1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/sched/nohz.h> 43 #include <linux/sched/debug.h> 44 #include <linux/slab.h> 45 #include <linux/compat.h> 46 47 #include <linux/uaccess.h> 48 #include <asm/unistd.h> 49 #include <asm/div64.h> 50 #include <asm/timex.h> 51 #include <asm/io.h> 52 53 #include "tick-internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/timer.h> 57 58 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 59 60 EXPORT_SYMBOL(jiffies_64); 61 62 /* 63 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 64 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 65 * level has a different granularity. 66 * 67 * The level granularity is: LVL_CLK_DIV ^ lvl 68 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 69 * 70 * The array level of a newly armed timer depends on the relative expiry 71 * time. The farther the expiry time is away the higher the array level and 72 * therefor the granularity becomes. 73 * 74 * Contrary to the original timer wheel implementation, which aims for 'exact' 75 * expiry of the timers, this implementation removes the need for recascading 76 * the timers into the lower array levels. The previous 'classic' timer wheel 77 * implementation of the kernel already violated the 'exact' expiry by adding 78 * slack to the expiry time to provide batched expiration. The granularity 79 * levels provide implicit batching. 80 * 81 * This is an optimization of the original timer wheel implementation for the 82 * majority of the timer wheel use cases: timeouts. The vast majority of 83 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 84 * the timeout expires it indicates that normal operation is disturbed, so it 85 * does not matter much whether the timeout comes with a slight delay. 86 * 87 * The only exception to this are networking timers with a small expiry 88 * time. They rely on the granularity. Those fit into the first wheel level, 89 * which has HZ granularity. 90 * 91 * We don't have cascading anymore. timers with a expiry time above the 92 * capacity of the last wheel level are force expired at the maximum timeout 93 * value of the last wheel level. From data sampling we know that the maximum 94 * value observed is 5 days (network connection tracking), so this should not 95 * be an issue. 96 * 97 * The currently chosen array constants values are a good compromise between 98 * array size and granularity. 99 * 100 * This results in the following granularity and range levels: 101 * 102 * HZ 1000 steps 103 * Level Offset Granularity Range 104 * 0 0 1 ms 0 ms - 63 ms 105 * 1 64 8 ms 64 ms - 511 ms 106 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 107 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 108 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 109 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 110 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 111 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 112 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 113 * 114 * HZ 300 115 * Level Offset Granularity Range 116 * 0 0 3 ms 0 ms - 210 ms 117 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 118 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 119 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 120 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 121 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 122 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 123 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 124 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 125 * 126 * HZ 250 127 * Level Offset Granularity Range 128 * 0 0 4 ms 0 ms - 255 ms 129 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 130 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 131 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 132 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 133 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 134 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 135 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 136 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 137 * 138 * HZ 100 139 * Level Offset Granularity Range 140 * 0 0 10 ms 0 ms - 630 ms 141 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 142 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 143 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 144 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 145 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 146 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 147 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 148 */ 149 150 /* Clock divisor for the next level */ 151 #define LVL_CLK_SHIFT 3 152 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 153 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 154 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 155 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 156 157 /* 158 * The time start value for each level to select the bucket at enqueue 159 * time. 160 */ 161 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 162 163 /* Size of each clock level */ 164 #define LVL_BITS 6 165 #define LVL_SIZE (1UL << LVL_BITS) 166 #define LVL_MASK (LVL_SIZE - 1) 167 #define LVL_OFFS(n) ((n) * LVL_SIZE) 168 169 /* Level depth */ 170 #if HZ > 100 171 # define LVL_DEPTH 9 172 # else 173 # define LVL_DEPTH 8 174 #endif 175 176 /* The cutoff (max. capacity of the wheel) */ 177 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 178 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 179 180 /* 181 * The resulting wheel size. If NOHZ is configured we allocate two 182 * wheels so we have a separate storage for the deferrable timers. 183 */ 184 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 185 186 #ifdef CONFIG_NO_HZ_COMMON 187 # define NR_BASES 2 188 # define BASE_STD 0 189 # define BASE_DEF 1 190 #else 191 # define NR_BASES 1 192 # define BASE_STD 0 193 # define BASE_DEF 0 194 #endif 195 196 struct timer_base { 197 raw_spinlock_t lock; 198 struct timer_list *running_timer; 199 unsigned long clk; 200 unsigned long next_expiry; 201 unsigned int cpu; 202 bool is_idle; 203 bool must_forward_clk; 204 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 205 struct hlist_head vectors[WHEEL_SIZE]; 206 } ____cacheline_aligned; 207 208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 209 210 #ifdef CONFIG_NO_HZ_COMMON 211 212 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 213 static DEFINE_MUTEX(timer_keys_mutex); 214 215 static void timer_update_keys(struct work_struct *work); 216 static DECLARE_WORK(timer_update_work, timer_update_keys); 217 218 #ifdef CONFIG_SMP 219 unsigned int sysctl_timer_migration = 1; 220 221 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 222 223 static void timers_update_migration(void) 224 { 225 if (sysctl_timer_migration && tick_nohz_active) 226 static_branch_enable(&timers_migration_enabled); 227 else 228 static_branch_disable(&timers_migration_enabled); 229 } 230 #else 231 static inline void timers_update_migration(void) { } 232 #endif /* !CONFIG_SMP */ 233 234 static void timer_update_keys(struct work_struct *work) 235 { 236 mutex_lock(&timer_keys_mutex); 237 timers_update_migration(); 238 static_branch_enable(&timers_nohz_active); 239 mutex_unlock(&timer_keys_mutex); 240 } 241 242 void timers_update_nohz(void) 243 { 244 schedule_work(&timer_update_work); 245 } 246 247 int timer_migration_handler(struct ctl_table *table, int write, 248 void __user *buffer, size_t *lenp, 249 loff_t *ppos) 250 { 251 int ret; 252 253 mutex_lock(&timer_keys_mutex); 254 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 255 if (!ret && write) 256 timers_update_migration(); 257 mutex_unlock(&timer_keys_mutex); 258 return ret; 259 } 260 261 static inline bool is_timers_nohz_active(void) 262 { 263 return static_branch_unlikely(&timers_nohz_active); 264 } 265 #else 266 static inline bool is_timers_nohz_active(void) { return false; } 267 #endif /* NO_HZ_COMMON */ 268 269 static unsigned long round_jiffies_common(unsigned long j, int cpu, 270 bool force_up) 271 { 272 int rem; 273 unsigned long original = j; 274 275 /* 276 * We don't want all cpus firing their timers at once hitting the 277 * same lock or cachelines, so we skew each extra cpu with an extra 278 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 279 * already did this. 280 * The skew is done by adding 3*cpunr, then round, then subtract this 281 * extra offset again. 282 */ 283 j += cpu * 3; 284 285 rem = j % HZ; 286 287 /* 288 * If the target jiffie is just after a whole second (which can happen 289 * due to delays of the timer irq, long irq off times etc etc) then 290 * we should round down to the whole second, not up. Use 1/4th second 291 * as cutoff for this rounding as an extreme upper bound for this. 292 * But never round down if @force_up is set. 293 */ 294 if (rem < HZ/4 && !force_up) /* round down */ 295 j = j - rem; 296 else /* round up */ 297 j = j - rem + HZ; 298 299 /* now that we have rounded, subtract the extra skew again */ 300 j -= cpu * 3; 301 302 /* 303 * Make sure j is still in the future. Otherwise return the 304 * unmodified value. 305 */ 306 return time_is_after_jiffies(j) ? j : original; 307 } 308 309 /** 310 * __round_jiffies - function to round jiffies to a full second 311 * @j: the time in (absolute) jiffies that should be rounded 312 * @cpu: the processor number on which the timeout will happen 313 * 314 * __round_jiffies() rounds an absolute time in the future (in jiffies) 315 * up or down to (approximately) full seconds. This is useful for timers 316 * for which the exact time they fire does not matter too much, as long as 317 * they fire approximately every X seconds. 318 * 319 * By rounding these timers to whole seconds, all such timers will fire 320 * at the same time, rather than at various times spread out. The goal 321 * of this is to have the CPU wake up less, which saves power. 322 * 323 * The exact rounding is skewed for each processor to avoid all 324 * processors firing at the exact same time, which could lead 325 * to lock contention or spurious cache line bouncing. 326 * 327 * The return value is the rounded version of the @j parameter. 328 */ 329 unsigned long __round_jiffies(unsigned long j, int cpu) 330 { 331 return round_jiffies_common(j, cpu, false); 332 } 333 EXPORT_SYMBOL_GPL(__round_jiffies); 334 335 /** 336 * __round_jiffies_relative - function to round jiffies to a full second 337 * @j: the time in (relative) jiffies that should be rounded 338 * @cpu: the processor number on which the timeout will happen 339 * 340 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 341 * up or down to (approximately) full seconds. This is useful for timers 342 * for which the exact time they fire does not matter too much, as long as 343 * they fire approximately every X seconds. 344 * 345 * By rounding these timers to whole seconds, all such timers will fire 346 * at the same time, rather than at various times spread out. The goal 347 * of this is to have the CPU wake up less, which saves power. 348 * 349 * The exact rounding is skewed for each processor to avoid all 350 * processors firing at the exact same time, which could lead 351 * to lock contention or spurious cache line bouncing. 352 * 353 * The return value is the rounded version of the @j parameter. 354 */ 355 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 356 { 357 unsigned long j0 = jiffies; 358 359 /* Use j0 because jiffies might change while we run */ 360 return round_jiffies_common(j + j0, cpu, false) - j0; 361 } 362 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 363 364 /** 365 * round_jiffies - function to round jiffies to a full second 366 * @j: the time in (absolute) jiffies that should be rounded 367 * 368 * round_jiffies() rounds an absolute time in the future (in jiffies) 369 * up or down to (approximately) full seconds. This is useful for timers 370 * for which the exact time they fire does not matter too much, as long as 371 * they fire approximately every X seconds. 372 * 373 * By rounding these timers to whole seconds, all such timers will fire 374 * at the same time, rather than at various times spread out. The goal 375 * of this is to have the CPU wake up less, which saves power. 376 * 377 * The return value is the rounded version of the @j parameter. 378 */ 379 unsigned long round_jiffies(unsigned long j) 380 { 381 return round_jiffies_common(j, raw_smp_processor_id(), false); 382 } 383 EXPORT_SYMBOL_GPL(round_jiffies); 384 385 /** 386 * round_jiffies_relative - function to round jiffies to a full second 387 * @j: the time in (relative) jiffies that should be rounded 388 * 389 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 390 * up or down to (approximately) full seconds. This is useful for timers 391 * for which the exact time they fire does not matter too much, as long as 392 * they fire approximately every X seconds. 393 * 394 * By rounding these timers to whole seconds, all such timers will fire 395 * at the same time, rather than at various times spread out. The goal 396 * of this is to have the CPU wake up less, which saves power. 397 * 398 * The return value is the rounded version of the @j parameter. 399 */ 400 unsigned long round_jiffies_relative(unsigned long j) 401 { 402 return __round_jiffies_relative(j, raw_smp_processor_id()); 403 } 404 EXPORT_SYMBOL_GPL(round_jiffies_relative); 405 406 /** 407 * __round_jiffies_up - function to round jiffies up to a full second 408 * @j: the time in (absolute) jiffies that should be rounded 409 * @cpu: the processor number on which the timeout will happen 410 * 411 * This is the same as __round_jiffies() except that it will never 412 * round down. This is useful for timeouts for which the exact time 413 * of firing does not matter too much, as long as they don't fire too 414 * early. 415 */ 416 unsigned long __round_jiffies_up(unsigned long j, int cpu) 417 { 418 return round_jiffies_common(j, cpu, true); 419 } 420 EXPORT_SYMBOL_GPL(__round_jiffies_up); 421 422 /** 423 * __round_jiffies_up_relative - function to round jiffies up to a full second 424 * @j: the time in (relative) jiffies that should be rounded 425 * @cpu: the processor number on which the timeout will happen 426 * 427 * This is the same as __round_jiffies_relative() except that it will never 428 * round down. This is useful for timeouts for which the exact time 429 * of firing does not matter too much, as long as they don't fire too 430 * early. 431 */ 432 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 433 { 434 unsigned long j0 = jiffies; 435 436 /* Use j0 because jiffies might change while we run */ 437 return round_jiffies_common(j + j0, cpu, true) - j0; 438 } 439 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 440 441 /** 442 * round_jiffies_up - function to round jiffies up to a full second 443 * @j: the time in (absolute) jiffies that should be rounded 444 * 445 * This is the same as round_jiffies() except that it will never 446 * round down. This is useful for timeouts for which the exact time 447 * of firing does not matter too much, as long as they don't fire too 448 * early. 449 */ 450 unsigned long round_jiffies_up(unsigned long j) 451 { 452 return round_jiffies_common(j, raw_smp_processor_id(), true); 453 } 454 EXPORT_SYMBOL_GPL(round_jiffies_up); 455 456 /** 457 * round_jiffies_up_relative - function to round jiffies up to a full second 458 * @j: the time in (relative) jiffies that should be rounded 459 * 460 * This is the same as round_jiffies_relative() except that it will never 461 * round down. This is useful for timeouts for which the exact time 462 * of firing does not matter too much, as long as they don't fire too 463 * early. 464 */ 465 unsigned long round_jiffies_up_relative(unsigned long j) 466 { 467 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 468 } 469 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 470 471 472 static inline unsigned int timer_get_idx(struct timer_list *timer) 473 { 474 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 475 } 476 477 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 478 { 479 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 480 idx << TIMER_ARRAYSHIFT; 481 } 482 483 /* 484 * Helper function to calculate the array index for a given expiry 485 * time. 486 */ 487 static inline unsigned calc_index(unsigned expires, unsigned lvl) 488 { 489 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 490 return LVL_OFFS(lvl) + (expires & LVL_MASK); 491 } 492 493 static int calc_wheel_index(unsigned long expires, unsigned long clk) 494 { 495 unsigned long delta = expires - clk; 496 unsigned int idx; 497 498 if (delta < LVL_START(1)) { 499 idx = calc_index(expires, 0); 500 } else if (delta < LVL_START(2)) { 501 idx = calc_index(expires, 1); 502 } else if (delta < LVL_START(3)) { 503 idx = calc_index(expires, 2); 504 } else if (delta < LVL_START(4)) { 505 idx = calc_index(expires, 3); 506 } else if (delta < LVL_START(5)) { 507 idx = calc_index(expires, 4); 508 } else if (delta < LVL_START(6)) { 509 idx = calc_index(expires, 5); 510 } else if (delta < LVL_START(7)) { 511 idx = calc_index(expires, 6); 512 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 513 idx = calc_index(expires, 7); 514 } else if ((long) delta < 0) { 515 idx = clk & LVL_MASK; 516 } else { 517 /* 518 * Force expire obscene large timeouts to expire at the 519 * capacity limit of the wheel. 520 */ 521 if (expires >= WHEEL_TIMEOUT_CUTOFF) 522 expires = WHEEL_TIMEOUT_MAX; 523 524 idx = calc_index(expires, LVL_DEPTH - 1); 525 } 526 return idx; 527 } 528 529 /* 530 * Enqueue the timer into the hash bucket, mark it pending in 531 * the bitmap and store the index in the timer flags. 532 */ 533 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 534 unsigned int idx) 535 { 536 hlist_add_head(&timer->entry, base->vectors + idx); 537 __set_bit(idx, base->pending_map); 538 timer_set_idx(timer, idx); 539 540 trace_timer_start(timer, timer->expires, timer->flags); 541 } 542 543 static void 544 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 545 { 546 unsigned int idx; 547 548 idx = calc_wheel_index(timer->expires, base->clk); 549 enqueue_timer(base, timer, idx); 550 } 551 552 static void 553 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 554 { 555 if (!is_timers_nohz_active()) 556 return; 557 558 /* 559 * TODO: This wants some optimizing similar to the code below, but we 560 * will do that when we switch from push to pull for deferrable timers. 561 */ 562 if (timer->flags & TIMER_DEFERRABLE) { 563 if (tick_nohz_full_cpu(base->cpu)) 564 wake_up_nohz_cpu(base->cpu); 565 return; 566 } 567 568 /* 569 * We might have to IPI the remote CPU if the base is idle and the 570 * timer is not deferrable. If the other CPU is on the way to idle 571 * then it can't set base->is_idle as we hold the base lock: 572 */ 573 if (!base->is_idle) 574 return; 575 576 /* Check whether this is the new first expiring timer: */ 577 if (time_after_eq(timer->expires, base->next_expiry)) 578 return; 579 580 /* 581 * Set the next expiry time and kick the CPU so it can reevaluate the 582 * wheel: 583 */ 584 base->next_expiry = timer->expires; 585 wake_up_nohz_cpu(base->cpu); 586 } 587 588 static void 589 internal_add_timer(struct timer_base *base, struct timer_list *timer) 590 { 591 __internal_add_timer(base, timer); 592 trigger_dyntick_cpu(base, timer); 593 } 594 595 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 596 597 static struct debug_obj_descr timer_debug_descr; 598 599 static void *timer_debug_hint(void *addr) 600 { 601 return ((struct timer_list *) addr)->function; 602 } 603 604 static bool timer_is_static_object(void *addr) 605 { 606 struct timer_list *timer = addr; 607 608 return (timer->entry.pprev == NULL && 609 timer->entry.next == TIMER_ENTRY_STATIC); 610 } 611 612 /* 613 * fixup_init is called when: 614 * - an active object is initialized 615 */ 616 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 617 { 618 struct timer_list *timer = addr; 619 620 switch (state) { 621 case ODEBUG_STATE_ACTIVE: 622 del_timer_sync(timer); 623 debug_object_init(timer, &timer_debug_descr); 624 return true; 625 default: 626 return false; 627 } 628 } 629 630 /* Stub timer callback for improperly used timers. */ 631 static void stub_timer(struct timer_list *unused) 632 { 633 WARN_ON(1); 634 } 635 636 /* 637 * fixup_activate is called when: 638 * - an active object is activated 639 * - an unknown non-static object is activated 640 */ 641 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 642 { 643 struct timer_list *timer = addr; 644 645 switch (state) { 646 case ODEBUG_STATE_NOTAVAILABLE: 647 timer_setup(timer, stub_timer, 0); 648 return true; 649 650 case ODEBUG_STATE_ACTIVE: 651 WARN_ON(1); 652 /* fall through */ 653 default: 654 return false; 655 } 656 } 657 658 /* 659 * fixup_free is called when: 660 * - an active object is freed 661 */ 662 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 663 { 664 struct timer_list *timer = addr; 665 666 switch (state) { 667 case ODEBUG_STATE_ACTIVE: 668 del_timer_sync(timer); 669 debug_object_free(timer, &timer_debug_descr); 670 return true; 671 default: 672 return false; 673 } 674 } 675 676 /* 677 * fixup_assert_init is called when: 678 * - an untracked/uninit-ed object is found 679 */ 680 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 681 { 682 struct timer_list *timer = addr; 683 684 switch (state) { 685 case ODEBUG_STATE_NOTAVAILABLE: 686 timer_setup(timer, stub_timer, 0); 687 return true; 688 default: 689 return false; 690 } 691 } 692 693 static struct debug_obj_descr timer_debug_descr = { 694 .name = "timer_list", 695 .debug_hint = timer_debug_hint, 696 .is_static_object = timer_is_static_object, 697 .fixup_init = timer_fixup_init, 698 .fixup_activate = timer_fixup_activate, 699 .fixup_free = timer_fixup_free, 700 .fixup_assert_init = timer_fixup_assert_init, 701 }; 702 703 static inline void debug_timer_init(struct timer_list *timer) 704 { 705 debug_object_init(timer, &timer_debug_descr); 706 } 707 708 static inline void debug_timer_activate(struct timer_list *timer) 709 { 710 debug_object_activate(timer, &timer_debug_descr); 711 } 712 713 static inline void debug_timer_deactivate(struct timer_list *timer) 714 { 715 debug_object_deactivate(timer, &timer_debug_descr); 716 } 717 718 static inline void debug_timer_free(struct timer_list *timer) 719 { 720 debug_object_free(timer, &timer_debug_descr); 721 } 722 723 static inline void debug_timer_assert_init(struct timer_list *timer) 724 { 725 debug_object_assert_init(timer, &timer_debug_descr); 726 } 727 728 static void do_init_timer(struct timer_list *timer, 729 void (*func)(struct timer_list *), 730 unsigned int flags, 731 const char *name, struct lock_class_key *key); 732 733 void init_timer_on_stack_key(struct timer_list *timer, 734 void (*func)(struct timer_list *), 735 unsigned int flags, 736 const char *name, struct lock_class_key *key) 737 { 738 debug_object_init_on_stack(timer, &timer_debug_descr); 739 do_init_timer(timer, func, flags, name, key); 740 } 741 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 742 743 void destroy_timer_on_stack(struct timer_list *timer) 744 { 745 debug_object_free(timer, &timer_debug_descr); 746 } 747 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 748 749 #else 750 static inline void debug_timer_init(struct timer_list *timer) { } 751 static inline void debug_timer_activate(struct timer_list *timer) { } 752 static inline void debug_timer_deactivate(struct timer_list *timer) { } 753 static inline void debug_timer_assert_init(struct timer_list *timer) { } 754 #endif 755 756 static inline void debug_init(struct timer_list *timer) 757 { 758 debug_timer_init(timer); 759 trace_timer_init(timer); 760 } 761 762 static inline void debug_deactivate(struct timer_list *timer) 763 { 764 debug_timer_deactivate(timer); 765 trace_timer_cancel(timer); 766 } 767 768 static inline void debug_assert_init(struct timer_list *timer) 769 { 770 debug_timer_assert_init(timer); 771 } 772 773 static void do_init_timer(struct timer_list *timer, 774 void (*func)(struct timer_list *), 775 unsigned int flags, 776 const char *name, struct lock_class_key *key) 777 { 778 timer->entry.pprev = NULL; 779 timer->function = func; 780 timer->flags = flags | raw_smp_processor_id(); 781 lockdep_init_map(&timer->lockdep_map, name, key, 0); 782 } 783 784 /** 785 * init_timer_key - initialize a timer 786 * @timer: the timer to be initialized 787 * @func: timer callback function 788 * @flags: timer flags 789 * @name: name of the timer 790 * @key: lockdep class key of the fake lock used for tracking timer 791 * sync lock dependencies 792 * 793 * init_timer_key() must be done to a timer prior calling *any* of the 794 * other timer functions. 795 */ 796 void init_timer_key(struct timer_list *timer, 797 void (*func)(struct timer_list *), unsigned int flags, 798 const char *name, struct lock_class_key *key) 799 { 800 debug_init(timer); 801 do_init_timer(timer, func, flags, name, key); 802 } 803 EXPORT_SYMBOL(init_timer_key); 804 805 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 806 { 807 struct hlist_node *entry = &timer->entry; 808 809 debug_deactivate(timer); 810 811 __hlist_del(entry); 812 if (clear_pending) 813 entry->pprev = NULL; 814 entry->next = LIST_POISON2; 815 } 816 817 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 818 bool clear_pending) 819 { 820 unsigned idx = timer_get_idx(timer); 821 822 if (!timer_pending(timer)) 823 return 0; 824 825 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 826 __clear_bit(idx, base->pending_map); 827 828 detach_timer(timer, clear_pending); 829 return 1; 830 } 831 832 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 833 { 834 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 835 836 /* 837 * If the timer is deferrable and NO_HZ_COMMON is set then we need 838 * to use the deferrable base. 839 */ 840 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 841 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 842 return base; 843 } 844 845 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 846 { 847 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 848 849 /* 850 * If the timer is deferrable and NO_HZ_COMMON is set then we need 851 * to use the deferrable base. 852 */ 853 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 854 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 855 return base; 856 } 857 858 static inline struct timer_base *get_timer_base(u32 tflags) 859 { 860 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 861 } 862 863 static inline struct timer_base * 864 get_target_base(struct timer_base *base, unsigned tflags) 865 { 866 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 867 if (static_branch_likely(&timers_migration_enabled) && 868 !(tflags & TIMER_PINNED)) 869 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 870 #endif 871 return get_timer_this_cpu_base(tflags); 872 } 873 874 static inline void forward_timer_base(struct timer_base *base) 875 { 876 #ifdef CONFIG_NO_HZ_COMMON 877 unsigned long jnow; 878 879 /* 880 * We only forward the base when we are idle or have just come out of 881 * idle (must_forward_clk logic), and have a delta between base clock 882 * and jiffies. In the common case, run_timers will take care of it. 883 */ 884 if (likely(!base->must_forward_clk)) 885 return; 886 887 jnow = READ_ONCE(jiffies); 888 base->must_forward_clk = base->is_idle; 889 if ((long)(jnow - base->clk) < 2) 890 return; 891 892 /* 893 * If the next expiry value is > jiffies, then we fast forward to 894 * jiffies otherwise we forward to the next expiry value. 895 */ 896 if (time_after(base->next_expiry, jnow)) 897 base->clk = jnow; 898 else 899 base->clk = base->next_expiry; 900 #endif 901 } 902 903 904 /* 905 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 906 * that all timers which are tied to this base are locked, and the base itself 907 * is locked too. 908 * 909 * So __run_timers/migrate_timers can safely modify all timers which could 910 * be found in the base->vectors array. 911 * 912 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 913 * to wait until the migration is done. 914 */ 915 static struct timer_base *lock_timer_base(struct timer_list *timer, 916 unsigned long *flags) 917 __acquires(timer->base->lock) 918 { 919 for (;;) { 920 struct timer_base *base; 921 u32 tf; 922 923 /* 924 * We need to use READ_ONCE() here, otherwise the compiler 925 * might re-read @tf between the check for TIMER_MIGRATING 926 * and spin_lock(). 927 */ 928 tf = READ_ONCE(timer->flags); 929 930 if (!(tf & TIMER_MIGRATING)) { 931 base = get_timer_base(tf); 932 raw_spin_lock_irqsave(&base->lock, *flags); 933 if (timer->flags == tf) 934 return base; 935 raw_spin_unlock_irqrestore(&base->lock, *flags); 936 } 937 cpu_relax(); 938 } 939 } 940 941 #define MOD_TIMER_PENDING_ONLY 0x01 942 #define MOD_TIMER_REDUCE 0x02 943 944 static inline int 945 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 946 { 947 struct timer_base *base, *new_base; 948 unsigned int idx = UINT_MAX; 949 unsigned long clk = 0, flags; 950 int ret = 0; 951 952 BUG_ON(!timer->function); 953 954 /* 955 * This is a common optimization triggered by the networking code - if 956 * the timer is re-modified to have the same timeout or ends up in the 957 * same array bucket then just return: 958 */ 959 if (timer_pending(timer)) { 960 /* 961 * The downside of this optimization is that it can result in 962 * larger granularity than you would get from adding a new 963 * timer with this expiry. 964 */ 965 long diff = timer->expires - expires; 966 967 if (!diff) 968 return 1; 969 if (options & MOD_TIMER_REDUCE && diff <= 0) 970 return 1; 971 972 /* 973 * We lock timer base and calculate the bucket index right 974 * here. If the timer ends up in the same bucket, then we 975 * just update the expiry time and avoid the whole 976 * dequeue/enqueue dance. 977 */ 978 base = lock_timer_base(timer, &flags); 979 forward_timer_base(base); 980 981 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 982 time_before_eq(timer->expires, expires)) { 983 ret = 1; 984 goto out_unlock; 985 } 986 987 clk = base->clk; 988 idx = calc_wheel_index(expires, clk); 989 990 /* 991 * Retrieve and compare the array index of the pending 992 * timer. If it matches set the expiry to the new value so a 993 * subsequent call will exit in the expires check above. 994 */ 995 if (idx == timer_get_idx(timer)) { 996 if (!(options & MOD_TIMER_REDUCE)) 997 timer->expires = expires; 998 else if (time_after(timer->expires, expires)) 999 timer->expires = expires; 1000 ret = 1; 1001 goto out_unlock; 1002 } 1003 } else { 1004 base = lock_timer_base(timer, &flags); 1005 forward_timer_base(base); 1006 } 1007 1008 ret = detach_if_pending(timer, base, false); 1009 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1010 goto out_unlock; 1011 1012 new_base = get_target_base(base, timer->flags); 1013 1014 if (base != new_base) { 1015 /* 1016 * We are trying to schedule the timer on the new base. 1017 * However we can't change timer's base while it is running, 1018 * otherwise del_timer_sync() can't detect that the timer's 1019 * handler yet has not finished. This also guarantees that the 1020 * timer is serialized wrt itself. 1021 */ 1022 if (likely(base->running_timer != timer)) { 1023 /* See the comment in lock_timer_base() */ 1024 timer->flags |= TIMER_MIGRATING; 1025 1026 raw_spin_unlock(&base->lock); 1027 base = new_base; 1028 raw_spin_lock(&base->lock); 1029 WRITE_ONCE(timer->flags, 1030 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1031 forward_timer_base(base); 1032 } 1033 } 1034 1035 debug_timer_activate(timer); 1036 1037 timer->expires = expires; 1038 /* 1039 * If 'idx' was calculated above and the base time did not advance 1040 * between calculating 'idx' and possibly switching the base, only 1041 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1042 * we need to (re)calculate the wheel index via 1043 * internal_add_timer(). 1044 */ 1045 if (idx != UINT_MAX && clk == base->clk) { 1046 enqueue_timer(base, timer, idx); 1047 trigger_dyntick_cpu(base, timer); 1048 } else { 1049 internal_add_timer(base, timer); 1050 } 1051 1052 out_unlock: 1053 raw_spin_unlock_irqrestore(&base->lock, flags); 1054 1055 return ret; 1056 } 1057 1058 /** 1059 * mod_timer_pending - modify a pending timer's timeout 1060 * @timer: the pending timer to be modified 1061 * @expires: new timeout in jiffies 1062 * 1063 * mod_timer_pending() is the same for pending timers as mod_timer(), 1064 * but will not re-activate and modify already deleted timers. 1065 * 1066 * It is useful for unserialized use of timers. 1067 */ 1068 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1069 { 1070 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1071 } 1072 EXPORT_SYMBOL(mod_timer_pending); 1073 1074 /** 1075 * mod_timer - modify a timer's timeout 1076 * @timer: the timer to be modified 1077 * @expires: new timeout in jiffies 1078 * 1079 * mod_timer() is a more efficient way to update the expire field of an 1080 * active timer (if the timer is inactive it will be activated) 1081 * 1082 * mod_timer(timer, expires) is equivalent to: 1083 * 1084 * del_timer(timer); timer->expires = expires; add_timer(timer); 1085 * 1086 * Note that if there are multiple unserialized concurrent users of the 1087 * same timer, then mod_timer() is the only safe way to modify the timeout, 1088 * since add_timer() cannot modify an already running timer. 1089 * 1090 * The function returns whether it has modified a pending timer or not. 1091 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1092 * active timer returns 1.) 1093 */ 1094 int mod_timer(struct timer_list *timer, unsigned long expires) 1095 { 1096 return __mod_timer(timer, expires, 0); 1097 } 1098 EXPORT_SYMBOL(mod_timer); 1099 1100 /** 1101 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1102 * @timer: The timer to be modified 1103 * @expires: New timeout in jiffies 1104 * 1105 * timer_reduce() is very similar to mod_timer(), except that it will only 1106 * modify a running timer if that would reduce the expiration time (it will 1107 * start a timer that isn't running). 1108 */ 1109 int timer_reduce(struct timer_list *timer, unsigned long expires) 1110 { 1111 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1112 } 1113 EXPORT_SYMBOL(timer_reduce); 1114 1115 /** 1116 * add_timer - start a timer 1117 * @timer: the timer to be added 1118 * 1119 * The kernel will do a ->function(@timer) callback from the 1120 * timer interrupt at the ->expires point in the future. The 1121 * current time is 'jiffies'. 1122 * 1123 * The timer's ->expires, ->function fields must be set prior calling this 1124 * function. 1125 * 1126 * Timers with an ->expires field in the past will be executed in the next 1127 * timer tick. 1128 */ 1129 void add_timer(struct timer_list *timer) 1130 { 1131 BUG_ON(timer_pending(timer)); 1132 mod_timer(timer, timer->expires); 1133 } 1134 EXPORT_SYMBOL(add_timer); 1135 1136 /** 1137 * add_timer_on - start a timer on a particular CPU 1138 * @timer: the timer to be added 1139 * @cpu: the CPU to start it on 1140 * 1141 * This is not very scalable on SMP. Double adds are not possible. 1142 */ 1143 void add_timer_on(struct timer_list *timer, int cpu) 1144 { 1145 struct timer_base *new_base, *base; 1146 unsigned long flags; 1147 1148 BUG_ON(timer_pending(timer) || !timer->function); 1149 1150 new_base = get_timer_cpu_base(timer->flags, cpu); 1151 1152 /* 1153 * If @timer was on a different CPU, it should be migrated with the 1154 * old base locked to prevent other operations proceeding with the 1155 * wrong base locked. See lock_timer_base(). 1156 */ 1157 base = lock_timer_base(timer, &flags); 1158 if (base != new_base) { 1159 timer->flags |= TIMER_MIGRATING; 1160 1161 raw_spin_unlock(&base->lock); 1162 base = new_base; 1163 raw_spin_lock(&base->lock); 1164 WRITE_ONCE(timer->flags, 1165 (timer->flags & ~TIMER_BASEMASK) | cpu); 1166 } 1167 forward_timer_base(base); 1168 1169 debug_timer_activate(timer); 1170 internal_add_timer(base, timer); 1171 raw_spin_unlock_irqrestore(&base->lock, flags); 1172 } 1173 EXPORT_SYMBOL_GPL(add_timer_on); 1174 1175 /** 1176 * del_timer - deactivate a timer. 1177 * @timer: the timer to be deactivated 1178 * 1179 * del_timer() deactivates a timer - this works on both active and inactive 1180 * timers. 1181 * 1182 * The function returns whether it has deactivated a pending timer or not. 1183 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1184 * active timer returns 1.) 1185 */ 1186 int del_timer(struct timer_list *timer) 1187 { 1188 struct timer_base *base; 1189 unsigned long flags; 1190 int ret = 0; 1191 1192 debug_assert_init(timer); 1193 1194 if (timer_pending(timer)) { 1195 base = lock_timer_base(timer, &flags); 1196 ret = detach_if_pending(timer, base, true); 1197 raw_spin_unlock_irqrestore(&base->lock, flags); 1198 } 1199 1200 return ret; 1201 } 1202 EXPORT_SYMBOL(del_timer); 1203 1204 /** 1205 * try_to_del_timer_sync - Try to deactivate a timer 1206 * @timer: timer to delete 1207 * 1208 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1209 * exit the timer is not queued and the handler is not running on any CPU. 1210 */ 1211 int try_to_del_timer_sync(struct timer_list *timer) 1212 { 1213 struct timer_base *base; 1214 unsigned long flags; 1215 int ret = -1; 1216 1217 debug_assert_init(timer); 1218 1219 base = lock_timer_base(timer, &flags); 1220 1221 if (base->running_timer != timer) 1222 ret = detach_if_pending(timer, base, true); 1223 1224 raw_spin_unlock_irqrestore(&base->lock, flags); 1225 1226 return ret; 1227 } 1228 EXPORT_SYMBOL(try_to_del_timer_sync); 1229 1230 #ifdef CONFIG_SMP 1231 /** 1232 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1233 * @timer: the timer to be deactivated 1234 * 1235 * This function only differs from del_timer() on SMP: besides deactivating 1236 * the timer it also makes sure the handler has finished executing on other 1237 * CPUs. 1238 * 1239 * Synchronization rules: Callers must prevent restarting of the timer, 1240 * otherwise this function is meaningless. It must not be called from 1241 * interrupt contexts unless the timer is an irqsafe one. The caller must 1242 * not hold locks which would prevent completion of the timer's 1243 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1244 * timer is not queued and the handler is not running on any CPU. 1245 * 1246 * Note: For !irqsafe timers, you must not hold locks that are held in 1247 * interrupt context while calling this function. Even if the lock has 1248 * nothing to do with the timer in question. Here's why:: 1249 * 1250 * CPU0 CPU1 1251 * ---- ---- 1252 * <SOFTIRQ> 1253 * call_timer_fn(); 1254 * base->running_timer = mytimer; 1255 * spin_lock_irq(somelock); 1256 * <IRQ> 1257 * spin_lock(somelock); 1258 * del_timer_sync(mytimer); 1259 * while (base->running_timer == mytimer); 1260 * 1261 * Now del_timer_sync() will never return and never release somelock. 1262 * The interrupt on the other CPU is waiting to grab somelock but 1263 * it has interrupted the softirq that CPU0 is waiting to finish. 1264 * 1265 * The function returns whether it has deactivated a pending timer or not. 1266 */ 1267 int del_timer_sync(struct timer_list *timer) 1268 { 1269 #ifdef CONFIG_LOCKDEP 1270 unsigned long flags; 1271 1272 /* 1273 * If lockdep gives a backtrace here, please reference 1274 * the synchronization rules above. 1275 */ 1276 local_irq_save(flags); 1277 lock_map_acquire(&timer->lockdep_map); 1278 lock_map_release(&timer->lockdep_map); 1279 local_irq_restore(flags); 1280 #endif 1281 /* 1282 * don't use it in hardirq context, because it 1283 * could lead to deadlock. 1284 */ 1285 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1286 for (;;) { 1287 int ret = try_to_del_timer_sync(timer); 1288 if (ret >= 0) 1289 return ret; 1290 cpu_relax(); 1291 } 1292 } 1293 EXPORT_SYMBOL(del_timer_sync); 1294 #endif 1295 1296 static void call_timer_fn(struct timer_list *timer, 1297 void (*fn)(struct timer_list *), 1298 unsigned long baseclk) 1299 { 1300 int count = preempt_count(); 1301 1302 #ifdef CONFIG_LOCKDEP 1303 /* 1304 * It is permissible to free the timer from inside the 1305 * function that is called from it, this we need to take into 1306 * account for lockdep too. To avoid bogus "held lock freed" 1307 * warnings as well as problems when looking into 1308 * timer->lockdep_map, make a copy and use that here. 1309 */ 1310 struct lockdep_map lockdep_map; 1311 1312 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1313 #endif 1314 /* 1315 * Couple the lock chain with the lock chain at 1316 * del_timer_sync() by acquiring the lock_map around the fn() 1317 * call here and in del_timer_sync(). 1318 */ 1319 lock_map_acquire(&lockdep_map); 1320 1321 trace_timer_expire_entry(timer, baseclk); 1322 fn(timer); 1323 trace_timer_expire_exit(timer); 1324 1325 lock_map_release(&lockdep_map); 1326 1327 if (count != preempt_count()) { 1328 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", 1329 fn, count, preempt_count()); 1330 /* 1331 * Restore the preempt count. That gives us a decent 1332 * chance to survive and extract information. If the 1333 * callback kept a lock held, bad luck, but not worse 1334 * than the BUG() we had. 1335 */ 1336 preempt_count_set(count); 1337 } 1338 } 1339 1340 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1341 { 1342 /* 1343 * This value is required only for tracing. base->clk was 1344 * incremented directly before expire_timers was called. But expiry 1345 * is related to the old base->clk value. 1346 */ 1347 unsigned long baseclk = base->clk - 1; 1348 1349 while (!hlist_empty(head)) { 1350 struct timer_list *timer; 1351 void (*fn)(struct timer_list *); 1352 1353 timer = hlist_entry(head->first, struct timer_list, entry); 1354 1355 base->running_timer = timer; 1356 detach_timer(timer, true); 1357 1358 fn = timer->function; 1359 1360 if (timer->flags & TIMER_IRQSAFE) { 1361 raw_spin_unlock(&base->lock); 1362 call_timer_fn(timer, fn, baseclk); 1363 raw_spin_lock(&base->lock); 1364 } else { 1365 raw_spin_unlock_irq(&base->lock); 1366 call_timer_fn(timer, fn, baseclk); 1367 raw_spin_lock_irq(&base->lock); 1368 } 1369 } 1370 } 1371 1372 static int __collect_expired_timers(struct timer_base *base, 1373 struct hlist_head *heads) 1374 { 1375 unsigned long clk = base->clk; 1376 struct hlist_head *vec; 1377 int i, levels = 0; 1378 unsigned int idx; 1379 1380 for (i = 0; i < LVL_DEPTH; i++) { 1381 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1382 1383 if (__test_and_clear_bit(idx, base->pending_map)) { 1384 vec = base->vectors + idx; 1385 hlist_move_list(vec, heads++); 1386 levels++; 1387 } 1388 /* Is it time to look at the next level? */ 1389 if (clk & LVL_CLK_MASK) 1390 break; 1391 /* Shift clock for the next level granularity */ 1392 clk >>= LVL_CLK_SHIFT; 1393 } 1394 return levels; 1395 } 1396 1397 #ifdef CONFIG_NO_HZ_COMMON 1398 /* 1399 * Find the next pending bucket of a level. Search from level start (@offset) 1400 * + @clk upwards and if nothing there, search from start of the level 1401 * (@offset) up to @offset + clk. 1402 */ 1403 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1404 unsigned clk) 1405 { 1406 unsigned pos, start = offset + clk; 1407 unsigned end = offset + LVL_SIZE; 1408 1409 pos = find_next_bit(base->pending_map, end, start); 1410 if (pos < end) 1411 return pos - start; 1412 1413 pos = find_next_bit(base->pending_map, start, offset); 1414 return pos < start ? pos + LVL_SIZE - start : -1; 1415 } 1416 1417 /* 1418 * Search the first expiring timer in the various clock levels. Caller must 1419 * hold base->lock. 1420 */ 1421 static unsigned long __next_timer_interrupt(struct timer_base *base) 1422 { 1423 unsigned long clk, next, adj; 1424 unsigned lvl, offset = 0; 1425 1426 next = base->clk + NEXT_TIMER_MAX_DELTA; 1427 clk = base->clk; 1428 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1429 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1430 1431 if (pos >= 0) { 1432 unsigned long tmp = clk + (unsigned long) pos; 1433 1434 tmp <<= LVL_SHIFT(lvl); 1435 if (time_before(tmp, next)) 1436 next = tmp; 1437 } 1438 /* 1439 * Clock for the next level. If the current level clock lower 1440 * bits are zero, we look at the next level as is. If not we 1441 * need to advance it by one because that's going to be the 1442 * next expiring bucket in that level. base->clk is the next 1443 * expiring jiffie. So in case of: 1444 * 1445 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1446 * 0 0 0 0 0 0 1447 * 1448 * we have to look at all levels @index 0. With 1449 * 1450 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1451 * 0 0 0 0 0 2 1452 * 1453 * LVL0 has the next expiring bucket @index 2. The upper 1454 * levels have the next expiring bucket @index 1. 1455 * 1456 * In case that the propagation wraps the next level the same 1457 * rules apply: 1458 * 1459 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1460 * 0 0 0 0 F 2 1461 * 1462 * So after looking at LVL0 we get: 1463 * 1464 * LVL5 LVL4 LVL3 LVL2 LVL1 1465 * 0 0 0 1 0 1466 * 1467 * So no propagation from LVL1 to LVL2 because that happened 1468 * with the add already, but then we need to propagate further 1469 * from LVL2 to LVL3. 1470 * 1471 * So the simple check whether the lower bits of the current 1472 * level are 0 or not is sufficient for all cases. 1473 */ 1474 adj = clk & LVL_CLK_MASK ? 1 : 0; 1475 clk >>= LVL_CLK_SHIFT; 1476 clk += adj; 1477 } 1478 return next; 1479 } 1480 1481 /* 1482 * Check, if the next hrtimer event is before the next timer wheel 1483 * event: 1484 */ 1485 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1486 { 1487 u64 nextevt = hrtimer_get_next_event(); 1488 1489 /* 1490 * If high resolution timers are enabled 1491 * hrtimer_get_next_event() returns KTIME_MAX. 1492 */ 1493 if (expires <= nextevt) 1494 return expires; 1495 1496 /* 1497 * If the next timer is already expired, return the tick base 1498 * time so the tick is fired immediately. 1499 */ 1500 if (nextevt <= basem) 1501 return basem; 1502 1503 /* 1504 * Round up to the next jiffie. High resolution timers are 1505 * off, so the hrtimers are expired in the tick and we need to 1506 * make sure that this tick really expires the timer to avoid 1507 * a ping pong of the nohz stop code. 1508 * 1509 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1510 */ 1511 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1512 } 1513 1514 /** 1515 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1516 * @basej: base time jiffies 1517 * @basem: base time clock monotonic 1518 * 1519 * Returns the tick aligned clock monotonic time of the next pending 1520 * timer or KTIME_MAX if no timer is pending. 1521 */ 1522 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1523 { 1524 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1525 u64 expires = KTIME_MAX; 1526 unsigned long nextevt; 1527 bool is_max_delta; 1528 1529 /* 1530 * Pretend that there is no timer pending if the cpu is offline. 1531 * Possible pending timers will be migrated later to an active cpu. 1532 */ 1533 if (cpu_is_offline(smp_processor_id())) 1534 return expires; 1535 1536 raw_spin_lock(&base->lock); 1537 nextevt = __next_timer_interrupt(base); 1538 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1539 base->next_expiry = nextevt; 1540 /* 1541 * We have a fresh next event. Check whether we can forward the 1542 * base. We can only do that when @basej is past base->clk 1543 * otherwise we might rewind base->clk. 1544 */ 1545 if (time_after(basej, base->clk)) { 1546 if (time_after(nextevt, basej)) 1547 base->clk = basej; 1548 else if (time_after(nextevt, base->clk)) 1549 base->clk = nextevt; 1550 } 1551 1552 if (time_before_eq(nextevt, basej)) { 1553 expires = basem; 1554 base->is_idle = false; 1555 } else { 1556 if (!is_max_delta) 1557 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1558 /* 1559 * If we expect to sleep more than a tick, mark the base idle. 1560 * Also the tick is stopped so any added timer must forward 1561 * the base clk itself to keep granularity small. This idle 1562 * logic is only maintained for the BASE_STD base, deferrable 1563 * timers may still see large granularity skew (by design). 1564 */ 1565 if ((expires - basem) > TICK_NSEC) { 1566 base->must_forward_clk = true; 1567 base->is_idle = true; 1568 } 1569 } 1570 raw_spin_unlock(&base->lock); 1571 1572 return cmp_next_hrtimer_event(basem, expires); 1573 } 1574 1575 /** 1576 * timer_clear_idle - Clear the idle state of the timer base 1577 * 1578 * Called with interrupts disabled 1579 */ 1580 void timer_clear_idle(void) 1581 { 1582 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1583 1584 /* 1585 * We do this unlocked. The worst outcome is a remote enqueue sending 1586 * a pointless IPI, but taking the lock would just make the window for 1587 * sending the IPI a few instructions smaller for the cost of taking 1588 * the lock in the exit from idle path. 1589 */ 1590 base->is_idle = false; 1591 } 1592 1593 static int collect_expired_timers(struct timer_base *base, 1594 struct hlist_head *heads) 1595 { 1596 /* 1597 * NOHZ optimization. After a long idle sleep we need to forward the 1598 * base to current jiffies. Avoid a loop by searching the bitfield for 1599 * the next expiring timer. 1600 */ 1601 if ((long)(jiffies - base->clk) > 2) { 1602 unsigned long next = __next_timer_interrupt(base); 1603 1604 /* 1605 * If the next timer is ahead of time forward to current 1606 * jiffies, otherwise forward to the next expiry time: 1607 */ 1608 if (time_after(next, jiffies)) { 1609 /* 1610 * The call site will increment base->clk and then 1611 * terminate the expiry loop immediately. 1612 */ 1613 base->clk = jiffies; 1614 return 0; 1615 } 1616 base->clk = next; 1617 } 1618 return __collect_expired_timers(base, heads); 1619 } 1620 #else 1621 static inline int collect_expired_timers(struct timer_base *base, 1622 struct hlist_head *heads) 1623 { 1624 return __collect_expired_timers(base, heads); 1625 } 1626 #endif 1627 1628 /* 1629 * Called from the timer interrupt handler to charge one tick to the current 1630 * process. user_tick is 1 if the tick is user time, 0 for system. 1631 */ 1632 void update_process_times(int user_tick) 1633 { 1634 struct task_struct *p = current; 1635 1636 /* Note: this timer irq context must be accounted for as well. */ 1637 account_process_tick(p, user_tick); 1638 run_local_timers(); 1639 rcu_sched_clock_irq(user_tick); 1640 #ifdef CONFIG_IRQ_WORK 1641 if (in_irq()) 1642 irq_work_tick(); 1643 #endif 1644 scheduler_tick(); 1645 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1646 run_posix_cpu_timers(p); 1647 } 1648 1649 /** 1650 * __run_timers - run all expired timers (if any) on this CPU. 1651 * @base: the timer vector to be processed. 1652 */ 1653 static inline void __run_timers(struct timer_base *base) 1654 { 1655 struct hlist_head heads[LVL_DEPTH]; 1656 int levels; 1657 1658 if (!time_after_eq(jiffies, base->clk)) 1659 return; 1660 1661 raw_spin_lock_irq(&base->lock); 1662 1663 /* 1664 * timer_base::must_forward_clk must be cleared before running 1665 * timers so that any timer functions that call mod_timer() will 1666 * not try to forward the base. Idle tracking / clock forwarding 1667 * logic is only used with BASE_STD timers. 1668 * 1669 * The must_forward_clk flag is cleared unconditionally also for 1670 * the deferrable base. The deferrable base is not affected by idle 1671 * tracking and never forwarded, so clearing the flag is a NOOP. 1672 * 1673 * The fact that the deferrable base is never forwarded can cause 1674 * large variations in granularity for deferrable timers, but they 1675 * can be deferred for long periods due to idle anyway. 1676 */ 1677 base->must_forward_clk = false; 1678 1679 while (time_after_eq(jiffies, base->clk)) { 1680 1681 levels = collect_expired_timers(base, heads); 1682 base->clk++; 1683 1684 while (levels--) 1685 expire_timers(base, heads + levels); 1686 } 1687 base->running_timer = NULL; 1688 raw_spin_unlock_irq(&base->lock); 1689 } 1690 1691 /* 1692 * This function runs timers and the timer-tq in bottom half context. 1693 */ 1694 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1695 { 1696 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1697 1698 __run_timers(base); 1699 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1700 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1701 } 1702 1703 /* 1704 * Called by the local, per-CPU timer interrupt on SMP. 1705 */ 1706 void run_local_timers(void) 1707 { 1708 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1709 1710 hrtimer_run_queues(); 1711 /* Raise the softirq only if required. */ 1712 if (time_before(jiffies, base->clk)) { 1713 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1714 return; 1715 /* CPU is awake, so check the deferrable base. */ 1716 base++; 1717 if (time_before(jiffies, base->clk)) 1718 return; 1719 } 1720 raise_softirq(TIMER_SOFTIRQ); 1721 } 1722 1723 /* 1724 * Since schedule_timeout()'s timer is defined on the stack, it must store 1725 * the target task on the stack as well. 1726 */ 1727 struct process_timer { 1728 struct timer_list timer; 1729 struct task_struct *task; 1730 }; 1731 1732 static void process_timeout(struct timer_list *t) 1733 { 1734 struct process_timer *timeout = from_timer(timeout, t, timer); 1735 1736 wake_up_process(timeout->task); 1737 } 1738 1739 /** 1740 * schedule_timeout - sleep until timeout 1741 * @timeout: timeout value in jiffies 1742 * 1743 * Make the current task sleep until @timeout jiffies have 1744 * elapsed. The routine will return immediately unless 1745 * the current task state has been set (see set_current_state()). 1746 * 1747 * You can set the task state as follows - 1748 * 1749 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1750 * pass before the routine returns unless the current task is explicitly 1751 * woken up, (e.g. by wake_up_process())". 1752 * 1753 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1754 * delivered to the current task or the current task is explicitly woken 1755 * up. 1756 * 1757 * The current task state is guaranteed to be TASK_RUNNING when this 1758 * routine returns. 1759 * 1760 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1761 * the CPU away without a bound on the timeout. In this case the return 1762 * value will be %MAX_SCHEDULE_TIMEOUT. 1763 * 1764 * Returns 0 when the timer has expired otherwise the remaining time in 1765 * jiffies will be returned. In all cases the return value is guaranteed 1766 * to be non-negative. 1767 */ 1768 signed long __sched schedule_timeout(signed long timeout) 1769 { 1770 struct process_timer timer; 1771 unsigned long expire; 1772 1773 switch (timeout) 1774 { 1775 case MAX_SCHEDULE_TIMEOUT: 1776 /* 1777 * These two special cases are useful to be comfortable 1778 * in the caller. Nothing more. We could take 1779 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1780 * but I' d like to return a valid offset (>=0) to allow 1781 * the caller to do everything it want with the retval. 1782 */ 1783 schedule(); 1784 goto out; 1785 default: 1786 /* 1787 * Another bit of PARANOID. Note that the retval will be 1788 * 0 since no piece of kernel is supposed to do a check 1789 * for a negative retval of schedule_timeout() (since it 1790 * should never happens anyway). You just have the printk() 1791 * that will tell you if something is gone wrong and where. 1792 */ 1793 if (timeout < 0) { 1794 printk(KERN_ERR "schedule_timeout: wrong timeout " 1795 "value %lx\n", timeout); 1796 dump_stack(); 1797 current->state = TASK_RUNNING; 1798 goto out; 1799 } 1800 } 1801 1802 expire = timeout + jiffies; 1803 1804 timer.task = current; 1805 timer_setup_on_stack(&timer.timer, process_timeout, 0); 1806 __mod_timer(&timer.timer, expire, 0); 1807 schedule(); 1808 del_singleshot_timer_sync(&timer.timer); 1809 1810 /* Remove the timer from the object tracker */ 1811 destroy_timer_on_stack(&timer.timer); 1812 1813 timeout = expire - jiffies; 1814 1815 out: 1816 return timeout < 0 ? 0 : timeout; 1817 } 1818 EXPORT_SYMBOL(schedule_timeout); 1819 1820 /* 1821 * We can use __set_current_state() here because schedule_timeout() calls 1822 * schedule() unconditionally. 1823 */ 1824 signed long __sched schedule_timeout_interruptible(signed long timeout) 1825 { 1826 __set_current_state(TASK_INTERRUPTIBLE); 1827 return schedule_timeout(timeout); 1828 } 1829 EXPORT_SYMBOL(schedule_timeout_interruptible); 1830 1831 signed long __sched schedule_timeout_killable(signed long timeout) 1832 { 1833 __set_current_state(TASK_KILLABLE); 1834 return schedule_timeout(timeout); 1835 } 1836 EXPORT_SYMBOL(schedule_timeout_killable); 1837 1838 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1839 { 1840 __set_current_state(TASK_UNINTERRUPTIBLE); 1841 return schedule_timeout(timeout); 1842 } 1843 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1844 1845 /* 1846 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1847 * to load average. 1848 */ 1849 signed long __sched schedule_timeout_idle(signed long timeout) 1850 { 1851 __set_current_state(TASK_IDLE); 1852 return schedule_timeout(timeout); 1853 } 1854 EXPORT_SYMBOL(schedule_timeout_idle); 1855 1856 #ifdef CONFIG_HOTPLUG_CPU 1857 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1858 { 1859 struct timer_list *timer; 1860 int cpu = new_base->cpu; 1861 1862 while (!hlist_empty(head)) { 1863 timer = hlist_entry(head->first, struct timer_list, entry); 1864 detach_timer(timer, false); 1865 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1866 internal_add_timer(new_base, timer); 1867 } 1868 } 1869 1870 int timers_prepare_cpu(unsigned int cpu) 1871 { 1872 struct timer_base *base; 1873 int b; 1874 1875 for (b = 0; b < NR_BASES; b++) { 1876 base = per_cpu_ptr(&timer_bases[b], cpu); 1877 base->clk = jiffies; 1878 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 1879 base->is_idle = false; 1880 base->must_forward_clk = true; 1881 } 1882 return 0; 1883 } 1884 1885 int timers_dead_cpu(unsigned int cpu) 1886 { 1887 struct timer_base *old_base; 1888 struct timer_base *new_base; 1889 int b, i; 1890 1891 BUG_ON(cpu_online(cpu)); 1892 1893 for (b = 0; b < NR_BASES; b++) { 1894 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1895 new_base = get_cpu_ptr(&timer_bases[b]); 1896 /* 1897 * The caller is globally serialized and nobody else 1898 * takes two locks at once, deadlock is not possible. 1899 */ 1900 raw_spin_lock_irq(&new_base->lock); 1901 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1902 1903 /* 1904 * The current CPUs base clock might be stale. Update it 1905 * before moving the timers over. 1906 */ 1907 forward_timer_base(new_base); 1908 1909 BUG_ON(old_base->running_timer); 1910 1911 for (i = 0; i < WHEEL_SIZE; i++) 1912 migrate_timer_list(new_base, old_base->vectors + i); 1913 1914 raw_spin_unlock(&old_base->lock); 1915 raw_spin_unlock_irq(&new_base->lock); 1916 put_cpu_ptr(&timer_bases); 1917 } 1918 return 0; 1919 } 1920 1921 #endif /* CONFIG_HOTPLUG_CPU */ 1922 1923 static void __init init_timer_cpu(int cpu) 1924 { 1925 struct timer_base *base; 1926 int i; 1927 1928 for (i = 0; i < NR_BASES; i++) { 1929 base = per_cpu_ptr(&timer_bases[i], cpu); 1930 base->cpu = cpu; 1931 raw_spin_lock_init(&base->lock); 1932 base->clk = jiffies; 1933 } 1934 } 1935 1936 static void __init init_timer_cpus(void) 1937 { 1938 int cpu; 1939 1940 for_each_possible_cpu(cpu) 1941 init_timer_cpu(cpu); 1942 } 1943 1944 void __init init_timers(void) 1945 { 1946 init_timer_cpus(); 1947 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1948 } 1949 1950 /** 1951 * msleep - sleep safely even with waitqueue interruptions 1952 * @msecs: Time in milliseconds to sleep for 1953 */ 1954 void msleep(unsigned int msecs) 1955 { 1956 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1957 1958 while (timeout) 1959 timeout = schedule_timeout_uninterruptible(timeout); 1960 } 1961 1962 EXPORT_SYMBOL(msleep); 1963 1964 /** 1965 * msleep_interruptible - sleep waiting for signals 1966 * @msecs: Time in milliseconds to sleep for 1967 */ 1968 unsigned long msleep_interruptible(unsigned int msecs) 1969 { 1970 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1971 1972 while (timeout && !signal_pending(current)) 1973 timeout = schedule_timeout_interruptible(timeout); 1974 return jiffies_to_msecs(timeout); 1975 } 1976 1977 EXPORT_SYMBOL(msleep_interruptible); 1978 1979 /** 1980 * usleep_range - Sleep for an approximate time 1981 * @min: Minimum time in usecs to sleep 1982 * @max: Maximum time in usecs to sleep 1983 * 1984 * In non-atomic context where the exact wakeup time is flexible, use 1985 * usleep_range() instead of udelay(). The sleep improves responsiveness 1986 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 1987 * power usage by allowing hrtimers to take advantage of an already- 1988 * scheduled interrupt instead of scheduling a new one just for this sleep. 1989 */ 1990 void __sched usleep_range(unsigned long min, unsigned long max) 1991 { 1992 ktime_t exp = ktime_add_us(ktime_get(), min); 1993 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 1994 1995 for (;;) { 1996 __set_current_state(TASK_UNINTERRUPTIBLE); 1997 /* Do not return before the requested sleep time has elapsed */ 1998 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 1999 break; 2000 } 2001 } 2002 EXPORT_SYMBOL(usleep_range); 2003