1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/sysctl.h> 41 #include <linux/sched/nohz.h> 42 #include <linux/sched/debug.h> 43 #include <linux/slab.h> 44 #include <linux/compat.h> 45 #include <linux/random.h> 46 #include <linux/sysctl.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/div64.h> 51 #include <asm/timex.h> 52 #include <asm/io.h> 53 54 #include "tick-internal.h" 55 #include "timer_migration.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/timer.h> 59 60 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 61 62 EXPORT_SYMBOL(jiffies_64); 63 64 /* 65 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 66 * LVL_SIZE buckets. Each level is driven by its own clock and therefore each 67 * level has a different granularity. 68 * 69 * The level granularity is: LVL_CLK_DIV ^ level 70 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 71 * 72 * The array level of a newly armed timer depends on the relative expiry 73 * time. The farther the expiry time is away the higher the array level and 74 * therefore the granularity becomes. 75 * 76 * Contrary to the original timer wheel implementation, which aims for 'exact' 77 * expiry of the timers, this implementation removes the need for recascading 78 * the timers into the lower array levels. The previous 'classic' timer wheel 79 * implementation of the kernel already violated the 'exact' expiry by adding 80 * slack to the expiry time to provide batched expiration. The granularity 81 * levels provide implicit batching. 82 * 83 * This is an optimization of the original timer wheel implementation for the 84 * majority of the timer wheel use cases: timeouts. The vast majority of 85 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 86 * the timeout expires it indicates that normal operation is disturbed, so it 87 * does not matter much whether the timeout comes with a slight delay. 88 * 89 * The only exception to this are networking timers with a small expiry 90 * time. They rely on the granularity. Those fit into the first wheel level, 91 * which has HZ granularity. 92 * 93 * We don't have cascading anymore. timers with a expiry time above the 94 * capacity of the last wheel level are force expired at the maximum timeout 95 * value of the last wheel level. From data sampling we know that the maximum 96 * value observed is 5 days (network connection tracking), so this should not 97 * be an issue. 98 * 99 * The currently chosen array constants values are a good compromise between 100 * array size and granularity. 101 * 102 * This results in the following granularity and range levels: 103 * 104 * HZ 1000 steps 105 * Level Offset Granularity Range 106 * 0 0 1 ms 0 ms - 63 ms 107 * 1 64 8 ms 64 ms - 511 ms 108 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 109 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 110 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 111 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 112 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 113 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 114 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 115 * 116 * HZ 300 117 * Level Offset Granularity Range 118 * 0 0 3 ms 0 ms - 210 ms 119 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 120 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 121 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 122 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 123 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 124 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 125 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 126 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 127 * 128 * HZ 250 129 * Level Offset Granularity Range 130 * 0 0 4 ms 0 ms - 255 ms 131 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 132 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 133 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 134 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 135 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 136 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 137 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 138 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 139 * 140 * HZ 100 141 * Level Offset Granularity Range 142 * 0 0 10 ms 0 ms - 630 ms 143 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 144 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 145 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 146 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 147 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 148 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 149 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 150 */ 151 152 /* Clock divisor for the next level */ 153 #define LVL_CLK_SHIFT 3 154 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 155 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 156 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 157 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 158 159 /* 160 * The time start value for each level to select the bucket at enqueue 161 * time. We start from the last possible delta of the previous level 162 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). 163 */ 164 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 165 166 /* Size of each clock level */ 167 #define LVL_BITS 6 168 #define LVL_SIZE (1UL << LVL_BITS) 169 #define LVL_MASK (LVL_SIZE - 1) 170 #define LVL_OFFS(n) ((n) * LVL_SIZE) 171 172 /* Level depth */ 173 #if HZ > 100 174 # define LVL_DEPTH 9 175 # else 176 # define LVL_DEPTH 8 177 #endif 178 179 /* The cutoff (max. capacity of the wheel) */ 180 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 181 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 182 183 /* 184 * The resulting wheel size. If NOHZ is configured we allocate two 185 * wheels so we have a separate storage for the deferrable timers. 186 */ 187 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 188 189 #ifdef CONFIG_NO_HZ_COMMON 190 /* 191 * If multiple bases need to be locked, use the base ordering for lock 192 * nesting, i.e. lowest number first. 193 */ 194 # define NR_BASES 3 195 # define BASE_LOCAL 0 196 # define BASE_GLOBAL 1 197 # define BASE_DEF 2 198 #else 199 # define NR_BASES 1 200 # define BASE_LOCAL 0 201 # define BASE_GLOBAL 0 202 # define BASE_DEF 0 203 #endif 204 205 /** 206 * struct timer_base - Per CPU timer base (number of base depends on config) 207 * @lock: Lock protecting the timer_base 208 * @running_timer: When expiring timers, the lock is dropped. To make 209 * sure not to race against deleting/modifying a 210 * currently running timer, the pointer is set to the 211 * timer, which expires at the moment. If no timer is 212 * running, the pointer is NULL. 213 * @expiry_lock: PREEMPT_RT only: Lock is taken in softirq around 214 * timer expiry callback execution and when trying to 215 * delete a running timer and it wasn't successful in 216 * the first glance. It prevents priority inversion 217 * when callback was preempted on a remote CPU and a 218 * caller tries to delete the running timer. It also 219 * prevents a life lock, when the task which tries to 220 * delete a timer preempted the softirq thread which 221 * is running the timer callback function. 222 * @timer_waiters: PREEMPT_RT only: Tells, if there is a waiter 223 * waiting for the end of the timer callback function 224 * execution. 225 * @clk: clock of the timer base; is updated before enqueue 226 * of a timer; during expiry, it is 1 offset ahead of 227 * jiffies to avoid endless requeuing to current 228 * jiffies 229 * @next_expiry: expiry value of the first timer; it is updated when 230 * finding the next timer and during enqueue; the 231 * value is not valid, when next_expiry_recalc is set 232 * @cpu: Number of CPU the timer base belongs to 233 * @next_expiry_recalc: States, whether a recalculation of next_expiry is 234 * required. Value is set true, when a timer was 235 * deleted. 236 * @is_idle: Is set, when timer_base is idle. It is triggered by NOHZ 237 * code. This state is only used in standard 238 * base. Deferrable timers, which are enqueued remotely 239 * never wake up an idle CPU. So no matter of supporting it 240 * for this base. 241 * @timers_pending: Is set, when a timer is pending in the base. It is only 242 * reliable when next_expiry_recalc is not set. 243 * @pending_map: bitmap of the timer wheel; each bit reflects a 244 * bucket of the wheel. When a bit is set, at least a 245 * single timer is enqueued in the related bucket. 246 * @vectors: Array of lists; Each array member reflects a bucket 247 * of the timer wheel. The list contains all timers 248 * which are enqueued into a specific bucket. 249 */ 250 struct timer_base { 251 raw_spinlock_t lock; 252 struct timer_list *running_timer; 253 #ifdef CONFIG_PREEMPT_RT 254 spinlock_t expiry_lock; 255 atomic_t timer_waiters; 256 #endif 257 unsigned long clk; 258 unsigned long next_expiry; 259 unsigned int cpu; 260 bool next_expiry_recalc; 261 bool is_idle; 262 bool timers_pending; 263 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 264 struct hlist_head vectors[WHEEL_SIZE]; 265 } ____cacheline_aligned; 266 267 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 268 269 #ifdef CONFIG_NO_HZ_COMMON 270 271 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 272 static DEFINE_MUTEX(timer_keys_mutex); 273 274 static void timer_update_keys(struct work_struct *work); 275 static DECLARE_WORK(timer_update_work, timer_update_keys); 276 277 #ifdef CONFIG_SMP 278 static unsigned int sysctl_timer_migration = 1; 279 280 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 281 282 static void timers_update_migration(void) 283 { 284 if (sysctl_timer_migration && tick_nohz_active) 285 static_branch_enable(&timers_migration_enabled); 286 else 287 static_branch_disable(&timers_migration_enabled); 288 } 289 290 #ifdef CONFIG_SYSCTL 291 static int timer_migration_handler(const struct ctl_table *table, int write, 292 void *buffer, size_t *lenp, loff_t *ppos) 293 { 294 int ret; 295 296 mutex_lock(&timer_keys_mutex); 297 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 298 if (!ret && write) 299 timers_update_migration(); 300 mutex_unlock(&timer_keys_mutex); 301 return ret; 302 } 303 304 static const struct ctl_table timer_sysctl[] = { 305 { 306 .procname = "timer_migration", 307 .data = &sysctl_timer_migration, 308 .maxlen = sizeof(unsigned int), 309 .mode = 0644, 310 .proc_handler = timer_migration_handler, 311 .extra1 = SYSCTL_ZERO, 312 .extra2 = SYSCTL_ONE, 313 }, 314 }; 315 316 static int __init timer_sysctl_init(void) 317 { 318 register_sysctl("kernel", timer_sysctl); 319 return 0; 320 } 321 device_initcall(timer_sysctl_init); 322 #endif /* CONFIG_SYSCTL */ 323 #else /* CONFIG_SMP */ 324 static inline void timers_update_migration(void) { } 325 #endif /* !CONFIG_SMP */ 326 327 static void timer_update_keys(struct work_struct *work) 328 { 329 mutex_lock(&timer_keys_mutex); 330 timers_update_migration(); 331 static_branch_enable(&timers_nohz_active); 332 mutex_unlock(&timer_keys_mutex); 333 } 334 335 void timers_update_nohz(void) 336 { 337 schedule_work(&timer_update_work); 338 } 339 340 static inline bool is_timers_nohz_active(void) 341 { 342 return static_branch_unlikely(&timers_nohz_active); 343 } 344 #else 345 static inline bool is_timers_nohz_active(void) { return false; } 346 #endif /* NO_HZ_COMMON */ 347 348 static unsigned long round_jiffies_common(unsigned long j, int cpu, 349 bool force_up) 350 { 351 int rem; 352 unsigned long original = j; 353 354 /* 355 * We don't want all cpus firing their timers at once hitting the 356 * same lock or cachelines, so we skew each extra cpu with an extra 357 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 358 * already did this. 359 * The skew is done by adding 3*cpunr, then round, then subtract this 360 * extra offset again. 361 */ 362 j += cpu * 3; 363 364 rem = j % HZ; 365 366 /* 367 * If the target jiffy is just after a whole second (which can happen 368 * due to delays of the timer irq, long irq off times etc etc) then 369 * we should round down to the whole second, not up. Use 1/4th second 370 * as cutoff for this rounding as an extreme upper bound for this. 371 * But never round down if @force_up is set. 372 */ 373 if (rem < HZ/4 && !force_up) /* round down */ 374 j = j - rem; 375 else /* round up */ 376 j = j - rem + HZ; 377 378 /* now that we have rounded, subtract the extra skew again */ 379 j -= cpu * 3; 380 381 /* 382 * Make sure j is still in the future. Otherwise return the 383 * unmodified value. 384 */ 385 return time_is_after_jiffies(j) ? j : original; 386 } 387 388 /** 389 * __round_jiffies - function to round jiffies to a full second 390 * @j: the time in (absolute) jiffies that should be rounded 391 * @cpu: the processor number on which the timeout will happen 392 * 393 * __round_jiffies() rounds an absolute time in the future (in jiffies) 394 * up or down to (approximately) full seconds. This is useful for timers 395 * for which the exact time they fire does not matter too much, as long as 396 * they fire approximately every X seconds. 397 * 398 * By rounding these timers to whole seconds, all such timers will fire 399 * at the same time, rather than at various times spread out. The goal 400 * of this is to have the CPU wake up less, which saves power. 401 * 402 * The exact rounding is skewed for each processor to avoid all 403 * processors firing at the exact same time, which could lead 404 * to lock contention or spurious cache line bouncing. 405 * 406 * The return value is the rounded version of the @j parameter. 407 */ 408 unsigned long __round_jiffies(unsigned long j, int cpu) 409 { 410 return round_jiffies_common(j, cpu, false); 411 } 412 EXPORT_SYMBOL_GPL(__round_jiffies); 413 414 /** 415 * __round_jiffies_relative - function to round jiffies to a full second 416 * @j: the time in (relative) jiffies that should be rounded 417 * @cpu: the processor number on which the timeout will happen 418 * 419 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 420 * up or down to (approximately) full seconds. This is useful for timers 421 * for which the exact time they fire does not matter too much, as long as 422 * they fire approximately every X seconds. 423 * 424 * By rounding these timers to whole seconds, all such timers will fire 425 * at the same time, rather than at various times spread out. The goal 426 * of this is to have the CPU wake up less, which saves power. 427 * 428 * The exact rounding is skewed for each processor to avoid all 429 * processors firing at the exact same time, which could lead 430 * to lock contention or spurious cache line bouncing. 431 * 432 * The return value is the rounded version of the @j parameter. 433 */ 434 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 435 { 436 unsigned long j0 = jiffies; 437 438 /* Use j0 because jiffies might change while we run */ 439 return round_jiffies_common(j + j0, cpu, false) - j0; 440 } 441 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 442 443 /** 444 * round_jiffies - function to round jiffies to a full second 445 * @j: the time in (absolute) jiffies that should be rounded 446 * 447 * round_jiffies() rounds an absolute time in the future (in jiffies) 448 * up or down to (approximately) full seconds. This is useful for timers 449 * for which the exact time they fire does not matter too much, as long as 450 * they fire approximately every X seconds. 451 * 452 * By rounding these timers to whole seconds, all such timers will fire 453 * at the same time, rather than at various times spread out. The goal 454 * of this is to have the CPU wake up less, which saves power. 455 * 456 * The return value is the rounded version of the @j parameter. 457 */ 458 unsigned long round_jiffies(unsigned long j) 459 { 460 return round_jiffies_common(j, raw_smp_processor_id(), false); 461 } 462 EXPORT_SYMBOL_GPL(round_jiffies); 463 464 /** 465 * round_jiffies_relative - function to round jiffies to a full second 466 * @j: the time in (relative) jiffies that should be rounded 467 * 468 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 469 * up or down to (approximately) full seconds. This is useful for timers 470 * for which the exact time they fire does not matter too much, as long as 471 * they fire approximately every X seconds. 472 * 473 * By rounding these timers to whole seconds, all such timers will fire 474 * at the same time, rather than at various times spread out. The goal 475 * of this is to have the CPU wake up less, which saves power. 476 * 477 * The return value is the rounded version of the @j parameter. 478 */ 479 unsigned long round_jiffies_relative(unsigned long j) 480 { 481 return __round_jiffies_relative(j, raw_smp_processor_id()); 482 } 483 EXPORT_SYMBOL_GPL(round_jiffies_relative); 484 485 /** 486 * __round_jiffies_up - function to round jiffies up to a full second 487 * @j: the time in (absolute) jiffies that should be rounded 488 * @cpu: the processor number on which the timeout will happen 489 * 490 * This is the same as __round_jiffies() except that it will never 491 * round down. This is useful for timeouts for which the exact time 492 * of firing does not matter too much, as long as they don't fire too 493 * early. 494 */ 495 unsigned long __round_jiffies_up(unsigned long j, int cpu) 496 { 497 return round_jiffies_common(j, cpu, true); 498 } 499 EXPORT_SYMBOL_GPL(__round_jiffies_up); 500 501 /** 502 * __round_jiffies_up_relative - function to round jiffies up to a full second 503 * @j: the time in (relative) jiffies that should be rounded 504 * @cpu: the processor number on which the timeout will happen 505 * 506 * This is the same as __round_jiffies_relative() except that it will never 507 * round down. This is useful for timeouts for which the exact time 508 * of firing does not matter too much, as long as they don't fire too 509 * early. 510 */ 511 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 512 { 513 unsigned long j0 = jiffies; 514 515 /* Use j0 because jiffies might change while we run */ 516 return round_jiffies_common(j + j0, cpu, true) - j0; 517 } 518 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 519 520 /** 521 * round_jiffies_up - function to round jiffies up to a full second 522 * @j: the time in (absolute) jiffies that should be rounded 523 * 524 * This is the same as round_jiffies() except that it will never 525 * round down. This is useful for timeouts for which the exact time 526 * of firing does not matter too much, as long as they don't fire too 527 * early. 528 */ 529 unsigned long round_jiffies_up(unsigned long j) 530 { 531 return round_jiffies_common(j, raw_smp_processor_id(), true); 532 } 533 EXPORT_SYMBOL_GPL(round_jiffies_up); 534 535 /** 536 * round_jiffies_up_relative - function to round jiffies up to a full second 537 * @j: the time in (relative) jiffies that should be rounded 538 * 539 * This is the same as round_jiffies_relative() except that it will never 540 * round down. This is useful for timeouts for which the exact time 541 * of firing does not matter too much, as long as they don't fire too 542 * early. 543 */ 544 unsigned long round_jiffies_up_relative(unsigned long j) 545 { 546 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 547 } 548 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 549 550 551 static inline unsigned int timer_get_idx(struct timer_list *timer) 552 { 553 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 554 } 555 556 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 557 { 558 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 559 idx << TIMER_ARRAYSHIFT; 560 } 561 562 /* 563 * Helper function to calculate the array index for a given expiry 564 * time. 565 */ 566 static inline unsigned calc_index(unsigned long expires, unsigned lvl, 567 unsigned long *bucket_expiry) 568 { 569 570 /* 571 * The timer wheel has to guarantee that a timer does not fire 572 * early. Early expiry can happen due to: 573 * - Timer is armed at the edge of a tick 574 * - Truncation of the expiry time in the outer wheel levels 575 * 576 * Round up with level granularity to prevent this. 577 */ 578 expires = (expires >> LVL_SHIFT(lvl)) + 1; 579 *bucket_expiry = expires << LVL_SHIFT(lvl); 580 return LVL_OFFS(lvl) + (expires & LVL_MASK); 581 } 582 583 static int calc_wheel_index(unsigned long expires, unsigned long clk, 584 unsigned long *bucket_expiry) 585 { 586 unsigned long delta = expires - clk; 587 unsigned int idx; 588 589 if (delta < LVL_START(1)) { 590 idx = calc_index(expires, 0, bucket_expiry); 591 } else if (delta < LVL_START(2)) { 592 idx = calc_index(expires, 1, bucket_expiry); 593 } else if (delta < LVL_START(3)) { 594 idx = calc_index(expires, 2, bucket_expiry); 595 } else if (delta < LVL_START(4)) { 596 idx = calc_index(expires, 3, bucket_expiry); 597 } else if (delta < LVL_START(5)) { 598 idx = calc_index(expires, 4, bucket_expiry); 599 } else if (delta < LVL_START(6)) { 600 idx = calc_index(expires, 5, bucket_expiry); 601 } else if (delta < LVL_START(7)) { 602 idx = calc_index(expires, 6, bucket_expiry); 603 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 604 idx = calc_index(expires, 7, bucket_expiry); 605 } else if ((long) delta < 0) { 606 idx = clk & LVL_MASK; 607 *bucket_expiry = clk; 608 } else { 609 /* 610 * Force expire obscene large timeouts to expire at the 611 * capacity limit of the wheel. 612 */ 613 if (delta >= WHEEL_TIMEOUT_CUTOFF) 614 expires = clk + WHEEL_TIMEOUT_MAX; 615 616 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); 617 } 618 return idx; 619 } 620 621 static void 622 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 623 { 624 /* 625 * Deferrable timers do not prevent the CPU from entering dynticks and 626 * are not taken into account on the idle/nohz_full path. An IPI when a 627 * new deferrable timer is enqueued will wake up the remote CPU but 628 * nothing will be done with the deferrable timer base. Therefore skip 629 * the remote IPI for deferrable timers completely. 630 */ 631 if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE) 632 return; 633 634 /* 635 * We might have to IPI the remote CPU if the base is idle and the 636 * timer is pinned. If it is a non pinned timer, it is only queued 637 * on the remote CPU, when timer was running during queueing. Then 638 * everything is handled by remote CPU anyway. If the other CPU is 639 * on the way to idle then it can't set base->is_idle as we hold 640 * the base lock: 641 */ 642 if (base->is_idle) { 643 WARN_ON_ONCE(!(timer->flags & TIMER_PINNED || 644 tick_nohz_full_cpu(base->cpu))); 645 wake_up_nohz_cpu(base->cpu); 646 } 647 } 648 649 /* 650 * Enqueue the timer into the hash bucket, mark it pending in 651 * the bitmap, store the index in the timer flags then wake up 652 * the target CPU if needed. 653 */ 654 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 655 unsigned int idx, unsigned long bucket_expiry) 656 { 657 658 hlist_add_head(&timer->entry, base->vectors + idx); 659 __set_bit(idx, base->pending_map); 660 timer_set_idx(timer, idx); 661 662 trace_timer_start(timer, bucket_expiry); 663 664 /* 665 * Check whether this is the new first expiring timer. The 666 * effective expiry time of the timer is required here 667 * (bucket_expiry) instead of timer->expires. 668 */ 669 if (time_before(bucket_expiry, base->next_expiry)) { 670 /* 671 * Set the next expiry time and kick the CPU so it 672 * can reevaluate the wheel: 673 */ 674 WRITE_ONCE(base->next_expiry, bucket_expiry); 675 base->timers_pending = true; 676 base->next_expiry_recalc = false; 677 trigger_dyntick_cpu(base, timer); 678 } 679 } 680 681 static void internal_add_timer(struct timer_base *base, struct timer_list *timer) 682 { 683 unsigned long bucket_expiry; 684 unsigned int idx; 685 686 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); 687 enqueue_timer(base, timer, idx, bucket_expiry); 688 } 689 690 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 691 692 static const struct debug_obj_descr timer_debug_descr; 693 694 struct timer_hint { 695 void (*function)(struct timer_list *t); 696 long offset; 697 }; 698 699 #define TIMER_HINT(fn, container, timr, hintfn) \ 700 { \ 701 .function = fn, \ 702 .offset = offsetof(container, hintfn) - \ 703 offsetof(container, timr) \ 704 } 705 706 static const struct timer_hint timer_hints[] = { 707 TIMER_HINT(delayed_work_timer_fn, 708 struct delayed_work, timer, work.func), 709 TIMER_HINT(kthread_delayed_work_timer_fn, 710 struct kthread_delayed_work, timer, work.func), 711 }; 712 713 static void *timer_debug_hint(void *addr) 714 { 715 struct timer_list *timer = addr; 716 int i; 717 718 for (i = 0; i < ARRAY_SIZE(timer_hints); i++) { 719 if (timer_hints[i].function == timer->function) { 720 void (**fn)(void) = addr + timer_hints[i].offset; 721 722 return *fn; 723 } 724 } 725 726 return timer->function; 727 } 728 729 static bool timer_is_static_object(void *addr) 730 { 731 struct timer_list *timer = addr; 732 733 return (timer->entry.pprev == NULL && 734 timer->entry.next == TIMER_ENTRY_STATIC); 735 } 736 737 /* 738 * timer_fixup_init is called when: 739 * - an active object is initialized 740 */ 741 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 742 { 743 struct timer_list *timer = addr; 744 745 switch (state) { 746 case ODEBUG_STATE_ACTIVE: 747 del_timer_sync(timer); 748 debug_object_init(timer, &timer_debug_descr); 749 return true; 750 default: 751 return false; 752 } 753 } 754 755 /* Stub timer callback for improperly used timers. */ 756 static void stub_timer(struct timer_list *unused) 757 { 758 WARN_ON(1); 759 } 760 761 /* 762 * timer_fixup_activate is called when: 763 * - an active object is activated 764 * - an unknown non-static object is activated 765 */ 766 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 767 { 768 struct timer_list *timer = addr; 769 770 switch (state) { 771 case ODEBUG_STATE_NOTAVAILABLE: 772 timer_setup(timer, stub_timer, 0); 773 return true; 774 775 case ODEBUG_STATE_ACTIVE: 776 WARN_ON(1); 777 fallthrough; 778 default: 779 return false; 780 } 781 } 782 783 /* 784 * timer_fixup_free is called when: 785 * - an active object is freed 786 */ 787 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 788 { 789 struct timer_list *timer = addr; 790 791 switch (state) { 792 case ODEBUG_STATE_ACTIVE: 793 del_timer_sync(timer); 794 debug_object_free(timer, &timer_debug_descr); 795 return true; 796 default: 797 return false; 798 } 799 } 800 801 /* 802 * timer_fixup_assert_init is called when: 803 * - an untracked/uninit-ed object is found 804 */ 805 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 806 { 807 struct timer_list *timer = addr; 808 809 switch (state) { 810 case ODEBUG_STATE_NOTAVAILABLE: 811 timer_setup(timer, stub_timer, 0); 812 return true; 813 default: 814 return false; 815 } 816 } 817 818 static const struct debug_obj_descr timer_debug_descr = { 819 .name = "timer_list", 820 .debug_hint = timer_debug_hint, 821 .is_static_object = timer_is_static_object, 822 .fixup_init = timer_fixup_init, 823 .fixup_activate = timer_fixup_activate, 824 .fixup_free = timer_fixup_free, 825 .fixup_assert_init = timer_fixup_assert_init, 826 }; 827 828 static inline void debug_timer_init(struct timer_list *timer) 829 { 830 debug_object_init(timer, &timer_debug_descr); 831 } 832 833 static inline void debug_timer_activate(struct timer_list *timer) 834 { 835 debug_object_activate(timer, &timer_debug_descr); 836 } 837 838 static inline void debug_timer_deactivate(struct timer_list *timer) 839 { 840 debug_object_deactivate(timer, &timer_debug_descr); 841 } 842 843 static inline void debug_timer_assert_init(struct timer_list *timer) 844 { 845 debug_object_assert_init(timer, &timer_debug_descr); 846 } 847 848 static void do_init_timer(struct timer_list *timer, 849 void (*func)(struct timer_list *), 850 unsigned int flags, 851 const char *name, struct lock_class_key *key); 852 853 void init_timer_on_stack_key(struct timer_list *timer, 854 void (*func)(struct timer_list *), 855 unsigned int flags, 856 const char *name, struct lock_class_key *key) 857 { 858 debug_object_init_on_stack(timer, &timer_debug_descr); 859 do_init_timer(timer, func, flags, name, key); 860 } 861 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 862 863 void destroy_timer_on_stack(struct timer_list *timer) 864 { 865 debug_object_free(timer, &timer_debug_descr); 866 } 867 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 868 869 #else 870 static inline void debug_timer_init(struct timer_list *timer) { } 871 static inline void debug_timer_activate(struct timer_list *timer) { } 872 static inline void debug_timer_deactivate(struct timer_list *timer) { } 873 static inline void debug_timer_assert_init(struct timer_list *timer) { } 874 #endif 875 876 static inline void debug_init(struct timer_list *timer) 877 { 878 debug_timer_init(timer); 879 trace_timer_init(timer); 880 } 881 882 static inline void debug_deactivate(struct timer_list *timer) 883 { 884 debug_timer_deactivate(timer); 885 trace_timer_cancel(timer); 886 } 887 888 static inline void debug_assert_init(struct timer_list *timer) 889 { 890 debug_timer_assert_init(timer); 891 } 892 893 static void do_init_timer(struct timer_list *timer, 894 void (*func)(struct timer_list *), 895 unsigned int flags, 896 const char *name, struct lock_class_key *key) 897 { 898 timer->entry.pprev = NULL; 899 timer->function = func; 900 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) 901 flags &= TIMER_INIT_FLAGS; 902 timer->flags = flags | raw_smp_processor_id(); 903 lockdep_init_map(&timer->lockdep_map, name, key, 0); 904 } 905 906 /** 907 * init_timer_key - initialize a timer 908 * @timer: the timer to be initialized 909 * @func: timer callback function 910 * @flags: timer flags 911 * @name: name of the timer 912 * @key: lockdep class key of the fake lock used for tracking timer 913 * sync lock dependencies 914 * 915 * init_timer_key() must be done to a timer prior to calling *any* of the 916 * other timer functions. 917 */ 918 void init_timer_key(struct timer_list *timer, 919 void (*func)(struct timer_list *), unsigned int flags, 920 const char *name, struct lock_class_key *key) 921 { 922 debug_init(timer); 923 do_init_timer(timer, func, flags, name, key); 924 } 925 EXPORT_SYMBOL(init_timer_key); 926 927 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 928 { 929 struct hlist_node *entry = &timer->entry; 930 931 debug_deactivate(timer); 932 933 __hlist_del(entry); 934 if (clear_pending) 935 entry->pprev = NULL; 936 entry->next = LIST_POISON2; 937 } 938 939 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 940 bool clear_pending) 941 { 942 unsigned idx = timer_get_idx(timer); 943 944 if (!timer_pending(timer)) 945 return 0; 946 947 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) { 948 __clear_bit(idx, base->pending_map); 949 base->next_expiry_recalc = true; 950 } 951 952 detach_timer(timer, clear_pending); 953 return 1; 954 } 955 956 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 957 { 958 int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; 959 960 /* 961 * If the timer is deferrable and NO_HZ_COMMON is set then we need 962 * to use the deferrable base. 963 */ 964 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 965 index = BASE_DEF; 966 967 return per_cpu_ptr(&timer_bases[index], cpu); 968 } 969 970 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 971 { 972 int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; 973 974 /* 975 * If the timer is deferrable and NO_HZ_COMMON is set then we need 976 * to use the deferrable base. 977 */ 978 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 979 index = BASE_DEF; 980 981 return this_cpu_ptr(&timer_bases[index]); 982 } 983 984 static inline struct timer_base *get_timer_base(u32 tflags) 985 { 986 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 987 } 988 989 static inline void __forward_timer_base(struct timer_base *base, 990 unsigned long basej) 991 { 992 /* 993 * Check whether we can forward the base. We can only do that when 994 * @basej is past base->clk otherwise we might rewind base->clk. 995 */ 996 if (time_before_eq(basej, base->clk)) 997 return; 998 999 /* 1000 * If the next expiry value is > jiffies, then we fast forward to 1001 * jiffies otherwise we forward to the next expiry value. 1002 */ 1003 if (time_after(base->next_expiry, basej)) { 1004 base->clk = basej; 1005 } else { 1006 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) 1007 return; 1008 base->clk = base->next_expiry; 1009 } 1010 1011 } 1012 1013 static inline void forward_timer_base(struct timer_base *base) 1014 { 1015 __forward_timer_base(base, READ_ONCE(jiffies)); 1016 } 1017 1018 /* 1019 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 1020 * that all timers which are tied to this base are locked, and the base itself 1021 * is locked too. 1022 * 1023 * So __run_timers/migrate_timers can safely modify all timers which could 1024 * be found in the base->vectors array. 1025 * 1026 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 1027 * to wait until the migration is done. 1028 */ 1029 static struct timer_base *lock_timer_base(struct timer_list *timer, 1030 unsigned long *flags) 1031 __acquires(timer->base->lock) 1032 { 1033 for (;;) { 1034 struct timer_base *base; 1035 u32 tf; 1036 1037 /* 1038 * We need to use READ_ONCE() here, otherwise the compiler 1039 * might re-read @tf between the check for TIMER_MIGRATING 1040 * and spin_lock(). 1041 */ 1042 tf = READ_ONCE(timer->flags); 1043 1044 if (!(tf & TIMER_MIGRATING)) { 1045 base = get_timer_base(tf); 1046 raw_spin_lock_irqsave(&base->lock, *flags); 1047 if (timer->flags == tf) 1048 return base; 1049 raw_spin_unlock_irqrestore(&base->lock, *flags); 1050 } 1051 cpu_relax(); 1052 } 1053 } 1054 1055 #define MOD_TIMER_PENDING_ONLY 0x01 1056 #define MOD_TIMER_REDUCE 0x02 1057 #define MOD_TIMER_NOTPENDING 0x04 1058 1059 static inline int 1060 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 1061 { 1062 unsigned long clk = 0, flags, bucket_expiry; 1063 struct timer_base *base, *new_base; 1064 unsigned int idx = UINT_MAX; 1065 int ret = 0; 1066 1067 debug_assert_init(timer); 1068 1069 /* 1070 * This is a common optimization triggered by the networking code - if 1071 * the timer is re-modified to have the same timeout or ends up in the 1072 * same array bucket then just return: 1073 */ 1074 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { 1075 /* 1076 * The downside of this optimization is that it can result in 1077 * larger granularity than you would get from adding a new 1078 * timer with this expiry. 1079 */ 1080 long diff = timer->expires - expires; 1081 1082 if (!diff) 1083 return 1; 1084 if (options & MOD_TIMER_REDUCE && diff <= 0) 1085 return 1; 1086 1087 /* 1088 * We lock timer base and calculate the bucket index right 1089 * here. If the timer ends up in the same bucket, then we 1090 * just update the expiry time and avoid the whole 1091 * dequeue/enqueue dance. 1092 */ 1093 base = lock_timer_base(timer, &flags); 1094 /* 1095 * Has @timer been shutdown? This needs to be evaluated 1096 * while holding base lock to prevent a race against the 1097 * shutdown code. 1098 */ 1099 if (!timer->function) 1100 goto out_unlock; 1101 1102 forward_timer_base(base); 1103 1104 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 1105 time_before_eq(timer->expires, expires)) { 1106 ret = 1; 1107 goto out_unlock; 1108 } 1109 1110 clk = base->clk; 1111 idx = calc_wheel_index(expires, clk, &bucket_expiry); 1112 1113 /* 1114 * Retrieve and compare the array index of the pending 1115 * timer. If it matches set the expiry to the new value so a 1116 * subsequent call will exit in the expires check above. 1117 */ 1118 if (idx == timer_get_idx(timer)) { 1119 if (!(options & MOD_TIMER_REDUCE)) 1120 timer->expires = expires; 1121 else if (time_after(timer->expires, expires)) 1122 timer->expires = expires; 1123 ret = 1; 1124 goto out_unlock; 1125 } 1126 } else { 1127 base = lock_timer_base(timer, &flags); 1128 /* 1129 * Has @timer been shutdown? This needs to be evaluated 1130 * while holding base lock to prevent a race against the 1131 * shutdown code. 1132 */ 1133 if (!timer->function) 1134 goto out_unlock; 1135 1136 forward_timer_base(base); 1137 } 1138 1139 ret = detach_if_pending(timer, base, false); 1140 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1141 goto out_unlock; 1142 1143 new_base = get_timer_this_cpu_base(timer->flags); 1144 1145 if (base != new_base) { 1146 /* 1147 * We are trying to schedule the timer on the new base. 1148 * However we can't change timer's base while it is running, 1149 * otherwise timer_delete_sync() can't detect that the timer's 1150 * handler yet has not finished. This also guarantees that the 1151 * timer is serialized wrt itself. 1152 */ 1153 if (likely(base->running_timer != timer)) { 1154 /* See the comment in lock_timer_base() */ 1155 timer->flags |= TIMER_MIGRATING; 1156 1157 raw_spin_unlock(&base->lock); 1158 base = new_base; 1159 raw_spin_lock(&base->lock); 1160 WRITE_ONCE(timer->flags, 1161 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1162 forward_timer_base(base); 1163 } 1164 } 1165 1166 debug_timer_activate(timer); 1167 1168 timer->expires = expires; 1169 /* 1170 * If 'idx' was calculated above and the base time did not advance 1171 * between calculating 'idx' and possibly switching the base, only 1172 * enqueue_timer() is required. Otherwise we need to (re)calculate 1173 * the wheel index via internal_add_timer(). 1174 */ 1175 if (idx != UINT_MAX && clk == base->clk) 1176 enqueue_timer(base, timer, idx, bucket_expiry); 1177 else 1178 internal_add_timer(base, timer); 1179 1180 out_unlock: 1181 raw_spin_unlock_irqrestore(&base->lock, flags); 1182 1183 return ret; 1184 } 1185 1186 /** 1187 * mod_timer_pending - Modify a pending timer's timeout 1188 * @timer: The pending timer to be modified 1189 * @expires: New absolute timeout in jiffies 1190 * 1191 * mod_timer_pending() is the same for pending timers as mod_timer(), but 1192 * will not activate inactive timers. 1193 * 1194 * If @timer->function == NULL then the start operation is silently 1195 * discarded. 1196 * 1197 * Return: 1198 * * %0 - The timer was inactive and not modified or was in 1199 * shutdown state and the operation was discarded 1200 * * %1 - The timer was active and requeued to expire at @expires 1201 */ 1202 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1203 { 1204 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1205 } 1206 EXPORT_SYMBOL(mod_timer_pending); 1207 1208 /** 1209 * mod_timer - Modify a timer's timeout 1210 * @timer: The timer to be modified 1211 * @expires: New absolute timeout in jiffies 1212 * 1213 * mod_timer(timer, expires) is equivalent to: 1214 * 1215 * del_timer(timer); timer->expires = expires; add_timer(timer); 1216 * 1217 * mod_timer() is more efficient than the above open coded sequence. In 1218 * case that the timer is inactive, the del_timer() part is a NOP. The 1219 * timer is in any case activated with the new expiry time @expires. 1220 * 1221 * Note that if there are multiple unserialized concurrent users of the 1222 * same timer, then mod_timer() is the only safe way to modify the timeout, 1223 * since add_timer() cannot modify an already running timer. 1224 * 1225 * If @timer->function == NULL then the start operation is silently 1226 * discarded. In this case the return value is 0 and meaningless. 1227 * 1228 * Return: 1229 * * %0 - The timer was inactive and started or was in shutdown 1230 * state and the operation was discarded 1231 * * %1 - The timer was active and requeued to expire at @expires or 1232 * the timer was active and not modified because @expires did 1233 * not change the effective expiry time 1234 */ 1235 int mod_timer(struct timer_list *timer, unsigned long expires) 1236 { 1237 return __mod_timer(timer, expires, 0); 1238 } 1239 EXPORT_SYMBOL(mod_timer); 1240 1241 /** 1242 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1243 * @timer: The timer to be modified 1244 * @expires: New absolute timeout in jiffies 1245 * 1246 * timer_reduce() is very similar to mod_timer(), except that it will only 1247 * modify an enqueued timer if that would reduce the expiration time. If 1248 * @timer is not enqueued it starts the timer. 1249 * 1250 * If @timer->function == NULL then the start operation is silently 1251 * discarded. 1252 * 1253 * Return: 1254 * * %0 - The timer was inactive and started or was in shutdown 1255 * state and the operation was discarded 1256 * * %1 - The timer was active and requeued to expire at @expires or 1257 * the timer was active and not modified because @expires 1258 * did not change the effective expiry time such that the 1259 * timer would expire earlier than already scheduled 1260 */ 1261 int timer_reduce(struct timer_list *timer, unsigned long expires) 1262 { 1263 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1264 } 1265 EXPORT_SYMBOL(timer_reduce); 1266 1267 /** 1268 * add_timer - Start a timer 1269 * @timer: The timer to be started 1270 * 1271 * Start @timer to expire at @timer->expires in the future. @timer->expires 1272 * is the absolute expiry time measured in 'jiffies'. When the timer expires 1273 * timer->function(timer) will be invoked from soft interrupt context. 1274 * 1275 * The @timer->expires and @timer->function fields must be set prior 1276 * to calling this function. 1277 * 1278 * If @timer->function == NULL then the start operation is silently 1279 * discarded. 1280 * 1281 * If @timer->expires is already in the past @timer will be queued to 1282 * expire at the next timer tick. 1283 * 1284 * This can only operate on an inactive timer. Attempts to invoke this on 1285 * an active timer are rejected with a warning. 1286 */ 1287 void add_timer(struct timer_list *timer) 1288 { 1289 if (WARN_ON_ONCE(timer_pending(timer))) 1290 return; 1291 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1292 } 1293 EXPORT_SYMBOL(add_timer); 1294 1295 /** 1296 * add_timer_local() - Start a timer on the local CPU 1297 * @timer: The timer to be started 1298 * 1299 * Same as add_timer() except that the timer flag TIMER_PINNED is set. 1300 * 1301 * See add_timer() for further details. 1302 */ 1303 void add_timer_local(struct timer_list *timer) 1304 { 1305 if (WARN_ON_ONCE(timer_pending(timer))) 1306 return; 1307 timer->flags |= TIMER_PINNED; 1308 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1309 } 1310 EXPORT_SYMBOL(add_timer_local); 1311 1312 /** 1313 * add_timer_global() - Start a timer without TIMER_PINNED flag set 1314 * @timer: The timer to be started 1315 * 1316 * Same as add_timer() except that the timer flag TIMER_PINNED is unset. 1317 * 1318 * See add_timer() for further details. 1319 */ 1320 void add_timer_global(struct timer_list *timer) 1321 { 1322 if (WARN_ON_ONCE(timer_pending(timer))) 1323 return; 1324 timer->flags &= ~TIMER_PINNED; 1325 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1326 } 1327 EXPORT_SYMBOL(add_timer_global); 1328 1329 /** 1330 * add_timer_on - Start a timer on a particular CPU 1331 * @timer: The timer to be started 1332 * @cpu: The CPU to start it on 1333 * 1334 * Same as add_timer() except that it starts the timer on the given CPU and 1335 * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in 1336 * the next round, add_timer_global() should be used instead as it unsets 1337 * the TIMER_PINNED flag. 1338 * 1339 * See add_timer() for further details. 1340 */ 1341 void add_timer_on(struct timer_list *timer, int cpu) 1342 { 1343 struct timer_base *new_base, *base; 1344 unsigned long flags; 1345 1346 debug_assert_init(timer); 1347 1348 if (WARN_ON_ONCE(timer_pending(timer))) 1349 return; 1350 1351 /* Make sure timer flags have TIMER_PINNED flag set */ 1352 timer->flags |= TIMER_PINNED; 1353 1354 new_base = get_timer_cpu_base(timer->flags, cpu); 1355 1356 /* 1357 * If @timer was on a different CPU, it should be migrated with the 1358 * old base locked to prevent other operations proceeding with the 1359 * wrong base locked. See lock_timer_base(). 1360 */ 1361 base = lock_timer_base(timer, &flags); 1362 /* 1363 * Has @timer been shutdown? This needs to be evaluated while 1364 * holding base lock to prevent a race against the shutdown code. 1365 */ 1366 if (!timer->function) 1367 goto out_unlock; 1368 1369 if (base != new_base) { 1370 timer->flags |= TIMER_MIGRATING; 1371 1372 raw_spin_unlock(&base->lock); 1373 base = new_base; 1374 raw_spin_lock(&base->lock); 1375 WRITE_ONCE(timer->flags, 1376 (timer->flags & ~TIMER_BASEMASK) | cpu); 1377 } 1378 forward_timer_base(base); 1379 1380 debug_timer_activate(timer); 1381 internal_add_timer(base, timer); 1382 out_unlock: 1383 raw_spin_unlock_irqrestore(&base->lock, flags); 1384 } 1385 EXPORT_SYMBOL_GPL(add_timer_on); 1386 1387 /** 1388 * __timer_delete - Internal function: Deactivate a timer 1389 * @timer: The timer to be deactivated 1390 * @shutdown: If true, this indicates that the timer is about to be 1391 * shutdown permanently. 1392 * 1393 * If @shutdown is true then @timer->function is set to NULL under the 1394 * timer base lock which prevents further rearming of the time. In that 1395 * case any attempt to rearm @timer after this function returns will be 1396 * silently ignored. 1397 * 1398 * Return: 1399 * * %0 - The timer was not pending 1400 * * %1 - The timer was pending and deactivated 1401 */ 1402 static int __timer_delete(struct timer_list *timer, bool shutdown) 1403 { 1404 struct timer_base *base; 1405 unsigned long flags; 1406 int ret = 0; 1407 1408 debug_assert_init(timer); 1409 1410 /* 1411 * If @shutdown is set then the lock has to be taken whether the 1412 * timer is pending or not to protect against a concurrent rearm 1413 * which might hit between the lockless pending check and the lock 1414 * acquisition. By taking the lock it is ensured that such a newly 1415 * enqueued timer is dequeued and cannot end up with 1416 * timer->function == NULL in the expiry code. 1417 * 1418 * If timer->function is currently executed, then this makes sure 1419 * that the callback cannot requeue the timer. 1420 */ 1421 if (timer_pending(timer) || shutdown) { 1422 base = lock_timer_base(timer, &flags); 1423 ret = detach_if_pending(timer, base, true); 1424 if (shutdown) 1425 timer->function = NULL; 1426 raw_spin_unlock_irqrestore(&base->lock, flags); 1427 } 1428 1429 return ret; 1430 } 1431 1432 /** 1433 * timer_delete - Deactivate a timer 1434 * @timer: The timer to be deactivated 1435 * 1436 * The function only deactivates a pending timer, but contrary to 1437 * timer_delete_sync() it does not take into account whether the timer's 1438 * callback function is concurrently executed on a different CPU or not. 1439 * It neither prevents rearming of the timer. If @timer can be rearmed 1440 * concurrently then the return value of this function is meaningless. 1441 * 1442 * Return: 1443 * * %0 - The timer was not pending 1444 * * %1 - The timer was pending and deactivated 1445 */ 1446 int timer_delete(struct timer_list *timer) 1447 { 1448 return __timer_delete(timer, false); 1449 } 1450 EXPORT_SYMBOL(timer_delete); 1451 1452 /** 1453 * timer_shutdown - Deactivate a timer and prevent rearming 1454 * @timer: The timer to be deactivated 1455 * 1456 * The function does not wait for an eventually running timer callback on a 1457 * different CPU but it prevents rearming of the timer. Any attempt to arm 1458 * @timer after this function returns will be silently ignored. 1459 * 1460 * This function is useful for teardown code and should only be used when 1461 * timer_shutdown_sync() cannot be invoked due to locking or context constraints. 1462 * 1463 * Return: 1464 * * %0 - The timer was not pending 1465 * * %1 - The timer was pending 1466 */ 1467 int timer_shutdown(struct timer_list *timer) 1468 { 1469 return __timer_delete(timer, true); 1470 } 1471 EXPORT_SYMBOL_GPL(timer_shutdown); 1472 1473 /** 1474 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer 1475 * @timer: Timer to deactivate 1476 * @shutdown: If true, this indicates that the timer is about to be 1477 * shutdown permanently. 1478 * 1479 * If @shutdown is true then @timer->function is set to NULL under the 1480 * timer base lock which prevents further rearming of the timer. Any 1481 * attempt to rearm @timer after this function returns will be silently 1482 * ignored. 1483 * 1484 * This function cannot guarantee that the timer cannot be rearmed 1485 * right after dropping the base lock if @shutdown is false. That 1486 * needs to be prevented by the calling code if necessary. 1487 * 1488 * Return: 1489 * * %0 - The timer was not pending 1490 * * %1 - The timer was pending and deactivated 1491 * * %-1 - The timer callback function is running on a different CPU 1492 */ 1493 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown) 1494 { 1495 struct timer_base *base; 1496 unsigned long flags; 1497 int ret = -1; 1498 1499 debug_assert_init(timer); 1500 1501 base = lock_timer_base(timer, &flags); 1502 1503 if (base->running_timer != timer) 1504 ret = detach_if_pending(timer, base, true); 1505 if (shutdown) 1506 timer->function = NULL; 1507 1508 raw_spin_unlock_irqrestore(&base->lock, flags); 1509 1510 return ret; 1511 } 1512 1513 /** 1514 * try_to_del_timer_sync - Try to deactivate a timer 1515 * @timer: Timer to deactivate 1516 * 1517 * This function tries to deactivate a timer. On success the timer is not 1518 * queued and the timer callback function is not running on any CPU. 1519 * 1520 * This function does not guarantee that the timer cannot be rearmed right 1521 * after dropping the base lock. That needs to be prevented by the calling 1522 * code if necessary. 1523 * 1524 * Return: 1525 * * %0 - The timer was not pending 1526 * * %1 - The timer was pending and deactivated 1527 * * %-1 - The timer callback function is running on a different CPU 1528 */ 1529 int try_to_del_timer_sync(struct timer_list *timer) 1530 { 1531 return __try_to_del_timer_sync(timer, false); 1532 } 1533 EXPORT_SYMBOL(try_to_del_timer_sync); 1534 1535 #ifdef CONFIG_PREEMPT_RT 1536 static __init void timer_base_init_expiry_lock(struct timer_base *base) 1537 { 1538 spin_lock_init(&base->expiry_lock); 1539 } 1540 1541 static inline void timer_base_lock_expiry(struct timer_base *base) 1542 { 1543 spin_lock(&base->expiry_lock); 1544 } 1545 1546 static inline void timer_base_unlock_expiry(struct timer_base *base) 1547 { 1548 spin_unlock(&base->expiry_lock); 1549 } 1550 1551 /* 1552 * The counterpart to del_timer_wait_running(). 1553 * 1554 * If there is a waiter for base->expiry_lock, then it was waiting for the 1555 * timer callback to finish. Drop expiry_lock and reacquire it. That allows 1556 * the waiter to acquire the lock and make progress. 1557 */ 1558 static void timer_sync_wait_running(struct timer_base *base) 1559 __releases(&base->lock) __releases(&base->expiry_lock) 1560 __acquires(&base->expiry_lock) __acquires(&base->lock) 1561 { 1562 if (atomic_read(&base->timer_waiters)) { 1563 raw_spin_unlock_irq(&base->lock); 1564 spin_unlock(&base->expiry_lock); 1565 spin_lock(&base->expiry_lock); 1566 raw_spin_lock_irq(&base->lock); 1567 } 1568 } 1569 1570 /* 1571 * This function is called on PREEMPT_RT kernels when the fast path 1572 * deletion of a timer failed because the timer callback function was 1573 * running. 1574 * 1575 * This prevents priority inversion, if the softirq thread on a remote CPU 1576 * got preempted, and it prevents a life lock when the task which tries to 1577 * delete a timer preempted the softirq thread running the timer callback 1578 * function. 1579 */ 1580 static void del_timer_wait_running(struct timer_list *timer) 1581 { 1582 u32 tf; 1583 1584 tf = READ_ONCE(timer->flags); 1585 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) { 1586 struct timer_base *base = get_timer_base(tf); 1587 1588 /* 1589 * Mark the base as contended and grab the expiry lock, 1590 * which is held by the softirq across the timer 1591 * callback. Drop the lock immediately so the softirq can 1592 * expire the next timer. In theory the timer could already 1593 * be running again, but that's more than unlikely and just 1594 * causes another wait loop. 1595 */ 1596 atomic_inc(&base->timer_waiters); 1597 spin_lock_bh(&base->expiry_lock); 1598 atomic_dec(&base->timer_waiters); 1599 spin_unlock_bh(&base->expiry_lock); 1600 } 1601 } 1602 #else 1603 static inline void timer_base_init_expiry_lock(struct timer_base *base) { } 1604 static inline void timer_base_lock_expiry(struct timer_base *base) { } 1605 static inline void timer_base_unlock_expiry(struct timer_base *base) { } 1606 static inline void timer_sync_wait_running(struct timer_base *base) { } 1607 static inline void del_timer_wait_running(struct timer_list *timer) { } 1608 #endif 1609 1610 /** 1611 * __timer_delete_sync - Internal function: Deactivate a timer and wait 1612 * for the handler to finish. 1613 * @timer: The timer to be deactivated 1614 * @shutdown: If true, @timer->function will be set to NULL under the 1615 * timer base lock which prevents rearming of @timer 1616 * 1617 * If @shutdown is not set the timer can be rearmed later. If the timer can 1618 * be rearmed concurrently, i.e. after dropping the base lock then the 1619 * return value is meaningless. 1620 * 1621 * If @shutdown is set then @timer->function is set to NULL under timer 1622 * base lock which prevents rearming of the timer. Any attempt to rearm 1623 * a shutdown timer is silently ignored. 1624 * 1625 * If the timer should be reused after shutdown it has to be initialized 1626 * again. 1627 * 1628 * Return: 1629 * * %0 - The timer was not pending 1630 * * %1 - The timer was pending and deactivated 1631 */ 1632 static int __timer_delete_sync(struct timer_list *timer, bool shutdown) 1633 { 1634 int ret; 1635 1636 #ifdef CONFIG_LOCKDEP 1637 unsigned long flags; 1638 1639 /* 1640 * If lockdep gives a backtrace here, please reference 1641 * the synchronization rules above. 1642 */ 1643 local_irq_save(flags); 1644 lock_map_acquire(&timer->lockdep_map); 1645 lock_map_release(&timer->lockdep_map); 1646 local_irq_restore(flags); 1647 #endif 1648 /* 1649 * don't use it in hardirq context, because it 1650 * could lead to deadlock. 1651 */ 1652 WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE)); 1653 1654 /* 1655 * Must be able to sleep on PREEMPT_RT because of the slowpath in 1656 * del_timer_wait_running(). 1657 */ 1658 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE)) 1659 lockdep_assert_preemption_enabled(); 1660 1661 do { 1662 ret = __try_to_del_timer_sync(timer, shutdown); 1663 1664 if (unlikely(ret < 0)) { 1665 del_timer_wait_running(timer); 1666 cpu_relax(); 1667 } 1668 } while (ret < 0); 1669 1670 return ret; 1671 } 1672 1673 /** 1674 * timer_delete_sync - Deactivate a timer and wait for the handler to finish. 1675 * @timer: The timer to be deactivated 1676 * 1677 * Synchronization rules: Callers must prevent restarting of the timer, 1678 * otherwise this function is meaningless. It must not be called from 1679 * interrupt contexts unless the timer is an irqsafe one. The caller must 1680 * not hold locks which would prevent completion of the timer's callback 1681 * function. The timer's handler must not call add_timer_on(). Upon exit 1682 * the timer is not queued and the handler is not running on any CPU. 1683 * 1684 * For !irqsafe timers, the caller must not hold locks that are held in 1685 * interrupt context. Even if the lock has nothing to do with the timer in 1686 * question. Here's why:: 1687 * 1688 * CPU0 CPU1 1689 * ---- ---- 1690 * <SOFTIRQ> 1691 * call_timer_fn(); 1692 * base->running_timer = mytimer; 1693 * spin_lock_irq(somelock); 1694 * <IRQ> 1695 * spin_lock(somelock); 1696 * timer_delete_sync(mytimer); 1697 * while (base->running_timer == mytimer); 1698 * 1699 * Now timer_delete_sync() will never return and never release somelock. 1700 * The interrupt on the other CPU is waiting to grab somelock but it has 1701 * interrupted the softirq that CPU0 is waiting to finish. 1702 * 1703 * This function cannot guarantee that the timer is not rearmed again by 1704 * some concurrent or preempting code, right after it dropped the base 1705 * lock. If there is the possibility of a concurrent rearm then the return 1706 * value of the function is meaningless. 1707 * 1708 * If such a guarantee is needed, e.g. for teardown situations then use 1709 * timer_shutdown_sync() instead. 1710 * 1711 * Return: 1712 * * %0 - The timer was not pending 1713 * * %1 - The timer was pending and deactivated 1714 */ 1715 int timer_delete_sync(struct timer_list *timer) 1716 { 1717 return __timer_delete_sync(timer, false); 1718 } 1719 EXPORT_SYMBOL(timer_delete_sync); 1720 1721 /** 1722 * timer_shutdown_sync - Shutdown a timer and prevent rearming 1723 * @timer: The timer to be shutdown 1724 * 1725 * When the function returns it is guaranteed that: 1726 * - @timer is not queued 1727 * - The callback function of @timer is not running 1728 * - @timer cannot be enqueued again. Any attempt to rearm 1729 * @timer is silently ignored. 1730 * 1731 * See timer_delete_sync() for synchronization rules. 1732 * 1733 * This function is useful for final teardown of an infrastructure where 1734 * the timer is subject to a circular dependency problem. 1735 * 1736 * A common pattern for this is a timer and a workqueue where the timer can 1737 * schedule work and work can arm the timer. On shutdown the workqueue must 1738 * be destroyed and the timer must be prevented from rearming. Unless the 1739 * code has conditionals like 'if (mything->in_shutdown)' to prevent that 1740 * there is no way to get this correct with timer_delete_sync(). 1741 * 1742 * timer_shutdown_sync() is solving the problem. The correct ordering of 1743 * calls in this case is: 1744 * 1745 * timer_shutdown_sync(&mything->timer); 1746 * workqueue_destroy(&mything->workqueue); 1747 * 1748 * After this 'mything' can be safely freed. 1749 * 1750 * This obviously implies that the timer is not required to be functional 1751 * for the rest of the shutdown operation. 1752 * 1753 * Return: 1754 * * %0 - The timer was not pending 1755 * * %1 - The timer was pending 1756 */ 1757 int timer_shutdown_sync(struct timer_list *timer) 1758 { 1759 return __timer_delete_sync(timer, true); 1760 } 1761 EXPORT_SYMBOL_GPL(timer_shutdown_sync); 1762 1763 static void call_timer_fn(struct timer_list *timer, 1764 void (*fn)(struct timer_list *), 1765 unsigned long baseclk) 1766 { 1767 int count = preempt_count(); 1768 1769 #ifdef CONFIG_LOCKDEP 1770 /* 1771 * It is permissible to free the timer from inside the 1772 * function that is called from it, this we need to take into 1773 * account for lockdep too. To avoid bogus "held lock freed" 1774 * warnings as well as problems when looking into 1775 * timer->lockdep_map, make a copy and use that here. 1776 */ 1777 struct lockdep_map lockdep_map; 1778 1779 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1780 #endif 1781 /* 1782 * Couple the lock chain with the lock chain at 1783 * timer_delete_sync() by acquiring the lock_map around the fn() 1784 * call here and in timer_delete_sync(). 1785 */ 1786 lock_map_acquire(&lockdep_map); 1787 1788 trace_timer_expire_entry(timer, baseclk); 1789 fn(timer); 1790 trace_timer_expire_exit(timer); 1791 1792 lock_map_release(&lockdep_map); 1793 1794 if (count != preempt_count()) { 1795 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", 1796 fn, count, preempt_count()); 1797 /* 1798 * Restore the preempt count. That gives us a decent 1799 * chance to survive and extract information. If the 1800 * callback kept a lock held, bad luck, but not worse 1801 * than the BUG() we had. 1802 */ 1803 preempt_count_set(count); 1804 } 1805 } 1806 1807 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1808 { 1809 /* 1810 * This value is required only for tracing. base->clk was 1811 * incremented directly before expire_timers was called. But expiry 1812 * is related to the old base->clk value. 1813 */ 1814 unsigned long baseclk = base->clk - 1; 1815 1816 while (!hlist_empty(head)) { 1817 struct timer_list *timer; 1818 void (*fn)(struct timer_list *); 1819 1820 timer = hlist_entry(head->first, struct timer_list, entry); 1821 1822 base->running_timer = timer; 1823 detach_timer(timer, true); 1824 1825 fn = timer->function; 1826 1827 if (WARN_ON_ONCE(!fn)) { 1828 /* Should never happen. Emphasis on should! */ 1829 base->running_timer = NULL; 1830 continue; 1831 } 1832 1833 if (timer->flags & TIMER_IRQSAFE) { 1834 raw_spin_unlock(&base->lock); 1835 call_timer_fn(timer, fn, baseclk); 1836 raw_spin_lock(&base->lock); 1837 base->running_timer = NULL; 1838 } else { 1839 raw_spin_unlock_irq(&base->lock); 1840 call_timer_fn(timer, fn, baseclk); 1841 raw_spin_lock_irq(&base->lock); 1842 base->running_timer = NULL; 1843 timer_sync_wait_running(base); 1844 } 1845 } 1846 } 1847 1848 static int collect_expired_timers(struct timer_base *base, 1849 struct hlist_head *heads) 1850 { 1851 unsigned long clk = base->clk = base->next_expiry; 1852 struct hlist_head *vec; 1853 int i, levels = 0; 1854 unsigned int idx; 1855 1856 for (i = 0; i < LVL_DEPTH; i++) { 1857 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1858 1859 if (__test_and_clear_bit(idx, base->pending_map)) { 1860 vec = base->vectors + idx; 1861 hlist_move_list(vec, heads++); 1862 levels++; 1863 } 1864 /* Is it time to look at the next level? */ 1865 if (clk & LVL_CLK_MASK) 1866 break; 1867 /* Shift clock for the next level granularity */ 1868 clk >>= LVL_CLK_SHIFT; 1869 } 1870 return levels; 1871 } 1872 1873 /* 1874 * Find the next pending bucket of a level. Search from level start (@offset) 1875 * + @clk upwards and if nothing there, search from start of the level 1876 * (@offset) up to @offset + clk. 1877 */ 1878 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1879 unsigned clk) 1880 { 1881 unsigned pos, start = offset + clk; 1882 unsigned end = offset + LVL_SIZE; 1883 1884 pos = find_next_bit(base->pending_map, end, start); 1885 if (pos < end) 1886 return pos - start; 1887 1888 pos = find_next_bit(base->pending_map, start, offset); 1889 return pos < start ? pos + LVL_SIZE - start : -1; 1890 } 1891 1892 /* 1893 * Search the first expiring timer in the various clock levels. Caller must 1894 * hold base->lock. 1895 * 1896 * Store next expiry time in base->next_expiry. 1897 */ 1898 static void timer_recalc_next_expiry(struct timer_base *base) 1899 { 1900 unsigned long clk, next, adj; 1901 unsigned lvl, offset = 0; 1902 1903 next = base->clk + NEXT_TIMER_MAX_DELTA; 1904 clk = base->clk; 1905 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1906 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1907 unsigned long lvl_clk = clk & LVL_CLK_MASK; 1908 1909 if (pos >= 0) { 1910 unsigned long tmp = clk + (unsigned long) pos; 1911 1912 tmp <<= LVL_SHIFT(lvl); 1913 if (time_before(tmp, next)) 1914 next = tmp; 1915 1916 /* 1917 * If the next expiration happens before we reach 1918 * the next level, no need to check further. 1919 */ 1920 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) 1921 break; 1922 } 1923 /* 1924 * Clock for the next level. If the current level clock lower 1925 * bits are zero, we look at the next level as is. If not we 1926 * need to advance it by one because that's going to be the 1927 * next expiring bucket in that level. base->clk is the next 1928 * expiring jiffy. So in case of: 1929 * 1930 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1931 * 0 0 0 0 0 0 1932 * 1933 * we have to look at all levels @index 0. With 1934 * 1935 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1936 * 0 0 0 0 0 2 1937 * 1938 * LVL0 has the next expiring bucket @index 2. The upper 1939 * levels have the next expiring bucket @index 1. 1940 * 1941 * In case that the propagation wraps the next level the same 1942 * rules apply: 1943 * 1944 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1945 * 0 0 0 0 F 2 1946 * 1947 * So after looking at LVL0 we get: 1948 * 1949 * LVL5 LVL4 LVL3 LVL2 LVL1 1950 * 0 0 0 1 0 1951 * 1952 * So no propagation from LVL1 to LVL2 because that happened 1953 * with the add already, but then we need to propagate further 1954 * from LVL2 to LVL3. 1955 * 1956 * So the simple check whether the lower bits of the current 1957 * level are 0 or not is sufficient for all cases. 1958 */ 1959 adj = lvl_clk ? 1 : 0; 1960 clk >>= LVL_CLK_SHIFT; 1961 clk += adj; 1962 } 1963 1964 WRITE_ONCE(base->next_expiry, next); 1965 base->next_expiry_recalc = false; 1966 base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA); 1967 } 1968 1969 #ifdef CONFIG_NO_HZ_COMMON 1970 /* 1971 * Check, if the next hrtimer event is before the next timer wheel 1972 * event: 1973 */ 1974 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1975 { 1976 u64 nextevt = hrtimer_get_next_event(); 1977 1978 /* 1979 * If high resolution timers are enabled 1980 * hrtimer_get_next_event() returns KTIME_MAX. 1981 */ 1982 if (expires <= nextevt) 1983 return expires; 1984 1985 /* 1986 * If the next timer is already expired, return the tick base 1987 * time so the tick is fired immediately. 1988 */ 1989 if (nextevt <= basem) 1990 return basem; 1991 1992 /* 1993 * Round up to the next jiffy. High resolution timers are 1994 * off, so the hrtimers are expired in the tick and we need to 1995 * make sure that this tick really expires the timer to avoid 1996 * a ping pong of the nohz stop code. 1997 * 1998 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1999 */ 2000 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 2001 } 2002 2003 static unsigned long next_timer_interrupt(struct timer_base *base, 2004 unsigned long basej) 2005 { 2006 if (base->next_expiry_recalc) 2007 timer_recalc_next_expiry(base); 2008 2009 /* 2010 * Move next_expiry for the empty base into the future to prevent an 2011 * unnecessary raise of the timer softirq when the next_expiry value 2012 * will be reached even if there is no timer pending. 2013 * 2014 * This update is also required to make timer_base::next_expiry values 2015 * easy comparable to find out which base holds the first pending timer. 2016 */ 2017 if (!base->timers_pending) 2018 WRITE_ONCE(base->next_expiry, basej + NEXT_TIMER_MAX_DELTA); 2019 2020 return base->next_expiry; 2021 } 2022 2023 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem, 2024 struct timer_base *base_local, 2025 struct timer_base *base_global, 2026 struct timer_events *tevt) 2027 { 2028 unsigned long nextevt, nextevt_local, nextevt_global; 2029 bool local_first; 2030 2031 nextevt_local = next_timer_interrupt(base_local, basej); 2032 nextevt_global = next_timer_interrupt(base_global, basej); 2033 2034 local_first = time_before_eq(nextevt_local, nextevt_global); 2035 2036 nextevt = local_first ? nextevt_local : nextevt_global; 2037 2038 /* 2039 * If the @nextevt is at max. one tick away, use @nextevt and store 2040 * it in the local expiry value. The next global event is irrelevant in 2041 * this case and can be left as KTIME_MAX. 2042 */ 2043 if (time_before_eq(nextevt, basej + 1)) { 2044 /* If we missed a tick already, force 0 delta */ 2045 if (time_before(nextevt, basej)) 2046 nextevt = basej; 2047 tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC; 2048 2049 /* 2050 * This is required for the remote check only but it doesn't 2051 * hurt, when it is done for both call sites: 2052 * 2053 * * The remote callers will only take care of the global timers 2054 * as local timers will be handled by CPU itself. When not 2055 * updating tevt->global with the already missed first global 2056 * timer, it is possible that it will be missed completely. 2057 * 2058 * * The local callers will ignore the tevt->global anyway, when 2059 * nextevt is max. one tick away. 2060 */ 2061 if (!local_first) 2062 tevt->global = tevt->local; 2063 return nextevt; 2064 } 2065 2066 /* 2067 * Update tevt.* values: 2068 * 2069 * If the local queue expires first, then the global event can be 2070 * ignored. If the global queue is empty, nothing to do either. 2071 */ 2072 if (!local_first && base_global->timers_pending) 2073 tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC; 2074 2075 if (base_local->timers_pending) 2076 tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC; 2077 2078 return nextevt; 2079 } 2080 2081 # ifdef CONFIG_SMP 2082 /** 2083 * fetch_next_timer_interrupt_remote() - Store next timers into @tevt 2084 * @basej: base time jiffies 2085 * @basem: base time clock monotonic 2086 * @tevt: Pointer to the storage for the expiry values 2087 * @cpu: Remote CPU 2088 * 2089 * Stores the next pending local and global timer expiry values in the 2090 * struct pointed to by @tevt. If a queue is empty the corresponding 2091 * field is set to KTIME_MAX. If local event expires before global 2092 * event, global event is set to KTIME_MAX as well. 2093 * 2094 * Caller needs to make sure timer base locks are held (use 2095 * timer_lock_remote_bases() for this purpose). 2096 */ 2097 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem, 2098 struct timer_events *tevt, 2099 unsigned int cpu) 2100 { 2101 struct timer_base *base_local, *base_global; 2102 2103 /* Preset local / global events */ 2104 tevt->local = tevt->global = KTIME_MAX; 2105 2106 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2107 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2108 2109 lockdep_assert_held(&base_local->lock); 2110 lockdep_assert_held(&base_global->lock); 2111 2112 fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt); 2113 } 2114 2115 /** 2116 * timer_unlock_remote_bases - unlock timer bases of cpu 2117 * @cpu: Remote CPU 2118 * 2119 * Unlocks the remote timer bases. 2120 */ 2121 void timer_unlock_remote_bases(unsigned int cpu) 2122 __releases(timer_bases[BASE_LOCAL]->lock) 2123 __releases(timer_bases[BASE_GLOBAL]->lock) 2124 { 2125 struct timer_base *base_local, *base_global; 2126 2127 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2128 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2129 2130 raw_spin_unlock(&base_global->lock); 2131 raw_spin_unlock(&base_local->lock); 2132 } 2133 2134 /** 2135 * timer_lock_remote_bases - lock timer bases of cpu 2136 * @cpu: Remote CPU 2137 * 2138 * Locks the remote timer bases. 2139 */ 2140 void timer_lock_remote_bases(unsigned int cpu) 2141 __acquires(timer_bases[BASE_LOCAL]->lock) 2142 __acquires(timer_bases[BASE_GLOBAL]->lock) 2143 { 2144 struct timer_base *base_local, *base_global; 2145 2146 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2147 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2148 2149 lockdep_assert_irqs_disabled(); 2150 2151 raw_spin_lock(&base_local->lock); 2152 raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); 2153 } 2154 2155 /** 2156 * timer_base_is_idle() - Return whether timer base is set idle 2157 * 2158 * Returns value of local timer base is_idle value. 2159 */ 2160 bool timer_base_is_idle(void) 2161 { 2162 return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle); 2163 } 2164 2165 static void __run_timer_base(struct timer_base *base); 2166 2167 /** 2168 * timer_expire_remote() - expire global timers of cpu 2169 * @cpu: Remote CPU 2170 * 2171 * Expire timers of global base of remote CPU. 2172 */ 2173 void timer_expire_remote(unsigned int cpu) 2174 { 2175 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2176 2177 __run_timer_base(base); 2178 } 2179 2180 static void timer_use_tmigr(unsigned long basej, u64 basem, 2181 unsigned long *nextevt, bool *tick_stop_path, 2182 bool timer_base_idle, struct timer_events *tevt) 2183 { 2184 u64 next_tmigr; 2185 2186 if (timer_base_idle) 2187 next_tmigr = tmigr_cpu_new_timer(tevt->global); 2188 else if (tick_stop_path) 2189 next_tmigr = tmigr_cpu_deactivate(tevt->global); 2190 else 2191 next_tmigr = tmigr_quick_check(tevt->global); 2192 2193 /* 2194 * If the CPU is the last going idle in timer migration hierarchy, make 2195 * sure the CPU will wake up in time to handle remote timers. 2196 * next_tmigr == KTIME_MAX if other CPUs are still active. 2197 */ 2198 if (next_tmigr < tevt->local) { 2199 u64 tmp; 2200 2201 /* If we missed a tick already, force 0 delta */ 2202 if (next_tmigr < basem) 2203 next_tmigr = basem; 2204 2205 tmp = div_u64(next_tmigr - basem, TICK_NSEC); 2206 2207 *nextevt = basej + (unsigned long)tmp; 2208 tevt->local = next_tmigr; 2209 } 2210 } 2211 # else 2212 static void timer_use_tmigr(unsigned long basej, u64 basem, 2213 unsigned long *nextevt, bool *tick_stop_path, 2214 bool timer_base_idle, struct timer_events *tevt) 2215 { 2216 /* 2217 * Make sure first event is written into tevt->local to not miss a 2218 * timer on !SMP systems. 2219 */ 2220 tevt->local = min_t(u64, tevt->local, tevt->global); 2221 } 2222 # endif /* CONFIG_SMP */ 2223 2224 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem, 2225 bool *idle) 2226 { 2227 struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX }; 2228 struct timer_base *base_local, *base_global; 2229 unsigned long nextevt; 2230 bool idle_is_possible; 2231 2232 /* 2233 * When the CPU is offline, the tick is cancelled and nothing is supposed 2234 * to try to stop it. 2235 */ 2236 if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) { 2237 if (idle) 2238 *idle = true; 2239 return tevt.local; 2240 } 2241 2242 base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]); 2243 base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]); 2244 2245 raw_spin_lock(&base_local->lock); 2246 raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); 2247 2248 nextevt = fetch_next_timer_interrupt(basej, basem, base_local, 2249 base_global, &tevt); 2250 2251 /* 2252 * If the next event is only one jiffy ahead there is no need to call 2253 * timer migration hierarchy related functions. The value for the next 2254 * global timer in @tevt struct equals then KTIME_MAX. This is also 2255 * true, when the timer base is idle. 2256 * 2257 * The proper timer migration hierarchy function depends on the callsite 2258 * and whether timer base is idle or not. @nextevt will be updated when 2259 * this CPU needs to handle the first timer migration hierarchy 2260 * event. See timer_use_tmigr() for detailed information. 2261 */ 2262 idle_is_possible = time_after(nextevt, basej + 1); 2263 if (idle_is_possible) 2264 timer_use_tmigr(basej, basem, &nextevt, idle, 2265 base_local->is_idle, &tevt); 2266 2267 /* 2268 * We have a fresh next event. Check whether we can forward the 2269 * base. 2270 */ 2271 __forward_timer_base(base_local, basej); 2272 __forward_timer_base(base_global, basej); 2273 2274 /* 2275 * Set base->is_idle only when caller is timer_base_try_to_set_idle() 2276 */ 2277 if (idle) { 2278 /* 2279 * Bases are idle if the next event is more than a tick 2280 * away. Caution: @nextevt could have changed by enqueueing a 2281 * global timer into timer migration hierarchy. Therefore a new 2282 * check is required here. 2283 * 2284 * If the base is marked idle then any timer add operation must 2285 * forward the base clk itself to keep granularity small. This 2286 * idle logic is only maintained for the BASE_LOCAL and 2287 * BASE_GLOBAL base, deferrable timers may still see large 2288 * granularity skew (by design). 2289 */ 2290 if (!base_local->is_idle && time_after(nextevt, basej + 1)) { 2291 base_local->is_idle = true; 2292 /* 2293 * Global timers queued locally while running in a task 2294 * in nohz_full mode need a self-IPI to kick reprogramming 2295 * in IRQ tail. 2296 */ 2297 if (tick_nohz_full_cpu(base_local->cpu)) 2298 base_global->is_idle = true; 2299 trace_timer_base_idle(true, base_local->cpu); 2300 } 2301 *idle = base_local->is_idle; 2302 2303 /* 2304 * When timer base is not set idle, undo the effect of 2305 * tmigr_cpu_deactivate() to prevent inconsistent states - active 2306 * timer base but inactive timer migration hierarchy. 2307 * 2308 * When timer base was already marked idle, nothing will be 2309 * changed here. 2310 */ 2311 if (!base_local->is_idle && idle_is_possible) 2312 tmigr_cpu_activate(); 2313 } 2314 2315 raw_spin_unlock(&base_global->lock); 2316 raw_spin_unlock(&base_local->lock); 2317 2318 return cmp_next_hrtimer_event(basem, tevt.local); 2319 } 2320 2321 /** 2322 * get_next_timer_interrupt() - return the time (clock mono) of the next timer 2323 * @basej: base time jiffies 2324 * @basem: base time clock monotonic 2325 * 2326 * Returns the tick aligned clock monotonic time of the next pending timer or 2327 * KTIME_MAX if no timer is pending. If timer of global base was queued into 2328 * timer migration hierarchy, first global timer is not taken into account. If 2329 * it was the last CPU of timer migration hierarchy going idle, first global 2330 * event is taken into account. 2331 */ 2332 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 2333 { 2334 return __get_next_timer_interrupt(basej, basem, NULL); 2335 } 2336 2337 /** 2338 * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases 2339 * @basej: base time jiffies 2340 * @basem: base time clock monotonic 2341 * @idle: pointer to store the value of timer_base->is_idle on return; 2342 * *idle contains the information whether tick was already stopped 2343 * 2344 * Returns the tick aligned clock monotonic time of the next pending timer or 2345 * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is 2346 * returned as well. 2347 */ 2348 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle) 2349 { 2350 if (*idle) 2351 return KTIME_MAX; 2352 2353 return __get_next_timer_interrupt(basej, basem, idle); 2354 } 2355 2356 /** 2357 * timer_clear_idle - Clear the idle state of the timer base 2358 * 2359 * Called with interrupts disabled 2360 */ 2361 void timer_clear_idle(void) 2362 { 2363 /* 2364 * We do this unlocked. The worst outcome is a remote pinned timer 2365 * enqueue sending a pointless IPI, but taking the lock would just 2366 * make the window for sending the IPI a few instructions smaller 2367 * for the cost of taking the lock in the exit from idle 2368 * path. Required for BASE_LOCAL only. 2369 */ 2370 __this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false); 2371 if (tick_nohz_full_cpu(smp_processor_id())) 2372 __this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false); 2373 trace_timer_base_idle(false, smp_processor_id()); 2374 2375 /* Activate without holding the timer_base->lock */ 2376 tmigr_cpu_activate(); 2377 } 2378 #endif 2379 2380 /** 2381 * __run_timers - run all expired timers (if any) on this CPU. 2382 * @base: the timer vector to be processed. 2383 */ 2384 static inline void __run_timers(struct timer_base *base) 2385 { 2386 struct hlist_head heads[LVL_DEPTH]; 2387 int levels; 2388 2389 lockdep_assert_held(&base->lock); 2390 2391 if (base->running_timer) 2392 return; 2393 2394 while (time_after_eq(jiffies, base->clk) && 2395 time_after_eq(jiffies, base->next_expiry)) { 2396 levels = collect_expired_timers(base, heads); 2397 /* 2398 * The two possible reasons for not finding any expired 2399 * timer at this clk are that all matching timers have been 2400 * dequeued or no timer has been queued since 2401 * base::next_expiry was set to base::clk + 2402 * NEXT_TIMER_MAX_DELTA. 2403 */ 2404 WARN_ON_ONCE(!levels && !base->next_expiry_recalc 2405 && base->timers_pending); 2406 /* 2407 * While executing timers, base->clk is set 1 offset ahead of 2408 * jiffies to avoid endless requeuing to current jiffies. 2409 */ 2410 base->clk++; 2411 timer_recalc_next_expiry(base); 2412 2413 while (levels--) 2414 expire_timers(base, heads + levels); 2415 } 2416 } 2417 2418 static void __run_timer_base(struct timer_base *base) 2419 { 2420 /* Can race against a remote CPU updating next_expiry under the lock */ 2421 if (time_before(jiffies, READ_ONCE(base->next_expiry))) 2422 return; 2423 2424 timer_base_lock_expiry(base); 2425 raw_spin_lock_irq(&base->lock); 2426 __run_timers(base); 2427 raw_spin_unlock_irq(&base->lock); 2428 timer_base_unlock_expiry(base); 2429 } 2430 2431 static void run_timer_base(int index) 2432 { 2433 struct timer_base *base = this_cpu_ptr(&timer_bases[index]); 2434 2435 __run_timer_base(base); 2436 } 2437 2438 /* 2439 * This function runs timers and the timer-tq in bottom half context. 2440 */ 2441 static __latent_entropy void run_timer_softirq(void) 2442 { 2443 run_timer_base(BASE_LOCAL); 2444 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) { 2445 run_timer_base(BASE_GLOBAL); 2446 run_timer_base(BASE_DEF); 2447 2448 if (is_timers_nohz_active()) 2449 tmigr_handle_remote(); 2450 } 2451 } 2452 2453 /* 2454 * Called by the local, per-CPU timer interrupt on SMP. 2455 */ 2456 static void run_local_timers(void) 2457 { 2458 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]); 2459 2460 hrtimer_run_queues(); 2461 2462 for (int i = 0; i < NR_BASES; i++, base++) { 2463 /* 2464 * Raise the softirq only if required. 2465 * 2466 * timer_base::next_expiry can be written by a remote CPU while 2467 * holding the lock. If this write happens at the same time than 2468 * the lockless local read, sanity checker could complain about 2469 * data corruption. 2470 * 2471 * There are two possible situations where 2472 * timer_base::next_expiry is written by a remote CPU: 2473 * 2474 * 1. Remote CPU expires global timers of this CPU and updates 2475 * timer_base::next_expiry of BASE_GLOBAL afterwards in 2476 * next_timer_interrupt() or timer_recalc_next_expiry(). The 2477 * worst outcome is a superfluous raise of the timer softirq 2478 * when the not yet updated value is read. 2479 * 2480 * 2. A new first pinned timer is enqueued by a remote CPU 2481 * and therefore timer_base::next_expiry of BASE_LOCAL is 2482 * updated. When this update is missed, this isn't a 2483 * problem, as an IPI is executed nevertheless when the CPU 2484 * was idle before. When the CPU wasn't idle but the update 2485 * is missed, then the timer would expire one jiffy late - 2486 * bad luck. 2487 * 2488 * Those unlikely corner cases where the worst outcome is only a 2489 * one jiffy delay or a superfluous raise of the softirq are 2490 * not that expensive as doing the check always while holding 2491 * the lock. 2492 * 2493 * Possible remote writers are using WRITE_ONCE(). Local reader 2494 * uses therefore READ_ONCE(). 2495 */ 2496 if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) || 2497 (i == BASE_DEF && tmigr_requires_handle_remote())) { 2498 raise_timer_softirq(TIMER_SOFTIRQ); 2499 return; 2500 } 2501 } 2502 } 2503 2504 /* 2505 * Called from the timer interrupt handler to charge one tick to the current 2506 * process. user_tick is 1 if the tick is user time, 0 for system. 2507 */ 2508 void update_process_times(int user_tick) 2509 { 2510 struct task_struct *p = current; 2511 2512 /* Note: this timer irq context must be accounted for as well. */ 2513 account_process_tick(p, user_tick); 2514 run_local_timers(); 2515 rcu_sched_clock_irq(user_tick); 2516 #ifdef CONFIG_IRQ_WORK 2517 if (in_irq()) 2518 irq_work_tick(); 2519 #endif 2520 sched_tick(); 2521 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2522 run_posix_cpu_timers(); 2523 } 2524 2525 #ifdef CONFIG_HOTPLUG_CPU 2526 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 2527 { 2528 struct timer_list *timer; 2529 int cpu = new_base->cpu; 2530 2531 while (!hlist_empty(head)) { 2532 timer = hlist_entry(head->first, struct timer_list, entry); 2533 detach_timer(timer, false); 2534 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 2535 internal_add_timer(new_base, timer); 2536 } 2537 } 2538 2539 int timers_prepare_cpu(unsigned int cpu) 2540 { 2541 struct timer_base *base; 2542 int b; 2543 2544 for (b = 0; b < NR_BASES; b++) { 2545 base = per_cpu_ptr(&timer_bases[b], cpu); 2546 base->clk = jiffies; 2547 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2548 base->next_expiry_recalc = false; 2549 base->timers_pending = false; 2550 base->is_idle = false; 2551 } 2552 return 0; 2553 } 2554 2555 int timers_dead_cpu(unsigned int cpu) 2556 { 2557 struct timer_base *old_base; 2558 struct timer_base *new_base; 2559 int b, i; 2560 2561 for (b = 0; b < NR_BASES; b++) { 2562 old_base = per_cpu_ptr(&timer_bases[b], cpu); 2563 new_base = get_cpu_ptr(&timer_bases[b]); 2564 /* 2565 * The caller is globally serialized and nobody else 2566 * takes two locks at once, deadlock is not possible. 2567 */ 2568 raw_spin_lock_irq(&new_base->lock); 2569 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2570 2571 /* 2572 * The current CPUs base clock might be stale. Update it 2573 * before moving the timers over. 2574 */ 2575 forward_timer_base(new_base); 2576 2577 WARN_ON_ONCE(old_base->running_timer); 2578 old_base->running_timer = NULL; 2579 2580 for (i = 0; i < WHEEL_SIZE; i++) 2581 migrate_timer_list(new_base, old_base->vectors + i); 2582 2583 raw_spin_unlock(&old_base->lock); 2584 raw_spin_unlock_irq(&new_base->lock); 2585 put_cpu_ptr(&timer_bases); 2586 } 2587 return 0; 2588 } 2589 2590 #endif /* CONFIG_HOTPLUG_CPU */ 2591 2592 static void __init init_timer_cpu(int cpu) 2593 { 2594 struct timer_base *base; 2595 int i; 2596 2597 for (i = 0; i < NR_BASES; i++) { 2598 base = per_cpu_ptr(&timer_bases[i], cpu); 2599 base->cpu = cpu; 2600 raw_spin_lock_init(&base->lock); 2601 base->clk = jiffies; 2602 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2603 timer_base_init_expiry_lock(base); 2604 } 2605 } 2606 2607 static void __init init_timer_cpus(void) 2608 { 2609 int cpu; 2610 2611 for_each_possible_cpu(cpu) 2612 init_timer_cpu(cpu); 2613 } 2614 2615 void __init init_timers(void) 2616 { 2617 init_timer_cpus(); 2618 posix_cputimers_init_work(); 2619 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 2620 } 2621