xref: /linux/kernel/time/timer.c (revision da51bbcdbace8f43adf6066934c3926b656376e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 #include <linux/sysctl.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/div64.h>
52 #include <asm/timex.h>
53 #include <asm/io.h>
54 
55 #include "tick-internal.h"
56 #include "timer_migration.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/timer.h>
60 
61 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
62 
63 EXPORT_SYMBOL(jiffies_64);
64 
65 /*
66  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
67  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
68  * level has a different granularity.
69  *
70  * The level granularity is:		LVL_CLK_DIV ^ lvl
71  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
72  *
73  * The array level of a newly armed timer depends on the relative expiry
74  * time. The farther the expiry time is away the higher the array level and
75  * therefor the granularity becomes.
76  *
77  * Contrary to the original timer wheel implementation, which aims for 'exact'
78  * expiry of the timers, this implementation removes the need for recascading
79  * the timers into the lower array levels. The previous 'classic' timer wheel
80  * implementation of the kernel already violated the 'exact' expiry by adding
81  * slack to the expiry time to provide batched expiration. The granularity
82  * levels provide implicit batching.
83  *
84  * This is an optimization of the original timer wheel implementation for the
85  * majority of the timer wheel use cases: timeouts. The vast majority of
86  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
87  * the timeout expires it indicates that normal operation is disturbed, so it
88  * does not matter much whether the timeout comes with a slight delay.
89  *
90  * The only exception to this are networking timers with a small expiry
91  * time. They rely on the granularity. Those fit into the first wheel level,
92  * which has HZ granularity.
93  *
94  * We don't have cascading anymore. timers with a expiry time above the
95  * capacity of the last wheel level are force expired at the maximum timeout
96  * value of the last wheel level. From data sampling we know that the maximum
97  * value observed is 5 days (network connection tracking), so this should not
98  * be an issue.
99  *
100  * The currently chosen array constants values are a good compromise between
101  * array size and granularity.
102  *
103  * This results in the following granularity and range levels:
104  *
105  * HZ 1000 steps
106  * Level Offset  Granularity            Range
107  *  0      0         1 ms                0 ms -         63 ms
108  *  1     64         8 ms               64 ms -        511 ms
109  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
110  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
111  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
112  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
113  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
114  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
115  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
116  *
117  * HZ  300
118  * Level Offset  Granularity            Range
119  *  0	   0         3 ms                0 ms -        210 ms
120  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
121  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
122  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
123  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
124  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
125  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
126  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
127  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
128  *
129  * HZ  250
130  * Level Offset  Granularity            Range
131  *  0	   0         4 ms                0 ms -        255 ms
132  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
133  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
134  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
135  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
136  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
137  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
138  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
139  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
140  *
141  * HZ  100
142  * Level Offset  Granularity            Range
143  *  0	   0         10 ms               0 ms -        630 ms
144  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
145  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
146  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
147  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
148  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
149  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
150  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
151  */
152 
153 /* Clock divisor for the next level */
154 #define LVL_CLK_SHIFT	3
155 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
156 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
157 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
158 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
159 
160 /*
161  * The time start value for each level to select the bucket at enqueue
162  * time. We start from the last possible delta of the previous level
163  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
164  */
165 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
166 
167 /* Size of each clock level */
168 #define LVL_BITS	6
169 #define LVL_SIZE	(1UL << LVL_BITS)
170 #define LVL_MASK	(LVL_SIZE - 1)
171 #define LVL_OFFS(n)	((n) * LVL_SIZE)
172 
173 /* Level depth */
174 #if HZ > 100
175 # define LVL_DEPTH	9
176 # else
177 # define LVL_DEPTH	8
178 #endif
179 
180 /* The cutoff (max. capacity of the wheel) */
181 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
182 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
183 
184 /*
185  * The resulting wheel size. If NOHZ is configured we allocate two
186  * wheels so we have a separate storage for the deferrable timers.
187  */
188 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
189 
190 #ifdef CONFIG_NO_HZ_COMMON
191 /*
192  * If multiple bases need to be locked, use the base ordering for lock
193  * nesting, i.e. lowest number first.
194  */
195 # define NR_BASES	3
196 # define BASE_LOCAL	0
197 # define BASE_GLOBAL	1
198 # define BASE_DEF	2
199 #else
200 # define NR_BASES	1
201 # define BASE_LOCAL	0
202 # define BASE_GLOBAL	0
203 # define BASE_DEF	0
204 #endif
205 
206 /**
207  * struct timer_base - Per CPU timer base (number of base depends on config)
208  * @lock:		Lock protecting the timer_base
209  * @running_timer:	When expiring timers, the lock is dropped. To make
210  *			sure not to race agains deleting/modifying a
211  *			currently running timer, the pointer is set to the
212  *			timer, which expires at the moment. If no timer is
213  *			running, the pointer is NULL.
214  * @expiry_lock:	PREEMPT_RT only: Lock is taken in softirq around
215  *			timer expiry callback execution and when trying to
216  *			delete a running timer and it wasn't successful in
217  *			the first glance. It prevents priority inversion
218  *			when callback was preempted on a remote CPU and a
219  *			caller tries to delete the running timer. It also
220  *			prevents a life lock, when the task which tries to
221  *			delete a timer preempted the softirq thread which
222  *			is running the timer callback function.
223  * @timer_waiters:	PREEMPT_RT only: Tells, if there is a waiter
224  *			waiting for the end of the timer callback function
225  *			execution.
226  * @clk:		clock of the timer base; is updated before enqueue
227  *			of a timer; during expiry, it is 1 offset ahead of
228  *			jiffies to avoid endless requeuing to current
229  *			jiffies
230  * @next_expiry:	expiry value of the first timer; it is updated when
231  *			finding the next timer and during enqueue; the
232  *			value is not valid, when next_expiry_recalc is set
233  * @cpu:		Number of CPU the timer base belongs to
234  * @next_expiry_recalc: States, whether a recalculation of next_expiry is
235  *			required. Value is set true, when a timer was
236  *			deleted.
237  * @is_idle:		Is set, when timer_base is idle. It is triggered by NOHZ
238  *			code. This state is only used in standard
239  *			base. Deferrable timers, which are enqueued remotely
240  *			never wake up an idle CPU. So no matter of supporting it
241  *			for this base.
242  * @timers_pending:	Is set, when a timer is pending in the base. It is only
243  *			reliable when next_expiry_recalc is not set.
244  * @pending_map:	bitmap of the timer wheel; each bit reflects a
245  *			bucket of the wheel. When a bit is set, at least a
246  *			single timer is enqueued in the related bucket.
247  * @vectors:		Array of lists; Each array member reflects a bucket
248  *			of the timer wheel. The list contains all timers
249  *			which are enqueued into a specific bucket.
250  */
251 struct timer_base {
252 	raw_spinlock_t		lock;
253 	struct timer_list	*running_timer;
254 #ifdef CONFIG_PREEMPT_RT
255 	spinlock_t		expiry_lock;
256 	atomic_t		timer_waiters;
257 #endif
258 	unsigned long		clk;
259 	unsigned long		next_expiry;
260 	unsigned int		cpu;
261 	bool			next_expiry_recalc;
262 	bool			is_idle;
263 	bool			timers_pending;
264 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
265 	struct hlist_head	vectors[WHEEL_SIZE];
266 } ____cacheline_aligned;
267 
268 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
269 
270 #ifdef CONFIG_NO_HZ_COMMON
271 
272 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
273 static DEFINE_MUTEX(timer_keys_mutex);
274 
275 static void timer_update_keys(struct work_struct *work);
276 static DECLARE_WORK(timer_update_work, timer_update_keys);
277 
278 #ifdef CONFIG_SMP
279 static unsigned int sysctl_timer_migration = 1;
280 
281 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
282 
283 static void timers_update_migration(void)
284 {
285 	if (sysctl_timer_migration && tick_nohz_active)
286 		static_branch_enable(&timers_migration_enabled);
287 	else
288 		static_branch_disable(&timers_migration_enabled);
289 }
290 
291 #ifdef CONFIG_SYSCTL
292 static int timer_migration_handler(struct ctl_table *table, int write,
293 			    void *buffer, size_t *lenp, loff_t *ppos)
294 {
295 	int ret;
296 
297 	mutex_lock(&timer_keys_mutex);
298 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
299 	if (!ret && write)
300 		timers_update_migration();
301 	mutex_unlock(&timer_keys_mutex);
302 	return ret;
303 }
304 
305 static struct ctl_table timer_sysctl[] = {
306 	{
307 		.procname	= "timer_migration",
308 		.data		= &sysctl_timer_migration,
309 		.maxlen		= sizeof(unsigned int),
310 		.mode		= 0644,
311 		.proc_handler	= timer_migration_handler,
312 		.extra1		= SYSCTL_ZERO,
313 		.extra2		= SYSCTL_ONE,
314 	},
315 	{}
316 };
317 
318 static int __init timer_sysctl_init(void)
319 {
320 	register_sysctl("kernel", timer_sysctl);
321 	return 0;
322 }
323 device_initcall(timer_sysctl_init);
324 #endif /* CONFIG_SYSCTL */
325 #else /* CONFIG_SMP */
326 static inline void timers_update_migration(void) { }
327 #endif /* !CONFIG_SMP */
328 
329 static void timer_update_keys(struct work_struct *work)
330 {
331 	mutex_lock(&timer_keys_mutex);
332 	timers_update_migration();
333 	static_branch_enable(&timers_nohz_active);
334 	mutex_unlock(&timer_keys_mutex);
335 }
336 
337 void timers_update_nohz(void)
338 {
339 	schedule_work(&timer_update_work);
340 }
341 
342 static inline bool is_timers_nohz_active(void)
343 {
344 	return static_branch_unlikely(&timers_nohz_active);
345 }
346 #else
347 static inline bool is_timers_nohz_active(void) { return false; }
348 #endif /* NO_HZ_COMMON */
349 
350 static unsigned long round_jiffies_common(unsigned long j, int cpu,
351 		bool force_up)
352 {
353 	int rem;
354 	unsigned long original = j;
355 
356 	/*
357 	 * We don't want all cpus firing their timers at once hitting the
358 	 * same lock or cachelines, so we skew each extra cpu with an extra
359 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
360 	 * already did this.
361 	 * The skew is done by adding 3*cpunr, then round, then subtract this
362 	 * extra offset again.
363 	 */
364 	j += cpu * 3;
365 
366 	rem = j % HZ;
367 
368 	/*
369 	 * If the target jiffie is just after a whole second (which can happen
370 	 * due to delays of the timer irq, long irq off times etc etc) then
371 	 * we should round down to the whole second, not up. Use 1/4th second
372 	 * as cutoff for this rounding as an extreme upper bound for this.
373 	 * But never round down if @force_up is set.
374 	 */
375 	if (rem < HZ/4 && !force_up) /* round down */
376 		j = j - rem;
377 	else /* round up */
378 		j = j - rem + HZ;
379 
380 	/* now that we have rounded, subtract the extra skew again */
381 	j -= cpu * 3;
382 
383 	/*
384 	 * Make sure j is still in the future. Otherwise return the
385 	 * unmodified value.
386 	 */
387 	return time_is_after_jiffies(j) ? j : original;
388 }
389 
390 /**
391  * __round_jiffies - function to round jiffies to a full second
392  * @j: the time in (absolute) jiffies that should be rounded
393  * @cpu: the processor number on which the timeout will happen
394  *
395  * __round_jiffies() rounds an absolute time in the future (in jiffies)
396  * up or down to (approximately) full seconds. This is useful for timers
397  * for which the exact time they fire does not matter too much, as long as
398  * they fire approximately every X seconds.
399  *
400  * By rounding these timers to whole seconds, all such timers will fire
401  * at the same time, rather than at various times spread out. The goal
402  * of this is to have the CPU wake up less, which saves power.
403  *
404  * The exact rounding is skewed for each processor to avoid all
405  * processors firing at the exact same time, which could lead
406  * to lock contention or spurious cache line bouncing.
407  *
408  * The return value is the rounded version of the @j parameter.
409  */
410 unsigned long __round_jiffies(unsigned long j, int cpu)
411 {
412 	return round_jiffies_common(j, cpu, false);
413 }
414 EXPORT_SYMBOL_GPL(__round_jiffies);
415 
416 /**
417  * __round_jiffies_relative - function to round jiffies to a full second
418  * @j: the time in (relative) jiffies that should be rounded
419  * @cpu: the processor number on which the timeout will happen
420  *
421  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
422  * up or down to (approximately) full seconds. This is useful for timers
423  * for which the exact time they fire does not matter too much, as long as
424  * they fire approximately every X seconds.
425  *
426  * By rounding these timers to whole seconds, all such timers will fire
427  * at the same time, rather than at various times spread out. The goal
428  * of this is to have the CPU wake up less, which saves power.
429  *
430  * The exact rounding is skewed for each processor to avoid all
431  * processors firing at the exact same time, which could lead
432  * to lock contention or spurious cache line bouncing.
433  *
434  * The return value is the rounded version of the @j parameter.
435  */
436 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
437 {
438 	unsigned long j0 = jiffies;
439 
440 	/* Use j0 because jiffies might change while we run */
441 	return round_jiffies_common(j + j0, cpu, false) - j0;
442 }
443 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
444 
445 /**
446  * round_jiffies - function to round jiffies to a full second
447  * @j: the time in (absolute) jiffies that should be rounded
448  *
449  * round_jiffies() rounds an absolute time in the future (in jiffies)
450  * up or down to (approximately) full seconds. This is useful for timers
451  * for which the exact time they fire does not matter too much, as long as
452  * they fire approximately every X seconds.
453  *
454  * By rounding these timers to whole seconds, all such timers will fire
455  * at the same time, rather than at various times spread out. The goal
456  * of this is to have the CPU wake up less, which saves power.
457  *
458  * The return value is the rounded version of the @j parameter.
459  */
460 unsigned long round_jiffies(unsigned long j)
461 {
462 	return round_jiffies_common(j, raw_smp_processor_id(), false);
463 }
464 EXPORT_SYMBOL_GPL(round_jiffies);
465 
466 /**
467  * round_jiffies_relative - function to round jiffies to a full second
468  * @j: the time in (relative) jiffies that should be rounded
469  *
470  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
471  * up or down to (approximately) full seconds. This is useful for timers
472  * for which the exact time they fire does not matter too much, as long as
473  * they fire approximately every X seconds.
474  *
475  * By rounding these timers to whole seconds, all such timers will fire
476  * at the same time, rather than at various times spread out. The goal
477  * of this is to have the CPU wake up less, which saves power.
478  *
479  * The return value is the rounded version of the @j parameter.
480  */
481 unsigned long round_jiffies_relative(unsigned long j)
482 {
483 	return __round_jiffies_relative(j, raw_smp_processor_id());
484 }
485 EXPORT_SYMBOL_GPL(round_jiffies_relative);
486 
487 /**
488  * __round_jiffies_up - function to round jiffies up to a full second
489  * @j: the time in (absolute) jiffies that should be rounded
490  * @cpu: the processor number on which the timeout will happen
491  *
492  * This is the same as __round_jiffies() except that it will never
493  * round down.  This is useful for timeouts for which the exact time
494  * of firing does not matter too much, as long as they don't fire too
495  * early.
496  */
497 unsigned long __round_jiffies_up(unsigned long j, int cpu)
498 {
499 	return round_jiffies_common(j, cpu, true);
500 }
501 EXPORT_SYMBOL_GPL(__round_jiffies_up);
502 
503 /**
504  * __round_jiffies_up_relative - function to round jiffies up to a full second
505  * @j: the time in (relative) jiffies that should be rounded
506  * @cpu: the processor number on which the timeout will happen
507  *
508  * This is the same as __round_jiffies_relative() except that it will never
509  * round down.  This is useful for timeouts for which the exact time
510  * of firing does not matter too much, as long as they don't fire too
511  * early.
512  */
513 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
514 {
515 	unsigned long j0 = jiffies;
516 
517 	/* Use j0 because jiffies might change while we run */
518 	return round_jiffies_common(j + j0, cpu, true) - j0;
519 }
520 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
521 
522 /**
523  * round_jiffies_up - function to round jiffies up to a full second
524  * @j: the time in (absolute) jiffies that should be rounded
525  *
526  * This is the same as round_jiffies() except that it will never
527  * round down.  This is useful for timeouts for which the exact time
528  * of firing does not matter too much, as long as they don't fire too
529  * early.
530  */
531 unsigned long round_jiffies_up(unsigned long j)
532 {
533 	return round_jiffies_common(j, raw_smp_processor_id(), true);
534 }
535 EXPORT_SYMBOL_GPL(round_jiffies_up);
536 
537 /**
538  * round_jiffies_up_relative - function to round jiffies up to a full second
539  * @j: the time in (relative) jiffies that should be rounded
540  *
541  * This is the same as round_jiffies_relative() except that it will never
542  * round down.  This is useful for timeouts for which the exact time
543  * of firing does not matter too much, as long as they don't fire too
544  * early.
545  */
546 unsigned long round_jiffies_up_relative(unsigned long j)
547 {
548 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
549 }
550 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
551 
552 
553 static inline unsigned int timer_get_idx(struct timer_list *timer)
554 {
555 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
556 }
557 
558 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
559 {
560 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
561 			idx << TIMER_ARRAYSHIFT;
562 }
563 
564 /*
565  * Helper function to calculate the array index for a given expiry
566  * time.
567  */
568 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
569 				  unsigned long *bucket_expiry)
570 {
571 
572 	/*
573 	 * The timer wheel has to guarantee that a timer does not fire
574 	 * early. Early expiry can happen due to:
575 	 * - Timer is armed at the edge of a tick
576 	 * - Truncation of the expiry time in the outer wheel levels
577 	 *
578 	 * Round up with level granularity to prevent this.
579 	 */
580 	expires = (expires >> LVL_SHIFT(lvl)) + 1;
581 	*bucket_expiry = expires << LVL_SHIFT(lvl);
582 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
583 }
584 
585 static int calc_wheel_index(unsigned long expires, unsigned long clk,
586 			    unsigned long *bucket_expiry)
587 {
588 	unsigned long delta = expires - clk;
589 	unsigned int idx;
590 
591 	if (delta < LVL_START(1)) {
592 		idx = calc_index(expires, 0, bucket_expiry);
593 	} else if (delta < LVL_START(2)) {
594 		idx = calc_index(expires, 1, bucket_expiry);
595 	} else if (delta < LVL_START(3)) {
596 		idx = calc_index(expires, 2, bucket_expiry);
597 	} else if (delta < LVL_START(4)) {
598 		idx = calc_index(expires, 3, bucket_expiry);
599 	} else if (delta < LVL_START(5)) {
600 		idx = calc_index(expires, 4, bucket_expiry);
601 	} else if (delta < LVL_START(6)) {
602 		idx = calc_index(expires, 5, bucket_expiry);
603 	} else if (delta < LVL_START(7)) {
604 		idx = calc_index(expires, 6, bucket_expiry);
605 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
606 		idx = calc_index(expires, 7, bucket_expiry);
607 	} else if ((long) delta < 0) {
608 		idx = clk & LVL_MASK;
609 		*bucket_expiry = clk;
610 	} else {
611 		/*
612 		 * Force expire obscene large timeouts to expire at the
613 		 * capacity limit of the wheel.
614 		 */
615 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
616 			expires = clk + WHEEL_TIMEOUT_MAX;
617 
618 		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
619 	}
620 	return idx;
621 }
622 
623 static void
624 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
625 {
626 	/*
627 	 * Deferrable timers do not prevent the CPU from entering dynticks and
628 	 * are not taken into account on the idle/nohz_full path. An IPI when a
629 	 * new deferrable timer is enqueued will wake up the remote CPU but
630 	 * nothing will be done with the deferrable timer base. Therefore skip
631 	 * the remote IPI for deferrable timers completely.
632 	 */
633 	if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
634 		return;
635 
636 	/*
637 	 * We might have to IPI the remote CPU if the base is idle and the
638 	 * timer is pinned. If it is a non pinned timer, it is only queued
639 	 * on the remote CPU, when timer was running during queueing. Then
640 	 * everything is handled by remote CPU anyway. If the other CPU is
641 	 * on the way to idle then it can't set base->is_idle as we hold
642 	 * the base lock:
643 	 */
644 	if (base->is_idle) {
645 		WARN_ON_ONCE(!(timer->flags & TIMER_PINNED ||
646 			       tick_nohz_full_cpu(base->cpu)));
647 		wake_up_nohz_cpu(base->cpu);
648 	}
649 }
650 
651 /*
652  * Enqueue the timer into the hash bucket, mark it pending in
653  * the bitmap, store the index in the timer flags then wake up
654  * the target CPU if needed.
655  */
656 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
657 			  unsigned int idx, unsigned long bucket_expiry)
658 {
659 
660 	hlist_add_head(&timer->entry, base->vectors + idx);
661 	__set_bit(idx, base->pending_map);
662 	timer_set_idx(timer, idx);
663 
664 	trace_timer_start(timer, bucket_expiry);
665 
666 	/*
667 	 * Check whether this is the new first expiring timer. The
668 	 * effective expiry time of the timer is required here
669 	 * (bucket_expiry) instead of timer->expires.
670 	 */
671 	if (time_before(bucket_expiry, base->next_expiry)) {
672 		/*
673 		 * Set the next expiry time and kick the CPU so it
674 		 * can reevaluate the wheel:
675 		 */
676 		base->next_expiry = bucket_expiry;
677 		base->timers_pending = true;
678 		base->next_expiry_recalc = false;
679 		trigger_dyntick_cpu(base, timer);
680 	}
681 }
682 
683 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
684 {
685 	unsigned long bucket_expiry;
686 	unsigned int idx;
687 
688 	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
689 	enqueue_timer(base, timer, idx, bucket_expiry);
690 }
691 
692 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
693 
694 static const struct debug_obj_descr timer_debug_descr;
695 
696 struct timer_hint {
697 	void	(*function)(struct timer_list *t);
698 	long	offset;
699 };
700 
701 #define TIMER_HINT(fn, container, timr, hintfn)			\
702 	{							\
703 		.function = fn,					\
704 		.offset	  = offsetof(container, hintfn) -	\
705 			    offsetof(container, timr)		\
706 	}
707 
708 static const struct timer_hint timer_hints[] = {
709 	TIMER_HINT(delayed_work_timer_fn,
710 		   struct delayed_work, timer, work.func),
711 	TIMER_HINT(kthread_delayed_work_timer_fn,
712 		   struct kthread_delayed_work, timer, work.func),
713 };
714 
715 static void *timer_debug_hint(void *addr)
716 {
717 	struct timer_list *timer = addr;
718 	int i;
719 
720 	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
721 		if (timer_hints[i].function == timer->function) {
722 			void (**fn)(void) = addr + timer_hints[i].offset;
723 
724 			return *fn;
725 		}
726 	}
727 
728 	return timer->function;
729 }
730 
731 static bool timer_is_static_object(void *addr)
732 {
733 	struct timer_list *timer = addr;
734 
735 	return (timer->entry.pprev == NULL &&
736 		timer->entry.next == TIMER_ENTRY_STATIC);
737 }
738 
739 /*
740  * fixup_init is called when:
741  * - an active object is initialized
742  */
743 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
744 {
745 	struct timer_list *timer = addr;
746 
747 	switch (state) {
748 	case ODEBUG_STATE_ACTIVE:
749 		del_timer_sync(timer);
750 		debug_object_init(timer, &timer_debug_descr);
751 		return true;
752 	default:
753 		return false;
754 	}
755 }
756 
757 /* Stub timer callback for improperly used timers. */
758 static void stub_timer(struct timer_list *unused)
759 {
760 	WARN_ON(1);
761 }
762 
763 /*
764  * fixup_activate is called when:
765  * - an active object is activated
766  * - an unknown non-static object is activated
767  */
768 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
769 {
770 	struct timer_list *timer = addr;
771 
772 	switch (state) {
773 	case ODEBUG_STATE_NOTAVAILABLE:
774 		timer_setup(timer, stub_timer, 0);
775 		return true;
776 
777 	case ODEBUG_STATE_ACTIVE:
778 		WARN_ON(1);
779 		fallthrough;
780 	default:
781 		return false;
782 	}
783 }
784 
785 /*
786  * fixup_free is called when:
787  * - an active object is freed
788  */
789 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
790 {
791 	struct timer_list *timer = addr;
792 
793 	switch (state) {
794 	case ODEBUG_STATE_ACTIVE:
795 		del_timer_sync(timer);
796 		debug_object_free(timer, &timer_debug_descr);
797 		return true;
798 	default:
799 		return false;
800 	}
801 }
802 
803 /*
804  * fixup_assert_init is called when:
805  * - an untracked/uninit-ed object is found
806  */
807 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
808 {
809 	struct timer_list *timer = addr;
810 
811 	switch (state) {
812 	case ODEBUG_STATE_NOTAVAILABLE:
813 		timer_setup(timer, stub_timer, 0);
814 		return true;
815 	default:
816 		return false;
817 	}
818 }
819 
820 static const struct debug_obj_descr timer_debug_descr = {
821 	.name			= "timer_list",
822 	.debug_hint		= timer_debug_hint,
823 	.is_static_object	= timer_is_static_object,
824 	.fixup_init		= timer_fixup_init,
825 	.fixup_activate		= timer_fixup_activate,
826 	.fixup_free		= timer_fixup_free,
827 	.fixup_assert_init	= timer_fixup_assert_init,
828 };
829 
830 static inline void debug_timer_init(struct timer_list *timer)
831 {
832 	debug_object_init(timer, &timer_debug_descr);
833 }
834 
835 static inline void debug_timer_activate(struct timer_list *timer)
836 {
837 	debug_object_activate(timer, &timer_debug_descr);
838 }
839 
840 static inline void debug_timer_deactivate(struct timer_list *timer)
841 {
842 	debug_object_deactivate(timer, &timer_debug_descr);
843 }
844 
845 static inline void debug_timer_assert_init(struct timer_list *timer)
846 {
847 	debug_object_assert_init(timer, &timer_debug_descr);
848 }
849 
850 static void do_init_timer(struct timer_list *timer,
851 			  void (*func)(struct timer_list *),
852 			  unsigned int flags,
853 			  const char *name, struct lock_class_key *key);
854 
855 void init_timer_on_stack_key(struct timer_list *timer,
856 			     void (*func)(struct timer_list *),
857 			     unsigned int flags,
858 			     const char *name, struct lock_class_key *key)
859 {
860 	debug_object_init_on_stack(timer, &timer_debug_descr);
861 	do_init_timer(timer, func, flags, name, key);
862 }
863 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
864 
865 void destroy_timer_on_stack(struct timer_list *timer)
866 {
867 	debug_object_free(timer, &timer_debug_descr);
868 }
869 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
870 
871 #else
872 static inline void debug_timer_init(struct timer_list *timer) { }
873 static inline void debug_timer_activate(struct timer_list *timer) { }
874 static inline void debug_timer_deactivate(struct timer_list *timer) { }
875 static inline void debug_timer_assert_init(struct timer_list *timer) { }
876 #endif
877 
878 static inline void debug_init(struct timer_list *timer)
879 {
880 	debug_timer_init(timer);
881 	trace_timer_init(timer);
882 }
883 
884 static inline void debug_deactivate(struct timer_list *timer)
885 {
886 	debug_timer_deactivate(timer);
887 	trace_timer_cancel(timer);
888 }
889 
890 static inline void debug_assert_init(struct timer_list *timer)
891 {
892 	debug_timer_assert_init(timer);
893 }
894 
895 static void do_init_timer(struct timer_list *timer,
896 			  void (*func)(struct timer_list *),
897 			  unsigned int flags,
898 			  const char *name, struct lock_class_key *key)
899 {
900 	timer->entry.pprev = NULL;
901 	timer->function = func;
902 	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
903 		flags &= TIMER_INIT_FLAGS;
904 	timer->flags = flags | raw_smp_processor_id();
905 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
906 }
907 
908 /**
909  * init_timer_key - initialize a timer
910  * @timer: the timer to be initialized
911  * @func: timer callback function
912  * @flags: timer flags
913  * @name: name of the timer
914  * @key: lockdep class key of the fake lock used for tracking timer
915  *       sync lock dependencies
916  *
917  * init_timer_key() must be done to a timer prior calling *any* of the
918  * other timer functions.
919  */
920 void init_timer_key(struct timer_list *timer,
921 		    void (*func)(struct timer_list *), unsigned int flags,
922 		    const char *name, struct lock_class_key *key)
923 {
924 	debug_init(timer);
925 	do_init_timer(timer, func, flags, name, key);
926 }
927 EXPORT_SYMBOL(init_timer_key);
928 
929 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
930 {
931 	struct hlist_node *entry = &timer->entry;
932 
933 	debug_deactivate(timer);
934 
935 	__hlist_del(entry);
936 	if (clear_pending)
937 		entry->pprev = NULL;
938 	entry->next = LIST_POISON2;
939 }
940 
941 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
942 			     bool clear_pending)
943 {
944 	unsigned idx = timer_get_idx(timer);
945 
946 	if (!timer_pending(timer))
947 		return 0;
948 
949 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
950 		__clear_bit(idx, base->pending_map);
951 		base->next_expiry_recalc = true;
952 	}
953 
954 	detach_timer(timer, clear_pending);
955 	return 1;
956 }
957 
958 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
959 {
960 	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
961 	struct timer_base *base;
962 
963 	base = per_cpu_ptr(&timer_bases[index], cpu);
964 
965 	/*
966 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
967 	 * to use the deferrable base.
968 	 */
969 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
970 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
971 	return base;
972 }
973 
974 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
975 {
976 	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
977 	struct timer_base *base;
978 
979 	base = this_cpu_ptr(&timer_bases[index]);
980 
981 	/*
982 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
983 	 * to use the deferrable base.
984 	 */
985 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
986 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
987 	return base;
988 }
989 
990 static inline struct timer_base *get_timer_base(u32 tflags)
991 {
992 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
993 }
994 
995 static inline void __forward_timer_base(struct timer_base *base,
996 					unsigned long basej)
997 {
998 	/*
999 	 * Check whether we can forward the base. We can only do that when
1000 	 * @basej is past base->clk otherwise we might rewind base->clk.
1001 	 */
1002 	if (time_before_eq(basej, base->clk))
1003 		return;
1004 
1005 	/*
1006 	 * If the next expiry value is > jiffies, then we fast forward to
1007 	 * jiffies otherwise we forward to the next expiry value.
1008 	 */
1009 	if (time_after(base->next_expiry, basej)) {
1010 		base->clk = basej;
1011 	} else {
1012 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
1013 			return;
1014 		base->clk = base->next_expiry;
1015 	}
1016 
1017 }
1018 
1019 static inline void forward_timer_base(struct timer_base *base)
1020 {
1021 	__forward_timer_base(base, READ_ONCE(jiffies));
1022 }
1023 
1024 /*
1025  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
1026  * that all timers which are tied to this base are locked, and the base itself
1027  * is locked too.
1028  *
1029  * So __run_timers/migrate_timers can safely modify all timers which could
1030  * be found in the base->vectors array.
1031  *
1032  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
1033  * to wait until the migration is done.
1034  */
1035 static struct timer_base *lock_timer_base(struct timer_list *timer,
1036 					  unsigned long *flags)
1037 	__acquires(timer->base->lock)
1038 {
1039 	for (;;) {
1040 		struct timer_base *base;
1041 		u32 tf;
1042 
1043 		/*
1044 		 * We need to use READ_ONCE() here, otherwise the compiler
1045 		 * might re-read @tf between the check for TIMER_MIGRATING
1046 		 * and spin_lock().
1047 		 */
1048 		tf = READ_ONCE(timer->flags);
1049 
1050 		if (!(tf & TIMER_MIGRATING)) {
1051 			base = get_timer_base(tf);
1052 			raw_spin_lock_irqsave(&base->lock, *flags);
1053 			if (timer->flags == tf)
1054 				return base;
1055 			raw_spin_unlock_irqrestore(&base->lock, *flags);
1056 		}
1057 		cpu_relax();
1058 	}
1059 }
1060 
1061 #define MOD_TIMER_PENDING_ONLY		0x01
1062 #define MOD_TIMER_REDUCE		0x02
1063 #define MOD_TIMER_NOTPENDING		0x04
1064 
1065 static inline int
1066 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1067 {
1068 	unsigned long clk = 0, flags, bucket_expiry;
1069 	struct timer_base *base, *new_base;
1070 	unsigned int idx = UINT_MAX;
1071 	int ret = 0;
1072 
1073 	debug_assert_init(timer);
1074 
1075 	/*
1076 	 * This is a common optimization triggered by the networking code - if
1077 	 * the timer is re-modified to have the same timeout or ends up in the
1078 	 * same array bucket then just return:
1079 	 */
1080 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1081 		/*
1082 		 * The downside of this optimization is that it can result in
1083 		 * larger granularity than you would get from adding a new
1084 		 * timer with this expiry.
1085 		 */
1086 		long diff = timer->expires - expires;
1087 
1088 		if (!diff)
1089 			return 1;
1090 		if (options & MOD_TIMER_REDUCE && diff <= 0)
1091 			return 1;
1092 
1093 		/*
1094 		 * We lock timer base and calculate the bucket index right
1095 		 * here. If the timer ends up in the same bucket, then we
1096 		 * just update the expiry time and avoid the whole
1097 		 * dequeue/enqueue dance.
1098 		 */
1099 		base = lock_timer_base(timer, &flags);
1100 		/*
1101 		 * Has @timer been shutdown? This needs to be evaluated
1102 		 * while holding base lock to prevent a race against the
1103 		 * shutdown code.
1104 		 */
1105 		if (!timer->function)
1106 			goto out_unlock;
1107 
1108 		forward_timer_base(base);
1109 
1110 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1111 		    time_before_eq(timer->expires, expires)) {
1112 			ret = 1;
1113 			goto out_unlock;
1114 		}
1115 
1116 		clk = base->clk;
1117 		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1118 
1119 		/*
1120 		 * Retrieve and compare the array index of the pending
1121 		 * timer. If it matches set the expiry to the new value so a
1122 		 * subsequent call will exit in the expires check above.
1123 		 */
1124 		if (idx == timer_get_idx(timer)) {
1125 			if (!(options & MOD_TIMER_REDUCE))
1126 				timer->expires = expires;
1127 			else if (time_after(timer->expires, expires))
1128 				timer->expires = expires;
1129 			ret = 1;
1130 			goto out_unlock;
1131 		}
1132 	} else {
1133 		base = lock_timer_base(timer, &flags);
1134 		/*
1135 		 * Has @timer been shutdown? This needs to be evaluated
1136 		 * while holding base lock to prevent a race against the
1137 		 * shutdown code.
1138 		 */
1139 		if (!timer->function)
1140 			goto out_unlock;
1141 
1142 		forward_timer_base(base);
1143 	}
1144 
1145 	ret = detach_if_pending(timer, base, false);
1146 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1147 		goto out_unlock;
1148 
1149 	new_base = get_timer_this_cpu_base(timer->flags);
1150 
1151 	if (base != new_base) {
1152 		/*
1153 		 * We are trying to schedule the timer on the new base.
1154 		 * However we can't change timer's base while it is running,
1155 		 * otherwise timer_delete_sync() can't detect that the timer's
1156 		 * handler yet has not finished. This also guarantees that the
1157 		 * timer is serialized wrt itself.
1158 		 */
1159 		if (likely(base->running_timer != timer)) {
1160 			/* See the comment in lock_timer_base() */
1161 			timer->flags |= TIMER_MIGRATING;
1162 
1163 			raw_spin_unlock(&base->lock);
1164 			base = new_base;
1165 			raw_spin_lock(&base->lock);
1166 			WRITE_ONCE(timer->flags,
1167 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1168 			forward_timer_base(base);
1169 		}
1170 	}
1171 
1172 	debug_timer_activate(timer);
1173 
1174 	timer->expires = expires;
1175 	/*
1176 	 * If 'idx' was calculated above and the base time did not advance
1177 	 * between calculating 'idx' and possibly switching the base, only
1178 	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1179 	 * the wheel index via internal_add_timer().
1180 	 */
1181 	if (idx != UINT_MAX && clk == base->clk)
1182 		enqueue_timer(base, timer, idx, bucket_expiry);
1183 	else
1184 		internal_add_timer(base, timer);
1185 
1186 out_unlock:
1187 	raw_spin_unlock_irqrestore(&base->lock, flags);
1188 
1189 	return ret;
1190 }
1191 
1192 /**
1193  * mod_timer_pending - Modify a pending timer's timeout
1194  * @timer:	The pending timer to be modified
1195  * @expires:	New absolute timeout in jiffies
1196  *
1197  * mod_timer_pending() is the same for pending timers as mod_timer(), but
1198  * will not activate inactive timers.
1199  *
1200  * If @timer->function == NULL then the start operation is silently
1201  * discarded.
1202  *
1203  * Return:
1204  * * %0 - The timer was inactive and not modified or was in
1205  *	  shutdown state and the operation was discarded
1206  * * %1 - The timer was active and requeued to expire at @expires
1207  */
1208 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1209 {
1210 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1211 }
1212 EXPORT_SYMBOL(mod_timer_pending);
1213 
1214 /**
1215  * mod_timer - Modify a timer's timeout
1216  * @timer:	The timer to be modified
1217  * @expires:	New absolute timeout in jiffies
1218  *
1219  * mod_timer(timer, expires) is equivalent to:
1220  *
1221  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1222  *
1223  * mod_timer() is more efficient than the above open coded sequence. In
1224  * case that the timer is inactive, the del_timer() part is a NOP. The
1225  * timer is in any case activated with the new expiry time @expires.
1226  *
1227  * Note that if there are multiple unserialized concurrent users of the
1228  * same timer, then mod_timer() is the only safe way to modify the timeout,
1229  * since add_timer() cannot modify an already running timer.
1230  *
1231  * If @timer->function == NULL then the start operation is silently
1232  * discarded. In this case the return value is 0 and meaningless.
1233  *
1234  * Return:
1235  * * %0 - The timer was inactive and started or was in shutdown
1236  *	  state and the operation was discarded
1237  * * %1 - The timer was active and requeued to expire at @expires or
1238  *	  the timer was active and not modified because @expires did
1239  *	  not change the effective expiry time
1240  */
1241 int mod_timer(struct timer_list *timer, unsigned long expires)
1242 {
1243 	return __mod_timer(timer, expires, 0);
1244 }
1245 EXPORT_SYMBOL(mod_timer);
1246 
1247 /**
1248  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1249  * @timer:	The timer to be modified
1250  * @expires:	New absolute timeout in jiffies
1251  *
1252  * timer_reduce() is very similar to mod_timer(), except that it will only
1253  * modify an enqueued timer if that would reduce the expiration time. If
1254  * @timer is not enqueued it starts the timer.
1255  *
1256  * If @timer->function == NULL then the start operation is silently
1257  * discarded.
1258  *
1259  * Return:
1260  * * %0 - The timer was inactive and started or was in shutdown
1261  *	  state and the operation was discarded
1262  * * %1 - The timer was active and requeued to expire at @expires or
1263  *	  the timer was active and not modified because @expires
1264  *	  did not change the effective expiry time such that the
1265  *	  timer would expire earlier than already scheduled
1266  */
1267 int timer_reduce(struct timer_list *timer, unsigned long expires)
1268 {
1269 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1270 }
1271 EXPORT_SYMBOL(timer_reduce);
1272 
1273 /**
1274  * add_timer - Start a timer
1275  * @timer:	The timer to be started
1276  *
1277  * Start @timer to expire at @timer->expires in the future. @timer->expires
1278  * is the absolute expiry time measured in 'jiffies'. When the timer expires
1279  * timer->function(timer) will be invoked from soft interrupt context.
1280  *
1281  * The @timer->expires and @timer->function fields must be set prior
1282  * to calling this function.
1283  *
1284  * If @timer->function == NULL then the start operation is silently
1285  * discarded.
1286  *
1287  * If @timer->expires is already in the past @timer will be queued to
1288  * expire at the next timer tick.
1289  *
1290  * This can only operate on an inactive timer. Attempts to invoke this on
1291  * an active timer are rejected with a warning.
1292  */
1293 void add_timer(struct timer_list *timer)
1294 {
1295 	if (WARN_ON_ONCE(timer_pending(timer)))
1296 		return;
1297 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1298 }
1299 EXPORT_SYMBOL(add_timer);
1300 
1301 /**
1302  * add_timer_local() - Start a timer on the local CPU
1303  * @timer:	The timer to be started
1304  *
1305  * Same as add_timer() except that the timer flag TIMER_PINNED is set.
1306  *
1307  * See add_timer() for further details.
1308  */
1309 void add_timer_local(struct timer_list *timer)
1310 {
1311 	if (WARN_ON_ONCE(timer_pending(timer)))
1312 		return;
1313 	timer->flags |= TIMER_PINNED;
1314 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1315 }
1316 EXPORT_SYMBOL(add_timer_local);
1317 
1318 /**
1319  * add_timer_global() - Start a timer without TIMER_PINNED flag set
1320  * @timer:	The timer to be started
1321  *
1322  * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
1323  *
1324  * See add_timer() for further details.
1325  */
1326 void add_timer_global(struct timer_list *timer)
1327 {
1328 	if (WARN_ON_ONCE(timer_pending(timer)))
1329 		return;
1330 	timer->flags &= ~TIMER_PINNED;
1331 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1332 }
1333 EXPORT_SYMBOL(add_timer_global);
1334 
1335 /**
1336  * add_timer_on - Start a timer on a particular CPU
1337  * @timer:	The timer to be started
1338  * @cpu:	The CPU to start it on
1339  *
1340  * Same as add_timer() except that it starts the timer on the given CPU and
1341  * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
1342  * the next round, add_timer_global() should be used instead as it unsets
1343  * the TIMER_PINNED flag.
1344  *
1345  * See add_timer() for further details.
1346  */
1347 void add_timer_on(struct timer_list *timer, int cpu)
1348 {
1349 	struct timer_base *new_base, *base;
1350 	unsigned long flags;
1351 
1352 	debug_assert_init(timer);
1353 
1354 	if (WARN_ON_ONCE(timer_pending(timer)))
1355 		return;
1356 
1357 	/* Make sure timer flags have TIMER_PINNED flag set */
1358 	timer->flags |= TIMER_PINNED;
1359 
1360 	new_base = get_timer_cpu_base(timer->flags, cpu);
1361 
1362 	/*
1363 	 * If @timer was on a different CPU, it should be migrated with the
1364 	 * old base locked to prevent other operations proceeding with the
1365 	 * wrong base locked.  See lock_timer_base().
1366 	 */
1367 	base = lock_timer_base(timer, &flags);
1368 	/*
1369 	 * Has @timer been shutdown? This needs to be evaluated while
1370 	 * holding base lock to prevent a race against the shutdown code.
1371 	 */
1372 	if (!timer->function)
1373 		goto out_unlock;
1374 
1375 	if (base != new_base) {
1376 		timer->flags |= TIMER_MIGRATING;
1377 
1378 		raw_spin_unlock(&base->lock);
1379 		base = new_base;
1380 		raw_spin_lock(&base->lock);
1381 		WRITE_ONCE(timer->flags,
1382 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1383 	}
1384 	forward_timer_base(base);
1385 
1386 	debug_timer_activate(timer);
1387 	internal_add_timer(base, timer);
1388 out_unlock:
1389 	raw_spin_unlock_irqrestore(&base->lock, flags);
1390 }
1391 EXPORT_SYMBOL_GPL(add_timer_on);
1392 
1393 /**
1394  * __timer_delete - Internal function: Deactivate a timer
1395  * @timer:	The timer to be deactivated
1396  * @shutdown:	If true, this indicates that the timer is about to be
1397  *		shutdown permanently.
1398  *
1399  * If @shutdown is true then @timer->function is set to NULL under the
1400  * timer base lock which prevents further rearming of the time. In that
1401  * case any attempt to rearm @timer after this function returns will be
1402  * silently ignored.
1403  *
1404  * Return:
1405  * * %0 - The timer was not pending
1406  * * %1 - The timer was pending and deactivated
1407  */
1408 static int __timer_delete(struct timer_list *timer, bool shutdown)
1409 {
1410 	struct timer_base *base;
1411 	unsigned long flags;
1412 	int ret = 0;
1413 
1414 	debug_assert_init(timer);
1415 
1416 	/*
1417 	 * If @shutdown is set then the lock has to be taken whether the
1418 	 * timer is pending or not to protect against a concurrent rearm
1419 	 * which might hit between the lockless pending check and the lock
1420 	 * aquisition. By taking the lock it is ensured that such a newly
1421 	 * enqueued timer is dequeued and cannot end up with
1422 	 * timer->function == NULL in the expiry code.
1423 	 *
1424 	 * If timer->function is currently executed, then this makes sure
1425 	 * that the callback cannot requeue the timer.
1426 	 */
1427 	if (timer_pending(timer) || shutdown) {
1428 		base = lock_timer_base(timer, &flags);
1429 		ret = detach_if_pending(timer, base, true);
1430 		if (shutdown)
1431 			timer->function = NULL;
1432 		raw_spin_unlock_irqrestore(&base->lock, flags);
1433 	}
1434 
1435 	return ret;
1436 }
1437 
1438 /**
1439  * timer_delete - Deactivate a timer
1440  * @timer:	The timer to be deactivated
1441  *
1442  * The function only deactivates a pending timer, but contrary to
1443  * timer_delete_sync() it does not take into account whether the timer's
1444  * callback function is concurrently executed on a different CPU or not.
1445  * It neither prevents rearming of the timer.  If @timer can be rearmed
1446  * concurrently then the return value of this function is meaningless.
1447  *
1448  * Return:
1449  * * %0 - The timer was not pending
1450  * * %1 - The timer was pending and deactivated
1451  */
1452 int timer_delete(struct timer_list *timer)
1453 {
1454 	return __timer_delete(timer, false);
1455 }
1456 EXPORT_SYMBOL(timer_delete);
1457 
1458 /**
1459  * timer_shutdown - Deactivate a timer and prevent rearming
1460  * @timer:	The timer to be deactivated
1461  *
1462  * The function does not wait for an eventually running timer callback on a
1463  * different CPU but it prevents rearming of the timer. Any attempt to arm
1464  * @timer after this function returns will be silently ignored.
1465  *
1466  * This function is useful for teardown code and should only be used when
1467  * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1468  *
1469  * Return:
1470  * * %0 - The timer was not pending
1471  * * %1 - The timer was pending
1472  */
1473 int timer_shutdown(struct timer_list *timer)
1474 {
1475 	return __timer_delete(timer, true);
1476 }
1477 EXPORT_SYMBOL_GPL(timer_shutdown);
1478 
1479 /**
1480  * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1481  * @timer:	Timer to deactivate
1482  * @shutdown:	If true, this indicates that the timer is about to be
1483  *		shutdown permanently.
1484  *
1485  * If @shutdown is true then @timer->function is set to NULL under the
1486  * timer base lock which prevents further rearming of the timer. Any
1487  * attempt to rearm @timer after this function returns will be silently
1488  * ignored.
1489  *
1490  * This function cannot guarantee that the timer cannot be rearmed
1491  * right after dropping the base lock if @shutdown is false. That
1492  * needs to be prevented by the calling code if necessary.
1493  *
1494  * Return:
1495  * * %0  - The timer was not pending
1496  * * %1  - The timer was pending and deactivated
1497  * * %-1 - The timer callback function is running on a different CPU
1498  */
1499 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1500 {
1501 	struct timer_base *base;
1502 	unsigned long flags;
1503 	int ret = -1;
1504 
1505 	debug_assert_init(timer);
1506 
1507 	base = lock_timer_base(timer, &flags);
1508 
1509 	if (base->running_timer != timer)
1510 		ret = detach_if_pending(timer, base, true);
1511 	if (shutdown)
1512 		timer->function = NULL;
1513 
1514 	raw_spin_unlock_irqrestore(&base->lock, flags);
1515 
1516 	return ret;
1517 }
1518 
1519 /**
1520  * try_to_del_timer_sync - Try to deactivate a timer
1521  * @timer:	Timer to deactivate
1522  *
1523  * This function tries to deactivate a timer. On success the timer is not
1524  * queued and the timer callback function is not running on any CPU.
1525  *
1526  * This function does not guarantee that the timer cannot be rearmed right
1527  * after dropping the base lock. That needs to be prevented by the calling
1528  * code if necessary.
1529  *
1530  * Return:
1531  * * %0  - The timer was not pending
1532  * * %1  - The timer was pending and deactivated
1533  * * %-1 - The timer callback function is running on a different CPU
1534  */
1535 int try_to_del_timer_sync(struct timer_list *timer)
1536 {
1537 	return __try_to_del_timer_sync(timer, false);
1538 }
1539 EXPORT_SYMBOL(try_to_del_timer_sync);
1540 
1541 #ifdef CONFIG_PREEMPT_RT
1542 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1543 {
1544 	spin_lock_init(&base->expiry_lock);
1545 }
1546 
1547 static inline void timer_base_lock_expiry(struct timer_base *base)
1548 {
1549 	spin_lock(&base->expiry_lock);
1550 }
1551 
1552 static inline void timer_base_unlock_expiry(struct timer_base *base)
1553 {
1554 	spin_unlock(&base->expiry_lock);
1555 }
1556 
1557 /*
1558  * The counterpart to del_timer_wait_running().
1559  *
1560  * If there is a waiter for base->expiry_lock, then it was waiting for the
1561  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1562  * the waiter to acquire the lock and make progress.
1563  */
1564 static void timer_sync_wait_running(struct timer_base *base)
1565 {
1566 	if (atomic_read(&base->timer_waiters)) {
1567 		raw_spin_unlock_irq(&base->lock);
1568 		spin_unlock(&base->expiry_lock);
1569 		spin_lock(&base->expiry_lock);
1570 		raw_spin_lock_irq(&base->lock);
1571 	}
1572 }
1573 
1574 /*
1575  * This function is called on PREEMPT_RT kernels when the fast path
1576  * deletion of a timer failed because the timer callback function was
1577  * running.
1578  *
1579  * This prevents priority inversion, if the softirq thread on a remote CPU
1580  * got preempted, and it prevents a life lock when the task which tries to
1581  * delete a timer preempted the softirq thread running the timer callback
1582  * function.
1583  */
1584 static void del_timer_wait_running(struct timer_list *timer)
1585 {
1586 	u32 tf;
1587 
1588 	tf = READ_ONCE(timer->flags);
1589 	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1590 		struct timer_base *base = get_timer_base(tf);
1591 
1592 		/*
1593 		 * Mark the base as contended and grab the expiry lock,
1594 		 * which is held by the softirq across the timer
1595 		 * callback. Drop the lock immediately so the softirq can
1596 		 * expire the next timer. In theory the timer could already
1597 		 * be running again, but that's more than unlikely and just
1598 		 * causes another wait loop.
1599 		 */
1600 		atomic_inc(&base->timer_waiters);
1601 		spin_lock_bh(&base->expiry_lock);
1602 		atomic_dec(&base->timer_waiters);
1603 		spin_unlock_bh(&base->expiry_lock);
1604 	}
1605 }
1606 #else
1607 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1608 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1609 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1610 static inline void timer_sync_wait_running(struct timer_base *base) { }
1611 static inline void del_timer_wait_running(struct timer_list *timer) { }
1612 #endif
1613 
1614 /**
1615  * __timer_delete_sync - Internal function: Deactivate a timer and wait
1616  *			 for the handler to finish.
1617  * @timer:	The timer to be deactivated
1618  * @shutdown:	If true, @timer->function will be set to NULL under the
1619  *		timer base lock which prevents rearming of @timer
1620  *
1621  * If @shutdown is not set the timer can be rearmed later. If the timer can
1622  * be rearmed concurrently, i.e. after dropping the base lock then the
1623  * return value is meaningless.
1624  *
1625  * If @shutdown is set then @timer->function is set to NULL under timer
1626  * base lock which prevents rearming of the timer. Any attempt to rearm
1627  * a shutdown timer is silently ignored.
1628  *
1629  * If the timer should be reused after shutdown it has to be initialized
1630  * again.
1631  *
1632  * Return:
1633  * * %0	- The timer was not pending
1634  * * %1	- The timer was pending and deactivated
1635  */
1636 static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1637 {
1638 	int ret;
1639 
1640 #ifdef CONFIG_LOCKDEP
1641 	unsigned long flags;
1642 
1643 	/*
1644 	 * If lockdep gives a backtrace here, please reference
1645 	 * the synchronization rules above.
1646 	 */
1647 	local_irq_save(flags);
1648 	lock_map_acquire(&timer->lockdep_map);
1649 	lock_map_release(&timer->lockdep_map);
1650 	local_irq_restore(flags);
1651 #endif
1652 	/*
1653 	 * don't use it in hardirq context, because it
1654 	 * could lead to deadlock.
1655 	 */
1656 	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1657 
1658 	/*
1659 	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1660 	 * del_timer_wait_running().
1661 	 */
1662 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1663 		lockdep_assert_preemption_enabled();
1664 
1665 	do {
1666 		ret = __try_to_del_timer_sync(timer, shutdown);
1667 
1668 		if (unlikely(ret < 0)) {
1669 			del_timer_wait_running(timer);
1670 			cpu_relax();
1671 		}
1672 	} while (ret < 0);
1673 
1674 	return ret;
1675 }
1676 
1677 /**
1678  * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1679  * @timer:	The timer to be deactivated
1680  *
1681  * Synchronization rules: Callers must prevent restarting of the timer,
1682  * otherwise this function is meaningless. It must not be called from
1683  * interrupt contexts unless the timer is an irqsafe one. The caller must
1684  * not hold locks which would prevent completion of the timer's callback
1685  * function. The timer's handler must not call add_timer_on(). Upon exit
1686  * the timer is not queued and the handler is not running on any CPU.
1687  *
1688  * For !irqsafe timers, the caller must not hold locks that are held in
1689  * interrupt context. Even if the lock has nothing to do with the timer in
1690  * question.  Here's why::
1691  *
1692  *    CPU0                             CPU1
1693  *    ----                             ----
1694  *                                     <SOFTIRQ>
1695  *                                       call_timer_fn();
1696  *                                       base->running_timer = mytimer;
1697  *    spin_lock_irq(somelock);
1698  *                                     <IRQ>
1699  *                                        spin_lock(somelock);
1700  *    timer_delete_sync(mytimer);
1701  *    while (base->running_timer == mytimer);
1702  *
1703  * Now timer_delete_sync() will never return and never release somelock.
1704  * The interrupt on the other CPU is waiting to grab somelock but it has
1705  * interrupted the softirq that CPU0 is waiting to finish.
1706  *
1707  * This function cannot guarantee that the timer is not rearmed again by
1708  * some concurrent or preempting code, right after it dropped the base
1709  * lock. If there is the possibility of a concurrent rearm then the return
1710  * value of the function is meaningless.
1711  *
1712  * If such a guarantee is needed, e.g. for teardown situations then use
1713  * timer_shutdown_sync() instead.
1714  *
1715  * Return:
1716  * * %0	- The timer was not pending
1717  * * %1	- The timer was pending and deactivated
1718  */
1719 int timer_delete_sync(struct timer_list *timer)
1720 {
1721 	return __timer_delete_sync(timer, false);
1722 }
1723 EXPORT_SYMBOL(timer_delete_sync);
1724 
1725 /**
1726  * timer_shutdown_sync - Shutdown a timer and prevent rearming
1727  * @timer: The timer to be shutdown
1728  *
1729  * When the function returns it is guaranteed that:
1730  *   - @timer is not queued
1731  *   - The callback function of @timer is not running
1732  *   - @timer cannot be enqueued again. Any attempt to rearm
1733  *     @timer is silently ignored.
1734  *
1735  * See timer_delete_sync() for synchronization rules.
1736  *
1737  * This function is useful for final teardown of an infrastructure where
1738  * the timer is subject to a circular dependency problem.
1739  *
1740  * A common pattern for this is a timer and a workqueue where the timer can
1741  * schedule work and work can arm the timer. On shutdown the workqueue must
1742  * be destroyed and the timer must be prevented from rearming. Unless the
1743  * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1744  * there is no way to get this correct with timer_delete_sync().
1745  *
1746  * timer_shutdown_sync() is solving the problem. The correct ordering of
1747  * calls in this case is:
1748  *
1749  *	timer_shutdown_sync(&mything->timer);
1750  *	workqueue_destroy(&mything->workqueue);
1751  *
1752  * After this 'mything' can be safely freed.
1753  *
1754  * This obviously implies that the timer is not required to be functional
1755  * for the rest of the shutdown operation.
1756  *
1757  * Return:
1758  * * %0 - The timer was not pending
1759  * * %1 - The timer was pending
1760  */
1761 int timer_shutdown_sync(struct timer_list *timer)
1762 {
1763 	return __timer_delete_sync(timer, true);
1764 }
1765 EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1766 
1767 static void call_timer_fn(struct timer_list *timer,
1768 			  void (*fn)(struct timer_list *),
1769 			  unsigned long baseclk)
1770 {
1771 	int count = preempt_count();
1772 
1773 #ifdef CONFIG_LOCKDEP
1774 	/*
1775 	 * It is permissible to free the timer from inside the
1776 	 * function that is called from it, this we need to take into
1777 	 * account for lockdep too. To avoid bogus "held lock freed"
1778 	 * warnings as well as problems when looking into
1779 	 * timer->lockdep_map, make a copy and use that here.
1780 	 */
1781 	struct lockdep_map lockdep_map;
1782 
1783 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1784 #endif
1785 	/*
1786 	 * Couple the lock chain with the lock chain at
1787 	 * timer_delete_sync() by acquiring the lock_map around the fn()
1788 	 * call here and in timer_delete_sync().
1789 	 */
1790 	lock_map_acquire(&lockdep_map);
1791 
1792 	trace_timer_expire_entry(timer, baseclk);
1793 	fn(timer);
1794 	trace_timer_expire_exit(timer);
1795 
1796 	lock_map_release(&lockdep_map);
1797 
1798 	if (count != preempt_count()) {
1799 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1800 			  fn, count, preempt_count());
1801 		/*
1802 		 * Restore the preempt count. That gives us a decent
1803 		 * chance to survive and extract information. If the
1804 		 * callback kept a lock held, bad luck, but not worse
1805 		 * than the BUG() we had.
1806 		 */
1807 		preempt_count_set(count);
1808 	}
1809 }
1810 
1811 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1812 {
1813 	/*
1814 	 * This value is required only for tracing. base->clk was
1815 	 * incremented directly before expire_timers was called. But expiry
1816 	 * is related to the old base->clk value.
1817 	 */
1818 	unsigned long baseclk = base->clk - 1;
1819 
1820 	while (!hlist_empty(head)) {
1821 		struct timer_list *timer;
1822 		void (*fn)(struct timer_list *);
1823 
1824 		timer = hlist_entry(head->first, struct timer_list, entry);
1825 
1826 		base->running_timer = timer;
1827 		detach_timer(timer, true);
1828 
1829 		fn = timer->function;
1830 
1831 		if (WARN_ON_ONCE(!fn)) {
1832 			/* Should never happen. Emphasis on should! */
1833 			base->running_timer = NULL;
1834 			continue;
1835 		}
1836 
1837 		if (timer->flags & TIMER_IRQSAFE) {
1838 			raw_spin_unlock(&base->lock);
1839 			call_timer_fn(timer, fn, baseclk);
1840 			raw_spin_lock(&base->lock);
1841 			base->running_timer = NULL;
1842 		} else {
1843 			raw_spin_unlock_irq(&base->lock);
1844 			call_timer_fn(timer, fn, baseclk);
1845 			raw_spin_lock_irq(&base->lock);
1846 			base->running_timer = NULL;
1847 			timer_sync_wait_running(base);
1848 		}
1849 	}
1850 }
1851 
1852 static int collect_expired_timers(struct timer_base *base,
1853 				  struct hlist_head *heads)
1854 {
1855 	unsigned long clk = base->clk = base->next_expiry;
1856 	struct hlist_head *vec;
1857 	int i, levels = 0;
1858 	unsigned int idx;
1859 
1860 	for (i = 0; i < LVL_DEPTH; i++) {
1861 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1862 
1863 		if (__test_and_clear_bit(idx, base->pending_map)) {
1864 			vec = base->vectors + idx;
1865 			hlist_move_list(vec, heads++);
1866 			levels++;
1867 		}
1868 		/* Is it time to look at the next level? */
1869 		if (clk & LVL_CLK_MASK)
1870 			break;
1871 		/* Shift clock for the next level granularity */
1872 		clk >>= LVL_CLK_SHIFT;
1873 	}
1874 	return levels;
1875 }
1876 
1877 /*
1878  * Find the next pending bucket of a level. Search from level start (@offset)
1879  * + @clk upwards and if nothing there, search from start of the level
1880  * (@offset) up to @offset + clk.
1881  */
1882 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1883 			       unsigned clk)
1884 {
1885 	unsigned pos, start = offset + clk;
1886 	unsigned end = offset + LVL_SIZE;
1887 
1888 	pos = find_next_bit(base->pending_map, end, start);
1889 	if (pos < end)
1890 		return pos - start;
1891 
1892 	pos = find_next_bit(base->pending_map, start, offset);
1893 	return pos < start ? pos + LVL_SIZE - start : -1;
1894 }
1895 
1896 /*
1897  * Search the first expiring timer in the various clock levels. Caller must
1898  * hold base->lock.
1899  *
1900  * Store next expiry time in base->next_expiry.
1901  */
1902 static void next_expiry_recalc(struct timer_base *base)
1903 {
1904 	unsigned long clk, next, adj;
1905 	unsigned lvl, offset = 0;
1906 
1907 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1908 	clk = base->clk;
1909 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1910 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1911 		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1912 
1913 		if (pos >= 0) {
1914 			unsigned long tmp = clk + (unsigned long) pos;
1915 
1916 			tmp <<= LVL_SHIFT(lvl);
1917 			if (time_before(tmp, next))
1918 				next = tmp;
1919 
1920 			/*
1921 			 * If the next expiration happens before we reach
1922 			 * the next level, no need to check further.
1923 			 */
1924 			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1925 				break;
1926 		}
1927 		/*
1928 		 * Clock for the next level. If the current level clock lower
1929 		 * bits are zero, we look at the next level as is. If not we
1930 		 * need to advance it by one because that's going to be the
1931 		 * next expiring bucket in that level. base->clk is the next
1932 		 * expiring jiffie. So in case of:
1933 		 *
1934 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1935 		 *  0    0    0    0    0    0
1936 		 *
1937 		 * we have to look at all levels @index 0. With
1938 		 *
1939 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1940 		 *  0    0    0    0    0    2
1941 		 *
1942 		 * LVL0 has the next expiring bucket @index 2. The upper
1943 		 * levels have the next expiring bucket @index 1.
1944 		 *
1945 		 * In case that the propagation wraps the next level the same
1946 		 * rules apply:
1947 		 *
1948 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1949 		 *  0    0    0    0    F    2
1950 		 *
1951 		 * So after looking at LVL0 we get:
1952 		 *
1953 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1954 		 *  0    0    0    1    0
1955 		 *
1956 		 * So no propagation from LVL1 to LVL2 because that happened
1957 		 * with the add already, but then we need to propagate further
1958 		 * from LVL2 to LVL3.
1959 		 *
1960 		 * So the simple check whether the lower bits of the current
1961 		 * level are 0 or not is sufficient for all cases.
1962 		 */
1963 		adj = lvl_clk ? 1 : 0;
1964 		clk >>= LVL_CLK_SHIFT;
1965 		clk += adj;
1966 	}
1967 
1968 	base->next_expiry = next;
1969 	base->next_expiry_recalc = false;
1970 	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1971 }
1972 
1973 #ifdef CONFIG_NO_HZ_COMMON
1974 /*
1975  * Check, if the next hrtimer event is before the next timer wheel
1976  * event:
1977  */
1978 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1979 {
1980 	u64 nextevt = hrtimer_get_next_event();
1981 
1982 	/*
1983 	 * If high resolution timers are enabled
1984 	 * hrtimer_get_next_event() returns KTIME_MAX.
1985 	 */
1986 	if (expires <= nextevt)
1987 		return expires;
1988 
1989 	/*
1990 	 * If the next timer is already expired, return the tick base
1991 	 * time so the tick is fired immediately.
1992 	 */
1993 	if (nextevt <= basem)
1994 		return basem;
1995 
1996 	/*
1997 	 * Round up to the next jiffie. High resolution timers are
1998 	 * off, so the hrtimers are expired in the tick and we need to
1999 	 * make sure that this tick really expires the timer to avoid
2000 	 * a ping pong of the nohz stop code.
2001 	 *
2002 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
2003 	 */
2004 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
2005 }
2006 
2007 static unsigned long next_timer_interrupt(struct timer_base *base,
2008 					  unsigned long basej)
2009 {
2010 	if (base->next_expiry_recalc)
2011 		next_expiry_recalc(base);
2012 
2013 	/*
2014 	 * Move next_expiry for the empty base into the future to prevent an
2015 	 * unnecessary raise of the timer softirq when the next_expiry value
2016 	 * will be reached even if there is no timer pending.
2017 	 *
2018 	 * This update is also required to make timer_base::next_expiry values
2019 	 * easy comparable to find out which base holds the first pending timer.
2020 	 */
2021 	if (!base->timers_pending)
2022 		base->next_expiry = basej + NEXT_TIMER_MAX_DELTA;
2023 
2024 	return base->next_expiry;
2025 }
2026 
2027 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
2028 						struct timer_base *base_local,
2029 						struct timer_base *base_global,
2030 						struct timer_events *tevt)
2031 {
2032 	unsigned long nextevt, nextevt_local, nextevt_global;
2033 	bool local_first;
2034 
2035 	nextevt_local = next_timer_interrupt(base_local, basej);
2036 	nextevt_global = next_timer_interrupt(base_global, basej);
2037 
2038 	local_first = time_before_eq(nextevt_local, nextevt_global);
2039 
2040 	nextevt = local_first ? nextevt_local : nextevt_global;
2041 
2042 	/*
2043 	 * If the @nextevt is at max. one tick away, use @nextevt and store
2044 	 * it in the local expiry value. The next global event is irrelevant in
2045 	 * this case and can be left as KTIME_MAX.
2046 	 */
2047 	if (time_before_eq(nextevt, basej + 1)) {
2048 		/* If we missed a tick already, force 0 delta */
2049 		if (time_before(nextevt, basej))
2050 			nextevt = basej;
2051 		tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
2052 
2053 		/*
2054 		 * This is required for the remote check only but it doesn't
2055 		 * hurt, when it is done for both call sites:
2056 		 *
2057 		 * * The remote callers will only take care of the global timers
2058 		 *   as local timers will be handled by CPU itself. When not
2059 		 *   updating tevt->global with the already missed first global
2060 		 *   timer, it is possible that it will be missed completely.
2061 		 *
2062 		 * * The local callers will ignore the tevt->global anyway, when
2063 		 *   nextevt is max. one tick away.
2064 		 */
2065 		if (!local_first)
2066 			tevt->global = tevt->local;
2067 		return nextevt;
2068 	}
2069 
2070 	/*
2071 	 * Update tevt.* values:
2072 	 *
2073 	 * If the local queue expires first, then the global event can be
2074 	 * ignored. If the global queue is empty, nothing to do either.
2075 	 */
2076 	if (!local_first && base_global->timers_pending)
2077 		tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
2078 
2079 	if (base_local->timers_pending)
2080 		tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
2081 
2082 	return nextevt;
2083 }
2084 
2085 # ifdef CONFIG_SMP
2086 /**
2087  * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
2088  * @basej:	base time jiffies
2089  * @basem:	base time clock monotonic
2090  * @tevt:	Pointer to the storage for the expiry values
2091  * @cpu:	Remote CPU
2092  *
2093  * Stores the next pending local and global timer expiry values in the
2094  * struct pointed to by @tevt. If a queue is empty the corresponding
2095  * field is set to KTIME_MAX. If local event expires before global
2096  * event, global event is set to KTIME_MAX as well.
2097  *
2098  * Caller needs to make sure timer base locks are held (use
2099  * timer_lock_remote_bases() for this purpose).
2100  */
2101 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
2102 				       struct timer_events *tevt,
2103 				       unsigned int cpu)
2104 {
2105 	struct timer_base *base_local, *base_global;
2106 
2107 	/* Preset local / global events */
2108 	tevt->local = tevt->global = KTIME_MAX;
2109 
2110 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2111 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2112 
2113 	lockdep_assert_held(&base_local->lock);
2114 	lockdep_assert_held(&base_global->lock);
2115 
2116 	fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
2117 }
2118 
2119 /**
2120  * timer_unlock_remote_bases - unlock timer bases of cpu
2121  * @cpu:	Remote CPU
2122  *
2123  * Unlocks the remote timer bases.
2124  */
2125 void timer_unlock_remote_bases(unsigned int cpu)
2126 	__releases(timer_bases[BASE_LOCAL]->lock)
2127 	__releases(timer_bases[BASE_GLOBAL]->lock)
2128 {
2129 	struct timer_base *base_local, *base_global;
2130 
2131 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2132 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2133 
2134 	raw_spin_unlock(&base_global->lock);
2135 	raw_spin_unlock(&base_local->lock);
2136 }
2137 
2138 /**
2139  * timer_lock_remote_bases - lock timer bases of cpu
2140  * @cpu:	Remote CPU
2141  *
2142  * Locks the remote timer bases.
2143  */
2144 void timer_lock_remote_bases(unsigned int cpu)
2145 	__acquires(timer_bases[BASE_LOCAL]->lock)
2146 	__acquires(timer_bases[BASE_GLOBAL]->lock)
2147 {
2148 	struct timer_base *base_local, *base_global;
2149 
2150 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2151 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2152 
2153 	lockdep_assert_irqs_disabled();
2154 
2155 	raw_spin_lock(&base_local->lock);
2156 	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2157 }
2158 
2159 /**
2160  * timer_base_is_idle() - Return whether timer base is set idle
2161  *
2162  * Returns value of local timer base is_idle value.
2163  */
2164 bool timer_base_is_idle(void)
2165 {
2166 	return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
2167 }
2168 
2169 static void __run_timer_base(struct timer_base *base);
2170 
2171 /**
2172  * timer_expire_remote() - expire global timers of cpu
2173  * @cpu:	Remote CPU
2174  *
2175  * Expire timers of global base of remote CPU.
2176  */
2177 void timer_expire_remote(unsigned int cpu)
2178 {
2179 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2180 
2181 	__run_timer_base(base);
2182 }
2183 
2184 static void timer_use_tmigr(unsigned long basej, u64 basem,
2185 			    unsigned long *nextevt, bool *tick_stop_path,
2186 			    bool timer_base_idle, struct timer_events *tevt)
2187 {
2188 	u64 next_tmigr;
2189 
2190 	if (timer_base_idle)
2191 		next_tmigr = tmigr_cpu_new_timer(tevt->global);
2192 	else if (tick_stop_path)
2193 		next_tmigr = tmigr_cpu_deactivate(tevt->global);
2194 	else
2195 		next_tmigr = tmigr_quick_check(tevt->global);
2196 
2197 	/*
2198 	 * If the CPU is the last going idle in timer migration hierarchy, make
2199 	 * sure the CPU will wake up in time to handle remote timers.
2200 	 * next_tmigr == KTIME_MAX if other CPUs are still active.
2201 	 */
2202 	if (next_tmigr < tevt->local) {
2203 		u64 tmp;
2204 
2205 		/* If we missed a tick already, force 0 delta */
2206 		if (next_tmigr < basem)
2207 			next_tmigr = basem;
2208 
2209 		tmp = div_u64(next_tmigr - basem, TICK_NSEC);
2210 
2211 		*nextevt = basej + (unsigned long)tmp;
2212 		tevt->local = next_tmigr;
2213 	}
2214 }
2215 # else
2216 static void timer_use_tmigr(unsigned long basej, u64 basem,
2217 			    unsigned long *nextevt, bool *tick_stop_path,
2218 			    bool timer_base_idle, struct timer_events *tevt)
2219 {
2220 	/*
2221 	 * Make sure first event is written into tevt->local to not miss a
2222 	 * timer on !SMP systems.
2223 	 */
2224 	tevt->local = min_t(u64, tevt->local, tevt->global);
2225 }
2226 # endif /* CONFIG_SMP */
2227 
2228 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
2229 					     bool *idle)
2230 {
2231 	struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
2232 	struct timer_base *base_local, *base_global;
2233 	unsigned long nextevt;
2234 	bool idle_is_possible;
2235 
2236 	/*
2237 	 * When the CPU is offline, the tick is cancelled and nothing is supposed
2238 	 * to try to stop it.
2239 	 */
2240 	if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
2241 		if (idle)
2242 			*idle = true;
2243 		return tevt.local;
2244 	}
2245 
2246 	base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2247 	base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
2248 
2249 	raw_spin_lock(&base_local->lock);
2250 	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2251 
2252 	nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
2253 					     base_global, &tevt);
2254 
2255 	/*
2256 	 * If the next event is only one jiffie ahead there is no need to call
2257 	 * timer migration hierarchy related functions. The value for the next
2258 	 * global timer in @tevt struct equals then KTIME_MAX. This is also
2259 	 * true, when the timer base is idle.
2260 	 *
2261 	 * The proper timer migration hierarchy function depends on the callsite
2262 	 * and whether timer base is idle or not. @nextevt will be updated when
2263 	 * this CPU needs to handle the first timer migration hierarchy
2264 	 * event. See timer_use_tmigr() for detailed information.
2265 	 */
2266 	idle_is_possible = time_after(nextevt, basej + 1);
2267 	if (idle_is_possible)
2268 		timer_use_tmigr(basej, basem, &nextevt, idle,
2269 				base_local->is_idle, &tevt);
2270 
2271 	/*
2272 	 * We have a fresh next event. Check whether we can forward the
2273 	 * base.
2274 	 */
2275 	__forward_timer_base(base_local, basej);
2276 	__forward_timer_base(base_global, basej);
2277 
2278 	/*
2279 	 * Set base->is_idle only when caller is timer_base_try_to_set_idle()
2280 	 */
2281 	if (idle) {
2282 		/*
2283 		 * Bases are idle if the next event is more than a tick
2284 		 * away. Caution: @nextevt could have changed by enqueueing a
2285 		 * global timer into timer migration hierarchy. Therefore a new
2286 		 * check is required here.
2287 		 *
2288 		 * If the base is marked idle then any timer add operation must
2289 		 * forward the base clk itself to keep granularity small. This
2290 		 * idle logic is only maintained for the BASE_LOCAL and
2291 		 * BASE_GLOBAL base, deferrable timers may still see large
2292 		 * granularity skew (by design).
2293 		 */
2294 		if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
2295 			base_local->is_idle = true;
2296 			/*
2297 			 * Global timers queued locally while running in a task
2298 			 * in nohz_full mode need a self-IPI to kick reprogramming
2299 			 * in IRQ tail.
2300 			 */
2301 			if (tick_nohz_full_cpu(base_local->cpu))
2302 				base_global->is_idle = true;
2303 			trace_timer_base_idle(true, base_local->cpu);
2304 		}
2305 		*idle = base_local->is_idle;
2306 
2307 		/*
2308 		 * When timer base is not set idle, undo the effect of
2309 		 * tmigr_cpu_deactivate() to prevent inconsitent states - active
2310 		 * timer base but inactive timer migration hierarchy.
2311 		 *
2312 		 * When timer base was already marked idle, nothing will be
2313 		 * changed here.
2314 		 */
2315 		if (!base_local->is_idle && idle_is_possible)
2316 			tmigr_cpu_activate();
2317 	}
2318 
2319 	raw_spin_unlock(&base_global->lock);
2320 	raw_spin_unlock(&base_local->lock);
2321 
2322 	return cmp_next_hrtimer_event(basem, tevt.local);
2323 }
2324 
2325 /**
2326  * get_next_timer_interrupt() - return the time (clock mono) of the next timer
2327  * @basej:	base time jiffies
2328  * @basem:	base time clock monotonic
2329  *
2330  * Returns the tick aligned clock monotonic time of the next pending timer or
2331  * KTIME_MAX if no timer is pending. If timer of global base was queued into
2332  * timer migration hierarchy, first global timer is not taken into account. If
2333  * it was the last CPU of timer migration hierarchy going idle, first global
2334  * event is taken into account.
2335  */
2336 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
2337 {
2338 	return __get_next_timer_interrupt(basej, basem, NULL);
2339 }
2340 
2341 /**
2342  * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
2343  * @basej:	base time jiffies
2344  * @basem:	base time clock monotonic
2345  * @idle:	pointer to store the value of timer_base->is_idle on return;
2346  *		*idle contains the information whether tick was already stopped
2347  *
2348  * Returns the tick aligned clock monotonic time of the next pending timer or
2349  * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
2350  * returned as well.
2351  */
2352 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
2353 {
2354 	if (*idle)
2355 		return KTIME_MAX;
2356 
2357 	return __get_next_timer_interrupt(basej, basem, idle);
2358 }
2359 
2360 /**
2361  * timer_clear_idle - Clear the idle state of the timer base
2362  *
2363  * Called with interrupts disabled
2364  */
2365 void timer_clear_idle(void)
2366 {
2367 	/*
2368 	 * We do this unlocked. The worst outcome is a remote pinned timer
2369 	 * enqueue sending a pointless IPI, but taking the lock would just
2370 	 * make the window for sending the IPI a few instructions smaller
2371 	 * for the cost of taking the lock in the exit from idle
2372 	 * path. Required for BASE_LOCAL only.
2373 	 */
2374 	__this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
2375 	if (tick_nohz_full_cpu(smp_processor_id()))
2376 		__this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
2377 	trace_timer_base_idle(false, smp_processor_id());
2378 
2379 	/* Activate without holding the timer_base->lock */
2380 	tmigr_cpu_activate();
2381 }
2382 #endif
2383 
2384 /**
2385  * __run_timers - run all expired timers (if any) on this CPU.
2386  * @base: the timer vector to be processed.
2387  */
2388 static inline void __run_timers(struct timer_base *base)
2389 {
2390 	struct hlist_head heads[LVL_DEPTH];
2391 	int levels;
2392 
2393 	lockdep_assert_held(&base->lock);
2394 
2395 	if (base->running_timer)
2396 		return;
2397 
2398 	while (time_after_eq(jiffies, base->clk) &&
2399 	       time_after_eq(jiffies, base->next_expiry)) {
2400 		levels = collect_expired_timers(base, heads);
2401 		/*
2402 		 * The two possible reasons for not finding any expired
2403 		 * timer at this clk are that all matching timers have been
2404 		 * dequeued or no timer has been queued since
2405 		 * base::next_expiry was set to base::clk +
2406 		 * NEXT_TIMER_MAX_DELTA.
2407 		 */
2408 		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2409 			     && base->timers_pending);
2410 		/*
2411 		 * While executing timers, base->clk is set 1 offset ahead of
2412 		 * jiffies to avoid endless requeuing to current jiffies.
2413 		 */
2414 		base->clk++;
2415 		next_expiry_recalc(base);
2416 
2417 		while (levels--)
2418 			expire_timers(base, heads + levels);
2419 	}
2420 }
2421 
2422 static void __run_timer_base(struct timer_base *base)
2423 {
2424 	if (time_before(jiffies, base->next_expiry))
2425 		return;
2426 
2427 	timer_base_lock_expiry(base);
2428 	raw_spin_lock_irq(&base->lock);
2429 	__run_timers(base);
2430 	raw_spin_unlock_irq(&base->lock);
2431 	timer_base_unlock_expiry(base);
2432 }
2433 
2434 static void run_timer_base(int index)
2435 {
2436 	struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
2437 
2438 	__run_timer_base(base);
2439 }
2440 
2441 /*
2442  * This function runs timers and the timer-tq in bottom half context.
2443  */
2444 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
2445 {
2446 	run_timer_base(BASE_LOCAL);
2447 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
2448 		run_timer_base(BASE_GLOBAL);
2449 		run_timer_base(BASE_DEF);
2450 
2451 		if (is_timers_nohz_active())
2452 			tmigr_handle_remote();
2453 	}
2454 }
2455 
2456 /*
2457  * Called by the local, per-CPU timer interrupt on SMP.
2458  */
2459 static void run_local_timers(void)
2460 {
2461 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2462 
2463 	hrtimer_run_queues();
2464 
2465 	for (int i = 0; i < NR_BASES; i++, base++) {
2466 		/* Raise the softirq only if required. */
2467 		if (time_after_eq(jiffies, base->next_expiry) ||
2468 		    (i == BASE_DEF && tmigr_requires_handle_remote())) {
2469 			raise_softirq(TIMER_SOFTIRQ);
2470 			return;
2471 		}
2472 	}
2473 }
2474 
2475 /*
2476  * Called from the timer interrupt handler to charge one tick to the current
2477  * process.  user_tick is 1 if the tick is user time, 0 for system.
2478  */
2479 void update_process_times(int user_tick)
2480 {
2481 	struct task_struct *p = current;
2482 
2483 	/* Note: this timer irq context must be accounted for as well. */
2484 	account_process_tick(p, user_tick);
2485 	run_local_timers();
2486 	rcu_sched_clock_irq(user_tick);
2487 #ifdef CONFIG_IRQ_WORK
2488 	if (in_irq())
2489 		irq_work_tick();
2490 #endif
2491 	scheduler_tick();
2492 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2493 		run_posix_cpu_timers();
2494 }
2495 
2496 /*
2497  * Since schedule_timeout()'s timer is defined on the stack, it must store
2498  * the target task on the stack as well.
2499  */
2500 struct process_timer {
2501 	struct timer_list timer;
2502 	struct task_struct *task;
2503 };
2504 
2505 static void process_timeout(struct timer_list *t)
2506 {
2507 	struct process_timer *timeout = from_timer(timeout, t, timer);
2508 
2509 	wake_up_process(timeout->task);
2510 }
2511 
2512 /**
2513  * schedule_timeout - sleep until timeout
2514  * @timeout: timeout value in jiffies
2515  *
2516  * Make the current task sleep until @timeout jiffies have elapsed.
2517  * The function behavior depends on the current task state
2518  * (see also set_current_state() description):
2519  *
2520  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
2521  * at all. That happens because sched_submit_work() does nothing for
2522  * tasks in %TASK_RUNNING state.
2523  *
2524  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
2525  * pass before the routine returns unless the current task is explicitly
2526  * woken up, (e.g. by wake_up_process()).
2527  *
2528  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2529  * delivered to the current task or the current task is explicitly woken
2530  * up.
2531  *
2532  * The current task state is guaranteed to be %TASK_RUNNING when this
2533  * routine returns.
2534  *
2535  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
2536  * the CPU away without a bound on the timeout. In this case the return
2537  * value will be %MAX_SCHEDULE_TIMEOUT.
2538  *
2539  * Returns 0 when the timer has expired otherwise the remaining time in
2540  * jiffies will be returned. In all cases the return value is guaranteed
2541  * to be non-negative.
2542  */
2543 signed long __sched schedule_timeout(signed long timeout)
2544 {
2545 	struct process_timer timer;
2546 	unsigned long expire;
2547 
2548 	switch (timeout)
2549 	{
2550 	case MAX_SCHEDULE_TIMEOUT:
2551 		/*
2552 		 * These two special cases are useful to be comfortable
2553 		 * in the caller. Nothing more. We could take
2554 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
2555 		 * but I' d like to return a valid offset (>=0) to allow
2556 		 * the caller to do everything it want with the retval.
2557 		 */
2558 		schedule();
2559 		goto out;
2560 	default:
2561 		/*
2562 		 * Another bit of PARANOID. Note that the retval will be
2563 		 * 0 since no piece of kernel is supposed to do a check
2564 		 * for a negative retval of schedule_timeout() (since it
2565 		 * should never happens anyway). You just have the printk()
2566 		 * that will tell you if something is gone wrong and where.
2567 		 */
2568 		if (timeout < 0) {
2569 			printk(KERN_ERR "schedule_timeout: wrong timeout "
2570 				"value %lx\n", timeout);
2571 			dump_stack();
2572 			__set_current_state(TASK_RUNNING);
2573 			goto out;
2574 		}
2575 	}
2576 
2577 	expire = timeout + jiffies;
2578 
2579 	timer.task = current;
2580 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
2581 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2582 	schedule();
2583 	del_timer_sync(&timer.timer);
2584 
2585 	/* Remove the timer from the object tracker */
2586 	destroy_timer_on_stack(&timer.timer);
2587 
2588 	timeout = expire - jiffies;
2589 
2590  out:
2591 	return timeout < 0 ? 0 : timeout;
2592 }
2593 EXPORT_SYMBOL(schedule_timeout);
2594 
2595 /*
2596  * We can use __set_current_state() here because schedule_timeout() calls
2597  * schedule() unconditionally.
2598  */
2599 signed long __sched schedule_timeout_interruptible(signed long timeout)
2600 {
2601 	__set_current_state(TASK_INTERRUPTIBLE);
2602 	return schedule_timeout(timeout);
2603 }
2604 EXPORT_SYMBOL(schedule_timeout_interruptible);
2605 
2606 signed long __sched schedule_timeout_killable(signed long timeout)
2607 {
2608 	__set_current_state(TASK_KILLABLE);
2609 	return schedule_timeout(timeout);
2610 }
2611 EXPORT_SYMBOL(schedule_timeout_killable);
2612 
2613 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
2614 {
2615 	__set_current_state(TASK_UNINTERRUPTIBLE);
2616 	return schedule_timeout(timeout);
2617 }
2618 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2619 
2620 /*
2621  * Like schedule_timeout_uninterruptible(), except this task will not contribute
2622  * to load average.
2623  */
2624 signed long __sched schedule_timeout_idle(signed long timeout)
2625 {
2626 	__set_current_state(TASK_IDLE);
2627 	return schedule_timeout(timeout);
2628 }
2629 EXPORT_SYMBOL(schedule_timeout_idle);
2630 
2631 #ifdef CONFIG_HOTPLUG_CPU
2632 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2633 {
2634 	struct timer_list *timer;
2635 	int cpu = new_base->cpu;
2636 
2637 	while (!hlist_empty(head)) {
2638 		timer = hlist_entry(head->first, struct timer_list, entry);
2639 		detach_timer(timer, false);
2640 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2641 		internal_add_timer(new_base, timer);
2642 	}
2643 }
2644 
2645 int timers_prepare_cpu(unsigned int cpu)
2646 {
2647 	struct timer_base *base;
2648 	int b;
2649 
2650 	for (b = 0; b < NR_BASES; b++) {
2651 		base = per_cpu_ptr(&timer_bases[b], cpu);
2652 		base->clk = jiffies;
2653 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2654 		base->next_expiry_recalc = false;
2655 		base->timers_pending = false;
2656 		base->is_idle = false;
2657 	}
2658 	return 0;
2659 }
2660 
2661 int timers_dead_cpu(unsigned int cpu)
2662 {
2663 	struct timer_base *old_base;
2664 	struct timer_base *new_base;
2665 	int b, i;
2666 
2667 	for (b = 0; b < NR_BASES; b++) {
2668 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2669 		new_base = get_cpu_ptr(&timer_bases[b]);
2670 		/*
2671 		 * The caller is globally serialized and nobody else
2672 		 * takes two locks at once, deadlock is not possible.
2673 		 */
2674 		raw_spin_lock_irq(&new_base->lock);
2675 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2676 
2677 		/*
2678 		 * The current CPUs base clock might be stale. Update it
2679 		 * before moving the timers over.
2680 		 */
2681 		forward_timer_base(new_base);
2682 
2683 		WARN_ON_ONCE(old_base->running_timer);
2684 		old_base->running_timer = NULL;
2685 
2686 		for (i = 0; i < WHEEL_SIZE; i++)
2687 			migrate_timer_list(new_base, old_base->vectors + i);
2688 
2689 		raw_spin_unlock(&old_base->lock);
2690 		raw_spin_unlock_irq(&new_base->lock);
2691 		put_cpu_ptr(&timer_bases);
2692 	}
2693 	return 0;
2694 }
2695 
2696 #endif /* CONFIG_HOTPLUG_CPU */
2697 
2698 static void __init init_timer_cpu(int cpu)
2699 {
2700 	struct timer_base *base;
2701 	int i;
2702 
2703 	for (i = 0; i < NR_BASES; i++) {
2704 		base = per_cpu_ptr(&timer_bases[i], cpu);
2705 		base->cpu = cpu;
2706 		raw_spin_lock_init(&base->lock);
2707 		base->clk = jiffies;
2708 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2709 		timer_base_init_expiry_lock(base);
2710 	}
2711 }
2712 
2713 static void __init init_timer_cpus(void)
2714 {
2715 	int cpu;
2716 
2717 	for_each_possible_cpu(cpu)
2718 		init_timer_cpu(cpu);
2719 }
2720 
2721 void __init init_timers(void)
2722 {
2723 	init_timer_cpus();
2724 	posix_cputimers_init_work();
2725 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2726 }
2727 
2728 /**
2729  * msleep - sleep safely even with waitqueue interruptions
2730  * @msecs: Time in milliseconds to sleep for
2731  */
2732 void msleep(unsigned int msecs)
2733 {
2734 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2735 
2736 	while (timeout)
2737 		timeout = schedule_timeout_uninterruptible(timeout);
2738 }
2739 
2740 EXPORT_SYMBOL(msleep);
2741 
2742 /**
2743  * msleep_interruptible - sleep waiting for signals
2744  * @msecs: Time in milliseconds to sleep for
2745  */
2746 unsigned long msleep_interruptible(unsigned int msecs)
2747 {
2748 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2749 
2750 	while (timeout && !signal_pending(current))
2751 		timeout = schedule_timeout_interruptible(timeout);
2752 	return jiffies_to_msecs(timeout);
2753 }
2754 
2755 EXPORT_SYMBOL(msleep_interruptible);
2756 
2757 /**
2758  * usleep_range_state - Sleep for an approximate time in a given state
2759  * @min:	Minimum time in usecs to sleep
2760  * @max:	Maximum time in usecs to sleep
2761  * @state:	State of the current task that will be while sleeping
2762  *
2763  * In non-atomic context where the exact wakeup time is flexible, use
2764  * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2765  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2766  * power usage by allowing hrtimers to take advantage of an already-
2767  * scheduled interrupt instead of scheduling a new one just for this sleep.
2768  */
2769 void __sched usleep_range_state(unsigned long min, unsigned long max,
2770 				unsigned int state)
2771 {
2772 	ktime_t exp = ktime_add_us(ktime_get(), min);
2773 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2774 
2775 	for (;;) {
2776 		__set_current_state(state);
2777 		/* Do not return before the requested sleep time has elapsed */
2778 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2779 			break;
2780 	}
2781 }
2782 EXPORT_SYMBOL(usleep_range_state);
2783