1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/sched/nohz.h> 43 #include <linux/sched/debug.h> 44 #include <linux/slab.h> 45 #include <linux/compat.h> 46 #include <linux/random.h> 47 #include <linux/sysctl.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/div64.h> 52 #include <asm/timex.h> 53 #include <asm/io.h> 54 55 #include "tick-internal.h" 56 #include "timer_migration.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/timer.h> 60 61 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 62 63 EXPORT_SYMBOL(jiffies_64); 64 65 /* 66 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 67 * LVL_SIZE buckets. Each level is driven by its own clock and therefore each 68 * level has a different granularity. 69 * 70 * The level granularity is: LVL_CLK_DIV ^ level 71 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 72 * 73 * The array level of a newly armed timer depends on the relative expiry 74 * time. The farther the expiry time is away the higher the array level and 75 * therefore the granularity becomes. 76 * 77 * Contrary to the original timer wheel implementation, which aims for 'exact' 78 * expiry of the timers, this implementation removes the need for recascading 79 * the timers into the lower array levels. The previous 'classic' timer wheel 80 * implementation of the kernel already violated the 'exact' expiry by adding 81 * slack to the expiry time to provide batched expiration. The granularity 82 * levels provide implicit batching. 83 * 84 * This is an optimization of the original timer wheel implementation for the 85 * majority of the timer wheel use cases: timeouts. The vast majority of 86 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 87 * the timeout expires it indicates that normal operation is disturbed, so it 88 * does not matter much whether the timeout comes with a slight delay. 89 * 90 * The only exception to this are networking timers with a small expiry 91 * time. They rely on the granularity. Those fit into the first wheel level, 92 * which has HZ granularity. 93 * 94 * We don't have cascading anymore. timers with a expiry time above the 95 * capacity of the last wheel level are force expired at the maximum timeout 96 * value of the last wheel level. From data sampling we know that the maximum 97 * value observed is 5 days (network connection tracking), so this should not 98 * be an issue. 99 * 100 * The currently chosen array constants values are a good compromise between 101 * array size and granularity. 102 * 103 * This results in the following granularity and range levels: 104 * 105 * HZ 1000 steps 106 * Level Offset Granularity Range 107 * 0 0 1 ms 0 ms - 63 ms 108 * 1 64 8 ms 64 ms - 511 ms 109 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 110 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 111 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 112 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 113 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 114 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 115 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 116 * 117 * HZ 300 118 * Level Offset Granularity Range 119 * 0 0 3 ms 0 ms - 210 ms 120 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 121 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 122 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 123 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 124 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 125 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 126 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 127 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 128 * 129 * HZ 250 130 * Level Offset Granularity Range 131 * 0 0 4 ms 0 ms - 255 ms 132 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 133 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 134 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 135 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 136 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 137 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 138 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 139 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 140 * 141 * HZ 100 142 * Level Offset Granularity Range 143 * 0 0 10 ms 0 ms - 630 ms 144 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 145 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 146 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 147 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 148 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 149 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 150 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 151 */ 152 153 /* Clock divisor for the next level */ 154 #define LVL_CLK_SHIFT 3 155 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 156 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 157 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 158 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 159 160 /* 161 * The time start value for each level to select the bucket at enqueue 162 * time. We start from the last possible delta of the previous level 163 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). 164 */ 165 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 166 167 /* Size of each clock level */ 168 #define LVL_BITS 6 169 #define LVL_SIZE (1UL << LVL_BITS) 170 #define LVL_MASK (LVL_SIZE - 1) 171 #define LVL_OFFS(n) ((n) * LVL_SIZE) 172 173 /* Level depth */ 174 #if HZ > 100 175 # define LVL_DEPTH 9 176 # else 177 # define LVL_DEPTH 8 178 #endif 179 180 /* The cutoff (max. capacity of the wheel) */ 181 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 182 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 183 184 /* 185 * The resulting wheel size. If NOHZ is configured we allocate two 186 * wheels so we have a separate storage for the deferrable timers. 187 */ 188 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 189 190 #ifdef CONFIG_NO_HZ_COMMON 191 /* 192 * If multiple bases need to be locked, use the base ordering for lock 193 * nesting, i.e. lowest number first. 194 */ 195 # define NR_BASES 3 196 # define BASE_LOCAL 0 197 # define BASE_GLOBAL 1 198 # define BASE_DEF 2 199 #else 200 # define NR_BASES 1 201 # define BASE_LOCAL 0 202 # define BASE_GLOBAL 0 203 # define BASE_DEF 0 204 #endif 205 206 /** 207 * struct timer_base - Per CPU timer base (number of base depends on config) 208 * @lock: Lock protecting the timer_base 209 * @running_timer: When expiring timers, the lock is dropped. To make 210 * sure not to race against deleting/modifying a 211 * currently running timer, the pointer is set to the 212 * timer, which expires at the moment. If no timer is 213 * running, the pointer is NULL. 214 * @expiry_lock: PREEMPT_RT only: Lock is taken in softirq around 215 * timer expiry callback execution and when trying to 216 * delete a running timer and it wasn't successful in 217 * the first glance. It prevents priority inversion 218 * when callback was preempted on a remote CPU and a 219 * caller tries to delete the running timer. It also 220 * prevents a life lock, when the task which tries to 221 * delete a timer preempted the softirq thread which 222 * is running the timer callback function. 223 * @timer_waiters: PREEMPT_RT only: Tells, if there is a waiter 224 * waiting for the end of the timer callback function 225 * execution. 226 * @clk: clock of the timer base; is updated before enqueue 227 * of a timer; during expiry, it is 1 offset ahead of 228 * jiffies to avoid endless requeuing to current 229 * jiffies 230 * @next_expiry: expiry value of the first timer; it is updated when 231 * finding the next timer and during enqueue; the 232 * value is not valid, when next_expiry_recalc is set 233 * @cpu: Number of CPU the timer base belongs to 234 * @next_expiry_recalc: States, whether a recalculation of next_expiry is 235 * required. Value is set true, when a timer was 236 * deleted. 237 * @is_idle: Is set, when timer_base is idle. It is triggered by NOHZ 238 * code. This state is only used in standard 239 * base. Deferrable timers, which are enqueued remotely 240 * never wake up an idle CPU. So no matter of supporting it 241 * for this base. 242 * @timers_pending: Is set, when a timer is pending in the base. It is only 243 * reliable when next_expiry_recalc is not set. 244 * @pending_map: bitmap of the timer wheel; each bit reflects a 245 * bucket of the wheel. When a bit is set, at least a 246 * single timer is enqueued in the related bucket. 247 * @vectors: Array of lists; Each array member reflects a bucket 248 * of the timer wheel. The list contains all timers 249 * which are enqueued into a specific bucket. 250 */ 251 struct timer_base { 252 raw_spinlock_t lock; 253 struct timer_list *running_timer; 254 #ifdef CONFIG_PREEMPT_RT 255 spinlock_t expiry_lock; 256 atomic_t timer_waiters; 257 #endif 258 unsigned long clk; 259 unsigned long next_expiry; 260 unsigned int cpu; 261 bool next_expiry_recalc; 262 bool is_idle; 263 bool timers_pending; 264 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 265 struct hlist_head vectors[WHEEL_SIZE]; 266 } ____cacheline_aligned; 267 268 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 269 270 #ifdef CONFIG_NO_HZ_COMMON 271 272 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 273 static DEFINE_MUTEX(timer_keys_mutex); 274 275 static void timer_update_keys(struct work_struct *work); 276 static DECLARE_WORK(timer_update_work, timer_update_keys); 277 278 #ifdef CONFIG_SMP 279 static unsigned int sysctl_timer_migration = 1; 280 281 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 282 283 static void timers_update_migration(void) 284 { 285 if (sysctl_timer_migration && tick_nohz_active) 286 static_branch_enable(&timers_migration_enabled); 287 else 288 static_branch_disable(&timers_migration_enabled); 289 } 290 291 #ifdef CONFIG_SYSCTL 292 static int timer_migration_handler(const struct ctl_table *table, int write, 293 void *buffer, size_t *lenp, loff_t *ppos) 294 { 295 int ret; 296 297 mutex_lock(&timer_keys_mutex); 298 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 299 if (!ret && write) 300 timers_update_migration(); 301 mutex_unlock(&timer_keys_mutex); 302 return ret; 303 } 304 305 static struct ctl_table timer_sysctl[] = { 306 { 307 .procname = "timer_migration", 308 .data = &sysctl_timer_migration, 309 .maxlen = sizeof(unsigned int), 310 .mode = 0644, 311 .proc_handler = timer_migration_handler, 312 .extra1 = SYSCTL_ZERO, 313 .extra2 = SYSCTL_ONE, 314 }, 315 }; 316 317 static int __init timer_sysctl_init(void) 318 { 319 register_sysctl("kernel", timer_sysctl); 320 return 0; 321 } 322 device_initcall(timer_sysctl_init); 323 #endif /* CONFIG_SYSCTL */ 324 #else /* CONFIG_SMP */ 325 static inline void timers_update_migration(void) { } 326 #endif /* !CONFIG_SMP */ 327 328 static void timer_update_keys(struct work_struct *work) 329 { 330 mutex_lock(&timer_keys_mutex); 331 timers_update_migration(); 332 static_branch_enable(&timers_nohz_active); 333 mutex_unlock(&timer_keys_mutex); 334 } 335 336 void timers_update_nohz(void) 337 { 338 schedule_work(&timer_update_work); 339 } 340 341 static inline bool is_timers_nohz_active(void) 342 { 343 return static_branch_unlikely(&timers_nohz_active); 344 } 345 #else 346 static inline bool is_timers_nohz_active(void) { return false; } 347 #endif /* NO_HZ_COMMON */ 348 349 static unsigned long round_jiffies_common(unsigned long j, int cpu, 350 bool force_up) 351 { 352 int rem; 353 unsigned long original = j; 354 355 /* 356 * We don't want all cpus firing their timers at once hitting the 357 * same lock or cachelines, so we skew each extra cpu with an extra 358 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 359 * already did this. 360 * The skew is done by adding 3*cpunr, then round, then subtract this 361 * extra offset again. 362 */ 363 j += cpu * 3; 364 365 rem = j % HZ; 366 367 /* 368 * If the target jiffy is just after a whole second (which can happen 369 * due to delays of the timer irq, long irq off times etc etc) then 370 * we should round down to the whole second, not up. Use 1/4th second 371 * as cutoff for this rounding as an extreme upper bound for this. 372 * But never round down if @force_up is set. 373 */ 374 if (rem < HZ/4 && !force_up) /* round down */ 375 j = j - rem; 376 else /* round up */ 377 j = j - rem + HZ; 378 379 /* now that we have rounded, subtract the extra skew again */ 380 j -= cpu * 3; 381 382 /* 383 * Make sure j is still in the future. Otherwise return the 384 * unmodified value. 385 */ 386 return time_is_after_jiffies(j) ? j : original; 387 } 388 389 /** 390 * __round_jiffies - function to round jiffies to a full second 391 * @j: the time in (absolute) jiffies that should be rounded 392 * @cpu: the processor number on which the timeout will happen 393 * 394 * __round_jiffies() rounds an absolute time in the future (in jiffies) 395 * up or down to (approximately) full seconds. This is useful for timers 396 * for which the exact time they fire does not matter too much, as long as 397 * they fire approximately every X seconds. 398 * 399 * By rounding these timers to whole seconds, all such timers will fire 400 * at the same time, rather than at various times spread out. The goal 401 * of this is to have the CPU wake up less, which saves power. 402 * 403 * The exact rounding is skewed for each processor to avoid all 404 * processors firing at the exact same time, which could lead 405 * to lock contention or spurious cache line bouncing. 406 * 407 * The return value is the rounded version of the @j parameter. 408 */ 409 unsigned long __round_jiffies(unsigned long j, int cpu) 410 { 411 return round_jiffies_common(j, cpu, false); 412 } 413 EXPORT_SYMBOL_GPL(__round_jiffies); 414 415 /** 416 * __round_jiffies_relative - function to round jiffies to a full second 417 * @j: the time in (relative) jiffies that should be rounded 418 * @cpu: the processor number on which the timeout will happen 419 * 420 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 421 * up or down to (approximately) full seconds. This is useful for timers 422 * for which the exact time they fire does not matter too much, as long as 423 * they fire approximately every X seconds. 424 * 425 * By rounding these timers to whole seconds, all such timers will fire 426 * at the same time, rather than at various times spread out. The goal 427 * of this is to have the CPU wake up less, which saves power. 428 * 429 * The exact rounding is skewed for each processor to avoid all 430 * processors firing at the exact same time, which could lead 431 * to lock contention or spurious cache line bouncing. 432 * 433 * The return value is the rounded version of the @j parameter. 434 */ 435 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 436 { 437 unsigned long j0 = jiffies; 438 439 /* Use j0 because jiffies might change while we run */ 440 return round_jiffies_common(j + j0, cpu, false) - j0; 441 } 442 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 443 444 /** 445 * round_jiffies - function to round jiffies to a full second 446 * @j: the time in (absolute) jiffies that should be rounded 447 * 448 * round_jiffies() rounds an absolute time in the future (in jiffies) 449 * up or down to (approximately) full seconds. This is useful for timers 450 * for which the exact time they fire does not matter too much, as long as 451 * they fire approximately every X seconds. 452 * 453 * By rounding these timers to whole seconds, all such timers will fire 454 * at the same time, rather than at various times spread out. The goal 455 * of this is to have the CPU wake up less, which saves power. 456 * 457 * The return value is the rounded version of the @j parameter. 458 */ 459 unsigned long round_jiffies(unsigned long j) 460 { 461 return round_jiffies_common(j, raw_smp_processor_id(), false); 462 } 463 EXPORT_SYMBOL_GPL(round_jiffies); 464 465 /** 466 * round_jiffies_relative - function to round jiffies to a full second 467 * @j: the time in (relative) jiffies that should be rounded 468 * 469 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 470 * up or down to (approximately) full seconds. This is useful for timers 471 * for which the exact time they fire does not matter too much, as long as 472 * they fire approximately every X seconds. 473 * 474 * By rounding these timers to whole seconds, all such timers will fire 475 * at the same time, rather than at various times spread out. The goal 476 * of this is to have the CPU wake up less, which saves power. 477 * 478 * The return value is the rounded version of the @j parameter. 479 */ 480 unsigned long round_jiffies_relative(unsigned long j) 481 { 482 return __round_jiffies_relative(j, raw_smp_processor_id()); 483 } 484 EXPORT_SYMBOL_GPL(round_jiffies_relative); 485 486 /** 487 * __round_jiffies_up - function to round jiffies up to a full second 488 * @j: the time in (absolute) jiffies that should be rounded 489 * @cpu: the processor number on which the timeout will happen 490 * 491 * This is the same as __round_jiffies() except that it will never 492 * round down. This is useful for timeouts for which the exact time 493 * of firing does not matter too much, as long as they don't fire too 494 * early. 495 */ 496 unsigned long __round_jiffies_up(unsigned long j, int cpu) 497 { 498 return round_jiffies_common(j, cpu, true); 499 } 500 EXPORT_SYMBOL_GPL(__round_jiffies_up); 501 502 /** 503 * __round_jiffies_up_relative - function to round jiffies up to a full second 504 * @j: the time in (relative) jiffies that should be rounded 505 * @cpu: the processor number on which the timeout will happen 506 * 507 * This is the same as __round_jiffies_relative() except that it will never 508 * round down. This is useful for timeouts for which the exact time 509 * of firing does not matter too much, as long as they don't fire too 510 * early. 511 */ 512 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 513 { 514 unsigned long j0 = jiffies; 515 516 /* Use j0 because jiffies might change while we run */ 517 return round_jiffies_common(j + j0, cpu, true) - j0; 518 } 519 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 520 521 /** 522 * round_jiffies_up - function to round jiffies up to a full second 523 * @j: the time in (absolute) jiffies that should be rounded 524 * 525 * This is the same as round_jiffies() except that it will never 526 * round down. This is useful for timeouts for which the exact time 527 * of firing does not matter too much, as long as they don't fire too 528 * early. 529 */ 530 unsigned long round_jiffies_up(unsigned long j) 531 { 532 return round_jiffies_common(j, raw_smp_processor_id(), true); 533 } 534 EXPORT_SYMBOL_GPL(round_jiffies_up); 535 536 /** 537 * round_jiffies_up_relative - function to round jiffies up to a full second 538 * @j: the time in (relative) jiffies that should be rounded 539 * 540 * This is the same as round_jiffies_relative() except that it will never 541 * round down. This is useful for timeouts for which the exact time 542 * of firing does not matter too much, as long as they don't fire too 543 * early. 544 */ 545 unsigned long round_jiffies_up_relative(unsigned long j) 546 { 547 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 548 } 549 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 550 551 552 static inline unsigned int timer_get_idx(struct timer_list *timer) 553 { 554 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 555 } 556 557 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 558 { 559 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 560 idx << TIMER_ARRAYSHIFT; 561 } 562 563 /* 564 * Helper function to calculate the array index for a given expiry 565 * time. 566 */ 567 static inline unsigned calc_index(unsigned long expires, unsigned lvl, 568 unsigned long *bucket_expiry) 569 { 570 571 /* 572 * The timer wheel has to guarantee that a timer does not fire 573 * early. Early expiry can happen due to: 574 * - Timer is armed at the edge of a tick 575 * - Truncation of the expiry time in the outer wheel levels 576 * 577 * Round up with level granularity to prevent this. 578 */ 579 expires = (expires >> LVL_SHIFT(lvl)) + 1; 580 *bucket_expiry = expires << LVL_SHIFT(lvl); 581 return LVL_OFFS(lvl) + (expires & LVL_MASK); 582 } 583 584 static int calc_wheel_index(unsigned long expires, unsigned long clk, 585 unsigned long *bucket_expiry) 586 { 587 unsigned long delta = expires - clk; 588 unsigned int idx; 589 590 if (delta < LVL_START(1)) { 591 idx = calc_index(expires, 0, bucket_expiry); 592 } else if (delta < LVL_START(2)) { 593 idx = calc_index(expires, 1, bucket_expiry); 594 } else if (delta < LVL_START(3)) { 595 idx = calc_index(expires, 2, bucket_expiry); 596 } else if (delta < LVL_START(4)) { 597 idx = calc_index(expires, 3, bucket_expiry); 598 } else if (delta < LVL_START(5)) { 599 idx = calc_index(expires, 4, bucket_expiry); 600 } else if (delta < LVL_START(6)) { 601 idx = calc_index(expires, 5, bucket_expiry); 602 } else if (delta < LVL_START(7)) { 603 idx = calc_index(expires, 6, bucket_expiry); 604 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 605 idx = calc_index(expires, 7, bucket_expiry); 606 } else if ((long) delta < 0) { 607 idx = clk & LVL_MASK; 608 *bucket_expiry = clk; 609 } else { 610 /* 611 * Force expire obscene large timeouts to expire at the 612 * capacity limit of the wheel. 613 */ 614 if (delta >= WHEEL_TIMEOUT_CUTOFF) 615 expires = clk + WHEEL_TIMEOUT_MAX; 616 617 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); 618 } 619 return idx; 620 } 621 622 static void 623 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 624 { 625 /* 626 * Deferrable timers do not prevent the CPU from entering dynticks and 627 * are not taken into account on the idle/nohz_full path. An IPI when a 628 * new deferrable timer is enqueued will wake up the remote CPU but 629 * nothing will be done with the deferrable timer base. Therefore skip 630 * the remote IPI for deferrable timers completely. 631 */ 632 if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE) 633 return; 634 635 /* 636 * We might have to IPI the remote CPU if the base is idle and the 637 * timer is pinned. If it is a non pinned timer, it is only queued 638 * on the remote CPU, when timer was running during queueing. Then 639 * everything is handled by remote CPU anyway. If the other CPU is 640 * on the way to idle then it can't set base->is_idle as we hold 641 * the base lock: 642 */ 643 if (base->is_idle) { 644 WARN_ON_ONCE(!(timer->flags & TIMER_PINNED || 645 tick_nohz_full_cpu(base->cpu))); 646 wake_up_nohz_cpu(base->cpu); 647 } 648 } 649 650 /* 651 * Enqueue the timer into the hash bucket, mark it pending in 652 * the bitmap, store the index in the timer flags then wake up 653 * the target CPU if needed. 654 */ 655 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 656 unsigned int idx, unsigned long bucket_expiry) 657 { 658 659 hlist_add_head(&timer->entry, base->vectors + idx); 660 __set_bit(idx, base->pending_map); 661 timer_set_idx(timer, idx); 662 663 trace_timer_start(timer, bucket_expiry); 664 665 /* 666 * Check whether this is the new first expiring timer. The 667 * effective expiry time of the timer is required here 668 * (bucket_expiry) instead of timer->expires. 669 */ 670 if (time_before(bucket_expiry, base->next_expiry)) { 671 /* 672 * Set the next expiry time and kick the CPU so it 673 * can reevaluate the wheel: 674 */ 675 WRITE_ONCE(base->next_expiry, bucket_expiry); 676 base->timers_pending = true; 677 base->next_expiry_recalc = false; 678 trigger_dyntick_cpu(base, timer); 679 } 680 } 681 682 static void internal_add_timer(struct timer_base *base, struct timer_list *timer) 683 { 684 unsigned long bucket_expiry; 685 unsigned int idx; 686 687 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); 688 enqueue_timer(base, timer, idx, bucket_expiry); 689 } 690 691 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 692 693 static const struct debug_obj_descr timer_debug_descr; 694 695 struct timer_hint { 696 void (*function)(struct timer_list *t); 697 long offset; 698 }; 699 700 #define TIMER_HINT(fn, container, timr, hintfn) \ 701 { \ 702 .function = fn, \ 703 .offset = offsetof(container, hintfn) - \ 704 offsetof(container, timr) \ 705 } 706 707 static const struct timer_hint timer_hints[] = { 708 TIMER_HINT(delayed_work_timer_fn, 709 struct delayed_work, timer, work.func), 710 TIMER_HINT(kthread_delayed_work_timer_fn, 711 struct kthread_delayed_work, timer, work.func), 712 }; 713 714 static void *timer_debug_hint(void *addr) 715 { 716 struct timer_list *timer = addr; 717 int i; 718 719 for (i = 0; i < ARRAY_SIZE(timer_hints); i++) { 720 if (timer_hints[i].function == timer->function) { 721 void (**fn)(void) = addr + timer_hints[i].offset; 722 723 return *fn; 724 } 725 } 726 727 return timer->function; 728 } 729 730 static bool timer_is_static_object(void *addr) 731 { 732 struct timer_list *timer = addr; 733 734 return (timer->entry.pprev == NULL && 735 timer->entry.next == TIMER_ENTRY_STATIC); 736 } 737 738 /* 739 * timer_fixup_init is called when: 740 * - an active object is initialized 741 */ 742 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 743 { 744 struct timer_list *timer = addr; 745 746 switch (state) { 747 case ODEBUG_STATE_ACTIVE: 748 del_timer_sync(timer); 749 debug_object_init(timer, &timer_debug_descr); 750 return true; 751 default: 752 return false; 753 } 754 } 755 756 /* Stub timer callback for improperly used timers. */ 757 static void stub_timer(struct timer_list *unused) 758 { 759 WARN_ON(1); 760 } 761 762 /* 763 * timer_fixup_activate is called when: 764 * - an active object is activated 765 * - an unknown non-static object is activated 766 */ 767 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 768 { 769 struct timer_list *timer = addr; 770 771 switch (state) { 772 case ODEBUG_STATE_NOTAVAILABLE: 773 timer_setup(timer, stub_timer, 0); 774 return true; 775 776 case ODEBUG_STATE_ACTIVE: 777 WARN_ON(1); 778 fallthrough; 779 default: 780 return false; 781 } 782 } 783 784 /* 785 * timer_fixup_free is called when: 786 * - an active object is freed 787 */ 788 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 789 { 790 struct timer_list *timer = addr; 791 792 switch (state) { 793 case ODEBUG_STATE_ACTIVE: 794 del_timer_sync(timer); 795 debug_object_free(timer, &timer_debug_descr); 796 return true; 797 default: 798 return false; 799 } 800 } 801 802 /* 803 * timer_fixup_assert_init is called when: 804 * - an untracked/uninit-ed object is found 805 */ 806 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 807 { 808 struct timer_list *timer = addr; 809 810 switch (state) { 811 case ODEBUG_STATE_NOTAVAILABLE: 812 timer_setup(timer, stub_timer, 0); 813 return true; 814 default: 815 return false; 816 } 817 } 818 819 static const struct debug_obj_descr timer_debug_descr = { 820 .name = "timer_list", 821 .debug_hint = timer_debug_hint, 822 .is_static_object = timer_is_static_object, 823 .fixup_init = timer_fixup_init, 824 .fixup_activate = timer_fixup_activate, 825 .fixup_free = timer_fixup_free, 826 .fixup_assert_init = timer_fixup_assert_init, 827 }; 828 829 static inline void debug_timer_init(struct timer_list *timer) 830 { 831 debug_object_init(timer, &timer_debug_descr); 832 } 833 834 static inline void debug_timer_activate(struct timer_list *timer) 835 { 836 debug_object_activate(timer, &timer_debug_descr); 837 } 838 839 static inline void debug_timer_deactivate(struct timer_list *timer) 840 { 841 debug_object_deactivate(timer, &timer_debug_descr); 842 } 843 844 static inline void debug_timer_assert_init(struct timer_list *timer) 845 { 846 debug_object_assert_init(timer, &timer_debug_descr); 847 } 848 849 static void do_init_timer(struct timer_list *timer, 850 void (*func)(struct timer_list *), 851 unsigned int flags, 852 const char *name, struct lock_class_key *key); 853 854 void init_timer_on_stack_key(struct timer_list *timer, 855 void (*func)(struct timer_list *), 856 unsigned int flags, 857 const char *name, struct lock_class_key *key) 858 { 859 debug_object_init_on_stack(timer, &timer_debug_descr); 860 do_init_timer(timer, func, flags, name, key); 861 } 862 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 863 864 void destroy_timer_on_stack(struct timer_list *timer) 865 { 866 debug_object_free(timer, &timer_debug_descr); 867 } 868 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 869 870 #else 871 static inline void debug_timer_init(struct timer_list *timer) { } 872 static inline void debug_timer_activate(struct timer_list *timer) { } 873 static inline void debug_timer_deactivate(struct timer_list *timer) { } 874 static inline void debug_timer_assert_init(struct timer_list *timer) { } 875 #endif 876 877 static inline void debug_init(struct timer_list *timer) 878 { 879 debug_timer_init(timer); 880 trace_timer_init(timer); 881 } 882 883 static inline void debug_deactivate(struct timer_list *timer) 884 { 885 debug_timer_deactivate(timer); 886 trace_timer_cancel(timer); 887 } 888 889 static inline void debug_assert_init(struct timer_list *timer) 890 { 891 debug_timer_assert_init(timer); 892 } 893 894 static void do_init_timer(struct timer_list *timer, 895 void (*func)(struct timer_list *), 896 unsigned int flags, 897 const char *name, struct lock_class_key *key) 898 { 899 timer->entry.pprev = NULL; 900 timer->function = func; 901 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) 902 flags &= TIMER_INIT_FLAGS; 903 timer->flags = flags | raw_smp_processor_id(); 904 lockdep_init_map(&timer->lockdep_map, name, key, 0); 905 } 906 907 /** 908 * init_timer_key - initialize a timer 909 * @timer: the timer to be initialized 910 * @func: timer callback function 911 * @flags: timer flags 912 * @name: name of the timer 913 * @key: lockdep class key of the fake lock used for tracking timer 914 * sync lock dependencies 915 * 916 * init_timer_key() must be done to a timer prior to calling *any* of the 917 * other timer functions. 918 */ 919 void init_timer_key(struct timer_list *timer, 920 void (*func)(struct timer_list *), unsigned int flags, 921 const char *name, struct lock_class_key *key) 922 { 923 debug_init(timer); 924 do_init_timer(timer, func, flags, name, key); 925 } 926 EXPORT_SYMBOL(init_timer_key); 927 928 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 929 { 930 struct hlist_node *entry = &timer->entry; 931 932 debug_deactivate(timer); 933 934 __hlist_del(entry); 935 if (clear_pending) 936 entry->pprev = NULL; 937 entry->next = LIST_POISON2; 938 } 939 940 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 941 bool clear_pending) 942 { 943 unsigned idx = timer_get_idx(timer); 944 945 if (!timer_pending(timer)) 946 return 0; 947 948 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) { 949 __clear_bit(idx, base->pending_map); 950 base->next_expiry_recalc = true; 951 } 952 953 detach_timer(timer, clear_pending); 954 return 1; 955 } 956 957 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 958 { 959 int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; 960 struct timer_base *base; 961 962 base = per_cpu_ptr(&timer_bases[index], cpu); 963 964 /* 965 * If the timer is deferrable and NO_HZ_COMMON is set then we need 966 * to use the deferrable base. 967 */ 968 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 969 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 970 return base; 971 } 972 973 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 974 { 975 int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; 976 struct timer_base *base; 977 978 base = this_cpu_ptr(&timer_bases[index]); 979 980 /* 981 * If the timer is deferrable and NO_HZ_COMMON is set then we need 982 * to use the deferrable base. 983 */ 984 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 985 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 986 return base; 987 } 988 989 static inline struct timer_base *get_timer_base(u32 tflags) 990 { 991 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 992 } 993 994 static inline void __forward_timer_base(struct timer_base *base, 995 unsigned long basej) 996 { 997 /* 998 * Check whether we can forward the base. We can only do that when 999 * @basej is past base->clk otherwise we might rewind base->clk. 1000 */ 1001 if (time_before_eq(basej, base->clk)) 1002 return; 1003 1004 /* 1005 * If the next expiry value is > jiffies, then we fast forward to 1006 * jiffies otherwise we forward to the next expiry value. 1007 */ 1008 if (time_after(base->next_expiry, basej)) { 1009 base->clk = basej; 1010 } else { 1011 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) 1012 return; 1013 base->clk = base->next_expiry; 1014 } 1015 1016 } 1017 1018 static inline void forward_timer_base(struct timer_base *base) 1019 { 1020 __forward_timer_base(base, READ_ONCE(jiffies)); 1021 } 1022 1023 /* 1024 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 1025 * that all timers which are tied to this base are locked, and the base itself 1026 * is locked too. 1027 * 1028 * So __run_timers/migrate_timers can safely modify all timers which could 1029 * be found in the base->vectors array. 1030 * 1031 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 1032 * to wait until the migration is done. 1033 */ 1034 static struct timer_base *lock_timer_base(struct timer_list *timer, 1035 unsigned long *flags) 1036 __acquires(timer->base->lock) 1037 { 1038 for (;;) { 1039 struct timer_base *base; 1040 u32 tf; 1041 1042 /* 1043 * We need to use READ_ONCE() here, otherwise the compiler 1044 * might re-read @tf between the check for TIMER_MIGRATING 1045 * and spin_lock(). 1046 */ 1047 tf = READ_ONCE(timer->flags); 1048 1049 if (!(tf & TIMER_MIGRATING)) { 1050 base = get_timer_base(tf); 1051 raw_spin_lock_irqsave(&base->lock, *flags); 1052 if (timer->flags == tf) 1053 return base; 1054 raw_spin_unlock_irqrestore(&base->lock, *flags); 1055 } 1056 cpu_relax(); 1057 } 1058 } 1059 1060 #define MOD_TIMER_PENDING_ONLY 0x01 1061 #define MOD_TIMER_REDUCE 0x02 1062 #define MOD_TIMER_NOTPENDING 0x04 1063 1064 static inline int 1065 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 1066 { 1067 unsigned long clk = 0, flags, bucket_expiry; 1068 struct timer_base *base, *new_base; 1069 unsigned int idx = UINT_MAX; 1070 int ret = 0; 1071 1072 debug_assert_init(timer); 1073 1074 /* 1075 * This is a common optimization triggered by the networking code - if 1076 * the timer is re-modified to have the same timeout or ends up in the 1077 * same array bucket then just return: 1078 */ 1079 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { 1080 /* 1081 * The downside of this optimization is that it can result in 1082 * larger granularity than you would get from adding a new 1083 * timer with this expiry. 1084 */ 1085 long diff = timer->expires - expires; 1086 1087 if (!diff) 1088 return 1; 1089 if (options & MOD_TIMER_REDUCE && diff <= 0) 1090 return 1; 1091 1092 /* 1093 * We lock timer base and calculate the bucket index right 1094 * here. If the timer ends up in the same bucket, then we 1095 * just update the expiry time and avoid the whole 1096 * dequeue/enqueue dance. 1097 */ 1098 base = lock_timer_base(timer, &flags); 1099 /* 1100 * Has @timer been shutdown? This needs to be evaluated 1101 * while holding base lock to prevent a race against the 1102 * shutdown code. 1103 */ 1104 if (!timer->function) 1105 goto out_unlock; 1106 1107 forward_timer_base(base); 1108 1109 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 1110 time_before_eq(timer->expires, expires)) { 1111 ret = 1; 1112 goto out_unlock; 1113 } 1114 1115 clk = base->clk; 1116 idx = calc_wheel_index(expires, clk, &bucket_expiry); 1117 1118 /* 1119 * Retrieve and compare the array index of the pending 1120 * timer. If it matches set the expiry to the new value so a 1121 * subsequent call will exit in the expires check above. 1122 */ 1123 if (idx == timer_get_idx(timer)) { 1124 if (!(options & MOD_TIMER_REDUCE)) 1125 timer->expires = expires; 1126 else if (time_after(timer->expires, expires)) 1127 timer->expires = expires; 1128 ret = 1; 1129 goto out_unlock; 1130 } 1131 } else { 1132 base = lock_timer_base(timer, &flags); 1133 /* 1134 * Has @timer been shutdown? This needs to be evaluated 1135 * while holding base lock to prevent a race against the 1136 * shutdown code. 1137 */ 1138 if (!timer->function) 1139 goto out_unlock; 1140 1141 forward_timer_base(base); 1142 } 1143 1144 ret = detach_if_pending(timer, base, false); 1145 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1146 goto out_unlock; 1147 1148 new_base = get_timer_this_cpu_base(timer->flags); 1149 1150 if (base != new_base) { 1151 /* 1152 * We are trying to schedule the timer on the new base. 1153 * However we can't change timer's base while it is running, 1154 * otherwise timer_delete_sync() can't detect that the timer's 1155 * handler yet has not finished. This also guarantees that the 1156 * timer is serialized wrt itself. 1157 */ 1158 if (likely(base->running_timer != timer)) { 1159 /* See the comment in lock_timer_base() */ 1160 timer->flags |= TIMER_MIGRATING; 1161 1162 raw_spin_unlock(&base->lock); 1163 base = new_base; 1164 raw_spin_lock(&base->lock); 1165 WRITE_ONCE(timer->flags, 1166 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1167 forward_timer_base(base); 1168 } 1169 } 1170 1171 debug_timer_activate(timer); 1172 1173 timer->expires = expires; 1174 /* 1175 * If 'idx' was calculated above and the base time did not advance 1176 * between calculating 'idx' and possibly switching the base, only 1177 * enqueue_timer() is required. Otherwise we need to (re)calculate 1178 * the wheel index via internal_add_timer(). 1179 */ 1180 if (idx != UINT_MAX && clk == base->clk) 1181 enqueue_timer(base, timer, idx, bucket_expiry); 1182 else 1183 internal_add_timer(base, timer); 1184 1185 out_unlock: 1186 raw_spin_unlock_irqrestore(&base->lock, flags); 1187 1188 return ret; 1189 } 1190 1191 /** 1192 * mod_timer_pending - Modify a pending timer's timeout 1193 * @timer: The pending timer to be modified 1194 * @expires: New absolute timeout in jiffies 1195 * 1196 * mod_timer_pending() is the same for pending timers as mod_timer(), but 1197 * will not activate inactive timers. 1198 * 1199 * If @timer->function == NULL then the start operation is silently 1200 * discarded. 1201 * 1202 * Return: 1203 * * %0 - The timer was inactive and not modified or was in 1204 * shutdown state and the operation was discarded 1205 * * %1 - The timer was active and requeued to expire at @expires 1206 */ 1207 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1208 { 1209 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1210 } 1211 EXPORT_SYMBOL(mod_timer_pending); 1212 1213 /** 1214 * mod_timer - Modify a timer's timeout 1215 * @timer: The timer to be modified 1216 * @expires: New absolute timeout in jiffies 1217 * 1218 * mod_timer(timer, expires) is equivalent to: 1219 * 1220 * del_timer(timer); timer->expires = expires; add_timer(timer); 1221 * 1222 * mod_timer() is more efficient than the above open coded sequence. In 1223 * case that the timer is inactive, the del_timer() part is a NOP. The 1224 * timer is in any case activated with the new expiry time @expires. 1225 * 1226 * Note that if there are multiple unserialized concurrent users of the 1227 * same timer, then mod_timer() is the only safe way to modify the timeout, 1228 * since add_timer() cannot modify an already running timer. 1229 * 1230 * If @timer->function == NULL then the start operation is silently 1231 * discarded. In this case the return value is 0 and meaningless. 1232 * 1233 * Return: 1234 * * %0 - The timer was inactive and started or was in shutdown 1235 * state and the operation was discarded 1236 * * %1 - The timer was active and requeued to expire at @expires or 1237 * the timer was active and not modified because @expires did 1238 * not change the effective expiry time 1239 */ 1240 int mod_timer(struct timer_list *timer, unsigned long expires) 1241 { 1242 return __mod_timer(timer, expires, 0); 1243 } 1244 EXPORT_SYMBOL(mod_timer); 1245 1246 /** 1247 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1248 * @timer: The timer to be modified 1249 * @expires: New absolute timeout in jiffies 1250 * 1251 * timer_reduce() is very similar to mod_timer(), except that it will only 1252 * modify an enqueued timer if that would reduce the expiration time. If 1253 * @timer is not enqueued it starts the timer. 1254 * 1255 * If @timer->function == NULL then the start operation is silently 1256 * discarded. 1257 * 1258 * Return: 1259 * * %0 - The timer was inactive and started or was in shutdown 1260 * state and the operation was discarded 1261 * * %1 - The timer was active and requeued to expire at @expires or 1262 * the timer was active and not modified because @expires 1263 * did not change the effective expiry time such that the 1264 * timer would expire earlier than already scheduled 1265 */ 1266 int timer_reduce(struct timer_list *timer, unsigned long expires) 1267 { 1268 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1269 } 1270 EXPORT_SYMBOL(timer_reduce); 1271 1272 /** 1273 * add_timer - Start a timer 1274 * @timer: The timer to be started 1275 * 1276 * Start @timer to expire at @timer->expires in the future. @timer->expires 1277 * is the absolute expiry time measured in 'jiffies'. When the timer expires 1278 * timer->function(timer) will be invoked from soft interrupt context. 1279 * 1280 * The @timer->expires and @timer->function fields must be set prior 1281 * to calling this function. 1282 * 1283 * If @timer->function == NULL then the start operation is silently 1284 * discarded. 1285 * 1286 * If @timer->expires is already in the past @timer will be queued to 1287 * expire at the next timer tick. 1288 * 1289 * This can only operate on an inactive timer. Attempts to invoke this on 1290 * an active timer are rejected with a warning. 1291 */ 1292 void add_timer(struct timer_list *timer) 1293 { 1294 if (WARN_ON_ONCE(timer_pending(timer))) 1295 return; 1296 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1297 } 1298 EXPORT_SYMBOL(add_timer); 1299 1300 /** 1301 * add_timer_local() - Start a timer on the local CPU 1302 * @timer: The timer to be started 1303 * 1304 * Same as add_timer() except that the timer flag TIMER_PINNED is set. 1305 * 1306 * See add_timer() for further details. 1307 */ 1308 void add_timer_local(struct timer_list *timer) 1309 { 1310 if (WARN_ON_ONCE(timer_pending(timer))) 1311 return; 1312 timer->flags |= TIMER_PINNED; 1313 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1314 } 1315 EXPORT_SYMBOL(add_timer_local); 1316 1317 /** 1318 * add_timer_global() - Start a timer without TIMER_PINNED flag set 1319 * @timer: The timer to be started 1320 * 1321 * Same as add_timer() except that the timer flag TIMER_PINNED is unset. 1322 * 1323 * See add_timer() for further details. 1324 */ 1325 void add_timer_global(struct timer_list *timer) 1326 { 1327 if (WARN_ON_ONCE(timer_pending(timer))) 1328 return; 1329 timer->flags &= ~TIMER_PINNED; 1330 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1331 } 1332 EXPORT_SYMBOL(add_timer_global); 1333 1334 /** 1335 * add_timer_on - Start a timer on a particular CPU 1336 * @timer: The timer to be started 1337 * @cpu: The CPU to start it on 1338 * 1339 * Same as add_timer() except that it starts the timer on the given CPU and 1340 * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in 1341 * the next round, add_timer_global() should be used instead as it unsets 1342 * the TIMER_PINNED flag. 1343 * 1344 * See add_timer() for further details. 1345 */ 1346 void add_timer_on(struct timer_list *timer, int cpu) 1347 { 1348 struct timer_base *new_base, *base; 1349 unsigned long flags; 1350 1351 debug_assert_init(timer); 1352 1353 if (WARN_ON_ONCE(timer_pending(timer))) 1354 return; 1355 1356 /* Make sure timer flags have TIMER_PINNED flag set */ 1357 timer->flags |= TIMER_PINNED; 1358 1359 new_base = get_timer_cpu_base(timer->flags, cpu); 1360 1361 /* 1362 * If @timer was on a different CPU, it should be migrated with the 1363 * old base locked to prevent other operations proceeding with the 1364 * wrong base locked. See lock_timer_base(). 1365 */ 1366 base = lock_timer_base(timer, &flags); 1367 /* 1368 * Has @timer been shutdown? This needs to be evaluated while 1369 * holding base lock to prevent a race against the shutdown code. 1370 */ 1371 if (!timer->function) 1372 goto out_unlock; 1373 1374 if (base != new_base) { 1375 timer->flags |= TIMER_MIGRATING; 1376 1377 raw_spin_unlock(&base->lock); 1378 base = new_base; 1379 raw_spin_lock(&base->lock); 1380 WRITE_ONCE(timer->flags, 1381 (timer->flags & ~TIMER_BASEMASK) | cpu); 1382 } 1383 forward_timer_base(base); 1384 1385 debug_timer_activate(timer); 1386 internal_add_timer(base, timer); 1387 out_unlock: 1388 raw_spin_unlock_irqrestore(&base->lock, flags); 1389 } 1390 EXPORT_SYMBOL_GPL(add_timer_on); 1391 1392 /** 1393 * __timer_delete - Internal function: Deactivate a timer 1394 * @timer: The timer to be deactivated 1395 * @shutdown: If true, this indicates that the timer is about to be 1396 * shutdown permanently. 1397 * 1398 * If @shutdown is true then @timer->function is set to NULL under the 1399 * timer base lock which prevents further rearming of the time. In that 1400 * case any attempt to rearm @timer after this function returns will be 1401 * silently ignored. 1402 * 1403 * Return: 1404 * * %0 - The timer was not pending 1405 * * %1 - The timer was pending and deactivated 1406 */ 1407 static int __timer_delete(struct timer_list *timer, bool shutdown) 1408 { 1409 struct timer_base *base; 1410 unsigned long flags; 1411 int ret = 0; 1412 1413 debug_assert_init(timer); 1414 1415 /* 1416 * If @shutdown is set then the lock has to be taken whether the 1417 * timer is pending or not to protect against a concurrent rearm 1418 * which might hit between the lockless pending check and the lock 1419 * acquisition. By taking the lock it is ensured that such a newly 1420 * enqueued timer is dequeued and cannot end up with 1421 * timer->function == NULL in the expiry code. 1422 * 1423 * If timer->function is currently executed, then this makes sure 1424 * that the callback cannot requeue the timer. 1425 */ 1426 if (timer_pending(timer) || shutdown) { 1427 base = lock_timer_base(timer, &flags); 1428 ret = detach_if_pending(timer, base, true); 1429 if (shutdown) 1430 timer->function = NULL; 1431 raw_spin_unlock_irqrestore(&base->lock, flags); 1432 } 1433 1434 return ret; 1435 } 1436 1437 /** 1438 * timer_delete - Deactivate a timer 1439 * @timer: The timer to be deactivated 1440 * 1441 * The function only deactivates a pending timer, but contrary to 1442 * timer_delete_sync() it does not take into account whether the timer's 1443 * callback function is concurrently executed on a different CPU or not. 1444 * It neither prevents rearming of the timer. If @timer can be rearmed 1445 * concurrently then the return value of this function is meaningless. 1446 * 1447 * Return: 1448 * * %0 - The timer was not pending 1449 * * %1 - The timer was pending and deactivated 1450 */ 1451 int timer_delete(struct timer_list *timer) 1452 { 1453 return __timer_delete(timer, false); 1454 } 1455 EXPORT_SYMBOL(timer_delete); 1456 1457 /** 1458 * timer_shutdown - Deactivate a timer and prevent rearming 1459 * @timer: The timer to be deactivated 1460 * 1461 * The function does not wait for an eventually running timer callback on a 1462 * different CPU but it prevents rearming of the timer. Any attempt to arm 1463 * @timer after this function returns will be silently ignored. 1464 * 1465 * This function is useful for teardown code and should only be used when 1466 * timer_shutdown_sync() cannot be invoked due to locking or context constraints. 1467 * 1468 * Return: 1469 * * %0 - The timer was not pending 1470 * * %1 - The timer was pending 1471 */ 1472 int timer_shutdown(struct timer_list *timer) 1473 { 1474 return __timer_delete(timer, true); 1475 } 1476 EXPORT_SYMBOL_GPL(timer_shutdown); 1477 1478 /** 1479 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer 1480 * @timer: Timer to deactivate 1481 * @shutdown: If true, this indicates that the timer is about to be 1482 * shutdown permanently. 1483 * 1484 * If @shutdown is true then @timer->function is set to NULL under the 1485 * timer base lock which prevents further rearming of the timer. Any 1486 * attempt to rearm @timer after this function returns will be silently 1487 * ignored. 1488 * 1489 * This function cannot guarantee that the timer cannot be rearmed 1490 * right after dropping the base lock if @shutdown is false. That 1491 * needs to be prevented by the calling code if necessary. 1492 * 1493 * Return: 1494 * * %0 - The timer was not pending 1495 * * %1 - The timer was pending and deactivated 1496 * * %-1 - The timer callback function is running on a different CPU 1497 */ 1498 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown) 1499 { 1500 struct timer_base *base; 1501 unsigned long flags; 1502 int ret = -1; 1503 1504 debug_assert_init(timer); 1505 1506 base = lock_timer_base(timer, &flags); 1507 1508 if (base->running_timer != timer) 1509 ret = detach_if_pending(timer, base, true); 1510 if (shutdown) 1511 timer->function = NULL; 1512 1513 raw_spin_unlock_irqrestore(&base->lock, flags); 1514 1515 return ret; 1516 } 1517 1518 /** 1519 * try_to_del_timer_sync - Try to deactivate a timer 1520 * @timer: Timer to deactivate 1521 * 1522 * This function tries to deactivate a timer. On success the timer is not 1523 * queued and the timer callback function is not running on any CPU. 1524 * 1525 * This function does not guarantee that the timer cannot be rearmed right 1526 * after dropping the base lock. That needs to be prevented by the calling 1527 * code if necessary. 1528 * 1529 * Return: 1530 * * %0 - The timer was not pending 1531 * * %1 - The timer was pending and deactivated 1532 * * %-1 - The timer callback function is running on a different CPU 1533 */ 1534 int try_to_del_timer_sync(struct timer_list *timer) 1535 { 1536 return __try_to_del_timer_sync(timer, false); 1537 } 1538 EXPORT_SYMBOL(try_to_del_timer_sync); 1539 1540 #ifdef CONFIG_PREEMPT_RT 1541 static __init void timer_base_init_expiry_lock(struct timer_base *base) 1542 { 1543 spin_lock_init(&base->expiry_lock); 1544 } 1545 1546 static inline void timer_base_lock_expiry(struct timer_base *base) 1547 { 1548 spin_lock(&base->expiry_lock); 1549 } 1550 1551 static inline void timer_base_unlock_expiry(struct timer_base *base) 1552 { 1553 spin_unlock(&base->expiry_lock); 1554 } 1555 1556 /* 1557 * The counterpart to del_timer_wait_running(). 1558 * 1559 * If there is a waiter for base->expiry_lock, then it was waiting for the 1560 * timer callback to finish. Drop expiry_lock and reacquire it. That allows 1561 * the waiter to acquire the lock and make progress. 1562 */ 1563 static void timer_sync_wait_running(struct timer_base *base) 1564 __releases(&base->lock) __releases(&base->expiry_lock) 1565 __acquires(&base->expiry_lock) __acquires(&base->lock) 1566 { 1567 if (atomic_read(&base->timer_waiters)) { 1568 raw_spin_unlock_irq(&base->lock); 1569 spin_unlock(&base->expiry_lock); 1570 spin_lock(&base->expiry_lock); 1571 raw_spin_lock_irq(&base->lock); 1572 } 1573 } 1574 1575 /* 1576 * This function is called on PREEMPT_RT kernels when the fast path 1577 * deletion of a timer failed because the timer callback function was 1578 * running. 1579 * 1580 * This prevents priority inversion, if the softirq thread on a remote CPU 1581 * got preempted, and it prevents a life lock when the task which tries to 1582 * delete a timer preempted the softirq thread running the timer callback 1583 * function. 1584 */ 1585 static void del_timer_wait_running(struct timer_list *timer) 1586 { 1587 u32 tf; 1588 1589 tf = READ_ONCE(timer->flags); 1590 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) { 1591 struct timer_base *base = get_timer_base(tf); 1592 1593 /* 1594 * Mark the base as contended and grab the expiry lock, 1595 * which is held by the softirq across the timer 1596 * callback. Drop the lock immediately so the softirq can 1597 * expire the next timer. In theory the timer could already 1598 * be running again, but that's more than unlikely and just 1599 * causes another wait loop. 1600 */ 1601 atomic_inc(&base->timer_waiters); 1602 spin_lock_bh(&base->expiry_lock); 1603 atomic_dec(&base->timer_waiters); 1604 spin_unlock_bh(&base->expiry_lock); 1605 } 1606 } 1607 #else 1608 static inline void timer_base_init_expiry_lock(struct timer_base *base) { } 1609 static inline void timer_base_lock_expiry(struct timer_base *base) { } 1610 static inline void timer_base_unlock_expiry(struct timer_base *base) { } 1611 static inline void timer_sync_wait_running(struct timer_base *base) { } 1612 static inline void del_timer_wait_running(struct timer_list *timer) { } 1613 #endif 1614 1615 /** 1616 * __timer_delete_sync - Internal function: Deactivate a timer and wait 1617 * for the handler to finish. 1618 * @timer: The timer to be deactivated 1619 * @shutdown: If true, @timer->function will be set to NULL under the 1620 * timer base lock which prevents rearming of @timer 1621 * 1622 * If @shutdown is not set the timer can be rearmed later. If the timer can 1623 * be rearmed concurrently, i.e. after dropping the base lock then the 1624 * return value is meaningless. 1625 * 1626 * If @shutdown is set then @timer->function is set to NULL under timer 1627 * base lock which prevents rearming of the timer. Any attempt to rearm 1628 * a shutdown timer is silently ignored. 1629 * 1630 * If the timer should be reused after shutdown it has to be initialized 1631 * again. 1632 * 1633 * Return: 1634 * * %0 - The timer was not pending 1635 * * %1 - The timer was pending and deactivated 1636 */ 1637 static int __timer_delete_sync(struct timer_list *timer, bool shutdown) 1638 { 1639 int ret; 1640 1641 #ifdef CONFIG_LOCKDEP 1642 unsigned long flags; 1643 1644 /* 1645 * If lockdep gives a backtrace here, please reference 1646 * the synchronization rules above. 1647 */ 1648 local_irq_save(flags); 1649 lock_map_acquire(&timer->lockdep_map); 1650 lock_map_release(&timer->lockdep_map); 1651 local_irq_restore(flags); 1652 #endif 1653 /* 1654 * don't use it in hardirq context, because it 1655 * could lead to deadlock. 1656 */ 1657 WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE)); 1658 1659 /* 1660 * Must be able to sleep on PREEMPT_RT because of the slowpath in 1661 * del_timer_wait_running(). 1662 */ 1663 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE)) 1664 lockdep_assert_preemption_enabled(); 1665 1666 do { 1667 ret = __try_to_del_timer_sync(timer, shutdown); 1668 1669 if (unlikely(ret < 0)) { 1670 del_timer_wait_running(timer); 1671 cpu_relax(); 1672 } 1673 } while (ret < 0); 1674 1675 return ret; 1676 } 1677 1678 /** 1679 * timer_delete_sync - Deactivate a timer and wait for the handler to finish. 1680 * @timer: The timer to be deactivated 1681 * 1682 * Synchronization rules: Callers must prevent restarting of the timer, 1683 * otherwise this function is meaningless. It must not be called from 1684 * interrupt contexts unless the timer is an irqsafe one. The caller must 1685 * not hold locks which would prevent completion of the timer's callback 1686 * function. The timer's handler must not call add_timer_on(). Upon exit 1687 * the timer is not queued and the handler is not running on any CPU. 1688 * 1689 * For !irqsafe timers, the caller must not hold locks that are held in 1690 * interrupt context. Even if the lock has nothing to do with the timer in 1691 * question. Here's why:: 1692 * 1693 * CPU0 CPU1 1694 * ---- ---- 1695 * <SOFTIRQ> 1696 * call_timer_fn(); 1697 * base->running_timer = mytimer; 1698 * spin_lock_irq(somelock); 1699 * <IRQ> 1700 * spin_lock(somelock); 1701 * timer_delete_sync(mytimer); 1702 * while (base->running_timer == mytimer); 1703 * 1704 * Now timer_delete_sync() will never return and never release somelock. 1705 * The interrupt on the other CPU is waiting to grab somelock but it has 1706 * interrupted the softirq that CPU0 is waiting to finish. 1707 * 1708 * This function cannot guarantee that the timer is not rearmed again by 1709 * some concurrent or preempting code, right after it dropped the base 1710 * lock. If there is the possibility of a concurrent rearm then the return 1711 * value of the function is meaningless. 1712 * 1713 * If such a guarantee is needed, e.g. for teardown situations then use 1714 * timer_shutdown_sync() instead. 1715 * 1716 * Return: 1717 * * %0 - The timer was not pending 1718 * * %1 - The timer was pending and deactivated 1719 */ 1720 int timer_delete_sync(struct timer_list *timer) 1721 { 1722 return __timer_delete_sync(timer, false); 1723 } 1724 EXPORT_SYMBOL(timer_delete_sync); 1725 1726 /** 1727 * timer_shutdown_sync - Shutdown a timer and prevent rearming 1728 * @timer: The timer to be shutdown 1729 * 1730 * When the function returns it is guaranteed that: 1731 * - @timer is not queued 1732 * - The callback function of @timer is not running 1733 * - @timer cannot be enqueued again. Any attempt to rearm 1734 * @timer is silently ignored. 1735 * 1736 * See timer_delete_sync() for synchronization rules. 1737 * 1738 * This function is useful for final teardown of an infrastructure where 1739 * the timer is subject to a circular dependency problem. 1740 * 1741 * A common pattern for this is a timer and a workqueue where the timer can 1742 * schedule work and work can arm the timer. On shutdown the workqueue must 1743 * be destroyed and the timer must be prevented from rearming. Unless the 1744 * code has conditionals like 'if (mything->in_shutdown)' to prevent that 1745 * there is no way to get this correct with timer_delete_sync(). 1746 * 1747 * timer_shutdown_sync() is solving the problem. The correct ordering of 1748 * calls in this case is: 1749 * 1750 * timer_shutdown_sync(&mything->timer); 1751 * workqueue_destroy(&mything->workqueue); 1752 * 1753 * After this 'mything' can be safely freed. 1754 * 1755 * This obviously implies that the timer is not required to be functional 1756 * for the rest of the shutdown operation. 1757 * 1758 * Return: 1759 * * %0 - The timer was not pending 1760 * * %1 - The timer was pending 1761 */ 1762 int timer_shutdown_sync(struct timer_list *timer) 1763 { 1764 return __timer_delete_sync(timer, true); 1765 } 1766 EXPORT_SYMBOL_GPL(timer_shutdown_sync); 1767 1768 static void call_timer_fn(struct timer_list *timer, 1769 void (*fn)(struct timer_list *), 1770 unsigned long baseclk) 1771 { 1772 int count = preempt_count(); 1773 1774 #ifdef CONFIG_LOCKDEP 1775 /* 1776 * It is permissible to free the timer from inside the 1777 * function that is called from it, this we need to take into 1778 * account for lockdep too. To avoid bogus "held lock freed" 1779 * warnings as well as problems when looking into 1780 * timer->lockdep_map, make a copy and use that here. 1781 */ 1782 struct lockdep_map lockdep_map; 1783 1784 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1785 #endif 1786 /* 1787 * Couple the lock chain with the lock chain at 1788 * timer_delete_sync() by acquiring the lock_map around the fn() 1789 * call here and in timer_delete_sync(). 1790 */ 1791 lock_map_acquire(&lockdep_map); 1792 1793 trace_timer_expire_entry(timer, baseclk); 1794 fn(timer); 1795 trace_timer_expire_exit(timer); 1796 1797 lock_map_release(&lockdep_map); 1798 1799 if (count != preempt_count()) { 1800 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", 1801 fn, count, preempt_count()); 1802 /* 1803 * Restore the preempt count. That gives us a decent 1804 * chance to survive and extract information. If the 1805 * callback kept a lock held, bad luck, but not worse 1806 * than the BUG() we had. 1807 */ 1808 preempt_count_set(count); 1809 } 1810 } 1811 1812 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1813 { 1814 /* 1815 * This value is required only for tracing. base->clk was 1816 * incremented directly before expire_timers was called. But expiry 1817 * is related to the old base->clk value. 1818 */ 1819 unsigned long baseclk = base->clk - 1; 1820 1821 while (!hlist_empty(head)) { 1822 struct timer_list *timer; 1823 void (*fn)(struct timer_list *); 1824 1825 timer = hlist_entry(head->first, struct timer_list, entry); 1826 1827 base->running_timer = timer; 1828 detach_timer(timer, true); 1829 1830 fn = timer->function; 1831 1832 if (WARN_ON_ONCE(!fn)) { 1833 /* Should never happen. Emphasis on should! */ 1834 base->running_timer = NULL; 1835 continue; 1836 } 1837 1838 if (timer->flags & TIMER_IRQSAFE) { 1839 raw_spin_unlock(&base->lock); 1840 call_timer_fn(timer, fn, baseclk); 1841 raw_spin_lock(&base->lock); 1842 base->running_timer = NULL; 1843 } else { 1844 raw_spin_unlock_irq(&base->lock); 1845 call_timer_fn(timer, fn, baseclk); 1846 raw_spin_lock_irq(&base->lock); 1847 base->running_timer = NULL; 1848 timer_sync_wait_running(base); 1849 } 1850 } 1851 } 1852 1853 static int collect_expired_timers(struct timer_base *base, 1854 struct hlist_head *heads) 1855 { 1856 unsigned long clk = base->clk = base->next_expiry; 1857 struct hlist_head *vec; 1858 int i, levels = 0; 1859 unsigned int idx; 1860 1861 for (i = 0; i < LVL_DEPTH; i++) { 1862 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1863 1864 if (__test_and_clear_bit(idx, base->pending_map)) { 1865 vec = base->vectors + idx; 1866 hlist_move_list(vec, heads++); 1867 levels++; 1868 } 1869 /* Is it time to look at the next level? */ 1870 if (clk & LVL_CLK_MASK) 1871 break; 1872 /* Shift clock for the next level granularity */ 1873 clk >>= LVL_CLK_SHIFT; 1874 } 1875 return levels; 1876 } 1877 1878 /* 1879 * Find the next pending bucket of a level. Search from level start (@offset) 1880 * + @clk upwards and if nothing there, search from start of the level 1881 * (@offset) up to @offset + clk. 1882 */ 1883 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1884 unsigned clk) 1885 { 1886 unsigned pos, start = offset + clk; 1887 unsigned end = offset + LVL_SIZE; 1888 1889 pos = find_next_bit(base->pending_map, end, start); 1890 if (pos < end) 1891 return pos - start; 1892 1893 pos = find_next_bit(base->pending_map, start, offset); 1894 return pos < start ? pos + LVL_SIZE - start : -1; 1895 } 1896 1897 /* 1898 * Search the first expiring timer in the various clock levels. Caller must 1899 * hold base->lock. 1900 * 1901 * Store next expiry time in base->next_expiry. 1902 */ 1903 static void timer_recalc_next_expiry(struct timer_base *base) 1904 { 1905 unsigned long clk, next, adj; 1906 unsigned lvl, offset = 0; 1907 1908 next = base->clk + NEXT_TIMER_MAX_DELTA; 1909 clk = base->clk; 1910 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1911 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1912 unsigned long lvl_clk = clk & LVL_CLK_MASK; 1913 1914 if (pos >= 0) { 1915 unsigned long tmp = clk + (unsigned long) pos; 1916 1917 tmp <<= LVL_SHIFT(lvl); 1918 if (time_before(tmp, next)) 1919 next = tmp; 1920 1921 /* 1922 * If the next expiration happens before we reach 1923 * the next level, no need to check further. 1924 */ 1925 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) 1926 break; 1927 } 1928 /* 1929 * Clock for the next level. If the current level clock lower 1930 * bits are zero, we look at the next level as is. If not we 1931 * need to advance it by one because that's going to be the 1932 * next expiring bucket in that level. base->clk is the next 1933 * expiring jiffy. So in case of: 1934 * 1935 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1936 * 0 0 0 0 0 0 1937 * 1938 * we have to look at all levels @index 0. With 1939 * 1940 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1941 * 0 0 0 0 0 2 1942 * 1943 * LVL0 has the next expiring bucket @index 2. The upper 1944 * levels have the next expiring bucket @index 1. 1945 * 1946 * In case that the propagation wraps the next level the same 1947 * rules apply: 1948 * 1949 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1950 * 0 0 0 0 F 2 1951 * 1952 * So after looking at LVL0 we get: 1953 * 1954 * LVL5 LVL4 LVL3 LVL2 LVL1 1955 * 0 0 0 1 0 1956 * 1957 * So no propagation from LVL1 to LVL2 because that happened 1958 * with the add already, but then we need to propagate further 1959 * from LVL2 to LVL3. 1960 * 1961 * So the simple check whether the lower bits of the current 1962 * level are 0 or not is sufficient for all cases. 1963 */ 1964 adj = lvl_clk ? 1 : 0; 1965 clk >>= LVL_CLK_SHIFT; 1966 clk += adj; 1967 } 1968 1969 WRITE_ONCE(base->next_expiry, next); 1970 base->next_expiry_recalc = false; 1971 base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA); 1972 } 1973 1974 #ifdef CONFIG_NO_HZ_COMMON 1975 /* 1976 * Check, if the next hrtimer event is before the next timer wheel 1977 * event: 1978 */ 1979 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1980 { 1981 u64 nextevt = hrtimer_get_next_event(); 1982 1983 /* 1984 * If high resolution timers are enabled 1985 * hrtimer_get_next_event() returns KTIME_MAX. 1986 */ 1987 if (expires <= nextevt) 1988 return expires; 1989 1990 /* 1991 * If the next timer is already expired, return the tick base 1992 * time so the tick is fired immediately. 1993 */ 1994 if (nextevt <= basem) 1995 return basem; 1996 1997 /* 1998 * Round up to the next jiffy. High resolution timers are 1999 * off, so the hrtimers are expired in the tick and we need to 2000 * make sure that this tick really expires the timer to avoid 2001 * a ping pong of the nohz stop code. 2002 * 2003 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 2004 */ 2005 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 2006 } 2007 2008 static unsigned long next_timer_interrupt(struct timer_base *base, 2009 unsigned long basej) 2010 { 2011 if (base->next_expiry_recalc) 2012 timer_recalc_next_expiry(base); 2013 2014 /* 2015 * Move next_expiry for the empty base into the future to prevent an 2016 * unnecessary raise of the timer softirq when the next_expiry value 2017 * will be reached even if there is no timer pending. 2018 * 2019 * This update is also required to make timer_base::next_expiry values 2020 * easy comparable to find out which base holds the first pending timer. 2021 */ 2022 if (!base->timers_pending) 2023 WRITE_ONCE(base->next_expiry, basej + NEXT_TIMER_MAX_DELTA); 2024 2025 return base->next_expiry; 2026 } 2027 2028 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem, 2029 struct timer_base *base_local, 2030 struct timer_base *base_global, 2031 struct timer_events *tevt) 2032 { 2033 unsigned long nextevt, nextevt_local, nextevt_global; 2034 bool local_first; 2035 2036 nextevt_local = next_timer_interrupt(base_local, basej); 2037 nextevt_global = next_timer_interrupt(base_global, basej); 2038 2039 local_first = time_before_eq(nextevt_local, nextevt_global); 2040 2041 nextevt = local_first ? nextevt_local : nextevt_global; 2042 2043 /* 2044 * If the @nextevt is at max. one tick away, use @nextevt and store 2045 * it in the local expiry value. The next global event is irrelevant in 2046 * this case and can be left as KTIME_MAX. 2047 */ 2048 if (time_before_eq(nextevt, basej + 1)) { 2049 /* If we missed a tick already, force 0 delta */ 2050 if (time_before(nextevt, basej)) 2051 nextevt = basej; 2052 tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC; 2053 2054 /* 2055 * This is required for the remote check only but it doesn't 2056 * hurt, when it is done for both call sites: 2057 * 2058 * * The remote callers will only take care of the global timers 2059 * as local timers will be handled by CPU itself. When not 2060 * updating tevt->global with the already missed first global 2061 * timer, it is possible that it will be missed completely. 2062 * 2063 * * The local callers will ignore the tevt->global anyway, when 2064 * nextevt is max. one tick away. 2065 */ 2066 if (!local_first) 2067 tevt->global = tevt->local; 2068 return nextevt; 2069 } 2070 2071 /* 2072 * Update tevt.* values: 2073 * 2074 * If the local queue expires first, then the global event can be 2075 * ignored. If the global queue is empty, nothing to do either. 2076 */ 2077 if (!local_first && base_global->timers_pending) 2078 tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC; 2079 2080 if (base_local->timers_pending) 2081 tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC; 2082 2083 return nextevt; 2084 } 2085 2086 # ifdef CONFIG_SMP 2087 /** 2088 * fetch_next_timer_interrupt_remote() - Store next timers into @tevt 2089 * @basej: base time jiffies 2090 * @basem: base time clock monotonic 2091 * @tevt: Pointer to the storage for the expiry values 2092 * @cpu: Remote CPU 2093 * 2094 * Stores the next pending local and global timer expiry values in the 2095 * struct pointed to by @tevt. If a queue is empty the corresponding 2096 * field is set to KTIME_MAX. If local event expires before global 2097 * event, global event is set to KTIME_MAX as well. 2098 * 2099 * Caller needs to make sure timer base locks are held (use 2100 * timer_lock_remote_bases() for this purpose). 2101 */ 2102 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem, 2103 struct timer_events *tevt, 2104 unsigned int cpu) 2105 { 2106 struct timer_base *base_local, *base_global; 2107 2108 /* Preset local / global events */ 2109 tevt->local = tevt->global = KTIME_MAX; 2110 2111 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2112 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2113 2114 lockdep_assert_held(&base_local->lock); 2115 lockdep_assert_held(&base_global->lock); 2116 2117 fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt); 2118 } 2119 2120 /** 2121 * timer_unlock_remote_bases - unlock timer bases of cpu 2122 * @cpu: Remote CPU 2123 * 2124 * Unlocks the remote timer bases. 2125 */ 2126 void timer_unlock_remote_bases(unsigned int cpu) 2127 __releases(timer_bases[BASE_LOCAL]->lock) 2128 __releases(timer_bases[BASE_GLOBAL]->lock) 2129 { 2130 struct timer_base *base_local, *base_global; 2131 2132 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2133 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2134 2135 raw_spin_unlock(&base_global->lock); 2136 raw_spin_unlock(&base_local->lock); 2137 } 2138 2139 /** 2140 * timer_lock_remote_bases - lock timer bases of cpu 2141 * @cpu: Remote CPU 2142 * 2143 * Locks the remote timer bases. 2144 */ 2145 void timer_lock_remote_bases(unsigned int cpu) 2146 __acquires(timer_bases[BASE_LOCAL]->lock) 2147 __acquires(timer_bases[BASE_GLOBAL]->lock) 2148 { 2149 struct timer_base *base_local, *base_global; 2150 2151 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2152 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2153 2154 lockdep_assert_irqs_disabled(); 2155 2156 raw_spin_lock(&base_local->lock); 2157 raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); 2158 } 2159 2160 /** 2161 * timer_base_is_idle() - Return whether timer base is set idle 2162 * 2163 * Returns value of local timer base is_idle value. 2164 */ 2165 bool timer_base_is_idle(void) 2166 { 2167 return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle); 2168 } 2169 2170 static void __run_timer_base(struct timer_base *base); 2171 2172 /** 2173 * timer_expire_remote() - expire global timers of cpu 2174 * @cpu: Remote CPU 2175 * 2176 * Expire timers of global base of remote CPU. 2177 */ 2178 void timer_expire_remote(unsigned int cpu) 2179 { 2180 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2181 2182 __run_timer_base(base); 2183 } 2184 2185 static void timer_use_tmigr(unsigned long basej, u64 basem, 2186 unsigned long *nextevt, bool *tick_stop_path, 2187 bool timer_base_idle, struct timer_events *tevt) 2188 { 2189 u64 next_tmigr; 2190 2191 if (timer_base_idle) 2192 next_tmigr = tmigr_cpu_new_timer(tevt->global); 2193 else if (tick_stop_path) 2194 next_tmigr = tmigr_cpu_deactivate(tevt->global); 2195 else 2196 next_tmigr = tmigr_quick_check(tevt->global); 2197 2198 /* 2199 * If the CPU is the last going idle in timer migration hierarchy, make 2200 * sure the CPU will wake up in time to handle remote timers. 2201 * next_tmigr == KTIME_MAX if other CPUs are still active. 2202 */ 2203 if (next_tmigr < tevt->local) { 2204 u64 tmp; 2205 2206 /* If we missed a tick already, force 0 delta */ 2207 if (next_tmigr < basem) 2208 next_tmigr = basem; 2209 2210 tmp = div_u64(next_tmigr - basem, TICK_NSEC); 2211 2212 *nextevt = basej + (unsigned long)tmp; 2213 tevt->local = next_tmigr; 2214 } 2215 } 2216 # else 2217 static void timer_use_tmigr(unsigned long basej, u64 basem, 2218 unsigned long *nextevt, bool *tick_stop_path, 2219 bool timer_base_idle, struct timer_events *tevt) 2220 { 2221 /* 2222 * Make sure first event is written into tevt->local to not miss a 2223 * timer on !SMP systems. 2224 */ 2225 tevt->local = min_t(u64, tevt->local, tevt->global); 2226 } 2227 # endif /* CONFIG_SMP */ 2228 2229 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem, 2230 bool *idle) 2231 { 2232 struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX }; 2233 struct timer_base *base_local, *base_global; 2234 unsigned long nextevt; 2235 bool idle_is_possible; 2236 2237 /* 2238 * When the CPU is offline, the tick is cancelled and nothing is supposed 2239 * to try to stop it. 2240 */ 2241 if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) { 2242 if (idle) 2243 *idle = true; 2244 return tevt.local; 2245 } 2246 2247 base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]); 2248 base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]); 2249 2250 raw_spin_lock(&base_local->lock); 2251 raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); 2252 2253 nextevt = fetch_next_timer_interrupt(basej, basem, base_local, 2254 base_global, &tevt); 2255 2256 /* 2257 * If the next event is only one jiffy ahead there is no need to call 2258 * timer migration hierarchy related functions. The value for the next 2259 * global timer in @tevt struct equals then KTIME_MAX. This is also 2260 * true, when the timer base is idle. 2261 * 2262 * The proper timer migration hierarchy function depends on the callsite 2263 * and whether timer base is idle or not. @nextevt will be updated when 2264 * this CPU needs to handle the first timer migration hierarchy 2265 * event. See timer_use_tmigr() for detailed information. 2266 */ 2267 idle_is_possible = time_after(nextevt, basej + 1); 2268 if (idle_is_possible) 2269 timer_use_tmigr(basej, basem, &nextevt, idle, 2270 base_local->is_idle, &tevt); 2271 2272 /* 2273 * We have a fresh next event. Check whether we can forward the 2274 * base. 2275 */ 2276 __forward_timer_base(base_local, basej); 2277 __forward_timer_base(base_global, basej); 2278 2279 /* 2280 * Set base->is_idle only when caller is timer_base_try_to_set_idle() 2281 */ 2282 if (idle) { 2283 /* 2284 * Bases are idle if the next event is more than a tick 2285 * away. Caution: @nextevt could have changed by enqueueing a 2286 * global timer into timer migration hierarchy. Therefore a new 2287 * check is required here. 2288 * 2289 * If the base is marked idle then any timer add operation must 2290 * forward the base clk itself to keep granularity small. This 2291 * idle logic is only maintained for the BASE_LOCAL and 2292 * BASE_GLOBAL base, deferrable timers may still see large 2293 * granularity skew (by design). 2294 */ 2295 if (!base_local->is_idle && time_after(nextevt, basej + 1)) { 2296 base_local->is_idle = true; 2297 /* 2298 * Global timers queued locally while running in a task 2299 * in nohz_full mode need a self-IPI to kick reprogramming 2300 * in IRQ tail. 2301 */ 2302 if (tick_nohz_full_cpu(base_local->cpu)) 2303 base_global->is_idle = true; 2304 trace_timer_base_idle(true, base_local->cpu); 2305 } 2306 *idle = base_local->is_idle; 2307 2308 /* 2309 * When timer base is not set idle, undo the effect of 2310 * tmigr_cpu_deactivate() to prevent inconsistent states - active 2311 * timer base but inactive timer migration hierarchy. 2312 * 2313 * When timer base was already marked idle, nothing will be 2314 * changed here. 2315 */ 2316 if (!base_local->is_idle && idle_is_possible) 2317 tmigr_cpu_activate(); 2318 } 2319 2320 raw_spin_unlock(&base_global->lock); 2321 raw_spin_unlock(&base_local->lock); 2322 2323 return cmp_next_hrtimer_event(basem, tevt.local); 2324 } 2325 2326 /** 2327 * get_next_timer_interrupt() - return the time (clock mono) of the next timer 2328 * @basej: base time jiffies 2329 * @basem: base time clock monotonic 2330 * 2331 * Returns the tick aligned clock monotonic time of the next pending timer or 2332 * KTIME_MAX if no timer is pending. If timer of global base was queued into 2333 * timer migration hierarchy, first global timer is not taken into account. If 2334 * it was the last CPU of timer migration hierarchy going idle, first global 2335 * event is taken into account. 2336 */ 2337 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 2338 { 2339 return __get_next_timer_interrupt(basej, basem, NULL); 2340 } 2341 2342 /** 2343 * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases 2344 * @basej: base time jiffies 2345 * @basem: base time clock monotonic 2346 * @idle: pointer to store the value of timer_base->is_idle on return; 2347 * *idle contains the information whether tick was already stopped 2348 * 2349 * Returns the tick aligned clock monotonic time of the next pending timer or 2350 * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is 2351 * returned as well. 2352 */ 2353 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle) 2354 { 2355 if (*idle) 2356 return KTIME_MAX; 2357 2358 return __get_next_timer_interrupt(basej, basem, idle); 2359 } 2360 2361 /** 2362 * timer_clear_idle - Clear the idle state of the timer base 2363 * 2364 * Called with interrupts disabled 2365 */ 2366 void timer_clear_idle(void) 2367 { 2368 /* 2369 * We do this unlocked. The worst outcome is a remote pinned timer 2370 * enqueue sending a pointless IPI, but taking the lock would just 2371 * make the window for sending the IPI a few instructions smaller 2372 * for the cost of taking the lock in the exit from idle 2373 * path. Required for BASE_LOCAL only. 2374 */ 2375 __this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false); 2376 if (tick_nohz_full_cpu(smp_processor_id())) 2377 __this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false); 2378 trace_timer_base_idle(false, smp_processor_id()); 2379 2380 /* Activate without holding the timer_base->lock */ 2381 tmigr_cpu_activate(); 2382 } 2383 #endif 2384 2385 /** 2386 * __run_timers - run all expired timers (if any) on this CPU. 2387 * @base: the timer vector to be processed. 2388 */ 2389 static inline void __run_timers(struct timer_base *base) 2390 { 2391 struct hlist_head heads[LVL_DEPTH]; 2392 int levels; 2393 2394 lockdep_assert_held(&base->lock); 2395 2396 if (base->running_timer) 2397 return; 2398 2399 while (time_after_eq(jiffies, base->clk) && 2400 time_after_eq(jiffies, base->next_expiry)) { 2401 levels = collect_expired_timers(base, heads); 2402 /* 2403 * The two possible reasons for not finding any expired 2404 * timer at this clk are that all matching timers have been 2405 * dequeued or no timer has been queued since 2406 * base::next_expiry was set to base::clk + 2407 * NEXT_TIMER_MAX_DELTA. 2408 */ 2409 WARN_ON_ONCE(!levels && !base->next_expiry_recalc 2410 && base->timers_pending); 2411 /* 2412 * While executing timers, base->clk is set 1 offset ahead of 2413 * jiffies to avoid endless requeuing to current jiffies. 2414 */ 2415 base->clk++; 2416 timer_recalc_next_expiry(base); 2417 2418 while (levels--) 2419 expire_timers(base, heads + levels); 2420 } 2421 } 2422 2423 static void __run_timer_base(struct timer_base *base) 2424 { 2425 if (time_before(jiffies, base->next_expiry)) 2426 return; 2427 2428 timer_base_lock_expiry(base); 2429 raw_spin_lock_irq(&base->lock); 2430 __run_timers(base); 2431 raw_spin_unlock_irq(&base->lock); 2432 timer_base_unlock_expiry(base); 2433 } 2434 2435 static void run_timer_base(int index) 2436 { 2437 struct timer_base *base = this_cpu_ptr(&timer_bases[index]); 2438 2439 __run_timer_base(base); 2440 } 2441 2442 /* 2443 * This function runs timers and the timer-tq in bottom half context. 2444 */ 2445 static __latent_entropy void run_timer_softirq(void) 2446 { 2447 run_timer_base(BASE_LOCAL); 2448 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) { 2449 run_timer_base(BASE_GLOBAL); 2450 run_timer_base(BASE_DEF); 2451 2452 if (is_timers_nohz_active()) 2453 tmigr_handle_remote(); 2454 } 2455 } 2456 2457 /* 2458 * Called by the local, per-CPU timer interrupt on SMP. 2459 */ 2460 static void run_local_timers(void) 2461 { 2462 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]); 2463 2464 hrtimer_run_queues(); 2465 2466 for (int i = 0; i < NR_BASES; i++, base++) { 2467 /* 2468 * Raise the softirq only if required. 2469 * 2470 * timer_base::next_expiry can be written by a remote CPU while 2471 * holding the lock. If this write happens at the same time than 2472 * the lockless local read, sanity checker could complain about 2473 * data corruption. 2474 * 2475 * There are two possible situations where 2476 * timer_base::next_expiry is written by a remote CPU: 2477 * 2478 * 1. Remote CPU expires global timers of this CPU and updates 2479 * timer_base::next_expiry of BASE_GLOBAL afterwards in 2480 * next_timer_interrupt() or timer_recalc_next_expiry(). The 2481 * worst outcome is a superfluous raise of the timer softirq 2482 * when the not yet updated value is read. 2483 * 2484 * 2. A new first pinned timer is enqueued by a remote CPU 2485 * and therefore timer_base::next_expiry of BASE_LOCAL is 2486 * updated. When this update is missed, this isn't a 2487 * problem, as an IPI is executed nevertheless when the CPU 2488 * was idle before. When the CPU wasn't idle but the update 2489 * is missed, then the timer would expire one jiffy late - 2490 * bad luck. 2491 * 2492 * Those unlikely corner cases where the worst outcome is only a 2493 * one jiffy delay or a superfluous raise of the softirq are 2494 * not that expensive as doing the check always while holding 2495 * the lock. 2496 * 2497 * Possible remote writers are using WRITE_ONCE(). Local reader 2498 * uses therefore READ_ONCE(). 2499 */ 2500 if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) || 2501 (i == BASE_DEF && tmigr_requires_handle_remote())) { 2502 raise_softirq(TIMER_SOFTIRQ); 2503 return; 2504 } 2505 } 2506 } 2507 2508 /* 2509 * Called from the timer interrupt handler to charge one tick to the current 2510 * process. user_tick is 1 if the tick is user time, 0 for system. 2511 */ 2512 void update_process_times(int user_tick) 2513 { 2514 struct task_struct *p = current; 2515 2516 /* Note: this timer irq context must be accounted for as well. */ 2517 account_process_tick(p, user_tick); 2518 run_local_timers(); 2519 rcu_sched_clock_irq(user_tick); 2520 #ifdef CONFIG_IRQ_WORK 2521 if (in_irq()) 2522 irq_work_tick(); 2523 #endif 2524 sched_tick(); 2525 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2526 run_posix_cpu_timers(); 2527 } 2528 2529 /* 2530 * Since schedule_timeout()'s timer is defined on the stack, it must store 2531 * the target task on the stack as well. 2532 */ 2533 struct process_timer { 2534 struct timer_list timer; 2535 struct task_struct *task; 2536 }; 2537 2538 static void process_timeout(struct timer_list *t) 2539 { 2540 struct process_timer *timeout = from_timer(timeout, t, timer); 2541 2542 wake_up_process(timeout->task); 2543 } 2544 2545 /** 2546 * schedule_timeout - sleep until timeout 2547 * @timeout: timeout value in jiffies 2548 * 2549 * Make the current task sleep until @timeout jiffies have elapsed. 2550 * The function behavior depends on the current task state 2551 * (see also set_current_state() description): 2552 * 2553 * %TASK_RUNNING - the scheduler is called, but the task does not sleep 2554 * at all. That happens because sched_submit_work() does nothing for 2555 * tasks in %TASK_RUNNING state. 2556 * 2557 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 2558 * pass before the routine returns unless the current task is explicitly 2559 * woken up, (e.g. by wake_up_process()). 2560 * 2561 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2562 * delivered to the current task or the current task is explicitly woken 2563 * up. 2564 * 2565 * The current task state is guaranteed to be %TASK_RUNNING when this 2566 * routine returns. 2567 * 2568 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 2569 * the CPU away without a bound on the timeout. In this case the return 2570 * value will be %MAX_SCHEDULE_TIMEOUT. 2571 * 2572 * Returns 0 when the timer has expired otherwise the remaining time in 2573 * jiffies will be returned. In all cases the return value is guaranteed 2574 * to be non-negative. 2575 */ 2576 signed long __sched schedule_timeout(signed long timeout) 2577 { 2578 struct process_timer timer; 2579 unsigned long expire; 2580 2581 switch (timeout) 2582 { 2583 case MAX_SCHEDULE_TIMEOUT: 2584 /* 2585 * These two special cases are useful to be comfortable 2586 * in the caller. Nothing more. We could take 2587 * MAX_SCHEDULE_TIMEOUT from one of the negative value 2588 * but I' d like to return a valid offset (>=0) to allow 2589 * the caller to do everything it want with the retval. 2590 */ 2591 schedule(); 2592 goto out; 2593 default: 2594 /* 2595 * Another bit of PARANOID. Note that the retval will be 2596 * 0 since no piece of kernel is supposed to do a check 2597 * for a negative retval of schedule_timeout() (since it 2598 * should never happens anyway). You just have the printk() 2599 * that will tell you if something is gone wrong and where. 2600 */ 2601 if (timeout < 0) { 2602 printk(KERN_ERR "schedule_timeout: wrong timeout " 2603 "value %lx\n", timeout); 2604 dump_stack(); 2605 __set_current_state(TASK_RUNNING); 2606 goto out; 2607 } 2608 } 2609 2610 expire = timeout + jiffies; 2611 2612 timer.task = current; 2613 timer_setup_on_stack(&timer.timer, process_timeout, 0); 2614 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); 2615 schedule(); 2616 del_timer_sync(&timer.timer); 2617 2618 /* Remove the timer from the object tracker */ 2619 destroy_timer_on_stack(&timer.timer); 2620 2621 timeout = expire - jiffies; 2622 2623 out: 2624 return timeout < 0 ? 0 : timeout; 2625 } 2626 EXPORT_SYMBOL(schedule_timeout); 2627 2628 /* 2629 * We can use __set_current_state() here because schedule_timeout() calls 2630 * schedule() unconditionally. 2631 */ 2632 signed long __sched schedule_timeout_interruptible(signed long timeout) 2633 { 2634 __set_current_state(TASK_INTERRUPTIBLE); 2635 return schedule_timeout(timeout); 2636 } 2637 EXPORT_SYMBOL(schedule_timeout_interruptible); 2638 2639 signed long __sched schedule_timeout_killable(signed long timeout) 2640 { 2641 __set_current_state(TASK_KILLABLE); 2642 return schedule_timeout(timeout); 2643 } 2644 EXPORT_SYMBOL(schedule_timeout_killable); 2645 2646 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 2647 { 2648 __set_current_state(TASK_UNINTERRUPTIBLE); 2649 return schedule_timeout(timeout); 2650 } 2651 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 2652 2653 /* 2654 * Like schedule_timeout_uninterruptible(), except this task will not contribute 2655 * to load average. 2656 */ 2657 signed long __sched schedule_timeout_idle(signed long timeout) 2658 { 2659 __set_current_state(TASK_IDLE); 2660 return schedule_timeout(timeout); 2661 } 2662 EXPORT_SYMBOL(schedule_timeout_idle); 2663 2664 #ifdef CONFIG_HOTPLUG_CPU 2665 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 2666 { 2667 struct timer_list *timer; 2668 int cpu = new_base->cpu; 2669 2670 while (!hlist_empty(head)) { 2671 timer = hlist_entry(head->first, struct timer_list, entry); 2672 detach_timer(timer, false); 2673 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 2674 internal_add_timer(new_base, timer); 2675 } 2676 } 2677 2678 int timers_prepare_cpu(unsigned int cpu) 2679 { 2680 struct timer_base *base; 2681 int b; 2682 2683 for (b = 0; b < NR_BASES; b++) { 2684 base = per_cpu_ptr(&timer_bases[b], cpu); 2685 base->clk = jiffies; 2686 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2687 base->next_expiry_recalc = false; 2688 base->timers_pending = false; 2689 base->is_idle = false; 2690 } 2691 return 0; 2692 } 2693 2694 int timers_dead_cpu(unsigned int cpu) 2695 { 2696 struct timer_base *old_base; 2697 struct timer_base *new_base; 2698 int b, i; 2699 2700 for (b = 0; b < NR_BASES; b++) { 2701 old_base = per_cpu_ptr(&timer_bases[b], cpu); 2702 new_base = get_cpu_ptr(&timer_bases[b]); 2703 /* 2704 * The caller is globally serialized and nobody else 2705 * takes two locks at once, deadlock is not possible. 2706 */ 2707 raw_spin_lock_irq(&new_base->lock); 2708 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2709 2710 /* 2711 * The current CPUs base clock might be stale. Update it 2712 * before moving the timers over. 2713 */ 2714 forward_timer_base(new_base); 2715 2716 WARN_ON_ONCE(old_base->running_timer); 2717 old_base->running_timer = NULL; 2718 2719 for (i = 0; i < WHEEL_SIZE; i++) 2720 migrate_timer_list(new_base, old_base->vectors + i); 2721 2722 raw_spin_unlock(&old_base->lock); 2723 raw_spin_unlock_irq(&new_base->lock); 2724 put_cpu_ptr(&timer_bases); 2725 } 2726 return 0; 2727 } 2728 2729 #endif /* CONFIG_HOTPLUG_CPU */ 2730 2731 static void __init init_timer_cpu(int cpu) 2732 { 2733 struct timer_base *base; 2734 int i; 2735 2736 for (i = 0; i < NR_BASES; i++) { 2737 base = per_cpu_ptr(&timer_bases[i], cpu); 2738 base->cpu = cpu; 2739 raw_spin_lock_init(&base->lock); 2740 base->clk = jiffies; 2741 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2742 timer_base_init_expiry_lock(base); 2743 } 2744 } 2745 2746 static void __init init_timer_cpus(void) 2747 { 2748 int cpu; 2749 2750 for_each_possible_cpu(cpu) 2751 init_timer_cpu(cpu); 2752 } 2753 2754 void __init init_timers(void) 2755 { 2756 init_timer_cpus(); 2757 posix_cputimers_init_work(); 2758 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 2759 } 2760 2761 /** 2762 * msleep - sleep safely even with waitqueue interruptions 2763 * @msecs: Time in milliseconds to sleep for 2764 */ 2765 void msleep(unsigned int msecs) 2766 { 2767 unsigned long timeout = msecs_to_jiffies(msecs); 2768 2769 while (timeout) 2770 timeout = schedule_timeout_uninterruptible(timeout); 2771 } 2772 2773 EXPORT_SYMBOL(msleep); 2774 2775 /** 2776 * msleep_interruptible - sleep waiting for signals 2777 * @msecs: Time in milliseconds to sleep for 2778 */ 2779 unsigned long msleep_interruptible(unsigned int msecs) 2780 { 2781 unsigned long timeout = msecs_to_jiffies(msecs); 2782 2783 while (timeout && !signal_pending(current)) 2784 timeout = schedule_timeout_interruptible(timeout); 2785 return jiffies_to_msecs(timeout); 2786 } 2787 2788 EXPORT_SYMBOL(msleep_interruptible); 2789 2790 /** 2791 * usleep_range_state - Sleep for an approximate time in a given state 2792 * @min: Minimum time in usecs to sleep 2793 * @max: Maximum time in usecs to sleep 2794 * @state: State of the current task that will be while sleeping 2795 * 2796 * In non-atomic context where the exact wakeup time is flexible, use 2797 * usleep_range_state() instead of udelay(). The sleep improves responsiveness 2798 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 2799 * power usage by allowing hrtimers to take advantage of an already- 2800 * scheduled interrupt instead of scheduling a new one just for this sleep. 2801 */ 2802 void __sched usleep_range_state(unsigned long min, unsigned long max, 2803 unsigned int state) 2804 { 2805 ktime_t exp = ktime_add_us(ktime_get(), min); 2806 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 2807 2808 for (;;) { 2809 __set_current_state(state); 2810 /* Do not return before the requested sleep time has elapsed */ 2811 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 2812 break; 2813 } 2814 } 2815 EXPORT_SYMBOL(usleep_range_state); 2816