1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/sched/nohz.h> 43 #include <linux/sched/debug.h> 44 #include <linux/slab.h> 45 #include <linux/compat.h> 46 #include <linux/random.h> 47 #include <linux/sysctl.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/div64.h> 52 #include <asm/timex.h> 53 #include <asm/io.h> 54 55 #include "tick-internal.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/timer.h> 59 60 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 61 62 EXPORT_SYMBOL(jiffies_64); 63 64 /* 65 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 66 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 67 * level has a different granularity. 68 * 69 * The level granularity is: LVL_CLK_DIV ^ lvl 70 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 71 * 72 * The array level of a newly armed timer depends on the relative expiry 73 * time. The farther the expiry time is away the higher the array level and 74 * therefor the granularity becomes. 75 * 76 * Contrary to the original timer wheel implementation, which aims for 'exact' 77 * expiry of the timers, this implementation removes the need for recascading 78 * the timers into the lower array levels. The previous 'classic' timer wheel 79 * implementation of the kernel already violated the 'exact' expiry by adding 80 * slack to the expiry time to provide batched expiration. The granularity 81 * levels provide implicit batching. 82 * 83 * This is an optimization of the original timer wheel implementation for the 84 * majority of the timer wheel use cases: timeouts. The vast majority of 85 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 86 * the timeout expires it indicates that normal operation is disturbed, so it 87 * does not matter much whether the timeout comes with a slight delay. 88 * 89 * The only exception to this are networking timers with a small expiry 90 * time. They rely on the granularity. Those fit into the first wheel level, 91 * which has HZ granularity. 92 * 93 * We don't have cascading anymore. timers with a expiry time above the 94 * capacity of the last wheel level are force expired at the maximum timeout 95 * value of the last wheel level. From data sampling we know that the maximum 96 * value observed is 5 days (network connection tracking), so this should not 97 * be an issue. 98 * 99 * The currently chosen array constants values are a good compromise between 100 * array size and granularity. 101 * 102 * This results in the following granularity and range levels: 103 * 104 * HZ 1000 steps 105 * Level Offset Granularity Range 106 * 0 0 1 ms 0 ms - 63 ms 107 * 1 64 8 ms 64 ms - 511 ms 108 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 109 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 110 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 111 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 112 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 113 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 114 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 115 * 116 * HZ 300 117 * Level Offset Granularity Range 118 * 0 0 3 ms 0 ms - 210 ms 119 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 120 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 121 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 122 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 123 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 124 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 125 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 126 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 127 * 128 * HZ 250 129 * Level Offset Granularity Range 130 * 0 0 4 ms 0 ms - 255 ms 131 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 132 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 133 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 134 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 135 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 136 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 137 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 138 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 139 * 140 * HZ 100 141 * Level Offset Granularity Range 142 * 0 0 10 ms 0 ms - 630 ms 143 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 144 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 145 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 146 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 147 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 148 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 149 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 150 */ 151 152 /* Clock divisor for the next level */ 153 #define LVL_CLK_SHIFT 3 154 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 155 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 156 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 157 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 158 159 /* 160 * The time start value for each level to select the bucket at enqueue 161 * time. We start from the last possible delta of the previous level 162 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). 163 */ 164 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 165 166 /* Size of each clock level */ 167 #define LVL_BITS 6 168 #define LVL_SIZE (1UL << LVL_BITS) 169 #define LVL_MASK (LVL_SIZE - 1) 170 #define LVL_OFFS(n) ((n) * LVL_SIZE) 171 172 /* Level depth */ 173 #if HZ > 100 174 # define LVL_DEPTH 9 175 # else 176 # define LVL_DEPTH 8 177 #endif 178 179 /* The cutoff (max. capacity of the wheel) */ 180 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 181 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 182 183 /* 184 * The resulting wheel size. If NOHZ is configured we allocate two 185 * wheels so we have a separate storage for the deferrable timers. 186 */ 187 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 188 189 #ifdef CONFIG_NO_HZ_COMMON 190 # define NR_BASES 2 191 # define BASE_STD 0 192 # define BASE_DEF 1 193 #else 194 # define NR_BASES 1 195 # define BASE_STD 0 196 # define BASE_DEF 0 197 #endif 198 199 struct timer_base { 200 raw_spinlock_t lock; 201 struct timer_list *running_timer; 202 #ifdef CONFIG_PREEMPT_RT 203 spinlock_t expiry_lock; 204 atomic_t timer_waiters; 205 #endif 206 unsigned long clk; 207 unsigned long next_expiry; 208 unsigned int cpu; 209 bool next_expiry_recalc; 210 bool is_idle; 211 bool timers_pending; 212 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 213 struct hlist_head vectors[WHEEL_SIZE]; 214 } ____cacheline_aligned; 215 216 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 217 218 #ifdef CONFIG_NO_HZ_COMMON 219 220 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 221 static DEFINE_MUTEX(timer_keys_mutex); 222 223 static void timer_update_keys(struct work_struct *work); 224 static DECLARE_WORK(timer_update_work, timer_update_keys); 225 226 #ifdef CONFIG_SMP 227 static unsigned int sysctl_timer_migration = 1; 228 229 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 230 231 static void timers_update_migration(void) 232 { 233 if (sysctl_timer_migration && tick_nohz_active) 234 static_branch_enable(&timers_migration_enabled); 235 else 236 static_branch_disable(&timers_migration_enabled); 237 } 238 239 #ifdef CONFIG_SYSCTL 240 static int timer_migration_handler(struct ctl_table *table, int write, 241 void *buffer, size_t *lenp, loff_t *ppos) 242 { 243 int ret; 244 245 mutex_lock(&timer_keys_mutex); 246 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 247 if (!ret && write) 248 timers_update_migration(); 249 mutex_unlock(&timer_keys_mutex); 250 return ret; 251 } 252 253 static struct ctl_table timer_sysctl[] = { 254 { 255 .procname = "timer_migration", 256 .data = &sysctl_timer_migration, 257 .maxlen = sizeof(unsigned int), 258 .mode = 0644, 259 .proc_handler = timer_migration_handler, 260 .extra1 = SYSCTL_ZERO, 261 .extra2 = SYSCTL_ONE, 262 }, 263 {} 264 }; 265 266 static int __init timer_sysctl_init(void) 267 { 268 register_sysctl("kernel", timer_sysctl); 269 return 0; 270 } 271 device_initcall(timer_sysctl_init); 272 #endif /* CONFIG_SYSCTL */ 273 #else /* CONFIG_SMP */ 274 static inline void timers_update_migration(void) { } 275 #endif /* !CONFIG_SMP */ 276 277 static void timer_update_keys(struct work_struct *work) 278 { 279 mutex_lock(&timer_keys_mutex); 280 timers_update_migration(); 281 static_branch_enable(&timers_nohz_active); 282 mutex_unlock(&timer_keys_mutex); 283 } 284 285 void timers_update_nohz(void) 286 { 287 schedule_work(&timer_update_work); 288 } 289 290 static inline bool is_timers_nohz_active(void) 291 { 292 return static_branch_unlikely(&timers_nohz_active); 293 } 294 #else 295 static inline bool is_timers_nohz_active(void) { return false; } 296 #endif /* NO_HZ_COMMON */ 297 298 static unsigned long round_jiffies_common(unsigned long j, int cpu, 299 bool force_up) 300 { 301 int rem; 302 unsigned long original = j; 303 304 /* 305 * We don't want all cpus firing their timers at once hitting the 306 * same lock or cachelines, so we skew each extra cpu with an extra 307 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 308 * already did this. 309 * The skew is done by adding 3*cpunr, then round, then subtract this 310 * extra offset again. 311 */ 312 j += cpu * 3; 313 314 rem = j % HZ; 315 316 /* 317 * If the target jiffie is just after a whole second (which can happen 318 * due to delays of the timer irq, long irq off times etc etc) then 319 * we should round down to the whole second, not up. Use 1/4th second 320 * as cutoff for this rounding as an extreme upper bound for this. 321 * But never round down if @force_up is set. 322 */ 323 if (rem < HZ/4 && !force_up) /* round down */ 324 j = j - rem; 325 else /* round up */ 326 j = j - rem + HZ; 327 328 /* now that we have rounded, subtract the extra skew again */ 329 j -= cpu * 3; 330 331 /* 332 * Make sure j is still in the future. Otherwise return the 333 * unmodified value. 334 */ 335 return time_is_after_jiffies(j) ? j : original; 336 } 337 338 /** 339 * __round_jiffies - function to round jiffies to a full second 340 * @j: the time in (absolute) jiffies that should be rounded 341 * @cpu: the processor number on which the timeout will happen 342 * 343 * __round_jiffies() rounds an absolute time in the future (in jiffies) 344 * up or down to (approximately) full seconds. This is useful for timers 345 * for which the exact time they fire does not matter too much, as long as 346 * they fire approximately every X seconds. 347 * 348 * By rounding these timers to whole seconds, all such timers will fire 349 * at the same time, rather than at various times spread out. The goal 350 * of this is to have the CPU wake up less, which saves power. 351 * 352 * The exact rounding is skewed for each processor to avoid all 353 * processors firing at the exact same time, which could lead 354 * to lock contention or spurious cache line bouncing. 355 * 356 * The return value is the rounded version of the @j parameter. 357 */ 358 unsigned long __round_jiffies(unsigned long j, int cpu) 359 { 360 return round_jiffies_common(j, cpu, false); 361 } 362 EXPORT_SYMBOL_GPL(__round_jiffies); 363 364 /** 365 * __round_jiffies_relative - function to round jiffies to a full second 366 * @j: the time in (relative) jiffies that should be rounded 367 * @cpu: the processor number on which the timeout will happen 368 * 369 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 370 * up or down to (approximately) full seconds. This is useful for timers 371 * for which the exact time they fire does not matter too much, as long as 372 * they fire approximately every X seconds. 373 * 374 * By rounding these timers to whole seconds, all such timers will fire 375 * at the same time, rather than at various times spread out. The goal 376 * of this is to have the CPU wake up less, which saves power. 377 * 378 * The exact rounding is skewed for each processor to avoid all 379 * processors firing at the exact same time, which could lead 380 * to lock contention or spurious cache line bouncing. 381 * 382 * The return value is the rounded version of the @j parameter. 383 */ 384 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 385 { 386 unsigned long j0 = jiffies; 387 388 /* Use j0 because jiffies might change while we run */ 389 return round_jiffies_common(j + j0, cpu, false) - j0; 390 } 391 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 392 393 /** 394 * round_jiffies - function to round jiffies to a full second 395 * @j: the time in (absolute) jiffies that should be rounded 396 * 397 * round_jiffies() rounds an absolute time in the future (in jiffies) 398 * up or down to (approximately) full seconds. This is useful for timers 399 * for which the exact time they fire does not matter too much, as long as 400 * they fire approximately every X seconds. 401 * 402 * By rounding these timers to whole seconds, all such timers will fire 403 * at the same time, rather than at various times spread out. The goal 404 * of this is to have the CPU wake up less, which saves power. 405 * 406 * The return value is the rounded version of the @j parameter. 407 */ 408 unsigned long round_jiffies(unsigned long j) 409 { 410 return round_jiffies_common(j, raw_smp_processor_id(), false); 411 } 412 EXPORT_SYMBOL_GPL(round_jiffies); 413 414 /** 415 * round_jiffies_relative - function to round jiffies to a full second 416 * @j: the time in (relative) jiffies that should be rounded 417 * 418 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 419 * up or down to (approximately) full seconds. This is useful for timers 420 * for which the exact time they fire does not matter too much, as long as 421 * they fire approximately every X seconds. 422 * 423 * By rounding these timers to whole seconds, all such timers will fire 424 * at the same time, rather than at various times spread out. The goal 425 * of this is to have the CPU wake up less, which saves power. 426 * 427 * The return value is the rounded version of the @j parameter. 428 */ 429 unsigned long round_jiffies_relative(unsigned long j) 430 { 431 return __round_jiffies_relative(j, raw_smp_processor_id()); 432 } 433 EXPORT_SYMBOL_GPL(round_jiffies_relative); 434 435 /** 436 * __round_jiffies_up - function to round jiffies up to a full second 437 * @j: the time in (absolute) jiffies that should be rounded 438 * @cpu: the processor number on which the timeout will happen 439 * 440 * This is the same as __round_jiffies() except that it will never 441 * round down. This is useful for timeouts for which the exact time 442 * of firing does not matter too much, as long as they don't fire too 443 * early. 444 */ 445 unsigned long __round_jiffies_up(unsigned long j, int cpu) 446 { 447 return round_jiffies_common(j, cpu, true); 448 } 449 EXPORT_SYMBOL_GPL(__round_jiffies_up); 450 451 /** 452 * __round_jiffies_up_relative - function to round jiffies up to a full second 453 * @j: the time in (relative) jiffies that should be rounded 454 * @cpu: the processor number on which the timeout will happen 455 * 456 * This is the same as __round_jiffies_relative() except that it will never 457 * round down. This is useful for timeouts for which the exact time 458 * of firing does not matter too much, as long as they don't fire too 459 * early. 460 */ 461 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 462 { 463 unsigned long j0 = jiffies; 464 465 /* Use j0 because jiffies might change while we run */ 466 return round_jiffies_common(j + j0, cpu, true) - j0; 467 } 468 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 469 470 /** 471 * round_jiffies_up - function to round jiffies up to a full second 472 * @j: the time in (absolute) jiffies that should be rounded 473 * 474 * This is the same as round_jiffies() except that it will never 475 * round down. This is useful for timeouts for which the exact time 476 * of firing does not matter too much, as long as they don't fire too 477 * early. 478 */ 479 unsigned long round_jiffies_up(unsigned long j) 480 { 481 return round_jiffies_common(j, raw_smp_processor_id(), true); 482 } 483 EXPORT_SYMBOL_GPL(round_jiffies_up); 484 485 /** 486 * round_jiffies_up_relative - function to round jiffies up to a full second 487 * @j: the time in (relative) jiffies that should be rounded 488 * 489 * This is the same as round_jiffies_relative() except that it will never 490 * round down. This is useful for timeouts for which the exact time 491 * of firing does not matter too much, as long as they don't fire too 492 * early. 493 */ 494 unsigned long round_jiffies_up_relative(unsigned long j) 495 { 496 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 497 } 498 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 499 500 501 static inline unsigned int timer_get_idx(struct timer_list *timer) 502 { 503 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 504 } 505 506 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 507 { 508 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 509 idx << TIMER_ARRAYSHIFT; 510 } 511 512 /* 513 * Helper function to calculate the array index for a given expiry 514 * time. 515 */ 516 static inline unsigned calc_index(unsigned long expires, unsigned lvl, 517 unsigned long *bucket_expiry) 518 { 519 520 /* 521 * The timer wheel has to guarantee that a timer does not fire 522 * early. Early expiry can happen due to: 523 * - Timer is armed at the edge of a tick 524 * - Truncation of the expiry time in the outer wheel levels 525 * 526 * Round up with level granularity to prevent this. 527 */ 528 expires = (expires >> LVL_SHIFT(lvl)) + 1; 529 *bucket_expiry = expires << LVL_SHIFT(lvl); 530 return LVL_OFFS(lvl) + (expires & LVL_MASK); 531 } 532 533 static int calc_wheel_index(unsigned long expires, unsigned long clk, 534 unsigned long *bucket_expiry) 535 { 536 unsigned long delta = expires - clk; 537 unsigned int idx; 538 539 if (delta < LVL_START(1)) { 540 idx = calc_index(expires, 0, bucket_expiry); 541 } else if (delta < LVL_START(2)) { 542 idx = calc_index(expires, 1, bucket_expiry); 543 } else if (delta < LVL_START(3)) { 544 idx = calc_index(expires, 2, bucket_expiry); 545 } else if (delta < LVL_START(4)) { 546 idx = calc_index(expires, 3, bucket_expiry); 547 } else if (delta < LVL_START(5)) { 548 idx = calc_index(expires, 4, bucket_expiry); 549 } else if (delta < LVL_START(6)) { 550 idx = calc_index(expires, 5, bucket_expiry); 551 } else if (delta < LVL_START(7)) { 552 idx = calc_index(expires, 6, bucket_expiry); 553 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 554 idx = calc_index(expires, 7, bucket_expiry); 555 } else if ((long) delta < 0) { 556 idx = clk & LVL_MASK; 557 *bucket_expiry = clk; 558 } else { 559 /* 560 * Force expire obscene large timeouts to expire at the 561 * capacity limit of the wheel. 562 */ 563 if (delta >= WHEEL_TIMEOUT_CUTOFF) 564 expires = clk + WHEEL_TIMEOUT_MAX; 565 566 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); 567 } 568 return idx; 569 } 570 571 static void 572 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 573 { 574 /* 575 * Deferrable timers do not prevent the CPU from entering dynticks and 576 * are not taken into account on the idle/nohz_full path. An IPI when a 577 * new deferrable timer is enqueued will wake up the remote CPU but 578 * nothing will be done with the deferrable timer base. Therefore skip 579 * the remote IPI for deferrable timers completely. 580 */ 581 if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE) 582 return; 583 584 /* 585 * We might have to IPI the remote CPU if the base is idle and the 586 * timer is not deferrable. If the other CPU is on the way to idle 587 * then it can't set base->is_idle as we hold the base lock: 588 */ 589 if (base->is_idle) 590 wake_up_nohz_cpu(base->cpu); 591 } 592 593 /* 594 * Enqueue the timer into the hash bucket, mark it pending in 595 * the bitmap, store the index in the timer flags then wake up 596 * the target CPU if needed. 597 */ 598 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 599 unsigned int idx, unsigned long bucket_expiry) 600 { 601 602 hlist_add_head(&timer->entry, base->vectors + idx); 603 __set_bit(idx, base->pending_map); 604 timer_set_idx(timer, idx); 605 606 trace_timer_start(timer, bucket_expiry); 607 608 /* 609 * Check whether this is the new first expiring timer. The 610 * effective expiry time of the timer is required here 611 * (bucket_expiry) instead of timer->expires. 612 */ 613 if (time_before(bucket_expiry, base->next_expiry)) { 614 /* 615 * Set the next expiry time and kick the CPU so it 616 * can reevaluate the wheel: 617 */ 618 base->next_expiry = bucket_expiry; 619 base->timers_pending = true; 620 base->next_expiry_recalc = false; 621 trigger_dyntick_cpu(base, timer); 622 } 623 } 624 625 static void internal_add_timer(struct timer_base *base, struct timer_list *timer) 626 { 627 unsigned long bucket_expiry; 628 unsigned int idx; 629 630 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); 631 enqueue_timer(base, timer, idx, bucket_expiry); 632 } 633 634 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 635 636 static const struct debug_obj_descr timer_debug_descr; 637 638 struct timer_hint { 639 void (*function)(struct timer_list *t); 640 long offset; 641 }; 642 643 #define TIMER_HINT(fn, container, timr, hintfn) \ 644 { \ 645 .function = fn, \ 646 .offset = offsetof(container, hintfn) - \ 647 offsetof(container, timr) \ 648 } 649 650 static const struct timer_hint timer_hints[] = { 651 TIMER_HINT(delayed_work_timer_fn, 652 struct delayed_work, timer, work.func), 653 TIMER_HINT(kthread_delayed_work_timer_fn, 654 struct kthread_delayed_work, timer, work.func), 655 }; 656 657 static void *timer_debug_hint(void *addr) 658 { 659 struct timer_list *timer = addr; 660 int i; 661 662 for (i = 0; i < ARRAY_SIZE(timer_hints); i++) { 663 if (timer_hints[i].function == timer->function) { 664 void (**fn)(void) = addr + timer_hints[i].offset; 665 666 return *fn; 667 } 668 } 669 670 return timer->function; 671 } 672 673 static bool timer_is_static_object(void *addr) 674 { 675 struct timer_list *timer = addr; 676 677 return (timer->entry.pprev == NULL && 678 timer->entry.next == TIMER_ENTRY_STATIC); 679 } 680 681 /* 682 * fixup_init is called when: 683 * - an active object is initialized 684 */ 685 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 686 { 687 struct timer_list *timer = addr; 688 689 switch (state) { 690 case ODEBUG_STATE_ACTIVE: 691 del_timer_sync(timer); 692 debug_object_init(timer, &timer_debug_descr); 693 return true; 694 default: 695 return false; 696 } 697 } 698 699 /* Stub timer callback for improperly used timers. */ 700 static void stub_timer(struct timer_list *unused) 701 { 702 WARN_ON(1); 703 } 704 705 /* 706 * fixup_activate is called when: 707 * - an active object is activated 708 * - an unknown non-static object is activated 709 */ 710 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 711 { 712 struct timer_list *timer = addr; 713 714 switch (state) { 715 case ODEBUG_STATE_NOTAVAILABLE: 716 timer_setup(timer, stub_timer, 0); 717 return true; 718 719 case ODEBUG_STATE_ACTIVE: 720 WARN_ON(1); 721 fallthrough; 722 default: 723 return false; 724 } 725 } 726 727 /* 728 * fixup_free is called when: 729 * - an active object is freed 730 */ 731 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 732 { 733 struct timer_list *timer = addr; 734 735 switch (state) { 736 case ODEBUG_STATE_ACTIVE: 737 del_timer_sync(timer); 738 debug_object_free(timer, &timer_debug_descr); 739 return true; 740 default: 741 return false; 742 } 743 } 744 745 /* 746 * fixup_assert_init is called when: 747 * - an untracked/uninit-ed object is found 748 */ 749 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 750 { 751 struct timer_list *timer = addr; 752 753 switch (state) { 754 case ODEBUG_STATE_NOTAVAILABLE: 755 timer_setup(timer, stub_timer, 0); 756 return true; 757 default: 758 return false; 759 } 760 } 761 762 static const struct debug_obj_descr timer_debug_descr = { 763 .name = "timer_list", 764 .debug_hint = timer_debug_hint, 765 .is_static_object = timer_is_static_object, 766 .fixup_init = timer_fixup_init, 767 .fixup_activate = timer_fixup_activate, 768 .fixup_free = timer_fixup_free, 769 .fixup_assert_init = timer_fixup_assert_init, 770 }; 771 772 static inline void debug_timer_init(struct timer_list *timer) 773 { 774 debug_object_init(timer, &timer_debug_descr); 775 } 776 777 static inline void debug_timer_activate(struct timer_list *timer) 778 { 779 debug_object_activate(timer, &timer_debug_descr); 780 } 781 782 static inline void debug_timer_deactivate(struct timer_list *timer) 783 { 784 debug_object_deactivate(timer, &timer_debug_descr); 785 } 786 787 static inline void debug_timer_assert_init(struct timer_list *timer) 788 { 789 debug_object_assert_init(timer, &timer_debug_descr); 790 } 791 792 static void do_init_timer(struct timer_list *timer, 793 void (*func)(struct timer_list *), 794 unsigned int flags, 795 const char *name, struct lock_class_key *key); 796 797 void init_timer_on_stack_key(struct timer_list *timer, 798 void (*func)(struct timer_list *), 799 unsigned int flags, 800 const char *name, struct lock_class_key *key) 801 { 802 debug_object_init_on_stack(timer, &timer_debug_descr); 803 do_init_timer(timer, func, flags, name, key); 804 } 805 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 806 807 void destroy_timer_on_stack(struct timer_list *timer) 808 { 809 debug_object_free(timer, &timer_debug_descr); 810 } 811 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 812 813 #else 814 static inline void debug_timer_init(struct timer_list *timer) { } 815 static inline void debug_timer_activate(struct timer_list *timer) { } 816 static inline void debug_timer_deactivate(struct timer_list *timer) { } 817 static inline void debug_timer_assert_init(struct timer_list *timer) { } 818 #endif 819 820 static inline void debug_init(struct timer_list *timer) 821 { 822 debug_timer_init(timer); 823 trace_timer_init(timer); 824 } 825 826 static inline void debug_deactivate(struct timer_list *timer) 827 { 828 debug_timer_deactivate(timer); 829 trace_timer_cancel(timer); 830 } 831 832 static inline void debug_assert_init(struct timer_list *timer) 833 { 834 debug_timer_assert_init(timer); 835 } 836 837 static void do_init_timer(struct timer_list *timer, 838 void (*func)(struct timer_list *), 839 unsigned int flags, 840 const char *name, struct lock_class_key *key) 841 { 842 timer->entry.pprev = NULL; 843 timer->function = func; 844 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) 845 flags &= TIMER_INIT_FLAGS; 846 timer->flags = flags | raw_smp_processor_id(); 847 lockdep_init_map(&timer->lockdep_map, name, key, 0); 848 } 849 850 /** 851 * init_timer_key - initialize a timer 852 * @timer: the timer to be initialized 853 * @func: timer callback function 854 * @flags: timer flags 855 * @name: name of the timer 856 * @key: lockdep class key of the fake lock used for tracking timer 857 * sync lock dependencies 858 * 859 * init_timer_key() must be done to a timer prior calling *any* of the 860 * other timer functions. 861 */ 862 void init_timer_key(struct timer_list *timer, 863 void (*func)(struct timer_list *), unsigned int flags, 864 const char *name, struct lock_class_key *key) 865 { 866 debug_init(timer); 867 do_init_timer(timer, func, flags, name, key); 868 } 869 EXPORT_SYMBOL(init_timer_key); 870 871 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 872 { 873 struct hlist_node *entry = &timer->entry; 874 875 debug_deactivate(timer); 876 877 __hlist_del(entry); 878 if (clear_pending) 879 entry->pprev = NULL; 880 entry->next = LIST_POISON2; 881 } 882 883 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 884 bool clear_pending) 885 { 886 unsigned idx = timer_get_idx(timer); 887 888 if (!timer_pending(timer)) 889 return 0; 890 891 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) { 892 __clear_bit(idx, base->pending_map); 893 base->next_expiry_recalc = true; 894 } 895 896 detach_timer(timer, clear_pending); 897 return 1; 898 } 899 900 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 901 { 902 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 903 904 /* 905 * If the timer is deferrable and NO_HZ_COMMON is set then we need 906 * to use the deferrable base. 907 */ 908 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 909 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 910 return base; 911 } 912 913 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 914 { 915 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 916 917 /* 918 * If the timer is deferrable and NO_HZ_COMMON is set then we need 919 * to use the deferrable base. 920 */ 921 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 922 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 923 return base; 924 } 925 926 static inline struct timer_base *get_timer_base(u32 tflags) 927 { 928 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 929 } 930 931 static inline struct timer_base * 932 get_target_base(struct timer_base *base, unsigned tflags) 933 { 934 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 935 if (static_branch_likely(&timers_migration_enabled) && 936 !(tflags & TIMER_PINNED)) 937 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 938 #endif 939 return get_timer_this_cpu_base(tflags); 940 } 941 942 static inline void __forward_timer_base(struct timer_base *base, 943 unsigned long basej) 944 { 945 /* 946 * Check whether we can forward the base. We can only do that when 947 * @basej is past base->clk otherwise we might rewind base->clk. 948 */ 949 if (time_before_eq(basej, base->clk)) 950 return; 951 952 /* 953 * If the next expiry value is > jiffies, then we fast forward to 954 * jiffies otherwise we forward to the next expiry value. 955 */ 956 if (time_after(base->next_expiry, basej)) { 957 base->clk = basej; 958 } else { 959 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) 960 return; 961 base->clk = base->next_expiry; 962 } 963 964 } 965 966 static inline void forward_timer_base(struct timer_base *base) 967 { 968 __forward_timer_base(base, READ_ONCE(jiffies)); 969 } 970 971 /* 972 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 973 * that all timers which are tied to this base are locked, and the base itself 974 * is locked too. 975 * 976 * So __run_timers/migrate_timers can safely modify all timers which could 977 * be found in the base->vectors array. 978 * 979 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 980 * to wait until the migration is done. 981 */ 982 static struct timer_base *lock_timer_base(struct timer_list *timer, 983 unsigned long *flags) 984 __acquires(timer->base->lock) 985 { 986 for (;;) { 987 struct timer_base *base; 988 u32 tf; 989 990 /* 991 * We need to use READ_ONCE() here, otherwise the compiler 992 * might re-read @tf between the check for TIMER_MIGRATING 993 * and spin_lock(). 994 */ 995 tf = READ_ONCE(timer->flags); 996 997 if (!(tf & TIMER_MIGRATING)) { 998 base = get_timer_base(tf); 999 raw_spin_lock_irqsave(&base->lock, *flags); 1000 if (timer->flags == tf) 1001 return base; 1002 raw_spin_unlock_irqrestore(&base->lock, *flags); 1003 } 1004 cpu_relax(); 1005 } 1006 } 1007 1008 #define MOD_TIMER_PENDING_ONLY 0x01 1009 #define MOD_TIMER_REDUCE 0x02 1010 #define MOD_TIMER_NOTPENDING 0x04 1011 1012 static inline int 1013 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 1014 { 1015 unsigned long clk = 0, flags, bucket_expiry; 1016 struct timer_base *base, *new_base; 1017 unsigned int idx = UINT_MAX; 1018 int ret = 0; 1019 1020 debug_assert_init(timer); 1021 1022 /* 1023 * This is a common optimization triggered by the networking code - if 1024 * the timer is re-modified to have the same timeout or ends up in the 1025 * same array bucket then just return: 1026 */ 1027 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { 1028 /* 1029 * The downside of this optimization is that it can result in 1030 * larger granularity than you would get from adding a new 1031 * timer with this expiry. 1032 */ 1033 long diff = timer->expires - expires; 1034 1035 if (!diff) 1036 return 1; 1037 if (options & MOD_TIMER_REDUCE && diff <= 0) 1038 return 1; 1039 1040 /* 1041 * We lock timer base and calculate the bucket index right 1042 * here. If the timer ends up in the same bucket, then we 1043 * just update the expiry time and avoid the whole 1044 * dequeue/enqueue dance. 1045 */ 1046 base = lock_timer_base(timer, &flags); 1047 /* 1048 * Has @timer been shutdown? This needs to be evaluated 1049 * while holding base lock to prevent a race against the 1050 * shutdown code. 1051 */ 1052 if (!timer->function) 1053 goto out_unlock; 1054 1055 forward_timer_base(base); 1056 1057 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 1058 time_before_eq(timer->expires, expires)) { 1059 ret = 1; 1060 goto out_unlock; 1061 } 1062 1063 clk = base->clk; 1064 idx = calc_wheel_index(expires, clk, &bucket_expiry); 1065 1066 /* 1067 * Retrieve and compare the array index of the pending 1068 * timer. If it matches set the expiry to the new value so a 1069 * subsequent call will exit in the expires check above. 1070 */ 1071 if (idx == timer_get_idx(timer)) { 1072 if (!(options & MOD_TIMER_REDUCE)) 1073 timer->expires = expires; 1074 else if (time_after(timer->expires, expires)) 1075 timer->expires = expires; 1076 ret = 1; 1077 goto out_unlock; 1078 } 1079 } else { 1080 base = lock_timer_base(timer, &flags); 1081 /* 1082 * Has @timer been shutdown? This needs to be evaluated 1083 * while holding base lock to prevent a race against the 1084 * shutdown code. 1085 */ 1086 if (!timer->function) 1087 goto out_unlock; 1088 1089 forward_timer_base(base); 1090 } 1091 1092 ret = detach_if_pending(timer, base, false); 1093 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1094 goto out_unlock; 1095 1096 new_base = get_target_base(base, timer->flags); 1097 1098 if (base != new_base) { 1099 /* 1100 * We are trying to schedule the timer on the new base. 1101 * However we can't change timer's base while it is running, 1102 * otherwise timer_delete_sync() can't detect that the timer's 1103 * handler yet has not finished. This also guarantees that the 1104 * timer is serialized wrt itself. 1105 */ 1106 if (likely(base->running_timer != timer)) { 1107 /* See the comment in lock_timer_base() */ 1108 timer->flags |= TIMER_MIGRATING; 1109 1110 raw_spin_unlock(&base->lock); 1111 base = new_base; 1112 raw_spin_lock(&base->lock); 1113 WRITE_ONCE(timer->flags, 1114 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1115 forward_timer_base(base); 1116 } 1117 } 1118 1119 debug_timer_activate(timer); 1120 1121 timer->expires = expires; 1122 /* 1123 * If 'idx' was calculated above and the base time did not advance 1124 * between calculating 'idx' and possibly switching the base, only 1125 * enqueue_timer() is required. Otherwise we need to (re)calculate 1126 * the wheel index via internal_add_timer(). 1127 */ 1128 if (idx != UINT_MAX && clk == base->clk) 1129 enqueue_timer(base, timer, idx, bucket_expiry); 1130 else 1131 internal_add_timer(base, timer); 1132 1133 out_unlock: 1134 raw_spin_unlock_irqrestore(&base->lock, flags); 1135 1136 return ret; 1137 } 1138 1139 /** 1140 * mod_timer_pending - Modify a pending timer's timeout 1141 * @timer: The pending timer to be modified 1142 * @expires: New absolute timeout in jiffies 1143 * 1144 * mod_timer_pending() is the same for pending timers as mod_timer(), but 1145 * will not activate inactive timers. 1146 * 1147 * If @timer->function == NULL then the start operation is silently 1148 * discarded. 1149 * 1150 * Return: 1151 * * %0 - The timer was inactive and not modified or was in 1152 * shutdown state and the operation was discarded 1153 * * %1 - The timer was active and requeued to expire at @expires 1154 */ 1155 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1156 { 1157 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1158 } 1159 EXPORT_SYMBOL(mod_timer_pending); 1160 1161 /** 1162 * mod_timer - Modify a timer's timeout 1163 * @timer: The timer to be modified 1164 * @expires: New absolute timeout in jiffies 1165 * 1166 * mod_timer(timer, expires) is equivalent to: 1167 * 1168 * del_timer(timer); timer->expires = expires; add_timer(timer); 1169 * 1170 * mod_timer() is more efficient than the above open coded sequence. In 1171 * case that the timer is inactive, the del_timer() part is a NOP. The 1172 * timer is in any case activated with the new expiry time @expires. 1173 * 1174 * Note that if there are multiple unserialized concurrent users of the 1175 * same timer, then mod_timer() is the only safe way to modify the timeout, 1176 * since add_timer() cannot modify an already running timer. 1177 * 1178 * If @timer->function == NULL then the start operation is silently 1179 * discarded. In this case the return value is 0 and meaningless. 1180 * 1181 * Return: 1182 * * %0 - The timer was inactive and started or was in shutdown 1183 * state and the operation was discarded 1184 * * %1 - The timer was active and requeued to expire at @expires or 1185 * the timer was active and not modified because @expires did 1186 * not change the effective expiry time 1187 */ 1188 int mod_timer(struct timer_list *timer, unsigned long expires) 1189 { 1190 return __mod_timer(timer, expires, 0); 1191 } 1192 EXPORT_SYMBOL(mod_timer); 1193 1194 /** 1195 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1196 * @timer: The timer to be modified 1197 * @expires: New absolute timeout in jiffies 1198 * 1199 * timer_reduce() is very similar to mod_timer(), except that it will only 1200 * modify an enqueued timer if that would reduce the expiration time. If 1201 * @timer is not enqueued it starts the timer. 1202 * 1203 * If @timer->function == NULL then the start operation is silently 1204 * discarded. 1205 * 1206 * Return: 1207 * * %0 - The timer was inactive and started or was in shutdown 1208 * state and the operation was discarded 1209 * * %1 - The timer was active and requeued to expire at @expires or 1210 * the timer was active and not modified because @expires 1211 * did not change the effective expiry time such that the 1212 * timer would expire earlier than already scheduled 1213 */ 1214 int timer_reduce(struct timer_list *timer, unsigned long expires) 1215 { 1216 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1217 } 1218 EXPORT_SYMBOL(timer_reduce); 1219 1220 /** 1221 * add_timer - Start a timer 1222 * @timer: The timer to be started 1223 * 1224 * Start @timer to expire at @timer->expires in the future. @timer->expires 1225 * is the absolute expiry time measured in 'jiffies'. When the timer expires 1226 * timer->function(timer) will be invoked from soft interrupt context. 1227 * 1228 * The @timer->expires and @timer->function fields must be set prior 1229 * to calling this function. 1230 * 1231 * If @timer->function == NULL then the start operation is silently 1232 * discarded. 1233 * 1234 * If @timer->expires is already in the past @timer will be queued to 1235 * expire at the next timer tick. 1236 * 1237 * This can only operate on an inactive timer. Attempts to invoke this on 1238 * an active timer are rejected with a warning. 1239 */ 1240 void add_timer(struct timer_list *timer) 1241 { 1242 if (WARN_ON_ONCE(timer_pending(timer))) 1243 return; 1244 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1245 } 1246 EXPORT_SYMBOL(add_timer); 1247 1248 /** 1249 * add_timer_on - Start a timer on a particular CPU 1250 * @timer: The timer to be started 1251 * @cpu: The CPU to start it on 1252 * 1253 * Same as add_timer() except that it starts the timer on the given CPU. 1254 * 1255 * See add_timer() for further details. 1256 */ 1257 void add_timer_on(struct timer_list *timer, int cpu) 1258 { 1259 struct timer_base *new_base, *base; 1260 unsigned long flags; 1261 1262 debug_assert_init(timer); 1263 1264 if (WARN_ON_ONCE(timer_pending(timer))) 1265 return; 1266 1267 new_base = get_timer_cpu_base(timer->flags, cpu); 1268 1269 /* 1270 * If @timer was on a different CPU, it should be migrated with the 1271 * old base locked to prevent other operations proceeding with the 1272 * wrong base locked. See lock_timer_base(). 1273 */ 1274 base = lock_timer_base(timer, &flags); 1275 /* 1276 * Has @timer been shutdown? This needs to be evaluated while 1277 * holding base lock to prevent a race against the shutdown code. 1278 */ 1279 if (!timer->function) 1280 goto out_unlock; 1281 1282 if (base != new_base) { 1283 timer->flags |= TIMER_MIGRATING; 1284 1285 raw_spin_unlock(&base->lock); 1286 base = new_base; 1287 raw_spin_lock(&base->lock); 1288 WRITE_ONCE(timer->flags, 1289 (timer->flags & ~TIMER_BASEMASK) | cpu); 1290 } 1291 forward_timer_base(base); 1292 1293 debug_timer_activate(timer); 1294 internal_add_timer(base, timer); 1295 out_unlock: 1296 raw_spin_unlock_irqrestore(&base->lock, flags); 1297 } 1298 EXPORT_SYMBOL_GPL(add_timer_on); 1299 1300 /** 1301 * __timer_delete - Internal function: Deactivate a timer 1302 * @timer: The timer to be deactivated 1303 * @shutdown: If true, this indicates that the timer is about to be 1304 * shutdown permanently. 1305 * 1306 * If @shutdown is true then @timer->function is set to NULL under the 1307 * timer base lock which prevents further rearming of the time. In that 1308 * case any attempt to rearm @timer after this function returns will be 1309 * silently ignored. 1310 * 1311 * Return: 1312 * * %0 - The timer was not pending 1313 * * %1 - The timer was pending and deactivated 1314 */ 1315 static int __timer_delete(struct timer_list *timer, bool shutdown) 1316 { 1317 struct timer_base *base; 1318 unsigned long flags; 1319 int ret = 0; 1320 1321 debug_assert_init(timer); 1322 1323 /* 1324 * If @shutdown is set then the lock has to be taken whether the 1325 * timer is pending or not to protect against a concurrent rearm 1326 * which might hit between the lockless pending check and the lock 1327 * aquisition. By taking the lock it is ensured that such a newly 1328 * enqueued timer is dequeued and cannot end up with 1329 * timer->function == NULL in the expiry code. 1330 * 1331 * If timer->function is currently executed, then this makes sure 1332 * that the callback cannot requeue the timer. 1333 */ 1334 if (timer_pending(timer) || shutdown) { 1335 base = lock_timer_base(timer, &flags); 1336 ret = detach_if_pending(timer, base, true); 1337 if (shutdown) 1338 timer->function = NULL; 1339 raw_spin_unlock_irqrestore(&base->lock, flags); 1340 } 1341 1342 return ret; 1343 } 1344 1345 /** 1346 * timer_delete - Deactivate a timer 1347 * @timer: The timer to be deactivated 1348 * 1349 * The function only deactivates a pending timer, but contrary to 1350 * timer_delete_sync() it does not take into account whether the timer's 1351 * callback function is concurrently executed on a different CPU or not. 1352 * It neither prevents rearming of the timer. If @timer can be rearmed 1353 * concurrently then the return value of this function is meaningless. 1354 * 1355 * Return: 1356 * * %0 - The timer was not pending 1357 * * %1 - The timer was pending and deactivated 1358 */ 1359 int timer_delete(struct timer_list *timer) 1360 { 1361 return __timer_delete(timer, false); 1362 } 1363 EXPORT_SYMBOL(timer_delete); 1364 1365 /** 1366 * timer_shutdown - Deactivate a timer and prevent rearming 1367 * @timer: The timer to be deactivated 1368 * 1369 * The function does not wait for an eventually running timer callback on a 1370 * different CPU but it prevents rearming of the timer. Any attempt to arm 1371 * @timer after this function returns will be silently ignored. 1372 * 1373 * This function is useful for teardown code and should only be used when 1374 * timer_shutdown_sync() cannot be invoked due to locking or context constraints. 1375 * 1376 * Return: 1377 * * %0 - The timer was not pending 1378 * * %1 - The timer was pending 1379 */ 1380 int timer_shutdown(struct timer_list *timer) 1381 { 1382 return __timer_delete(timer, true); 1383 } 1384 EXPORT_SYMBOL_GPL(timer_shutdown); 1385 1386 /** 1387 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer 1388 * @timer: Timer to deactivate 1389 * @shutdown: If true, this indicates that the timer is about to be 1390 * shutdown permanently. 1391 * 1392 * If @shutdown is true then @timer->function is set to NULL under the 1393 * timer base lock which prevents further rearming of the timer. Any 1394 * attempt to rearm @timer after this function returns will be silently 1395 * ignored. 1396 * 1397 * This function cannot guarantee that the timer cannot be rearmed 1398 * right after dropping the base lock if @shutdown is false. That 1399 * needs to be prevented by the calling code if necessary. 1400 * 1401 * Return: 1402 * * %0 - The timer was not pending 1403 * * %1 - The timer was pending and deactivated 1404 * * %-1 - The timer callback function is running on a different CPU 1405 */ 1406 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown) 1407 { 1408 struct timer_base *base; 1409 unsigned long flags; 1410 int ret = -1; 1411 1412 debug_assert_init(timer); 1413 1414 base = lock_timer_base(timer, &flags); 1415 1416 if (base->running_timer != timer) 1417 ret = detach_if_pending(timer, base, true); 1418 if (shutdown) 1419 timer->function = NULL; 1420 1421 raw_spin_unlock_irqrestore(&base->lock, flags); 1422 1423 return ret; 1424 } 1425 1426 /** 1427 * try_to_del_timer_sync - Try to deactivate a timer 1428 * @timer: Timer to deactivate 1429 * 1430 * This function tries to deactivate a timer. On success the timer is not 1431 * queued and the timer callback function is not running on any CPU. 1432 * 1433 * This function does not guarantee that the timer cannot be rearmed right 1434 * after dropping the base lock. That needs to be prevented by the calling 1435 * code if necessary. 1436 * 1437 * Return: 1438 * * %0 - The timer was not pending 1439 * * %1 - The timer was pending and deactivated 1440 * * %-1 - The timer callback function is running on a different CPU 1441 */ 1442 int try_to_del_timer_sync(struct timer_list *timer) 1443 { 1444 return __try_to_del_timer_sync(timer, false); 1445 } 1446 EXPORT_SYMBOL(try_to_del_timer_sync); 1447 1448 #ifdef CONFIG_PREEMPT_RT 1449 static __init void timer_base_init_expiry_lock(struct timer_base *base) 1450 { 1451 spin_lock_init(&base->expiry_lock); 1452 } 1453 1454 static inline void timer_base_lock_expiry(struct timer_base *base) 1455 { 1456 spin_lock(&base->expiry_lock); 1457 } 1458 1459 static inline void timer_base_unlock_expiry(struct timer_base *base) 1460 { 1461 spin_unlock(&base->expiry_lock); 1462 } 1463 1464 /* 1465 * The counterpart to del_timer_wait_running(). 1466 * 1467 * If there is a waiter for base->expiry_lock, then it was waiting for the 1468 * timer callback to finish. Drop expiry_lock and reacquire it. That allows 1469 * the waiter to acquire the lock and make progress. 1470 */ 1471 static void timer_sync_wait_running(struct timer_base *base) 1472 { 1473 if (atomic_read(&base->timer_waiters)) { 1474 raw_spin_unlock_irq(&base->lock); 1475 spin_unlock(&base->expiry_lock); 1476 spin_lock(&base->expiry_lock); 1477 raw_spin_lock_irq(&base->lock); 1478 } 1479 } 1480 1481 /* 1482 * This function is called on PREEMPT_RT kernels when the fast path 1483 * deletion of a timer failed because the timer callback function was 1484 * running. 1485 * 1486 * This prevents priority inversion, if the softirq thread on a remote CPU 1487 * got preempted, and it prevents a life lock when the task which tries to 1488 * delete a timer preempted the softirq thread running the timer callback 1489 * function. 1490 */ 1491 static void del_timer_wait_running(struct timer_list *timer) 1492 { 1493 u32 tf; 1494 1495 tf = READ_ONCE(timer->flags); 1496 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) { 1497 struct timer_base *base = get_timer_base(tf); 1498 1499 /* 1500 * Mark the base as contended and grab the expiry lock, 1501 * which is held by the softirq across the timer 1502 * callback. Drop the lock immediately so the softirq can 1503 * expire the next timer. In theory the timer could already 1504 * be running again, but that's more than unlikely and just 1505 * causes another wait loop. 1506 */ 1507 atomic_inc(&base->timer_waiters); 1508 spin_lock_bh(&base->expiry_lock); 1509 atomic_dec(&base->timer_waiters); 1510 spin_unlock_bh(&base->expiry_lock); 1511 } 1512 } 1513 #else 1514 static inline void timer_base_init_expiry_lock(struct timer_base *base) { } 1515 static inline void timer_base_lock_expiry(struct timer_base *base) { } 1516 static inline void timer_base_unlock_expiry(struct timer_base *base) { } 1517 static inline void timer_sync_wait_running(struct timer_base *base) { } 1518 static inline void del_timer_wait_running(struct timer_list *timer) { } 1519 #endif 1520 1521 /** 1522 * __timer_delete_sync - Internal function: Deactivate a timer and wait 1523 * for the handler to finish. 1524 * @timer: The timer to be deactivated 1525 * @shutdown: If true, @timer->function will be set to NULL under the 1526 * timer base lock which prevents rearming of @timer 1527 * 1528 * If @shutdown is not set the timer can be rearmed later. If the timer can 1529 * be rearmed concurrently, i.e. after dropping the base lock then the 1530 * return value is meaningless. 1531 * 1532 * If @shutdown is set then @timer->function is set to NULL under timer 1533 * base lock which prevents rearming of the timer. Any attempt to rearm 1534 * a shutdown timer is silently ignored. 1535 * 1536 * If the timer should be reused after shutdown it has to be initialized 1537 * again. 1538 * 1539 * Return: 1540 * * %0 - The timer was not pending 1541 * * %1 - The timer was pending and deactivated 1542 */ 1543 static int __timer_delete_sync(struct timer_list *timer, bool shutdown) 1544 { 1545 int ret; 1546 1547 #ifdef CONFIG_LOCKDEP 1548 unsigned long flags; 1549 1550 /* 1551 * If lockdep gives a backtrace here, please reference 1552 * the synchronization rules above. 1553 */ 1554 local_irq_save(flags); 1555 lock_map_acquire(&timer->lockdep_map); 1556 lock_map_release(&timer->lockdep_map); 1557 local_irq_restore(flags); 1558 #endif 1559 /* 1560 * don't use it in hardirq context, because it 1561 * could lead to deadlock. 1562 */ 1563 WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE)); 1564 1565 /* 1566 * Must be able to sleep on PREEMPT_RT because of the slowpath in 1567 * del_timer_wait_running(). 1568 */ 1569 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE)) 1570 lockdep_assert_preemption_enabled(); 1571 1572 do { 1573 ret = __try_to_del_timer_sync(timer, shutdown); 1574 1575 if (unlikely(ret < 0)) { 1576 del_timer_wait_running(timer); 1577 cpu_relax(); 1578 } 1579 } while (ret < 0); 1580 1581 return ret; 1582 } 1583 1584 /** 1585 * timer_delete_sync - Deactivate a timer and wait for the handler to finish. 1586 * @timer: The timer to be deactivated 1587 * 1588 * Synchronization rules: Callers must prevent restarting of the timer, 1589 * otherwise this function is meaningless. It must not be called from 1590 * interrupt contexts unless the timer is an irqsafe one. The caller must 1591 * not hold locks which would prevent completion of the timer's callback 1592 * function. The timer's handler must not call add_timer_on(). Upon exit 1593 * the timer is not queued and the handler is not running on any CPU. 1594 * 1595 * For !irqsafe timers, the caller must not hold locks that are held in 1596 * interrupt context. Even if the lock has nothing to do with the timer in 1597 * question. Here's why:: 1598 * 1599 * CPU0 CPU1 1600 * ---- ---- 1601 * <SOFTIRQ> 1602 * call_timer_fn(); 1603 * base->running_timer = mytimer; 1604 * spin_lock_irq(somelock); 1605 * <IRQ> 1606 * spin_lock(somelock); 1607 * timer_delete_sync(mytimer); 1608 * while (base->running_timer == mytimer); 1609 * 1610 * Now timer_delete_sync() will never return and never release somelock. 1611 * The interrupt on the other CPU is waiting to grab somelock but it has 1612 * interrupted the softirq that CPU0 is waiting to finish. 1613 * 1614 * This function cannot guarantee that the timer is not rearmed again by 1615 * some concurrent or preempting code, right after it dropped the base 1616 * lock. If there is the possibility of a concurrent rearm then the return 1617 * value of the function is meaningless. 1618 * 1619 * If such a guarantee is needed, e.g. for teardown situations then use 1620 * timer_shutdown_sync() instead. 1621 * 1622 * Return: 1623 * * %0 - The timer was not pending 1624 * * %1 - The timer was pending and deactivated 1625 */ 1626 int timer_delete_sync(struct timer_list *timer) 1627 { 1628 return __timer_delete_sync(timer, false); 1629 } 1630 EXPORT_SYMBOL(timer_delete_sync); 1631 1632 /** 1633 * timer_shutdown_sync - Shutdown a timer and prevent rearming 1634 * @timer: The timer to be shutdown 1635 * 1636 * When the function returns it is guaranteed that: 1637 * - @timer is not queued 1638 * - The callback function of @timer is not running 1639 * - @timer cannot be enqueued again. Any attempt to rearm 1640 * @timer is silently ignored. 1641 * 1642 * See timer_delete_sync() for synchronization rules. 1643 * 1644 * This function is useful for final teardown of an infrastructure where 1645 * the timer is subject to a circular dependency problem. 1646 * 1647 * A common pattern for this is a timer and a workqueue where the timer can 1648 * schedule work and work can arm the timer. On shutdown the workqueue must 1649 * be destroyed and the timer must be prevented from rearming. Unless the 1650 * code has conditionals like 'if (mything->in_shutdown)' to prevent that 1651 * there is no way to get this correct with timer_delete_sync(). 1652 * 1653 * timer_shutdown_sync() is solving the problem. The correct ordering of 1654 * calls in this case is: 1655 * 1656 * timer_shutdown_sync(&mything->timer); 1657 * workqueue_destroy(&mything->workqueue); 1658 * 1659 * After this 'mything' can be safely freed. 1660 * 1661 * This obviously implies that the timer is not required to be functional 1662 * for the rest of the shutdown operation. 1663 * 1664 * Return: 1665 * * %0 - The timer was not pending 1666 * * %1 - The timer was pending 1667 */ 1668 int timer_shutdown_sync(struct timer_list *timer) 1669 { 1670 return __timer_delete_sync(timer, true); 1671 } 1672 EXPORT_SYMBOL_GPL(timer_shutdown_sync); 1673 1674 static void call_timer_fn(struct timer_list *timer, 1675 void (*fn)(struct timer_list *), 1676 unsigned long baseclk) 1677 { 1678 int count = preempt_count(); 1679 1680 #ifdef CONFIG_LOCKDEP 1681 /* 1682 * It is permissible to free the timer from inside the 1683 * function that is called from it, this we need to take into 1684 * account for lockdep too. To avoid bogus "held lock freed" 1685 * warnings as well as problems when looking into 1686 * timer->lockdep_map, make a copy and use that here. 1687 */ 1688 struct lockdep_map lockdep_map; 1689 1690 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1691 #endif 1692 /* 1693 * Couple the lock chain with the lock chain at 1694 * timer_delete_sync() by acquiring the lock_map around the fn() 1695 * call here and in timer_delete_sync(). 1696 */ 1697 lock_map_acquire(&lockdep_map); 1698 1699 trace_timer_expire_entry(timer, baseclk); 1700 fn(timer); 1701 trace_timer_expire_exit(timer); 1702 1703 lock_map_release(&lockdep_map); 1704 1705 if (count != preempt_count()) { 1706 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", 1707 fn, count, preempt_count()); 1708 /* 1709 * Restore the preempt count. That gives us a decent 1710 * chance to survive and extract information. If the 1711 * callback kept a lock held, bad luck, but not worse 1712 * than the BUG() we had. 1713 */ 1714 preempt_count_set(count); 1715 } 1716 } 1717 1718 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1719 { 1720 /* 1721 * This value is required only for tracing. base->clk was 1722 * incremented directly before expire_timers was called. But expiry 1723 * is related to the old base->clk value. 1724 */ 1725 unsigned long baseclk = base->clk - 1; 1726 1727 while (!hlist_empty(head)) { 1728 struct timer_list *timer; 1729 void (*fn)(struct timer_list *); 1730 1731 timer = hlist_entry(head->first, struct timer_list, entry); 1732 1733 base->running_timer = timer; 1734 detach_timer(timer, true); 1735 1736 fn = timer->function; 1737 1738 if (WARN_ON_ONCE(!fn)) { 1739 /* Should never happen. Emphasis on should! */ 1740 base->running_timer = NULL; 1741 continue; 1742 } 1743 1744 if (timer->flags & TIMER_IRQSAFE) { 1745 raw_spin_unlock(&base->lock); 1746 call_timer_fn(timer, fn, baseclk); 1747 raw_spin_lock(&base->lock); 1748 base->running_timer = NULL; 1749 } else { 1750 raw_spin_unlock_irq(&base->lock); 1751 call_timer_fn(timer, fn, baseclk); 1752 raw_spin_lock_irq(&base->lock); 1753 base->running_timer = NULL; 1754 timer_sync_wait_running(base); 1755 } 1756 } 1757 } 1758 1759 static int collect_expired_timers(struct timer_base *base, 1760 struct hlist_head *heads) 1761 { 1762 unsigned long clk = base->clk = base->next_expiry; 1763 struct hlist_head *vec; 1764 int i, levels = 0; 1765 unsigned int idx; 1766 1767 for (i = 0; i < LVL_DEPTH; i++) { 1768 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1769 1770 if (__test_and_clear_bit(idx, base->pending_map)) { 1771 vec = base->vectors + idx; 1772 hlist_move_list(vec, heads++); 1773 levels++; 1774 } 1775 /* Is it time to look at the next level? */ 1776 if (clk & LVL_CLK_MASK) 1777 break; 1778 /* Shift clock for the next level granularity */ 1779 clk >>= LVL_CLK_SHIFT; 1780 } 1781 return levels; 1782 } 1783 1784 /* 1785 * Find the next pending bucket of a level. Search from level start (@offset) 1786 * + @clk upwards and if nothing there, search from start of the level 1787 * (@offset) up to @offset + clk. 1788 */ 1789 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1790 unsigned clk) 1791 { 1792 unsigned pos, start = offset + clk; 1793 unsigned end = offset + LVL_SIZE; 1794 1795 pos = find_next_bit(base->pending_map, end, start); 1796 if (pos < end) 1797 return pos - start; 1798 1799 pos = find_next_bit(base->pending_map, start, offset); 1800 return pos < start ? pos + LVL_SIZE - start : -1; 1801 } 1802 1803 /* 1804 * Search the first expiring timer in the various clock levels. Caller must 1805 * hold base->lock. 1806 * 1807 * Store next expiry time in base->next_expiry. 1808 */ 1809 static void next_expiry_recalc(struct timer_base *base) 1810 { 1811 unsigned long clk, next, adj; 1812 unsigned lvl, offset = 0; 1813 1814 next = base->clk + NEXT_TIMER_MAX_DELTA; 1815 clk = base->clk; 1816 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1817 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1818 unsigned long lvl_clk = clk & LVL_CLK_MASK; 1819 1820 if (pos >= 0) { 1821 unsigned long tmp = clk + (unsigned long) pos; 1822 1823 tmp <<= LVL_SHIFT(lvl); 1824 if (time_before(tmp, next)) 1825 next = tmp; 1826 1827 /* 1828 * If the next expiration happens before we reach 1829 * the next level, no need to check further. 1830 */ 1831 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) 1832 break; 1833 } 1834 /* 1835 * Clock for the next level. If the current level clock lower 1836 * bits are zero, we look at the next level as is. If not we 1837 * need to advance it by one because that's going to be the 1838 * next expiring bucket in that level. base->clk is the next 1839 * expiring jiffie. So in case of: 1840 * 1841 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1842 * 0 0 0 0 0 0 1843 * 1844 * we have to look at all levels @index 0. With 1845 * 1846 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1847 * 0 0 0 0 0 2 1848 * 1849 * LVL0 has the next expiring bucket @index 2. The upper 1850 * levels have the next expiring bucket @index 1. 1851 * 1852 * In case that the propagation wraps the next level the same 1853 * rules apply: 1854 * 1855 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1856 * 0 0 0 0 F 2 1857 * 1858 * So after looking at LVL0 we get: 1859 * 1860 * LVL5 LVL4 LVL3 LVL2 LVL1 1861 * 0 0 0 1 0 1862 * 1863 * So no propagation from LVL1 to LVL2 because that happened 1864 * with the add already, but then we need to propagate further 1865 * from LVL2 to LVL3. 1866 * 1867 * So the simple check whether the lower bits of the current 1868 * level are 0 or not is sufficient for all cases. 1869 */ 1870 adj = lvl_clk ? 1 : 0; 1871 clk >>= LVL_CLK_SHIFT; 1872 clk += adj; 1873 } 1874 1875 base->next_expiry = next; 1876 base->next_expiry_recalc = false; 1877 base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA); 1878 } 1879 1880 #ifdef CONFIG_NO_HZ_COMMON 1881 /* 1882 * Check, if the next hrtimer event is before the next timer wheel 1883 * event: 1884 */ 1885 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1886 { 1887 u64 nextevt = hrtimer_get_next_event(); 1888 1889 /* 1890 * If high resolution timers are enabled 1891 * hrtimer_get_next_event() returns KTIME_MAX. 1892 */ 1893 if (expires <= nextevt) 1894 return expires; 1895 1896 /* 1897 * If the next timer is already expired, return the tick base 1898 * time so the tick is fired immediately. 1899 */ 1900 if (nextevt <= basem) 1901 return basem; 1902 1903 /* 1904 * Round up to the next jiffie. High resolution timers are 1905 * off, so the hrtimers are expired in the tick and we need to 1906 * make sure that this tick really expires the timer to avoid 1907 * a ping pong of the nohz stop code. 1908 * 1909 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1910 */ 1911 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1912 } 1913 1914 /** 1915 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1916 * @basej: base time jiffies 1917 * @basem: base time clock monotonic 1918 * 1919 * Returns the tick aligned clock monotonic time of the next pending 1920 * timer or KTIME_MAX if no timer is pending. 1921 */ 1922 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1923 { 1924 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1925 unsigned long nextevt = basej + NEXT_TIMER_MAX_DELTA; 1926 u64 expires = KTIME_MAX; 1927 bool was_idle; 1928 1929 /* 1930 * Pretend that there is no timer pending if the cpu is offline. 1931 * Possible pending timers will be migrated later to an active cpu. 1932 */ 1933 if (cpu_is_offline(smp_processor_id())) 1934 return expires; 1935 1936 raw_spin_lock(&base->lock); 1937 if (base->next_expiry_recalc) 1938 next_expiry_recalc(base); 1939 1940 /* 1941 * We have a fresh next event. Check whether we can forward the 1942 * base. 1943 */ 1944 __forward_timer_base(base, basej); 1945 1946 if (base->timers_pending) { 1947 nextevt = base->next_expiry; 1948 1949 /* If we missed a tick already, force 0 delta */ 1950 if (time_before(nextevt, basej)) 1951 nextevt = basej; 1952 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1953 } else { 1954 /* 1955 * Move next_expiry for the empty base into the future to 1956 * prevent a unnecessary raise of the timer softirq when the 1957 * next_expiry value will be reached even if there is no timer 1958 * pending. 1959 */ 1960 base->next_expiry = nextevt; 1961 } 1962 1963 /* 1964 * Base is idle if the next event is more than a tick away. 1965 * 1966 * If the base is marked idle then any timer add operation must forward 1967 * the base clk itself to keep granularity small. This idle logic is 1968 * only maintained for the BASE_STD base, deferrable timers may still 1969 * see large granularity skew (by design). 1970 */ 1971 was_idle = base->is_idle; 1972 base->is_idle = time_after(nextevt, basej + 1); 1973 if (was_idle != base->is_idle) 1974 trace_timer_base_idle(base->is_idle, base->cpu); 1975 1976 raw_spin_unlock(&base->lock); 1977 1978 return cmp_next_hrtimer_event(basem, expires); 1979 } 1980 1981 /** 1982 * timer_clear_idle - Clear the idle state of the timer base 1983 * 1984 * Called with interrupts disabled 1985 */ 1986 void timer_clear_idle(void) 1987 { 1988 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1989 1990 /* 1991 * We do this unlocked. The worst outcome is a remote enqueue sending 1992 * a pointless IPI, but taking the lock would just make the window for 1993 * sending the IPI a few instructions smaller for the cost of taking 1994 * the lock in the exit from idle path. 1995 */ 1996 if (base->is_idle) { 1997 base->is_idle = false; 1998 trace_timer_base_idle(false, smp_processor_id()); 1999 } 2000 } 2001 #endif 2002 2003 /** 2004 * __run_timers - run all expired timers (if any) on this CPU. 2005 * @base: the timer vector to be processed. 2006 */ 2007 static inline void __run_timers(struct timer_base *base) 2008 { 2009 struct hlist_head heads[LVL_DEPTH]; 2010 int levels; 2011 2012 if (time_before(jiffies, base->next_expiry)) 2013 return; 2014 2015 timer_base_lock_expiry(base); 2016 raw_spin_lock_irq(&base->lock); 2017 2018 while (time_after_eq(jiffies, base->clk) && 2019 time_after_eq(jiffies, base->next_expiry)) { 2020 levels = collect_expired_timers(base, heads); 2021 /* 2022 * The two possible reasons for not finding any expired 2023 * timer at this clk are that all matching timers have been 2024 * dequeued or no timer has been queued since 2025 * base::next_expiry was set to base::clk + 2026 * NEXT_TIMER_MAX_DELTA. 2027 */ 2028 WARN_ON_ONCE(!levels && !base->next_expiry_recalc 2029 && base->timers_pending); 2030 /* 2031 * While executing timers, base->clk is set 1 offset ahead of 2032 * jiffies to avoid endless requeuing to current jiffies. 2033 */ 2034 base->clk++; 2035 next_expiry_recalc(base); 2036 2037 while (levels--) 2038 expire_timers(base, heads + levels); 2039 } 2040 raw_spin_unlock_irq(&base->lock); 2041 timer_base_unlock_expiry(base); 2042 } 2043 2044 /* 2045 * This function runs timers and the timer-tq in bottom half context. 2046 */ 2047 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 2048 { 2049 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 2050 2051 __run_timers(base); 2052 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) 2053 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 2054 } 2055 2056 /* 2057 * Called by the local, per-CPU timer interrupt on SMP. 2058 */ 2059 static void run_local_timers(void) 2060 { 2061 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 2062 2063 hrtimer_run_queues(); 2064 /* Raise the softirq only if required. */ 2065 if (time_before(jiffies, base->next_expiry)) { 2066 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) 2067 return; 2068 /* CPU is awake, so check the deferrable base. */ 2069 base++; 2070 if (time_before(jiffies, base->next_expiry)) 2071 return; 2072 } 2073 raise_softirq(TIMER_SOFTIRQ); 2074 } 2075 2076 /* 2077 * Called from the timer interrupt handler to charge one tick to the current 2078 * process. user_tick is 1 if the tick is user time, 0 for system. 2079 */ 2080 void update_process_times(int user_tick) 2081 { 2082 struct task_struct *p = current; 2083 2084 /* Note: this timer irq context must be accounted for as well. */ 2085 account_process_tick(p, user_tick); 2086 run_local_timers(); 2087 rcu_sched_clock_irq(user_tick); 2088 #ifdef CONFIG_IRQ_WORK 2089 if (in_irq()) 2090 irq_work_tick(); 2091 #endif 2092 scheduler_tick(); 2093 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2094 run_posix_cpu_timers(); 2095 } 2096 2097 /* 2098 * Since schedule_timeout()'s timer is defined on the stack, it must store 2099 * the target task on the stack as well. 2100 */ 2101 struct process_timer { 2102 struct timer_list timer; 2103 struct task_struct *task; 2104 }; 2105 2106 static void process_timeout(struct timer_list *t) 2107 { 2108 struct process_timer *timeout = from_timer(timeout, t, timer); 2109 2110 wake_up_process(timeout->task); 2111 } 2112 2113 /** 2114 * schedule_timeout - sleep until timeout 2115 * @timeout: timeout value in jiffies 2116 * 2117 * Make the current task sleep until @timeout jiffies have elapsed. 2118 * The function behavior depends on the current task state 2119 * (see also set_current_state() description): 2120 * 2121 * %TASK_RUNNING - the scheduler is called, but the task does not sleep 2122 * at all. That happens because sched_submit_work() does nothing for 2123 * tasks in %TASK_RUNNING state. 2124 * 2125 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 2126 * pass before the routine returns unless the current task is explicitly 2127 * woken up, (e.g. by wake_up_process()). 2128 * 2129 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2130 * delivered to the current task or the current task is explicitly woken 2131 * up. 2132 * 2133 * The current task state is guaranteed to be %TASK_RUNNING when this 2134 * routine returns. 2135 * 2136 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 2137 * the CPU away without a bound on the timeout. In this case the return 2138 * value will be %MAX_SCHEDULE_TIMEOUT. 2139 * 2140 * Returns 0 when the timer has expired otherwise the remaining time in 2141 * jiffies will be returned. In all cases the return value is guaranteed 2142 * to be non-negative. 2143 */ 2144 signed long __sched schedule_timeout(signed long timeout) 2145 { 2146 struct process_timer timer; 2147 unsigned long expire; 2148 2149 switch (timeout) 2150 { 2151 case MAX_SCHEDULE_TIMEOUT: 2152 /* 2153 * These two special cases are useful to be comfortable 2154 * in the caller. Nothing more. We could take 2155 * MAX_SCHEDULE_TIMEOUT from one of the negative value 2156 * but I' d like to return a valid offset (>=0) to allow 2157 * the caller to do everything it want with the retval. 2158 */ 2159 schedule(); 2160 goto out; 2161 default: 2162 /* 2163 * Another bit of PARANOID. Note that the retval will be 2164 * 0 since no piece of kernel is supposed to do a check 2165 * for a negative retval of schedule_timeout() (since it 2166 * should never happens anyway). You just have the printk() 2167 * that will tell you if something is gone wrong and where. 2168 */ 2169 if (timeout < 0) { 2170 printk(KERN_ERR "schedule_timeout: wrong timeout " 2171 "value %lx\n", timeout); 2172 dump_stack(); 2173 __set_current_state(TASK_RUNNING); 2174 goto out; 2175 } 2176 } 2177 2178 expire = timeout + jiffies; 2179 2180 timer.task = current; 2181 timer_setup_on_stack(&timer.timer, process_timeout, 0); 2182 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); 2183 schedule(); 2184 del_timer_sync(&timer.timer); 2185 2186 /* Remove the timer from the object tracker */ 2187 destroy_timer_on_stack(&timer.timer); 2188 2189 timeout = expire - jiffies; 2190 2191 out: 2192 return timeout < 0 ? 0 : timeout; 2193 } 2194 EXPORT_SYMBOL(schedule_timeout); 2195 2196 /* 2197 * We can use __set_current_state() here because schedule_timeout() calls 2198 * schedule() unconditionally. 2199 */ 2200 signed long __sched schedule_timeout_interruptible(signed long timeout) 2201 { 2202 __set_current_state(TASK_INTERRUPTIBLE); 2203 return schedule_timeout(timeout); 2204 } 2205 EXPORT_SYMBOL(schedule_timeout_interruptible); 2206 2207 signed long __sched schedule_timeout_killable(signed long timeout) 2208 { 2209 __set_current_state(TASK_KILLABLE); 2210 return schedule_timeout(timeout); 2211 } 2212 EXPORT_SYMBOL(schedule_timeout_killable); 2213 2214 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 2215 { 2216 __set_current_state(TASK_UNINTERRUPTIBLE); 2217 return schedule_timeout(timeout); 2218 } 2219 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 2220 2221 /* 2222 * Like schedule_timeout_uninterruptible(), except this task will not contribute 2223 * to load average. 2224 */ 2225 signed long __sched schedule_timeout_idle(signed long timeout) 2226 { 2227 __set_current_state(TASK_IDLE); 2228 return schedule_timeout(timeout); 2229 } 2230 EXPORT_SYMBOL(schedule_timeout_idle); 2231 2232 #ifdef CONFIG_HOTPLUG_CPU 2233 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 2234 { 2235 struct timer_list *timer; 2236 int cpu = new_base->cpu; 2237 2238 while (!hlist_empty(head)) { 2239 timer = hlist_entry(head->first, struct timer_list, entry); 2240 detach_timer(timer, false); 2241 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 2242 internal_add_timer(new_base, timer); 2243 } 2244 } 2245 2246 int timers_prepare_cpu(unsigned int cpu) 2247 { 2248 struct timer_base *base; 2249 int b; 2250 2251 for (b = 0; b < NR_BASES; b++) { 2252 base = per_cpu_ptr(&timer_bases[b], cpu); 2253 base->clk = jiffies; 2254 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2255 base->next_expiry_recalc = false; 2256 base->timers_pending = false; 2257 base->is_idle = false; 2258 } 2259 return 0; 2260 } 2261 2262 int timers_dead_cpu(unsigned int cpu) 2263 { 2264 struct timer_base *old_base; 2265 struct timer_base *new_base; 2266 int b, i; 2267 2268 for (b = 0; b < NR_BASES; b++) { 2269 old_base = per_cpu_ptr(&timer_bases[b], cpu); 2270 new_base = get_cpu_ptr(&timer_bases[b]); 2271 /* 2272 * The caller is globally serialized and nobody else 2273 * takes two locks at once, deadlock is not possible. 2274 */ 2275 raw_spin_lock_irq(&new_base->lock); 2276 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2277 2278 /* 2279 * The current CPUs base clock might be stale. Update it 2280 * before moving the timers over. 2281 */ 2282 forward_timer_base(new_base); 2283 2284 WARN_ON_ONCE(old_base->running_timer); 2285 old_base->running_timer = NULL; 2286 2287 for (i = 0; i < WHEEL_SIZE; i++) 2288 migrate_timer_list(new_base, old_base->vectors + i); 2289 2290 raw_spin_unlock(&old_base->lock); 2291 raw_spin_unlock_irq(&new_base->lock); 2292 put_cpu_ptr(&timer_bases); 2293 } 2294 return 0; 2295 } 2296 2297 #endif /* CONFIG_HOTPLUG_CPU */ 2298 2299 static void __init init_timer_cpu(int cpu) 2300 { 2301 struct timer_base *base; 2302 int i; 2303 2304 for (i = 0; i < NR_BASES; i++) { 2305 base = per_cpu_ptr(&timer_bases[i], cpu); 2306 base->cpu = cpu; 2307 raw_spin_lock_init(&base->lock); 2308 base->clk = jiffies; 2309 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2310 timer_base_init_expiry_lock(base); 2311 } 2312 } 2313 2314 static void __init init_timer_cpus(void) 2315 { 2316 int cpu; 2317 2318 for_each_possible_cpu(cpu) 2319 init_timer_cpu(cpu); 2320 } 2321 2322 void __init init_timers(void) 2323 { 2324 init_timer_cpus(); 2325 posix_cputimers_init_work(); 2326 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 2327 } 2328 2329 /** 2330 * msleep - sleep safely even with waitqueue interruptions 2331 * @msecs: Time in milliseconds to sleep for 2332 */ 2333 void msleep(unsigned int msecs) 2334 { 2335 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2336 2337 while (timeout) 2338 timeout = schedule_timeout_uninterruptible(timeout); 2339 } 2340 2341 EXPORT_SYMBOL(msleep); 2342 2343 /** 2344 * msleep_interruptible - sleep waiting for signals 2345 * @msecs: Time in milliseconds to sleep for 2346 */ 2347 unsigned long msleep_interruptible(unsigned int msecs) 2348 { 2349 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2350 2351 while (timeout && !signal_pending(current)) 2352 timeout = schedule_timeout_interruptible(timeout); 2353 return jiffies_to_msecs(timeout); 2354 } 2355 2356 EXPORT_SYMBOL(msleep_interruptible); 2357 2358 /** 2359 * usleep_range_state - Sleep for an approximate time in a given state 2360 * @min: Minimum time in usecs to sleep 2361 * @max: Maximum time in usecs to sleep 2362 * @state: State of the current task that will be while sleeping 2363 * 2364 * In non-atomic context where the exact wakeup time is flexible, use 2365 * usleep_range_state() instead of udelay(). The sleep improves responsiveness 2366 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 2367 * power usage by allowing hrtimers to take advantage of an already- 2368 * scheduled interrupt instead of scheduling a new one just for this sleep. 2369 */ 2370 void __sched usleep_range_state(unsigned long min, unsigned long max, 2371 unsigned int state) 2372 { 2373 ktime_t exp = ktime_add_us(ktime_get(), min); 2374 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 2375 2376 for (;;) { 2377 __set_current_state(state); 2378 /* Do not return before the requested sleep time has elapsed */ 2379 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 2380 break; 2381 } 2382 } 2383 EXPORT_SYMBOL(usleep_range_state); 2384