads); 1610 } 1611 #else 1612 static inline int collect_expired_timers(struct timer_base *base, 1613 struct hlist_head *heads) 1614 { 1615 return __collect_expired_timers(base, heads); 1616 } 1617 #endif 1618 1619 /* 1620 * Called from the timer interrupt handler to charge one tick to the current 1621 * process. user_tick is 1 if the tick is user time, 0 for system. 1622 */ 1623 void update_process_times(int user_tick) 1624 { 1625 struct task_struct *p = current; 1626 1627 /* Note: this timer irq context must be accounted for as well. */ 1628 account_process_tick(p, user_tick); 1629 run_local_timers(); 1630 rcu_check_callbacks(user_tick); 1631 #ifdef CONFIG_IRQ_WORK 1632 if (in_irq()) 1633 irq_work_tick(); 1634 #endif 1635 scheduler_tick(); 1636 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1637 run_posix_cpu_timers(p); 1638 } 1639 1640 /** 1641 * __run_timers - run all expired timers (if any) on this CPU. 1642 * @base: the timer vector to be processed. 1643 */ 1644 static inline void __run_timers(struct timer_base *base) 1645 { 1646 struct hlist_head heads[LVL_DEPTH]; 1647 int levels; 1648 1649 if (!time_after_eq(jiffies, base->clk)) 1650 return; 1651 1652 raw_spin_lock_irq(&base->lock); 1653 1654 while (time_after_eq(jiffies, base->clk)) { 1655 1656 levels = collect_expired_timers(base, heads); 1657 base->clk++; 1658 1659 while (levels--) 1660 expire_timers(base, heads + levels); 1661 } 1662 base->running_timer = NULL; 1663 raw_spin_unlock_irq(&base->lock); 1664 } 1665 1666 /* 1667 * This function runs timers and the timer-tq in bottom half context. 1668 */ 1669 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1670 { 1671 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1672 1673 /* 1674 * must_forward_clk must be cleared before running timers so that any 1675 * timer functions that call mod_timer will not try to forward the 1676 * base. idle trcking / clock forwarding logic is only used with 1677 * BASE_STD timers. 1678 * 1679 * The deferrable base does not do idle tracking at all, so we do 1680 * not forward it. This can result in very large variations in 1681 * granularity for deferrable timers, but they can be deferred for 1682 * long periods due to idle. 1683 */ 1684 base->must_forward_clk = false; 1685 1686 __run_timers(base); 1687 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active) 1688 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1689 } 1690 1691 /* 1692 * Called by the local, per-CPU timer interrupt on SMP. 1693 */ 1694 void run_local_timers(void) 1695 { 1696 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1697 1698 hrtimer_run_queues(); 1699 /* Raise the softirq only if required. */ 1700 if (time_before(jiffies, base->clk)) { 1701 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 1702 return; 1703 /* CPU is awake, so check the deferrable base. */ 1704 base++; 1705 if (time_before(jiffies, base->clk)) 1706 return; 1707 } 1708 raise_softirq(TIMER_SOFTIRQ); 1709 } 1710 1711 /* 1712 * Since schedule_timeout()'s timer is defined on the stack, it must store 1713 * the target task on the stack as well. 1714 */ 1715 struct process_timer { 1716 struct timer_list timer; 1717 struct task_struct *task; 1718 }; 1719 1720 static void process_timeout(struct timer_list *t) 1721 { 1722 struct process_timer *timeout = from_timer(timeout, t, timer); 1723 1724 wake_up_process(timeout->task); 1725 } 1726 1727 /** 1728 * schedule_timeout - sleep until timeout 1729 * @timeout: timeout value in jiffies 1730 * 1731 * Make the current task sleep until @timeout jiffies have 1732 * elapsed. The routine will return immediately unless 1733 * the current task state has been set (see set_current_state()). 1734 * 1735 * You can set the task state as follows - 1736 * 1737 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1738 * pass before the routine returns unless the current task is explicitly 1739 * woken up, (e.g. by wake_up_process())". 1740 * 1741 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1742 * delivered to the current task or the current task is explicitly woken 1743 * up. 1744 * 1745 * The current task state is guaranteed to be TASK_RUNNING when this 1746 * routine returns. 1747 * 1748 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1749 * the CPU away without a bound on the timeout. In this case the return 1750 * value will be %MAX_SCHEDULE_TIMEOUT. 1751 * 1752 * Returns 0 when the timer has expired otherwise the remaining time in 1753 * jiffies will be returned. In all cases the return value is guaranteed 1754 * to be non-negative. 1755 */ 1756 signed long __sched schedule_timeout(signed long timeout) 1757 { 1758 struct process_timer timer; 1759 unsigned long expire; 1760 1761 switch (timeout) 1762 { 1763 case MAX_SCHEDULE_TIMEOUT: 1764 /* 1765 * These two special cases are useful to be comfortable 1766 * in the caller. Nothing more. We could take 1767 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1768 * but I' d like to return a valid offset (>=0) to allow 1769 * the caller to do everything it want with the retval. 1770 */ 1771 schedule(); 1772 goto out; 1773 default: 1774 /* 1775 * Another bit of PARANOID. Note that the retval will be 1776 * 0 since no piece of kernel is supposed to do a check 1777 * for a negative retval of schedule_timeout() (since it 1778 * should never happens anyway). You just have the printk() 1779 * that will tell you if something is gone wrong and where. 1780 */ 1781 if (timeout < 0) { 1782 printk(KERN_ERR "schedule_timeout: wrong timeout " 1783 "value %lx\n", timeout); 1784 dump_stack(); 1785 current->state = TASK_RUNNING; 1786 goto out; 1787 } 1788 } 1789 1790 expire = timeout + jiffies; 1791 1792 timer.task = current; 1793 timer_setup_on_stack(&timer.timer, process_timeout, 0); 1794 __mod_timer(&timer.timer, expire, 0); 1795 schedule(); 1796 del_singleshot_timer_sync(&timer.timer); 1797 1798 /* Remove the timer from the object tracker */ 1799 destroy_timer_on_stack(&timer.timer); 1800 1801 timeout = expire - jiffies; 1802 1803 out: 1804 return timeout < 0 ? 0 : timeout; 1805 } 1806 EXPORT_SYMBOL(schedule_timeout); 1807 1808 /* 1809 * We can use __set_current_state() here because schedule_timeout() calls 1810 * schedule() unconditionally. 1811 */ 1812 signed long __sched schedule_timeout_interruptible(signed long timeout) 1813 { 1814 __set_current_state(TASK_INTERRUPTIBLE); 1815 return schedule_timeout(timeout); 1816 } 1817 EXPORT_SYMBOL(schedule_timeout_interruptible); 1818 1819 signed long __sched schedule_timeout_killable(signed long timeout) 1820 { 1821 __set_current_state(TASK_KILLABLE); 1822 return schedule_timeout(timeout); 1823 } 1824 EXPORT_SYMBOL(schedule_timeout_killable); 1825 1826 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1827 { 1828 __set_current_state(TASK_UNINTERRUPTIBLE); 1829 return schedule_timeout(timeout); 1830 } 1831 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1832 1833 /* 1834 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1835 * to load average. 1836 */ 1837 signed long __sched schedule_timeout_idle(signed long timeout) 1838 { 1839 __set_current_state(TASK_IDLE); 1840 return schedule_timeout(timeout); 1841 } 1842 EXPORT_SYMBOL(schedule_timeout_idle); 1843 1844 #ifdef CONFIG_HOTPLUG_CPU 1845 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1846 { 1847 struct timer_list *timer; 1848 int cpu = new_base->cpu; 1849 1850 while (!hlist_empty(head)) { 1851 timer = hlist_entry(head->first, struct timer_list, entry); 1852 detach_timer(timer, false); 1853 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1854 internal_add_timer(new_base, timer); 1855 } 1856 } 1857 1858 int timers_dead_cpu(unsigned int cpu) 1859 { 1860 struct timer_base *old_base; 1861 struct timer_base *new_base; 1862 int b, i; 1863 1864 BUG_ON(cpu_online(cpu)); 1865 1866 for (b = 0; b < NR_BASES; b++) { 1867 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1868 new_base = get_cpu_ptr(&timer_bases[b]); 1869 /* 1870 * The caller is globally serialized and nobody else 1871 * takes two locks at once, deadlock is not possible. 1872 */ 1873 raw_spin_lock_irq(&new_base->lock); 1874 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1875 1876 BUG_ON(old_base->running_timer); 1877 1878 for (i = 0; i < WHEEL_SIZE; i++) 1879 migrate_timer_list(new_base, old_base->vectors + i); 1880 1881 raw_spin_unlock(&old_base->lock); 1882 raw_spin_unlock_irq(&new_base->lock); 1883 put_cpu_ptr(&timer_bases); 1884 } 1885 return 0; 1886 } 1887 1888 #endif /* CONFIG_HOTPLUG_CPU */ 1889 1890 static void __init init_timer_cpu(int cpu) 1891 { 1892 struct timer_base *base; 1893 int i; 1894 1895 for (i = 0; i < NR_BASES; i++) { 1896 base = per_cpu_ptr(&timer_bases[i], cpu); 1897 base->cpu = cpu; 1898 raw_spin_lock_init(&base->lock); 1899 base->clk = jiffies; 1900 } 1901 } 1902 1903 static void __init init_timer_cpus(void) 1904 { 1905 int cpu; 1906 1907 for_each_possible_cpu(cpu) 1908 init_timer_cpu(cpu); 1909 } 1910 1911 void __init init_timers(void) 1912 { 1913 init_timer_cpus(); 1914 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1915 } 1916 1917 /** 1918 * msleep - sleep safely even with waitqueue interruptions 1919 * @msecs: Time in milliseconds to sleep for 1920 */ 1921 void msleep(unsigned int msecs) 1922 { 1923 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1924 1925 while (timeout) 1926 timeout = schedule_timeout_uninterruptible(timeout); 1927 } 1928 1929 EXPORT_SYMBOL(msleep); 1930 1931 /** 1932 * msleep_interruptible - sleep waiting for signals 1933 * @msecs: Time in milliseconds to sleep for 1934 */ 1935 unsigned long msleep_interruptible(unsigned int msecs) 1936 { 1937 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1938 1939 while (timeout && !signal_pending(current)) 1940 timeout = schedule_timeout_interruptible(timeout); 1941 return jiffies_to_msecs(timeout); 1942 } 1943 1944 EXPORT_SYMBOL(msleep_interruptible); 1945 1946 /** 1947 * usleep_range - Sleep for an approximate time 1948 * @min: Minimum time in usecs to sleep 1949 * @max: Maximum time in usecs to sleep 1950 * 1951 * In non-atomic context where the exact wakeup time is flexible, use 1952 * usleep_range() instead of udelay(). The sleep improves responsiveness 1953 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 1954 * power usage by allowing hrtimers to take advantage of an already- 1955 * scheduled interrupt instead of scheduling a new one just for this sleep. 1956 */ 1957 void __sched usleep_range(unsigned long min, unsigned long max) 1958 { 1959 ktime_t exp = ktime_add_us(ktime_get(), min); 1960 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 1961 1962 for (;;) { 1963 __set_current_state(TASK_UNINTERRUPTIBLE); 1964 /* Do not return before the requested sleep time has elapsed */ 1965 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 1966 break; 1967 } 1968 } 1969 EXPORT_SYMBOL(usleep_range); 1970