1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/sched/nohz.h> 43 #include <linux/sched/debug.h> 44 #include <linux/slab.h> 45 #include <linux/compat.h> 46 #include <linux/random.h> 47 #include <linux/sysctl.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/div64.h> 52 #include <asm/timex.h> 53 #include <asm/io.h> 54 55 #include "tick-internal.h" 56 #include "timer_migration.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/timer.h> 60 61 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 62 63 EXPORT_SYMBOL(jiffies_64); 64 65 /* 66 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 67 * LVL_SIZE buckets. Each level is driven by its own clock and therefore each 68 * level has a different granularity. 69 * 70 * The level granularity is: LVL_CLK_DIV ^ level 71 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 72 * 73 * The array level of a newly armed timer depends on the relative expiry 74 * time. The farther the expiry time is away the higher the array level and 75 * therefore the granularity becomes. 76 * 77 * Contrary to the original timer wheel implementation, which aims for 'exact' 78 * expiry of the timers, this implementation removes the need for recascading 79 * the timers into the lower array levels. The previous 'classic' timer wheel 80 * implementation of the kernel already violated the 'exact' expiry by adding 81 * slack to the expiry time to provide batched expiration. The granularity 82 * levels provide implicit batching. 83 * 84 * This is an optimization of the original timer wheel implementation for the 85 * majority of the timer wheel use cases: timeouts. The vast majority of 86 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 87 * the timeout expires it indicates that normal operation is disturbed, so it 88 * does not matter much whether the timeout comes with a slight delay. 89 * 90 * The only exception to this are networking timers with a small expiry 91 * time. They rely on the granularity. Those fit into the first wheel level, 92 * which has HZ granularity. 93 * 94 * We don't have cascading anymore. timers with a expiry time above the 95 * capacity of the last wheel level are force expired at the maximum timeout 96 * value of the last wheel level. From data sampling we know that the maximum 97 * value observed is 5 days (network connection tracking), so this should not 98 * be an issue. 99 * 100 * The currently chosen array constants values are a good compromise between 101 * array size and granularity. 102 * 103 * This results in the following granularity and range levels: 104 * 105 * HZ 1000 steps 106 * Level Offset Granularity Range 107 * 0 0 1 ms 0 ms - 63 ms 108 * 1 64 8 ms 64 ms - 511 ms 109 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 110 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 111 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 112 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 113 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 114 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 115 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 116 * 117 * HZ 300 118 * Level Offset Granularity Range 119 * 0 0 3 ms 0 ms - 210 ms 120 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 121 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 122 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 123 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 124 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 125 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 126 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 127 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 128 * 129 * HZ 250 130 * Level Offset Granularity Range 131 * 0 0 4 ms 0 ms - 255 ms 132 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 133 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 134 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 135 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 136 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 137 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 138 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 139 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 140 * 141 * HZ 100 142 * Level Offset Granularity Range 143 * 0 0 10 ms 0 ms - 630 ms 144 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 145 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 146 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 147 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 148 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 149 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 150 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 151 */ 152 153 /* Clock divisor for the next level */ 154 #define LVL_CLK_SHIFT 3 155 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 156 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 157 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 158 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 159 160 /* 161 * The time start value for each level to select the bucket at enqueue 162 * time. We start from the last possible delta of the previous level 163 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). 164 */ 165 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 166 167 /* Size of each clock level */ 168 #define LVL_BITS 6 169 #define LVL_SIZE (1UL << LVL_BITS) 170 #define LVL_MASK (LVL_SIZE - 1) 171 #define LVL_OFFS(n) ((n) * LVL_SIZE) 172 173 /* Level depth */ 174 #if HZ > 100 175 # define LVL_DEPTH 9 176 # else 177 # define LVL_DEPTH 8 178 #endif 179 180 /* The cutoff (max. capacity of the wheel) */ 181 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 182 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 183 184 /* 185 * The resulting wheel size. If NOHZ is configured we allocate two 186 * wheels so we have a separate storage for the deferrable timers. 187 */ 188 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 189 190 #ifdef CONFIG_NO_HZ_COMMON 191 /* 192 * If multiple bases need to be locked, use the base ordering for lock 193 * nesting, i.e. lowest number first. 194 */ 195 # define NR_BASES 3 196 # define BASE_LOCAL 0 197 # define BASE_GLOBAL 1 198 # define BASE_DEF 2 199 #else 200 # define NR_BASES 1 201 # define BASE_LOCAL 0 202 # define BASE_GLOBAL 0 203 # define BASE_DEF 0 204 #endif 205 206 /** 207 * struct timer_base - Per CPU timer base (number of base depends on config) 208 * @lock: Lock protecting the timer_base 209 * @running_timer: When expiring timers, the lock is dropped. To make 210 * sure not to race against deleting/modifying a 211 * currently running timer, the pointer is set to the 212 * timer, which expires at the moment. If no timer is 213 * running, the pointer is NULL. 214 * @expiry_lock: PREEMPT_RT only: Lock is taken in softirq around 215 * timer expiry callback execution and when trying to 216 * delete a running timer and it wasn't successful in 217 * the first glance. It prevents priority inversion 218 * when callback was preempted on a remote CPU and a 219 * caller tries to delete the running timer. It also 220 * prevents a life lock, when the task which tries to 221 * delete a timer preempted the softirq thread which 222 * is running the timer callback function. 223 * @timer_waiters: PREEMPT_RT only: Tells, if there is a waiter 224 * waiting for the end of the timer callback function 225 * execution. 226 * @clk: clock of the timer base; is updated before enqueue 227 * of a timer; during expiry, it is 1 offset ahead of 228 * jiffies to avoid endless requeuing to current 229 * jiffies 230 * @next_expiry: expiry value of the first timer; it is updated when 231 * finding the next timer and during enqueue; the 232 * value is not valid, when next_expiry_recalc is set 233 * @cpu: Number of CPU the timer base belongs to 234 * @next_expiry_recalc: States, whether a recalculation of next_expiry is 235 * required. Value is set true, when a timer was 236 * deleted. 237 * @is_idle: Is set, when timer_base is idle. It is triggered by NOHZ 238 * code. This state is only used in standard 239 * base. Deferrable timers, which are enqueued remotely 240 * never wake up an idle CPU. So no matter of supporting it 241 * for this base. 242 * @timers_pending: Is set, when a timer is pending in the base. It is only 243 * reliable when next_expiry_recalc is not set. 244 * @pending_map: bitmap of the timer wheel; each bit reflects a 245 * bucket of the wheel. When a bit is set, at least a 246 * single timer is enqueued in the related bucket. 247 * @vectors: Array of lists; Each array member reflects a bucket 248 * of the timer wheel. The list contains all timers 249 * which are enqueued into a specific bucket. 250 */ 251 struct timer_base { 252 raw_spinlock_t lock; 253 struct timer_list *running_timer; 254 #ifdef CONFIG_PREEMPT_RT 255 spinlock_t expiry_lock; 256 atomic_t timer_waiters; 257 #endif 258 unsigned long clk; 259 unsigned long next_expiry; 260 unsigned int cpu; 261 bool next_expiry_recalc; 262 bool is_idle; 263 bool timers_pending; 264 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 265 struct hlist_head vectors[WHEEL_SIZE]; 266 } ____cacheline_aligned; 267 268 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 269 270 #ifdef CONFIG_NO_HZ_COMMON 271 272 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 273 static DEFINE_MUTEX(timer_keys_mutex); 274 275 static void timer_update_keys(struct work_struct *work); 276 static DECLARE_WORK(timer_update_work, timer_update_keys); 277 278 #ifdef CONFIG_SMP 279 static unsigned int sysctl_timer_migration = 1; 280 281 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 282 283 static void timers_update_migration(void) 284 { 285 if (sysctl_timer_migration && tick_nohz_active) 286 static_branch_enable(&timers_migration_enabled); 287 else 288 static_branch_disable(&timers_migration_enabled); 289 } 290 291 #ifdef CONFIG_SYSCTL 292 static int timer_migration_handler(struct ctl_table *table, int write, 293 void *buffer, size_t *lenp, loff_t *ppos) 294 { 295 int ret; 296 297 mutex_lock(&timer_keys_mutex); 298 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 299 if (!ret && write) 300 timers_update_migration(); 301 mutex_unlock(&timer_keys_mutex); 302 return ret; 303 } 304 305 static struct ctl_table timer_sysctl[] = { 306 { 307 .procname = "timer_migration", 308 .data = &sysctl_timer_migration, 309 .maxlen = sizeof(unsigned int), 310 .mode = 0644, 311 .proc_handler = timer_migration_handler, 312 .extra1 = SYSCTL_ZERO, 313 .extra2 = SYSCTL_ONE, 314 }, 315 {} 316 }; 317 318 static int __init timer_sysctl_init(void) 319 { 320 register_sysctl("kernel", timer_sysctl); 321 return 0; 322 } 323 device_initcall(timer_sysctl_init); 324 #endif /* CONFIG_SYSCTL */ 325 #else /* CONFIG_SMP */ 326 static inline void timers_update_migration(void) { } 327 #endif /* !CONFIG_SMP */ 328 329 static void timer_update_keys(struct work_struct *work) 330 { 331 mutex_lock(&timer_keys_mutex); 332 timers_update_migration(); 333 static_branch_enable(&timers_nohz_active); 334 mutex_unlock(&timer_keys_mutex); 335 } 336 337 void timers_update_nohz(void) 338 { 339 schedule_work(&timer_update_work); 340 } 341 342 static inline bool is_timers_nohz_active(void) 343 { 344 return static_branch_unlikely(&timers_nohz_active); 345 } 346 #else 347 static inline bool is_timers_nohz_active(void) { return false; } 348 #endif /* NO_HZ_COMMON */ 349 350 static unsigned long round_jiffies_common(unsigned long j, int cpu, 351 bool force_up) 352 { 353 int rem; 354 unsigned long original = j; 355 356 /* 357 * We don't want all cpus firing their timers at once hitting the 358 * same lock or cachelines, so we skew each extra cpu with an extra 359 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 360 * already did this. 361 * The skew is done by adding 3*cpunr, then round, then subtract this 362 * extra offset again. 363 */ 364 j += cpu * 3; 365 366 rem = j % HZ; 367 368 /* 369 * If the target jiffie is just after a whole second (which can happen 370 * due to delays of the timer irq, long irq off times etc etc) then 371 * we should round down to the whole second, not up. Use 1/4th second 372 * as cutoff for this rounding as an extreme upper bound for this. 373 * But never round down if @force_up is set. 374 */ 375 if (rem < HZ/4 && !force_up) /* round down */ 376 j = j - rem; 377 else /* round up */ 378 j = j - rem + HZ; 379 380 /* now that we have rounded, subtract the extra skew again */ 381 j -= cpu * 3; 382 383 /* 384 * Make sure j is still in the future. Otherwise return the 385 * unmodified value. 386 */ 387 return time_is_after_jiffies(j) ? j : original; 388 } 389 390 /** 391 * __round_jiffies - function to round jiffies to a full second 392 * @j: the time in (absolute) jiffies that should be rounded 393 * @cpu: the processor number on which the timeout will happen 394 * 395 * __round_jiffies() rounds an absolute time in the future (in jiffies) 396 * up or down to (approximately) full seconds. This is useful for timers 397 * for which the exact time they fire does not matter too much, as long as 398 * they fire approximately every X seconds. 399 * 400 * By rounding these timers to whole seconds, all such timers will fire 401 * at the same time, rather than at various times spread out. The goal 402 * of this is to have the CPU wake up less, which saves power. 403 * 404 * The exact rounding is skewed for each processor to avoid all 405 * processors firing at the exact same time, which could lead 406 * to lock contention or spurious cache line bouncing. 407 * 408 * The return value is the rounded version of the @j parameter. 409 */ 410 unsigned long __round_jiffies(unsigned long j, int cpu) 411 { 412 return round_jiffies_common(j, cpu, false); 413 } 414 EXPORT_SYMBOL_GPL(__round_jiffies); 415 416 /** 417 * __round_jiffies_relative - function to round jiffies to a full second 418 * @j: the time in (relative) jiffies that should be rounded 419 * @cpu: the processor number on which the timeout will happen 420 * 421 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 422 * up or down to (approximately) full seconds. This is useful for timers 423 * for which the exact time they fire does not matter too much, as long as 424 * they fire approximately every X seconds. 425 * 426 * By rounding these timers to whole seconds, all such timers will fire 427 * at the same time, rather than at various times spread out. The goal 428 * of this is to have the CPU wake up less, which saves power. 429 * 430 * The exact rounding is skewed for each processor to avoid all 431 * processors firing at the exact same time, which could lead 432 * to lock contention or spurious cache line bouncing. 433 * 434 * The return value is the rounded version of the @j parameter. 435 */ 436 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 437 { 438 unsigned long j0 = jiffies; 439 440 /* Use j0 because jiffies might change while we run */ 441 return round_jiffies_common(j + j0, cpu, false) - j0; 442 } 443 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 444 445 /** 446 * round_jiffies - function to round jiffies to a full second 447 * @j: the time in (absolute) jiffies that should be rounded 448 * 449 * round_jiffies() rounds an absolute time in the future (in jiffies) 450 * up or down to (approximately) full seconds. This is useful for timers 451 * for which the exact time they fire does not matter too much, as long as 452 * they fire approximately every X seconds. 453 * 454 * By rounding these timers to whole seconds, all such timers will fire 455 * at the same time, rather than at various times spread out. The goal 456 * of this is to have the CPU wake up less, which saves power. 457 * 458 * The return value is the rounded version of the @j parameter. 459 */ 460 unsigned long round_jiffies(unsigned long j) 461 { 462 return round_jiffies_common(j, raw_smp_processor_id(), false); 463 } 464 EXPORT_SYMBOL_GPL(round_jiffies); 465 466 /** 467 * round_jiffies_relative - function to round jiffies to a full second 468 * @j: the time in (relative) jiffies that should be rounded 469 * 470 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 471 * up or down to (approximately) full seconds. This is useful for timers 472 * for which the exact time they fire does not matter too much, as long as 473 * they fire approximately every X seconds. 474 * 475 * By rounding these timers to whole seconds, all such timers will fire 476 * at the same time, rather than at various times spread out. The goal 477 * of this is to have the CPU wake up less, which saves power. 478 * 479 * The return value is the rounded version of the @j parameter. 480 */ 481 unsigned long round_jiffies_relative(unsigned long j) 482 { 483 return __round_jiffies_relative(j, raw_smp_processor_id()); 484 } 485 EXPORT_SYMBOL_GPL(round_jiffies_relative); 486 487 /** 488 * __round_jiffies_up - function to round jiffies up to a full second 489 * @j: the time in (absolute) jiffies that should be rounded 490 * @cpu: the processor number on which the timeout will happen 491 * 492 * This is the same as __round_jiffies() except that it will never 493 * round down. This is useful for timeouts for which the exact time 494 * of firing does not matter too much, as long as they don't fire too 495 * early. 496 */ 497 unsigned long __round_jiffies_up(unsigned long j, int cpu) 498 { 499 return round_jiffies_common(j, cpu, true); 500 } 501 EXPORT_SYMBOL_GPL(__round_jiffies_up); 502 503 /** 504 * __round_jiffies_up_relative - function to round jiffies up to a full second 505 * @j: the time in (relative) jiffies that should be rounded 506 * @cpu: the processor number on which the timeout will happen 507 * 508 * This is the same as __round_jiffies_relative() except that it will never 509 * round down. This is useful for timeouts for which the exact time 510 * of firing does not matter too much, as long as they don't fire too 511 * early. 512 */ 513 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 514 { 515 unsigned long j0 = jiffies; 516 517 /* Use j0 because jiffies might change while we run */ 518 return round_jiffies_common(j + j0, cpu, true) - j0; 519 } 520 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 521 522 /** 523 * round_jiffies_up - function to round jiffies up to a full second 524 * @j: the time in (absolute) jiffies that should be rounded 525 * 526 * This is the same as round_jiffies() except that it will never 527 * round down. This is useful for timeouts for which the exact time 528 * of firing does not matter too much, as long as they don't fire too 529 * early. 530 */ 531 unsigned long round_jiffies_up(unsigned long j) 532 { 533 return round_jiffies_common(j, raw_smp_processor_id(), true); 534 } 535 EXPORT_SYMBOL_GPL(round_jiffies_up); 536 537 /** 538 * round_jiffies_up_relative - function to round jiffies up to a full second 539 * @j: the time in (relative) jiffies that should be rounded 540 * 541 * This is the same as round_jiffies_relative() except that it will never 542 * round down. This is useful for timeouts for which the exact time 543 * of firing does not matter too much, as long as they don't fire too 544 * early. 545 */ 546 unsigned long round_jiffies_up_relative(unsigned long j) 547 { 548 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 549 } 550 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 551 552 553 static inline unsigned int timer_get_idx(struct timer_list *timer) 554 { 555 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 556 } 557 558 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 559 { 560 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 561 idx << TIMER_ARRAYSHIFT; 562 } 563 564 /* 565 * Helper function to calculate the array index for a given expiry 566 * time. 567 */ 568 static inline unsigned calc_index(unsigned long expires, unsigned lvl, 569 unsigned long *bucket_expiry) 570 { 571 572 /* 573 * The timer wheel has to guarantee that a timer does not fire 574 * early. Early expiry can happen due to: 575 * - Timer is armed at the edge of a tick 576 * - Truncation of the expiry time in the outer wheel levels 577 * 578 * Round up with level granularity to prevent this. 579 */ 580 expires = (expires >> LVL_SHIFT(lvl)) + 1; 581 *bucket_expiry = expires << LVL_SHIFT(lvl); 582 return LVL_OFFS(lvl) + (expires & LVL_MASK); 583 } 584 585 static int calc_wheel_index(unsigned long expires, unsigned long clk, 586 unsigned long *bucket_expiry) 587 { 588 unsigned long delta = expires - clk; 589 unsigned int idx; 590 591 if (delta < LVL_START(1)) { 592 idx = calc_index(expires, 0, bucket_expiry); 593 } else if (delta < LVL_START(2)) { 594 idx = calc_index(expires, 1, bucket_expiry); 595 } else if (delta < LVL_START(3)) { 596 idx = calc_index(expires, 2, bucket_expiry); 597 } else if (delta < LVL_START(4)) { 598 idx = calc_index(expires, 3, bucket_expiry); 599 } else if (delta < LVL_START(5)) { 600 idx = calc_index(expires, 4, bucket_expiry); 601 } else if (delta < LVL_START(6)) { 602 idx = calc_index(expires, 5, bucket_expiry); 603 } else if (delta < LVL_START(7)) { 604 idx = calc_index(expires, 6, bucket_expiry); 605 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 606 idx = calc_index(expires, 7, bucket_expiry); 607 } else if ((long) delta < 0) { 608 idx = clk & LVL_MASK; 609 *bucket_expiry = clk; 610 } else { 611 /* 612 * Force expire obscene large timeouts to expire at the 613 * capacity limit of the wheel. 614 */ 615 if (delta >= WHEEL_TIMEOUT_CUTOFF) 616 expires = clk + WHEEL_TIMEOUT_MAX; 617 618 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); 619 } 620 return idx; 621 } 622 623 static void 624 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 625 { 626 /* 627 * Deferrable timers do not prevent the CPU from entering dynticks and 628 * are not taken into account on the idle/nohz_full path. An IPI when a 629 * new deferrable timer is enqueued will wake up the remote CPU but 630 * nothing will be done with the deferrable timer base. Therefore skip 631 * the remote IPI for deferrable timers completely. 632 */ 633 if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE) 634 return; 635 636 /* 637 * We might have to IPI the remote CPU if the base is idle and the 638 * timer is pinned. If it is a non pinned timer, it is only queued 639 * on the remote CPU, when timer was running during queueing. Then 640 * everything is handled by remote CPU anyway. If the other CPU is 641 * on the way to idle then it can't set base->is_idle as we hold 642 * the base lock: 643 */ 644 if (base->is_idle) { 645 WARN_ON_ONCE(!(timer->flags & TIMER_PINNED || 646 tick_nohz_full_cpu(base->cpu))); 647 wake_up_nohz_cpu(base->cpu); 648 } 649 } 650 651 /* 652 * Enqueue the timer into the hash bucket, mark it pending in 653 * the bitmap, store the index in the timer flags then wake up 654 * the target CPU if needed. 655 */ 656 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 657 unsigned int idx, unsigned long bucket_expiry) 658 { 659 660 hlist_add_head(&timer->entry, base->vectors + idx); 661 __set_bit(idx, base->pending_map); 662 timer_set_idx(timer, idx); 663 664 trace_timer_start(timer, bucket_expiry); 665 666 /* 667 * Check whether this is the new first expiring timer. The 668 * effective expiry time of the timer is required here 669 * (bucket_expiry) instead of timer->expires. 670 */ 671 if (time_before(bucket_expiry, base->next_expiry)) { 672 /* 673 * Set the next expiry time and kick the CPU so it 674 * can reevaluate the wheel: 675 */ 676 base->next_expiry = bucket_expiry; 677 base->timers_pending = true; 678 base->next_expiry_recalc = false; 679 trigger_dyntick_cpu(base, timer); 680 } 681 } 682 683 static void internal_add_timer(struct timer_base *base, struct timer_list *timer) 684 { 685 unsigned long bucket_expiry; 686 unsigned int idx; 687 688 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); 689 enqueue_timer(base, timer, idx, bucket_expiry); 690 } 691 692 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 693 694 static const struct debug_obj_descr timer_debug_descr; 695 696 struct timer_hint { 697 void (*function)(struct timer_list *t); 698 long offset; 699 }; 700 701 #define TIMER_HINT(fn, container, timr, hintfn) \ 702 { \ 703 .function = fn, \ 704 .offset = offsetof(container, hintfn) - \ 705 offsetof(container, timr) \ 706 } 707 708 static const struct timer_hint timer_hints[] = { 709 TIMER_HINT(delayed_work_timer_fn, 710 struct delayed_work, timer, work.func), 711 TIMER_HINT(kthread_delayed_work_timer_fn, 712 struct kthread_delayed_work, timer, work.func), 713 }; 714 715 static void *timer_debug_hint(void *addr) 716 { 717 struct timer_list *timer = addr; 718 int i; 719 720 for (i = 0; i < ARRAY_SIZE(timer_hints); i++) { 721 if (timer_hints[i].function == timer->function) { 722 void (**fn)(void) = addr + timer_hints[i].offset; 723 724 return *fn; 725 } 726 } 727 728 return timer->function; 729 } 730 731 static bool timer_is_static_object(void *addr) 732 { 733 struct timer_list *timer = addr; 734 735 return (timer->entry.pprev == NULL && 736 timer->entry.next == TIMER_ENTRY_STATIC); 737 } 738 739 /* 740 * timer_fixup_init is called when: 741 * - an active object is initialized 742 */ 743 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 744 { 745 struct timer_list *timer = addr; 746 747 switch (state) { 748 case ODEBUG_STATE_ACTIVE: 749 del_timer_sync(timer); 750 debug_object_init(timer, &timer_debug_descr); 751 return true; 752 default: 753 return false; 754 } 755 } 756 757 /* Stub timer callback for improperly used timers. */ 758 static void stub_timer(struct timer_list *unused) 759 { 760 WARN_ON(1); 761 } 762 763 /* 764 * timer_fixup_activate is called when: 765 * - an active object is activated 766 * - an unknown non-static object is activated 767 */ 768 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 769 { 770 struct timer_list *timer = addr; 771 772 switch (state) { 773 case ODEBUG_STATE_NOTAVAILABLE: 774 timer_setup(timer, stub_timer, 0); 775 return true; 776 777 case ODEBUG_STATE_ACTIVE: 778 WARN_ON(1); 779 fallthrough; 780 default: 781 return false; 782 } 783 } 784 785 /* 786 * timer_fixup_free is called when: 787 * - an active object is freed 788 */ 789 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 790 { 791 struct timer_list *timer = addr; 792 793 switch (state) { 794 case ODEBUG_STATE_ACTIVE: 795 del_timer_sync(timer); 796 debug_object_free(timer, &timer_debug_descr); 797 return true; 798 default: 799 return false; 800 } 801 } 802 803 /* 804 * timer_fixup_assert_init is called when: 805 * - an untracked/uninit-ed object is found 806 */ 807 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 808 { 809 struct timer_list *timer = addr; 810 811 switch (state) { 812 case ODEBUG_STATE_NOTAVAILABLE: 813 timer_setup(timer, stub_timer, 0); 814 return true; 815 default: 816 return false; 817 } 818 } 819 820 static const struct debug_obj_descr timer_debug_descr = { 821 .name = "timer_list", 822 .debug_hint = timer_debug_hint, 823 .is_static_object = timer_is_static_object, 824 .fixup_init = timer_fixup_init, 825 .fixup_activate = timer_fixup_activate, 826 .fixup_free = timer_fixup_free, 827 .fixup_assert_init = timer_fixup_assert_init, 828 }; 829 830 static inline void debug_timer_init(struct timer_list *timer) 831 { 832 debug_object_init(timer, &timer_debug_descr); 833 } 834 835 static inline void debug_timer_activate(struct timer_list *timer) 836 { 837 debug_object_activate(timer, &timer_debug_descr); 838 } 839 840 static inline void debug_timer_deactivate(struct timer_list *timer) 841 { 842 debug_object_deactivate(timer, &timer_debug_descr); 843 } 844 845 static inline void debug_timer_assert_init(struct timer_list *timer) 846 { 847 debug_object_assert_init(timer, &timer_debug_descr); 848 } 849 850 static void do_init_timer(struct timer_list *timer, 851 void (*func)(struct timer_list *), 852 unsigned int flags, 853 const char *name, struct lock_class_key *key); 854 855 void init_timer_on_stack_key(struct timer_list *timer, 856 void (*func)(struct timer_list *), 857 unsigned int flags, 858 const char *name, struct lock_class_key *key) 859 { 860 debug_object_init_on_stack(timer, &timer_debug_descr); 861 do_init_timer(timer, func, flags, name, key); 862 } 863 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 864 865 void destroy_timer_on_stack(struct timer_list *timer) 866 { 867 debug_object_free(timer, &timer_debug_descr); 868 } 869 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 870 871 #else 872 static inline void debug_timer_init(struct timer_list *timer) { } 873 static inline void debug_timer_activate(struct timer_list *timer) { } 874 static inline void debug_timer_deactivate(struct timer_list *timer) { } 875 static inline void debug_timer_assert_init(struct timer_list *timer) { } 876 #endif 877 878 static inline void debug_init(struct timer_list *timer) 879 { 880 debug_timer_init(timer); 881 trace_timer_init(timer); 882 } 883 884 static inline void debug_deactivate(struct timer_list *timer) 885 { 886 debug_timer_deactivate(timer); 887 trace_timer_cancel(timer); 888 } 889 890 static inline void debug_assert_init(struct timer_list *timer) 891 { 892 debug_timer_assert_init(timer); 893 } 894 895 static void do_init_timer(struct timer_list *timer, 896 void (*func)(struct timer_list *), 897 unsigned int flags, 898 const char *name, struct lock_class_key *key) 899 { 900 timer->entry.pprev = NULL; 901 timer->function = func; 902 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) 903 flags &= TIMER_INIT_FLAGS; 904 timer->flags = flags | raw_smp_processor_id(); 905 lockdep_init_map(&timer->lockdep_map, name, key, 0); 906 } 907 908 /** 909 * init_timer_key - initialize a timer 910 * @timer: the timer to be initialized 911 * @func: timer callback function 912 * @flags: timer flags 913 * @name: name of the timer 914 * @key: lockdep class key of the fake lock used for tracking timer 915 * sync lock dependencies 916 * 917 * init_timer_key() must be done to a timer prior to calling *any* of the 918 * other timer functions. 919 */ 920 void init_timer_key(struct timer_list *timer, 921 void (*func)(struct timer_list *), unsigned int flags, 922 const char *name, struct lock_class_key *key) 923 { 924 debug_init(timer); 925 do_init_timer(timer, func, flags, name, key); 926 } 927 EXPORT_SYMBOL(init_timer_key); 928 929 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 930 { 931 struct hlist_node *entry = &timer->entry; 932 933 debug_deactivate(timer); 934 935 __hlist_del(entry); 936 if (clear_pending) 937 entry->pprev = NULL; 938 entry->next = LIST_POISON2; 939 } 940 941 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 942 bool clear_pending) 943 { 944 unsigned idx = timer_get_idx(timer); 945 946 if (!timer_pending(timer)) 947 return 0; 948 949 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) { 950 __clear_bit(idx, base->pending_map); 951 base->next_expiry_recalc = true; 952 } 953 954 detach_timer(timer, clear_pending); 955 return 1; 956 } 957 958 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 959 { 960 int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; 961 struct timer_base *base; 962 963 base = per_cpu_ptr(&timer_bases[index], cpu); 964 965 /* 966 * If the timer is deferrable and NO_HZ_COMMON is set then we need 967 * to use the deferrable base. 968 */ 969 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 970 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 971 return base; 972 } 973 974 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 975 { 976 int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; 977 struct timer_base *base; 978 979 base = this_cpu_ptr(&timer_bases[index]); 980 981 /* 982 * If the timer is deferrable and NO_HZ_COMMON is set then we need 983 * to use the deferrable base. 984 */ 985 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 986 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 987 return base; 988 } 989 990 static inline struct timer_base *get_timer_base(u32 tflags) 991 { 992 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 993 } 994 995 static inline void __forward_timer_base(struct timer_base *base, 996 unsigned long basej) 997 { 998 /* 999 * Check whether we can forward the base. We can only do that when 1000 * @basej is past base->clk otherwise we might rewind base->clk. 1001 */ 1002 if (time_before_eq(basej, base->clk)) 1003 return; 1004 1005 /* 1006 * If the next expiry value is > jiffies, then we fast forward to 1007 * jiffies otherwise we forward to the next expiry value. 1008 */ 1009 if (time_after(base->next_expiry, basej)) { 1010 base->clk = basej; 1011 } else { 1012 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) 1013 return; 1014 base->clk = base->next_expiry; 1015 } 1016 1017 } 1018 1019 static inline void forward_timer_base(struct timer_base *base) 1020 { 1021 __forward_timer_base(base, READ_ONCE(jiffies)); 1022 } 1023 1024 /* 1025 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 1026 * that all timers which are tied to this base are locked, and the base itself 1027 * is locked too. 1028 * 1029 * So __run_timers/migrate_timers can safely modify all timers which could 1030 * be found in the base->vectors array. 1031 * 1032 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 1033 * to wait until the migration is done. 1034 */ 1035 static struct timer_base *lock_timer_base(struct timer_list *timer, 1036 unsigned long *flags) 1037 __acquires(timer->base->lock) 1038 { 1039 for (;;) { 1040 struct timer_base *base; 1041 u32 tf; 1042 1043 /* 1044 * We need to use READ_ONCE() here, otherwise the compiler 1045 * might re-read @tf between the check for TIMER_MIGRATING 1046 * and spin_lock(). 1047 */ 1048 tf = READ_ONCE(timer->flags); 1049 1050 if (!(tf & TIMER_MIGRATING)) { 1051 base = get_timer_base(tf); 1052 raw_spin_lock_irqsave(&base->lock, *flags); 1053 if (timer->flags == tf) 1054 return base; 1055 raw_spin_unlock_irqrestore(&base->lock, *flags); 1056 } 1057 cpu_relax(); 1058 } 1059 } 1060 1061 #define MOD_TIMER_PENDING_ONLY 0x01 1062 #define MOD_TIMER_REDUCE 0x02 1063 #define MOD_TIMER_NOTPENDING 0x04 1064 1065 static inline int 1066 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 1067 { 1068 unsigned long clk = 0, flags, bucket_expiry; 1069 struct timer_base *base, *new_base; 1070 unsigned int idx = UINT_MAX; 1071 int ret = 0; 1072 1073 debug_assert_init(timer); 1074 1075 /* 1076 * This is a common optimization triggered by the networking code - if 1077 * the timer is re-modified to have the same timeout or ends up in the 1078 * same array bucket then just return: 1079 */ 1080 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { 1081 /* 1082 * The downside of this optimization is that it can result in 1083 * larger granularity than you would get from adding a new 1084 * timer with this expiry. 1085 */ 1086 long diff = timer->expires - expires; 1087 1088 if (!diff) 1089 return 1; 1090 if (options & MOD_TIMER_REDUCE && diff <= 0) 1091 return 1; 1092 1093 /* 1094 * We lock timer base and calculate the bucket index right 1095 * here. If the timer ends up in the same bucket, then we 1096 * just update the expiry time and avoid the whole 1097 * dequeue/enqueue dance. 1098 */ 1099 base = lock_timer_base(timer, &flags); 1100 /* 1101 * Has @timer been shutdown? This needs to be evaluated 1102 * while holding base lock to prevent a race against the 1103 * shutdown code. 1104 */ 1105 if (!timer->function) 1106 goto out_unlock; 1107 1108 forward_timer_base(base); 1109 1110 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 1111 time_before_eq(timer->expires, expires)) { 1112 ret = 1; 1113 goto out_unlock; 1114 } 1115 1116 clk = base->clk; 1117 idx = calc_wheel_index(expires, clk, &bucket_expiry); 1118 1119 /* 1120 * Retrieve and compare the array index of the pending 1121 * timer. If it matches set the expiry to the new value so a 1122 * subsequent call will exit in the expires check above. 1123 */ 1124 if (idx == timer_get_idx(timer)) { 1125 if (!(options & MOD_TIMER_REDUCE)) 1126 timer->expires = expires; 1127 else if (time_after(timer->expires, expires)) 1128 timer->expires = expires; 1129 ret = 1; 1130 goto out_unlock; 1131 } 1132 } else { 1133 base = lock_timer_base(timer, &flags); 1134 /* 1135 * Has @timer been shutdown? This needs to be evaluated 1136 * while holding base lock to prevent a race against the 1137 * shutdown code. 1138 */ 1139 if (!timer->function) 1140 goto out_unlock; 1141 1142 forward_timer_base(base); 1143 } 1144 1145 ret = detach_if_pending(timer, base, false); 1146 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1147 goto out_unlock; 1148 1149 new_base = get_timer_this_cpu_base(timer->flags); 1150 1151 if (base != new_base) { 1152 /* 1153 * We are trying to schedule the timer on the new base. 1154 * However we can't change timer's base while it is running, 1155 * otherwise timer_delete_sync() can't detect that the timer's 1156 * handler yet has not finished. This also guarantees that the 1157 * timer is serialized wrt itself. 1158 */ 1159 if (likely(base->running_timer != timer)) { 1160 /* See the comment in lock_timer_base() */ 1161 timer->flags |= TIMER_MIGRATING; 1162 1163 raw_spin_unlock(&base->lock); 1164 base = new_base; 1165 raw_spin_lock(&base->lock); 1166 WRITE_ONCE(timer->flags, 1167 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1168 forward_timer_base(base); 1169 } 1170 } 1171 1172 debug_timer_activate(timer); 1173 1174 timer->expires = expires; 1175 /* 1176 * If 'idx' was calculated above and the base time did not advance 1177 * between calculating 'idx' and possibly switching the base, only 1178 * enqueue_timer() is required. Otherwise we need to (re)calculate 1179 * the wheel index via internal_add_timer(). 1180 */ 1181 if (idx != UINT_MAX && clk == base->clk) 1182 enqueue_timer(base, timer, idx, bucket_expiry); 1183 else 1184 internal_add_timer(base, timer); 1185 1186 out_unlock: 1187 raw_spin_unlock_irqrestore(&base->lock, flags); 1188 1189 return ret; 1190 } 1191 1192 /** 1193 * mod_timer_pending - Modify a pending timer's timeout 1194 * @timer: The pending timer to be modified 1195 * @expires: New absolute timeout in jiffies 1196 * 1197 * mod_timer_pending() is the same for pending timers as mod_timer(), but 1198 * will not activate inactive timers. 1199 * 1200 * If @timer->function == NULL then the start operation is silently 1201 * discarded. 1202 * 1203 * Return: 1204 * * %0 - The timer was inactive and not modified or was in 1205 * shutdown state and the operation was discarded 1206 * * %1 - The timer was active and requeued to expire at @expires 1207 */ 1208 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1209 { 1210 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1211 } 1212 EXPORT_SYMBOL(mod_timer_pending); 1213 1214 /** 1215 * mod_timer - Modify a timer's timeout 1216 * @timer: The timer to be modified 1217 * @expires: New absolute timeout in jiffies 1218 * 1219 * mod_timer(timer, expires) is equivalent to: 1220 * 1221 * del_timer(timer); timer->expires = expires; add_timer(timer); 1222 * 1223 * mod_timer() is more efficient than the above open coded sequence. In 1224 * case that the timer is inactive, the del_timer() part is a NOP. The 1225 * timer is in any case activated with the new expiry time @expires. 1226 * 1227 * Note that if there are multiple unserialized concurrent users of the 1228 * same timer, then mod_timer() is the only safe way to modify the timeout, 1229 * since add_timer() cannot modify an already running timer. 1230 * 1231 * If @timer->function == NULL then the start operation is silently 1232 * discarded. In this case the return value is 0 and meaningless. 1233 * 1234 * Return: 1235 * * %0 - The timer was inactive and started or was in shutdown 1236 * state and the operation was discarded 1237 * * %1 - The timer was active and requeued to expire at @expires or 1238 * the timer was active and not modified because @expires did 1239 * not change the effective expiry time 1240 */ 1241 int mod_timer(struct timer_list *timer, unsigned long expires) 1242 { 1243 return __mod_timer(timer, expires, 0); 1244 } 1245 EXPORT_SYMBOL(mod_timer); 1246 1247 /** 1248 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1249 * @timer: The timer to be modified 1250 * @expires: New absolute timeout in jiffies 1251 * 1252 * timer_reduce() is very similar to mod_timer(), except that it will only 1253 * modify an enqueued timer if that would reduce the expiration time. If 1254 * @timer is not enqueued it starts the timer. 1255 * 1256 * If @timer->function == NULL then the start operation is silently 1257 * discarded. 1258 * 1259 * Return: 1260 * * %0 - The timer was inactive and started or was in shutdown 1261 * state and the operation was discarded 1262 * * %1 - The timer was active and requeued to expire at @expires or 1263 * the timer was active and not modified because @expires 1264 * did not change the effective expiry time such that the 1265 * timer would expire earlier than already scheduled 1266 */ 1267 int timer_reduce(struct timer_list *timer, unsigned long expires) 1268 { 1269 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1270 } 1271 EXPORT_SYMBOL(timer_reduce); 1272 1273 /** 1274 * add_timer - Start a timer 1275 * @timer: The timer to be started 1276 * 1277 * Start @timer to expire at @timer->expires in the future. @timer->expires 1278 * is the absolute expiry time measured in 'jiffies'. When the timer expires 1279 * timer->function(timer) will be invoked from soft interrupt context. 1280 * 1281 * The @timer->expires and @timer->function fields must be set prior 1282 * to calling this function. 1283 * 1284 * If @timer->function == NULL then the start operation is silently 1285 * discarded. 1286 * 1287 * If @timer->expires is already in the past @timer will be queued to 1288 * expire at the next timer tick. 1289 * 1290 * This can only operate on an inactive timer. Attempts to invoke this on 1291 * an active timer are rejected with a warning. 1292 */ 1293 void add_timer(struct timer_list *timer) 1294 { 1295 if (WARN_ON_ONCE(timer_pending(timer))) 1296 return; 1297 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1298 } 1299 EXPORT_SYMBOL(add_timer); 1300 1301 /** 1302 * add_timer_local() - Start a timer on the local CPU 1303 * @timer: The timer to be started 1304 * 1305 * Same as add_timer() except that the timer flag TIMER_PINNED is set. 1306 * 1307 * See add_timer() for further details. 1308 */ 1309 void add_timer_local(struct timer_list *timer) 1310 { 1311 if (WARN_ON_ONCE(timer_pending(timer))) 1312 return; 1313 timer->flags |= TIMER_PINNED; 1314 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1315 } 1316 EXPORT_SYMBOL(add_timer_local); 1317 1318 /** 1319 * add_timer_global() - Start a timer without TIMER_PINNED flag set 1320 * @timer: The timer to be started 1321 * 1322 * Same as add_timer() except that the timer flag TIMER_PINNED is unset. 1323 * 1324 * See add_timer() for further details. 1325 */ 1326 void add_timer_global(struct timer_list *timer) 1327 { 1328 if (WARN_ON_ONCE(timer_pending(timer))) 1329 return; 1330 timer->flags &= ~TIMER_PINNED; 1331 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1332 } 1333 EXPORT_SYMBOL(add_timer_global); 1334 1335 /** 1336 * add_timer_on - Start a timer on a particular CPU 1337 * @timer: The timer to be started 1338 * @cpu: The CPU to start it on 1339 * 1340 * Same as add_timer() except that it starts the timer on the given CPU and 1341 * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in 1342 * the next round, add_timer_global() should be used instead as it unsets 1343 * the TIMER_PINNED flag. 1344 * 1345 * See add_timer() for further details. 1346 */ 1347 void add_timer_on(struct timer_list *timer, int cpu) 1348 { 1349 struct timer_base *new_base, *base; 1350 unsigned long flags; 1351 1352 debug_assert_init(timer); 1353 1354 if (WARN_ON_ONCE(timer_pending(timer))) 1355 return; 1356 1357 /* Make sure timer flags have TIMER_PINNED flag set */ 1358 timer->flags |= TIMER_PINNED; 1359 1360 new_base = get_timer_cpu_base(timer->flags, cpu); 1361 1362 /* 1363 * If @timer was on a different CPU, it should be migrated with the 1364 * old base locked to prevent other operations proceeding with the 1365 * wrong base locked. See lock_timer_base(). 1366 */ 1367 base = lock_timer_base(timer, &flags); 1368 /* 1369 * Has @timer been shutdown? This needs to be evaluated while 1370 * holding base lock to prevent a race against the shutdown code. 1371 */ 1372 if (!timer->function) 1373 goto out_unlock; 1374 1375 if (base != new_base) { 1376 timer->flags |= TIMER_MIGRATING; 1377 1378 raw_spin_unlock(&base->lock); 1379 base = new_base; 1380 raw_spin_lock(&base->lock); 1381 WRITE_ONCE(timer->flags, 1382 (timer->flags & ~TIMER_BASEMASK) | cpu); 1383 } 1384 forward_timer_base(base); 1385 1386 debug_timer_activate(timer); 1387 internal_add_timer(base, timer); 1388 out_unlock: 1389 raw_spin_unlock_irqrestore(&base->lock, flags); 1390 } 1391 EXPORT_SYMBOL_GPL(add_timer_on); 1392 1393 /** 1394 * __timer_delete - Internal function: Deactivate a timer 1395 * @timer: The timer to be deactivated 1396 * @shutdown: If true, this indicates that the timer is about to be 1397 * shutdown permanently. 1398 * 1399 * If @shutdown is true then @timer->function is set to NULL under the 1400 * timer base lock which prevents further rearming of the time. In that 1401 * case any attempt to rearm @timer after this function returns will be 1402 * silently ignored. 1403 * 1404 * Return: 1405 * * %0 - The timer was not pending 1406 * * %1 - The timer was pending and deactivated 1407 */ 1408 static int __timer_delete(struct timer_list *timer, bool shutdown) 1409 { 1410 struct timer_base *base; 1411 unsigned long flags; 1412 int ret = 0; 1413 1414 debug_assert_init(timer); 1415 1416 /* 1417 * If @shutdown is set then the lock has to be taken whether the 1418 * timer is pending or not to protect against a concurrent rearm 1419 * which might hit between the lockless pending check and the lock 1420 * acquisition. By taking the lock it is ensured that such a newly 1421 * enqueued timer is dequeued and cannot end up with 1422 * timer->function == NULL in the expiry code. 1423 * 1424 * If timer->function is currently executed, then this makes sure 1425 * that the callback cannot requeue the timer. 1426 */ 1427 if (timer_pending(timer) || shutdown) { 1428 base = lock_timer_base(timer, &flags); 1429 ret = detach_if_pending(timer, base, true); 1430 if (shutdown) 1431 timer->function = NULL; 1432 raw_spin_unlock_irqrestore(&base->lock, flags); 1433 } 1434 1435 return ret; 1436 } 1437 1438 /** 1439 * timer_delete - Deactivate a timer 1440 * @timer: The timer to be deactivated 1441 * 1442 * The function only deactivates a pending timer, but contrary to 1443 * timer_delete_sync() it does not take into account whether the timer's 1444 * callback function is concurrently executed on a different CPU or not. 1445 * It neither prevents rearming of the timer. If @timer can be rearmed 1446 * concurrently then the return value of this function is meaningless. 1447 * 1448 * Return: 1449 * * %0 - The timer was not pending 1450 * * %1 - The timer was pending and deactivated 1451 */ 1452 int timer_delete(struct timer_list *timer) 1453 { 1454 return __timer_delete(timer, false); 1455 } 1456 EXPORT_SYMBOL(timer_delete); 1457 1458 /** 1459 * timer_shutdown - Deactivate a timer and prevent rearming 1460 * @timer: The timer to be deactivated 1461 * 1462 * The function does not wait for an eventually running timer callback on a 1463 * different CPU but it prevents rearming of the timer. Any attempt to arm 1464 * @timer after this function returns will be silently ignored. 1465 * 1466 * This function is useful for teardown code and should only be used when 1467 * timer_shutdown_sync() cannot be invoked due to locking or context constraints. 1468 * 1469 * Return: 1470 * * %0 - The timer was not pending 1471 * * %1 - The timer was pending 1472 */ 1473 int timer_shutdown(struct timer_list *timer) 1474 { 1475 return __timer_delete(timer, true); 1476 } 1477 EXPORT_SYMBOL_GPL(timer_shutdown); 1478 1479 /** 1480 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer 1481 * @timer: Timer to deactivate 1482 * @shutdown: If true, this indicates that the timer is about to be 1483 * shutdown permanently. 1484 * 1485 * If @shutdown is true then @timer->function is set to NULL under the 1486 * timer base lock which prevents further rearming of the timer. Any 1487 * attempt to rearm @timer after this function returns will be silently 1488 * ignored. 1489 * 1490 * This function cannot guarantee that the timer cannot be rearmed 1491 * right after dropping the base lock if @shutdown is false. That 1492 * needs to be prevented by the calling code if necessary. 1493 * 1494 * Return: 1495 * * %0 - The timer was not pending 1496 * * %1 - The timer was pending and deactivated 1497 * * %-1 - The timer callback function is running on a different CPU 1498 */ 1499 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown) 1500 { 1501 struct timer_base *base; 1502 unsigned long flags; 1503 int ret = -1; 1504 1505 debug_assert_init(timer); 1506 1507 base = lock_timer_base(timer, &flags); 1508 1509 if (base->running_timer != timer) 1510 ret = detach_if_pending(timer, base, true); 1511 if (shutdown) 1512 timer->function = NULL; 1513 1514 raw_spin_unlock_irqrestore(&base->lock, flags); 1515 1516 return ret; 1517 } 1518 1519 /** 1520 * try_to_del_timer_sync - Try to deactivate a timer 1521 * @timer: Timer to deactivate 1522 * 1523 * This function tries to deactivate a timer. On success the timer is not 1524 * queued and the timer callback function is not running on any CPU. 1525 * 1526 * This function does not guarantee that the timer cannot be rearmed right 1527 * after dropping the base lock. That needs to be prevented by the calling 1528 * code if necessary. 1529 * 1530 * Return: 1531 * * %0 - The timer was not pending 1532 * * %1 - The timer was pending and deactivated 1533 * * %-1 - The timer callback function is running on a different CPU 1534 */ 1535 int try_to_del_timer_sync(struct timer_list *timer) 1536 { 1537 return __try_to_del_timer_sync(timer, false); 1538 } 1539 EXPORT_SYMBOL(try_to_del_timer_sync); 1540 1541 #ifdef CONFIG_PREEMPT_RT 1542 static __init void timer_base_init_expiry_lock(struct timer_base *base) 1543 { 1544 spin_lock_init(&base->expiry_lock); 1545 } 1546 1547 static inline void timer_base_lock_expiry(struct timer_base *base) 1548 { 1549 spin_lock(&base->expiry_lock); 1550 } 1551 1552 static inline void timer_base_unlock_expiry(struct timer_base *base) 1553 { 1554 spin_unlock(&base->expiry_lock); 1555 } 1556 1557 /* 1558 * The counterpart to del_timer_wait_running(). 1559 * 1560 * If there is a waiter for base->expiry_lock, then it was waiting for the 1561 * timer callback to finish. Drop expiry_lock and reacquire it. That allows 1562 * the waiter to acquire the lock and make progress. 1563 */ 1564 static void timer_sync_wait_running(struct timer_base *base) 1565 { 1566 if (atomic_read(&base->timer_waiters)) { 1567 raw_spin_unlock_irq(&base->lock); 1568 spin_unlock(&base->expiry_lock); 1569 spin_lock(&base->expiry_lock); 1570 raw_spin_lock_irq(&base->lock); 1571 } 1572 } 1573 1574 /* 1575 * This function is called on PREEMPT_RT kernels when the fast path 1576 * deletion of a timer failed because the timer callback function was 1577 * running. 1578 * 1579 * This prevents priority inversion, if the softirq thread on a remote CPU 1580 * got preempted, and it prevents a life lock when the task which tries to 1581 * delete a timer preempted the softirq thread running the timer callback 1582 * function. 1583 */ 1584 static void del_timer_wait_running(struct timer_list *timer) 1585 { 1586 u32 tf; 1587 1588 tf = READ_ONCE(timer->flags); 1589 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) { 1590 struct timer_base *base = get_timer_base(tf); 1591 1592 /* 1593 * Mark the base as contended and grab the expiry lock, 1594 * which is held by the softirq across the timer 1595 * callback. Drop the lock immediately so the softirq can 1596 * expire the next timer. In theory the timer could already 1597 * be running again, but that's more than unlikely and just 1598 * causes another wait loop. 1599 */ 1600 atomic_inc(&base->timer_waiters); 1601 spin_lock_bh(&base->expiry_lock); 1602 atomic_dec(&base->timer_waiters); 1603 spin_unlock_bh(&base->expiry_lock); 1604 } 1605 } 1606 #else 1607 static inline void timer_base_init_expiry_lock(struct timer_base *base) { } 1608 static inline void timer_base_lock_expiry(struct timer_base *base) { } 1609 static inline void timer_base_unlock_expiry(struct timer_base *base) { } 1610 static inline void timer_sync_wait_running(struct timer_base *base) { } 1611 static inline void del_timer_wait_running(struct timer_list *timer) { } 1612 #endif 1613 1614 /** 1615 * __timer_delete_sync - Internal function: Deactivate a timer and wait 1616 * for the handler to finish. 1617 * @timer: The timer to be deactivated 1618 * @shutdown: If true, @timer->function will be set to NULL under the 1619 * timer base lock which prevents rearming of @timer 1620 * 1621 * If @shutdown is not set the timer can be rearmed later. If the timer can 1622 * be rearmed concurrently, i.e. after dropping the base lock then the 1623 * return value is meaningless. 1624 * 1625 * If @shutdown is set then @timer->function is set to NULL under timer 1626 * base lock which prevents rearming of the timer. Any attempt to rearm 1627 * a shutdown timer is silently ignored. 1628 * 1629 * If the timer should be reused after shutdown it has to be initialized 1630 * again. 1631 * 1632 * Return: 1633 * * %0 - The timer was not pending 1634 * * %1 - The timer was pending and deactivated 1635 */ 1636 static int __timer_delete_sync(struct timer_list *timer, bool shutdown) 1637 { 1638 int ret; 1639 1640 #ifdef CONFIG_LOCKDEP 1641 unsigned long flags; 1642 1643 /* 1644 * If lockdep gives a backtrace here, please reference 1645 * the synchronization rules above. 1646 */ 1647 local_irq_save(flags); 1648 lock_map_acquire(&timer->lockdep_map); 1649 lock_map_release(&timer->lockdep_map); 1650 local_irq_restore(flags); 1651 #endif 1652 /* 1653 * don't use it in hardirq context, because it 1654 * could lead to deadlock. 1655 */ 1656 WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE)); 1657 1658 /* 1659 * Must be able to sleep on PREEMPT_RT because of the slowpath in 1660 * del_timer_wait_running(). 1661 */ 1662 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE)) 1663 lockdep_assert_preemption_enabled(); 1664 1665 do { 1666 ret = __try_to_del_timer_sync(timer, shutdown); 1667 1668 if (unlikely(ret < 0)) { 1669 del_timer_wait_running(timer); 1670 cpu_relax(); 1671 } 1672 } while (ret < 0); 1673 1674 return ret; 1675 } 1676 1677 /** 1678 * timer_delete_sync - Deactivate a timer and wait for the handler to finish. 1679 * @timer: The timer to be deactivated 1680 * 1681 * Synchronization rules: Callers must prevent restarting of the timer, 1682 * otherwise this function is meaningless. It must not be called from 1683 * interrupt contexts unless the timer is an irqsafe one. The caller must 1684 * not hold locks which would prevent completion of the timer's callback 1685 * function. The timer's handler must not call add_timer_on(). Upon exit 1686 * the timer is not queued and the handler is not running on any CPU. 1687 * 1688 * For !irqsafe timers, the caller must not hold locks that are held in 1689 * interrupt context. Even if the lock has nothing to do with the timer in 1690 * question. Here's why:: 1691 * 1692 * CPU0 CPU1 1693 * ---- ---- 1694 * <SOFTIRQ> 1695 * call_timer_fn(); 1696 * base->running_timer = mytimer; 1697 * spin_lock_irq(somelock); 1698 * <IRQ> 1699 * spin_lock(somelock); 1700 * timer_delete_sync(mytimer); 1701 * while (base->running_timer == mytimer); 1702 * 1703 * Now timer_delete_sync() will never return and never release somelock. 1704 * The interrupt on the other CPU is waiting to grab somelock but it has 1705 * interrupted the softirq that CPU0 is waiting to finish. 1706 * 1707 * This function cannot guarantee that the timer is not rearmed again by 1708 * some concurrent or preempting code, right after it dropped the base 1709 * lock. If there is the possibility of a concurrent rearm then the return 1710 * value of the function is meaningless. 1711 * 1712 * If such a guarantee is needed, e.g. for teardown situations then use 1713 * timer_shutdown_sync() instead. 1714 * 1715 * Return: 1716 * * %0 - The timer was not pending 1717 * * %1 - The timer was pending and deactivated 1718 */ 1719 int timer_delete_sync(struct timer_list *timer) 1720 { 1721 return __timer_delete_sync(timer, false); 1722 } 1723 EXPORT_SYMBOL(timer_delete_sync); 1724 1725 /** 1726 * timer_shutdown_sync - Shutdown a timer and prevent rearming 1727 * @timer: The timer to be shutdown 1728 * 1729 * When the function returns it is guaranteed that: 1730 * - @timer is not queued 1731 * - The callback function of @timer is not running 1732 * - @timer cannot be enqueued again. Any attempt to rearm 1733 * @timer is silently ignored. 1734 * 1735 * See timer_delete_sync() for synchronization rules. 1736 * 1737 * This function is useful for final teardown of an infrastructure where 1738 * the timer is subject to a circular dependency problem. 1739 * 1740 * A common pattern for this is a timer and a workqueue where the timer can 1741 * schedule work and work can arm the timer. On shutdown the workqueue must 1742 * be destroyed and the timer must be prevented from rearming. Unless the 1743 * code has conditionals like 'if (mything->in_shutdown)' to prevent that 1744 * there is no way to get this correct with timer_delete_sync(). 1745 * 1746 * timer_shutdown_sync() is solving the problem. The correct ordering of 1747 * calls in this case is: 1748 * 1749 * timer_shutdown_sync(&mything->timer); 1750 * workqueue_destroy(&mything->workqueue); 1751 * 1752 * After this 'mything' can be safely freed. 1753 * 1754 * This obviously implies that the timer is not required to be functional 1755 * for the rest of the shutdown operation. 1756 * 1757 * Return: 1758 * * %0 - The timer was not pending 1759 * * %1 - The timer was pending 1760 */ 1761 int timer_shutdown_sync(struct timer_list *timer) 1762 { 1763 return __timer_delete_sync(timer, true); 1764 } 1765 EXPORT_SYMBOL_GPL(timer_shutdown_sync); 1766 1767 static void call_timer_fn(struct timer_list *timer, 1768 void (*fn)(struct timer_list *), 1769 unsigned long baseclk) 1770 { 1771 int count = preempt_count(); 1772 1773 #ifdef CONFIG_LOCKDEP 1774 /* 1775 * It is permissible to free the timer from inside the 1776 * function that is called from it, this we need to take into 1777 * account for lockdep too. To avoid bogus "held lock freed" 1778 * warnings as well as problems when looking into 1779 * timer->lockdep_map, make a copy and use that here. 1780 */ 1781 struct lockdep_map lockdep_map; 1782 1783 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1784 #endif 1785 /* 1786 * Couple the lock chain with the lock chain at 1787 * timer_delete_sync() by acquiring the lock_map around the fn() 1788 * call here and in timer_delete_sync(). 1789 */ 1790 lock_map_acquire(&lockdep_map); 1791 1792 trace_timer_expire_entry(timer, baseclk); 1793 fn(timer); 1794 trace_timer_expire_exit(timer); 1795 1796 lock_map_release(&lockdep_map); 1797 1798 if (count != preempt_count()) { 1799 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", 1800 fn, count, preempt_count()); 1801 /* 1802 * Restore the preempt count. That gives us a decent 1803 * chance to survive and extract information. If the 1804 * callback kept a lock held, bad luck, but not worse 1805 * than the BUG() we had. 1806 */ 1807 preempt_count_set(count); 1808 } 1809 } 1810 1811 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1812 { 1813 /* 1814 * This value is required only for tracing. base->clk was 1815 * incremented directly before expire_timers was called. But expiry 1816 * is related to the old base->clk value. 1817 */ 1818 unsigned long baseclk = base->clk - 1; 1819 1820 while (!hlist_empty(head)) { 1821 struct timer_list *timer; 1822 void (*fn)(struct timer_list *); 1823 1824 timer = hlist_entry(head->first, struct timer_list, entry); 1825 1826 base->running_timer = timer; 1827 detach_timer(timer, true); 1828 1829 fn = timer->function; 1830 1831 if (WARN_ON_ONCE(!fn)) { 1832 /* Should never happen. Emphasis on should! */ 1833 base->running_timer = NULL; 1834 continue; 1835 } 1836 1837 if (timer->flags & TIMER_IRQSAFE) { 1838 raw_spin_unlock(&base->lock); 1839 call_timer_fn(timer, fn, baseclk); 1840 raw_spin_lock(&base->lock); 1841 base->running_timer = NULL; 1842 } else { 1843 raw_spin_unlock_irq(&base->lock); 1844 call_timer_fn(timer, fn, baseclk); 1845 raw_spin_lock_irq(&base->lock); 1846 base->running_timer = NULL; 1847 timer_sync_wait_running(base); 1848 } 1849 } 1850 } 1851 1852 static int collect_expired_timers(struct timer_base *base, 1853 struct hlist_head *heads) 1854 { 1855 unsigned long clk = base->clk = base->next_expiry; 1856 struct hlist_head *vec; 1857 int i, levels = 0; 1858 unsigned int idx; 1859 1860 for (i = 0; i < LVL_DEPTH; i++) { 1861 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1862 1863 if (__test_and_clear_bit(idx, base->pending_map)) { 1864 vec = base->vectors + idx; 1865 hlist_move_list(vec, heads++); 1866 levels++; 1867 } 1868 /* Is it time to look at the next level? */ 1869 if (clk & LVL_CLK_MASK) 1870 break; 1871 /* Shift clock for the next level granularity */ 1872 clk >>= LVL_CLK_SHIFT; 1873 } 1874 return levels; 1875 } 1876 1877 /* 1878 * Find the next pending bucket of a level. Search from level start (@offset) 1879 * + @clk upwards and if nothing there, search from start of the level 1880 * (@offset) up to @offset + clk. 1881 */ 1882 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1883 unsigned clk) 1884 { 1885 unsigned pos, start = offset + clk; 1886 unsigned end = offset + LVL_SIZE; 1887 1888 pos = find_next_bit(base->pending_map, end, start); 1889 if (pos < end) 1890 return pos - start; 1891 1892 pos = find_next_bit(base->pending_map, start, offset); 1893 return pos < start ? pos + LVL_SIZE - start : -1; 1894 } 1895 1896 /* 1897 * Search the first expiring timer in the various clock levels. Caller must 1898 * hold base->lock. 1899 * 1900 * Store next expiry time in base->next_expiry. 1901 */ 1902 static void next_expiry_recalc(struct timer_base *base) 1903 { 1904 unsigned long clk, next, adj; 1905 unsigned lvl, offset = 0; 1906 1907 next = base->clk + NEXT_TIMER_MAX_DELTA; 1908 clk = base->clk; 1909 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1910 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1911 unsigned long lvl_clk = clk & LVL_CLK_MASK; 1912 1913 if (pos >= 0) { 1914 unsigned long tmp = clk + (unsigned long) pos; 1915 1916 tmp <<= LVL_SHIFT(lvl); 1917 if (time_before(tmp, next)) 1918 next = tmp; 1919 1920 /* 1921 * If the next expiration happens before we reach 1922 * the next level, no need to check further. 1923 */ 1924 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) 1925 break; 1926 } 1927 /* 1928 * Clock for the next level. If the current level clock lower 1929 * bits are zero, we look at the next level as is. If not we 1930 * need to advance it by one because that's going to be the 1931 * next expiring bucket in that level. base->clk is the next 1932 * expiring jiffie. So in case of: 1933 * 1934 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1935 * 0 0 0 0 0 0 1936 * 1937 * we have to look at all levels @index 0. With 1938 * 1939 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1940 * 0 0 0 0 0 2 1941 * 1942 * LVL0 has the next expiring bucket @index 2. The upper 1943 * levels have the next expiring bucket @index 1. 1944 * 1945 * In case that the propagation wraps the next level the same 1946 * rules apply: 1947 * 1948 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1949 * 0 0 0 0 F 2 1950 * 1951 * So after looking at LVL0 we get: 1952 * 1953 * LVL5 LVL4 LVL3 LVL2 LVL1 1954 * 0 0 0 1 0 1955 * 1956 * So no propagation from LVL1 to LVL2 because that happened 1957 * with the add already, but then we need to propagate further 1958 * from LVL2 to LVL3. 1959 * 1960 * So the simple check whether the lower bits of the current 1961 * level are 0 or not is sufficient for all cases. 1962 */ 1963 adj = lvl_clk ? 1 : 0; 1964 clk >>= LVL_CLK_SHIFT; 1965 clk += adj; 1966 } 1967 1968 base->next_expiry = next; 1969 base->next_expiry_recalc = false; 1970 base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA); 1971 } 1972 1973 #ifdef CONFIG_NO_HZ_COMMON 1974 /* 1975 * Check, if the next hrtimer event is before the next timer wheel 1976 * event: 1977 */ 1978 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1979 { 1980 u64 nextevt = hrtimer_get_next_event(); 1981 1982 /* 1983 * If high resolution timers are enabled 1984 * hrtimer_get_next_event() returns KTIME_MAX. 1985 */ 1986 if (expires <= nextevt) 1987 return expires; 1988 1989 /* 1990 * If the next timer is already expired, return the tick base 1991 * time so the tick is fired immediately. 1992 */ 1993 if (nextevt <= basem) 1994 return basem; 1995 1996 /* 1997 * Round up to the next jiffie. High resolution timers are 1998 * off, so the hrtimers are expired in the tick and we need to 1999 * make sure that this tick really expires the timer to avoid 2000 * a ping pong of the nohz stop code. 2001 * 2002 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 2003 */ 2004 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 2005 } 2006 2007 static unsigned long next_timer_interrupt(struct timer_base *base, 2008 unsigned long basej) 2009 { 2010 if (base->next_expiry_recalc) 2011 next_expiry_recalc(base); 2012 2013 /* 2014 * Move next_expiry for the empty base into the future to prevent an 2015 * unnecessary raise of the timer softirq when the next_expiry value 2016 * will be reached even if there is no timer pending. 2017 * 2018 * This update is also required to make timer_base::next_expiry values 2019 * easy comparable to find out which base holds the first pending timer. 2020 */ 2021 if (!base->timers_pending) 2022 base->next_expiry = basej + NEXT_TIMER_MAX_DELTA; 2023 2024 return base->next_expiry; 2025 } 2026 2027 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem, 2028 struct timer_base *base_local, 2029 struct timer_base *base_global, 2030 struct timer_events *tevt) 2031 { 2032 unsigned long nextevt, nextevt_local, nextevt_global; 2033 bool local_first; 2034 2035 nextevt_local = next_timer_interrupt(base_local, basej); 2036 nextevt_global = next_timer_interrupt(base_global, basej); 2037 2038 local_first = time_before_eq(nextevt_local, nextevt_global); 2039 2040 nextevt = local_first ? nextevt_local : nextevt_global; 2041 2042 /* 2043 * If the @nextevt is at max. one tick away, use @nextevt and store 2044 * it in the local expiry value. The next global event is irrelevant in 2045 * this case and can be left as KTIME_MAX. 2046 */ 2047 if (time_before_eq(nextevt, basej + 1)) { 2048 /* If we missed a tick already, force 0 delta */ 2049 if (time_before(nextevt, basej)) 2050 nextevt = basej; 2051 tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC; 2052 2053 /* 2054 * This is required for the remote check only but it doesn't 2055 * hurt, when it is done for both call sites: 2056 * 2057 * * The remote callers will only take care of the global timers 2058 * as local timers will be handled by CPU itself. When not 2059 * updating tevt->global with the already missed first global 2060 * timer, it is possible that it will be missed completely. 2061 * 2062 * * The local callers will ignore the tevt->global anyway, when 2063 * nextevt is max. one tick away. 2064 */ 2065 if (!local_first) 2066 tevt->global = tevt->local; 2067 return nextevt; 2068 } 2069 2070 /* 2071 * Update tevt.* values: 2072 * 2073 * If the local queue expires first, then the global event can be 2074 * ignored. If the global queue is empty, nothing to do either. 2075 */ 2076 if (!local_first && base_global->timers_pending) 2077 tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC; 2078 2079 if (base_local->timers_pending) 2080 tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC; 2081 2082 return nextevt; 2083 } 2084 2085 # ifdef CONFIG_SMP 2086 /** 2087 * fetch_next_timer_interrupt_remote() - Store next timers into @tevt 2088 * @basej: base time jiffies 2089 * @basem: base time clock monotonic 2090 * @tevt: Pointer to the storage for the expiry values 2091 * @cpu: Remote CPU 2092 * 2093 * Stores the next pending local and global timer expiry values in the 2094 * struct pointed to by @tevt. If a queue is empty the corresponding 2095 * field is set to KTIME_MAX. If local event expires before global 2096 * event, global event is set to KTIME_MAX as well. 2097 * 2098 * Caller needs to make sure timer base locks are held (use 2099 * timer_lock_remote_bases() for this purpose). 2100 */ 2101 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem, 2102 struct timer_events *tevt, 2103 unsigned int cpu) 2104 { 2105 struct timer_base *base_local, *base_global; 2106 2107 /* Preset local / global events */ 2108 tevt->local = tevt->global = KTIME_MAX; 2109 2110 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2111 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2112 2113 lockdep_assert_held(&base_local->lock); 2114 lockdep_assert_held(&base_global->lock); 2115 2116 fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt); 2117 } 2118 2119 /** 2120 * timer_unlock_remote_bases - unlock timer bases of cpu 2121 * @cpu: Remote CPU 2122 * 2123 * Unlocks the remote timer bases. 2124 */ 2125 void timer_unlock_remote_bases(unsigned int cpu) 2126 __releases(timer_bases[BASE_LOCAL]->lock) 2127 __releases(timer_bases[BASE_GLOBAL]->lock) 2128 { 2129 struct timer_base *base_local, *base_global; 2130 2131 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2132 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2133 2134 raw_spin_unlock(&base_global->lock); 2135 raw_spin_unlock(&base_local->lock); 2136 } 2137 2138 /** 2139 * timer_lock_remote_bases - lock timer bases of cpu 2140 * @cpu: Remote CPU 2141 * 2142 * Locks the remote timer bases. 2143 */ 2144 void timer_lock_remote_bases(unsigned int cpu) 2145 __acquires(timer_bases[BASE_LOCAL]->lock) 2146 __acquires(timer_bases[BASE_GLOBAL]->lock) 2147 { 2148 struct timer_base *base_local, *base_global; 2149 2150 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2151 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2152 2153 lockdep_assert_irqs_disabled(); 2154 2155 raw_spin_lock(&base_local->lock); 2156 raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); 2157 } 2158 2159 /** 2160 * timer_base_is_idle() - Return whether timer base is set idle 2161 * 2162 * Returns value of local timer base is_idle value. 2163 */ 2164 bool timer_base_is_idle(void) 2165 { 2166 return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle); 2167 } 2168 2169 static void __run_timer_base(struct timer_base *base); 2170 2171 /** 2172 * timer_expire_remote() - expire global timers of cpu 2173 * @cpu: Remote CPU 2174 * 2175 * Expire timers of global base of remote CPU. 2176 */ 2177 void timer_expire_remote(unsigned int cpu) 2178 { 2179 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2180 2181 __run_timer_base(base); 2182 } 2183 2184 static void timer_use_tmigr(unsigned long basej, u64 basem, 2185 unsigned long *nextevt, bool *tick_stop_path, 2186 bool timer_base_idle, struct timer_events *tevt) 2187 { 2188 u64 next_tmigr; 2189 2190 if (timer_base_idle) 2191 next_tmigr = tmigr_cpu_new_timer(tevt->global); 2192 else if (tick_stop_path) 2193 next_tmigr = tmigr_cpu_deactivate(tevt->global); 2194 else 2195 next_tmigr = tmigr_quick_check(tevt->global); 2196 2197 /* 2198 * If the CPU is the last going idle in timer migration hierarchy, make 2199 * sure the CPU will wake up in time to handle remote timers. 2200 * next_tmigr == KTIME_MAX if other CPUs are still active. 2201 */ 2202 if (next_tmigr < tevt->local) { 2203 u64 tmp; 2204 2205 /* If we missed a tick already, force 0 delta */ 2206 if (next_tmigr < basem) 2207 next_tmigr = basem; 2208 2209 tmp = div_u64(next_tmigr - basem, TICK_NSEC); 2210 2211 *nextevt = basej + (unsigned long)tmp; 2212 tevt->local = next_tmigr; 2213 } 2214 } 2215 # else 2216 static void timer_use_tmigr(unsigned long basej, u64 basem, 2217 unsigned long *nextevt, bool *tick_stop_path, 2218 bool timer_base_idle, struct timer_events *tevt) 2219 { 2220 /* 2221 * Make sure first event is written into tevt->local to not miss a 2222 * timer on !SMP systems. 2223 */ 2224 tevt->local = min_t(u64, tevt->local, tevt->global); 2225 } 2226 # endif /* CONFIG_SMP */ 2227 2228 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem, 2229 bool *idle) 2230 { 2231 struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX }; 2232 struct timer_base *base_local, *base_global; 2233 unsigned long nextevt; 2234 bool idle_is_possible; 2235 2236 /* 2237 * When the CPU is offline, the tick is cancelled and nothing is supposed 2238 * to try to stop it. 2239 */ 2240 if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) { 2241 if (idle) 2242 *idle = true; 2243 return tevt.local; 2244 } 2245 2246 base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]); 2247 base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]); 2248 2249 raw_spin_lock(&base_local->lock); 2250 raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); 2251 2252 nextevt = fetch_next_timer_interrupt(basej, basem, base_local, 2253 base_global, &tevt); 2254 2255 /* 2256 * If the next event is only one jiffie ahead there is no need to call 2257 * timer migration hierarchy related functions. The value for the next 2258 * global timer in @tevt struct equals then KTIME_MAX. This is also 2259 * true, when the timer base is idle. 2260 * 2261 * The proper timer migration hierarchy function depends on the callsite 2262 * and whether timer base is idle or not. @nextevt will be updated when 2263 * this CPU needs to handle the first timer migration hierarchy 2264 * event. See timer_use_tmigr() for detailed information. 2265 */ 2266 idle_is_possible = time_after(nextevt, basej + 1); 2267 if (idle_is_possible) 2268 timer_use_tmigr(basej, basem, &nextevt, idle, 2269 base_local->is_idle, &tevt); 2270 2271 /* 2272 * We have a fresh next event. Check whether we can forward the 2273 * base. 2274 */ 2275 __forward_timer_base(base_local, basej); 2276 __forward_timer_base(base_global, basej); 2277 2278 /* 2279 * Set base->is_idle only when caller is timer_base_try_to_set_idle() 2280 */ 2281 if (idle) { 2282 /* 2283 * Bases are idle if the next event is more than a tick 2284 * away. Caution: @nextevt could have changed by enqueueing a 2285 * global timer into timer migration hierarchy. Therefore a new 2286 * check is required here. 2287 * 2288 * If the base is marked idle then any timer add operation must 2289 * forward the base clk itself to keep granularity small. This 2290 * idle logic is only maintained for the BASE_LOCAL and 2291 * BASE_GLOBAL base, deferrable timers may still see large 2292 * granularity skew (by design). 2293 */ 2294 if (!base_local->is_idle && time_after(nextevt, basej + 1)) { 2295 base_local->is_idle = true; 2296 /* 2297 * Global timers queued locally while running in a task 2298 * in nohz_full mode need a self-IPI to kick reprogramming 2299 * in IRQ tail. 2300 */ 2301 if (tick_nohz_full_cpu(base_local->cpu)) 2302 base_global->is_idle = true; 2303 trace_timer_base_idle(true, base_local->cpu); 2304 } 2305 *idle = base_local->is_idle; 2306 2307 /* 2308 * When timer base is not set idle, undo the effect of 2309 * tmigr_cpu_deactivate() to prevent inconsistent states - active 2310 * timer base but inactive timer migration hierarchy. 2311 * 2312 * When timer base was already marked idle, nothing will be 2313 * changed here. 2314 */ 2315 if (!base_local->is_idle && idle_is_possible) 2316 tmigr_cpu_activate(); 2317 } 2318 2319 raw_spin_unlock(&base_global->lock); 2320 raw_spin_unlock(&base_local->lock); 2321 2322 return cmp_next_hrtimer_event(basem, tevt.local); 2323 } 2324 2325 /** 2326 * get_next_timer_interrupt() - return the time (clock mono) of the next timer 2327 * @basej: base time jiffies 2328 * @basem: base time clock monotonic 2329 * 2330 * Returns the tick aligned clock monotonic time of the next pending timer or 2331 * KTIME_MAX if no timer is pending. If timer of global base was queued into 2332 * timer migration hierarchy, first global timer is not taken into account. If 2333 * it was the last CPU of timer migration hierarchy going idle, first global 2334 * event is taken into account. 2335 */ 2336 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 2337 { 2338 return __get_next_timer_interrupt(basej, basem, NULL); 2339 } 2340 2341 /** 2342 * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases 2343 * @basej: base time jiffies 2344 * @basem: base time clock monotonic 2345 * @idle: pointer to store the value of timer_base->is_idle on return; 2346 * *idle contains the information whether tick was already stopped 2347 * 2348 * Returns the tick aligned clock monotonic time of the next pending timer or 2349 * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is 2350 * returned as well. 2351 */ 2352 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle) 2353 { 2354 if (*idle) 2355 return KTIME_MAX; 2356 2357 return __get_next_timer_interrupt(basej, basem, idle); 2358 } 2359 2360 /** 2361 * timer_clear_idle - Clear the idle state of the timer base 2362 * 2363 * Called with interrupts disabled 2364 */ 2365 void timer_clear_idle(void) 2366 { 2367 /* 2368 * We do this unlocked. The worst outcome is a remote pinned timer 2369 * enqueue sending a pointless IPI, but taking the lock would just 2370 * make the window for sending the IPI a few instructions smaller 2371 * for the cost of taking the lock in the exit from idle 2372 * path. Required for BASE_LOCAL only. 2373 */ 2374 __this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false); 2375 if (tick_nohz_full_cpu(smp_processor_id())) 2376 __this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false); 2377 trace_timer_base_idle(false, smp_processor_id()); 2378 2379 /* Activate without holding the timer_base->lock */ 2380 tmigr_cpu_activate(); 2381 } 2382 #endif 2383 2384 /** 2385 * __run_timers - run all expired timers (if any) on this CPU. 2386 * @base: the timer vector to be processed. 2387 */ 2388 static inline void __run_timers(struct timer_base *base) 2389 { 2390 struct hlist_head heads[LVL_DEPTH]; 2391 int levels; 2392 2393 lockdep_assert_held(&base->lock); 2394 2395 if (base->running_timer) 2396 return; 2397 2398 while (time_after_eq(jiffies, base->clk) && 2399 time_after_eq(jiffies, base->next_expiry)) { 2400 levels = collect_expired_timers(base, heads); 2401 /* 2402 * The two possible reasons for not finding any expired 2403 * timer at this clk are that all matching timers have been 2404 * dequeued or no timer has been queued since 2405 * base::next_expiry was set to base::clk + 2406 * NEXT_TIMER_MAX_DELTA. 2407 */ 2408 WARN_ON_ONCE(!levels && !base->next_expiry_recalc 2409 && base->timers_pending); 2410 /* 2411 * While executing timers, base->clk is set 1 offset ahead of 2412 * jiffies to avoid endless requeuing to current jiffies. 2413 */ 2414 base->clk++; 2415 next_expiry_recalc(base); 2416 2417 while (levels--) 2418 expire_timers(base, heads + levels); 2419 } 2420 } 2421 2422 static void __run_timer_base(struct timer_base *base) 2423 { 2424 if (time_before(jiffies, base->next_expiry)) 2425 return; 2426 2427 timer_base_lock_expiry(base); 2428 raw_spin_lock_irq(&base->lock); 2429 __run_timers(base); 2430 raw_spin_unlock_irq(&base->lock); 2431 timer_base_unlock_expiry(base); 2432 } 2433 2434 static void run_timer_base(int index) 2435 { 2436 struct timer_base *base = this_cpu_ptr(&timer_bases[index]); 2437 2438 __run_timer_base(base); 2439 } 2440 2441 /* 2442 * This function runs timers and the timer-tq in bottom half context. 2443 */ 2444 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 2445 { 2446 run_timer_base(BASE_LOCAL); 2447 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) { 2448 run_timer_base(BASE_GLOBAL); 2449 run_timer_base(BASE_DEF); 2450 2451 if (is_timers_nohz_active()) 2452 tmigr_handle_remote(); 2453 } 2454 } 2455 2456 /* 2457 * Called by the local, per-CPU timer interrupt on SMP. 2458 */ 2459 static void run_local_timers(void) 2460 { 2461 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]); 2462 2463 hrtimer_run_queues(); 2464 2465 for (int i = 0; i < NR_BASES; i++, base++) { 2466 /* Raise the softirq only if required. */ 2467 if (time_after_eq(jiffies, base->next_expiry) || 2468 (i == BASE_DEF && tmigr_requires_handle_remote())) { 2469 raise_softirq(TIMER_SOFTIRQ); 2470 return; 2471 } 2472 } 2473 } 2474 2475 /* 2476 * Called from the timer interrupt handler to charge one tick to the current 2477 * process. user_tick is 1 if the tick is user time, 0 for system. 2478 */ 2479 void update_process_times(int user_tick) 2480 { 2481 struct task_struct *p = current; 2482 2483 /* Note: this timer irq context must be accounted for as well. */ 2484 account_process_tick(p, user_tick); 2485 run_local_timers(); 2486 rcu_sched_clock_irq(user_tick); 2487 #ifdef CONFIG_IRQ_WORK 2488 if (in_irq()) 2489 irq_work_tick(); 2490 #endif 2491 scheduler_tick(); 2492 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2493 run_posix_cpu_timers(); 2494 } 2495 2496 /* 2497 * Since schedule_timeout()'s timer is defined on the stack, it must store 2498 * the target task on the stack as well. 2499 */ 2500 struct process_timer { 2501 struct timer_list timer; 2502 struct task_struct *task; 2503 }; 2504 2505 static void process_timeout(struct timer_list *t) 2506 { 2507 struct process_timer *timeout = from_timer(timeout, t, timer); 2508 2509 wake_up_process(timeout->task); 2510 } 2511 2512 /** 2513 * schedule_timeout - sleep until timeout 2514 * @timeout: timeout value in jiffies 2515 * 2516 * Make the current task sleep until @timeout jiffies have elapsed. 2517 * The function behavior depends on the current task state 2518 * (see also set_current_state() description): 2519 * 2520 * %TASK_RUNNING - the scheduler is called, but the task does not sleep 2521 * at all. That happens because sched_submit_work() does nothing for 2522 * tasks in %TASK_RUNNING state. 2523 * 2524 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 2525 * pass before the routine returns unless the current task is explicitly 2526 * woken up, (e.g. by wake_up_process()). 2527 * 2528 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2529 * delivered to the current task or the current task is explicitly woken 2530 * up. 2531 * 2532 * The current task state is guaranteed to be %TASK_RUNNING when this 2533 * routine returns. 2534 * 2535 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 2536 * the CPU away without a bound on the timeout. In this case the return 2537 * value will be %MAX_SCHEDULE_TIMEOUT. 2538 * 2539 * Returns 0 when the timer has expired otherwise the remaining time in 2540 * jiffies will be returned. In all cases the return value is guaranteed 2541 * to be non-negative. 2542 */ 2543 signed long __sched schedule_timeout(signed long timeout) 2544 { 2545 struct process_timer timer; 2546 unsigned long expire; 2547 2548 switch (timeout) 2549 { 2550 case MAX_SCHEDULE_TIMEOUT: 2551 /* 2552 * These two special cases are useful to be comfortable 2553 * in the caller. Nothing more. We could take 2554 * MAX_SCHEDULE_TIMEOUT from one of the negative value 2555 * but I' d like to return a valid offset (>=0) to allow 2556 * the caller to do everything it want with the retval. 2557 */ 2558 schedule(); 2559 goto out; 2560 default: 2561 /* 2562 * Another bit of PARANOID. Note that the retval will be 2563 * 0 since no piece of kernel is supposed to do a check 2564 * for a negative retval of schedule_timeout() (since it 2565 * should never happens anyway). You just have the printk() 2566 * that will tell you if something is gone wrong and where. 2567 */ 2568 if (timeout < 0) { 2569 printk(KERN_ERR "schedule_timeout: wrong timeout " 2570 "value %lx\n", timeout); 2571 dump_stack(); 2572 __set_current_state(TASK_RUNNING); 2573 goto out; 2574 } 2575 } 2576 2577 expire = timeout + jiffies; 2578 2579 timer.task = current; 2580 timer_setup_on_stack(&timer.timer, process_timeout, 0); 2581 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); 2582 schedule(); 2583 del_timer_sync(&timer.timer); 2584 2585 /* Remove the timer from the object tracker */ 2586 destroy_timer_on_stack(&timer.timer); 2587 2588 timeout = expire - jiffies; 2589 2590 out: 2591 return timeout < 0 ? 0 : timeout; 2592 } 2593 EXPORT_SYMBOL(schedule_timeout); 2594 2595 /* 2596 * We can use __set_current_state() here because schedule_timeout() calls 2597 * schedule() unconditionally. 2598 */ 2599 signed long __sched schedule_timeout_interruptible(signed long timeout) 2600 { 2601 __set_current_state(TASK_INTERRUPTIBLE); 2602 return schedule_timeout(timeout); 2603 } 2604 EXPORT_SYMBOL(schedule_timeout_interruptible); 2605 2606 signed long __sched schedule_timeout_killable(signed long timeout) 2607 { 2608 __set_current_state(TASK_KILLABLE); 2609 return schedule_timeout(timeout); 2610 } 2611 EXPORT_SYMBOL(schedule_timeout_killable); 2612 2613 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 2614 { 2615 __set_current_state(TASK_UNINTERRUPTIBLE); 2616 return schedule_timeout(timeout); 2617 } 2618 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 2619 2620 /* 2621 * Like schedule_timeout_uninterruptible(), except this task will not contribute 2622 * to load average. 2623 */ 2624 signed long __sched schedule_timeout_idle(signed long timeout) 2625 { 2626 __set_current_state(TASK_IDLE); 2627 return schedule_timeout(timeout); 2628 } 2629 EXPORT_SYMBOL(schedule_timeout_idle); 2630 2631 #ifdef CONFIG_HOTPLUG_CPU 2632 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 2633 { 2634 struct timer_list *timer; 2635 int cpu = new_base->cpu; 2636 2637 while (!hlist_empty(head)) { 2638 timer = hlist_entry(head->first, struct timer_list, entry); 2639 detach_timer(timer, false); 2640 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 2641 internal_add_timer(new_base, timer); 2642 } 2643 } 2644 2645 int timers_prepare_cpu(unsigned int cpu) 2646 { 2647 struct timer_base *base; 2648 int b; 2649 2650 for (b = 0; b < NR_BASES; b++) { 2651 base = per_cpu_ptr(&timer_bases[b], cpu); 2652 base->clk = jiffies; 2653 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2654 base->next_expiry_recalc = false; 2655 base->timers_pending = false; 2656 base->is_idle = false; 2657 } 2658 return 0; 2659 } 2660 2661 int timers_dead_cpu(unsigned int cpu) 2662 { 2663 struct timer_base *old_base; 2664 struct timer_base *new_base; 2665 int b, i; 2666 2667 for (b = 0; b < NR_BASES; b++) { 2668 old_base = per_cpu_ptr(&timer_bases[b], cpu); 2669 new_base = get_cpu_ptr(&timer_bases[b]); 2670 /* 2671 * The caller is globally serialized and nobody else 2672 * takes two locks at once, deadlock is not possible. 2673 */ 2674 raw_spin_lock_irq(&new_base->lock); 2675 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2676 2677 /* 2678 * The current CPUs base clock might be stale. Update it 2679 * before moving the timers over. 2680 */ 2681 forward_timer_base(new_base); 2682 2683 WARN_ON_ONCE(old_base->running_timer); 2684 old_base->running_timer = NULL; 2685 2686 for (i = 0; i < WHEEL_SIZE; i++) 2687 migrate_timer_list(new_base, old_base->vectors + i); 2688 2689 raw_spin_unlock(&old_base->lock); 2690 raw_spin_unlock_irq(&new_base->lock); 2691 put_cpu_ptr(&timer_bases); 2692 } 2693 return 0; 2694 } 2695 2696 #endif /* CONFIG_HOTPLUG_CPU */ 2697 2698 static void __init init_timer_cpu(int cpu) 2699 { 2700 struct timer_base *base; 2701 int i; 2702 2703 for (i = 0; i < NR_BASES; i++) { 2704 base = per_cpu_ptr(&timer_bases[i], cpu); 2705 base->cpu = cpu; 2706 raw_spin_lock_init(&base->lock); 2707 base->clk = jiffies; 2708 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2709 timer_base_init_expiry_lock(base); 2710 } 2711 } 2712 2713 static void __init init_timer_cpus(void) 2714 { 2715 int cpu; 2716 2717 for_each_possible_cpu(cpu) 2718 init_timer_cpu(cpu); 2719 } 2720 2721 void __init init_timers(void) 2722 { 2723 init_timer_cpus(); 2724 posix_cputimers_init_work(); 2725 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 2726 } 2727 2728 /** 2729 * msleep - sleep safely even with waitqueue interruptions 2730 * @msecs: Time in milliseconds to sleep for 2731 */ 2732 void msleep(unsigned int msecs) 2733 { 2734 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2735 2736 while (timeout) 2737 timeout = schedule_timeout_uninterruptible(timeout); 2738 } 2739 2740 EXPORT_SYMBOL(msleep); 2741 2742 /** 2743 * msleep_interruptible - sleep waiting for signals 2744 * @msecs: Time in milliseconds to sleep for 2745 */ 2746 unsigned long msleep_interruptible(unsigned int msecs) 2747 { 2748 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2749 2750 while (timeout && !signal_pending(current)) 2751 timeout = schedule_timeout_interruptible(timeout); 2752 return jiffies_to_msecs(timeout); 2753 } 2754 2755 EXPORT_SYMBOL(msleep_interruptible); 2756 2757 /** 2758 * usleep_range_state - Sleep for an approximate time in a given state 2759 * @min: Minimum time in usecs to sleep 2760 * @max: Maximum time in usecs to sleep 2761 * @state: State of the current task that will be while sleeping 2762 * 2763 * In non-atomic context where the exact wakeup time is flexible, use 2764 * usleep_range_state() instead of udelay(). The sleep improves responsiveness 2765 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 2766 * power usage by allowing hrtimers to take advantage of an already- 2767 * scheduled interrupt instead of scheduling a new one just for this sleep. 2768 */ 2769 void __sched usleep_range_state(unsigned long min, unsigned long max, 2770 unsigned int state) 2771 { 2772 ktime_t exp = ktime_add_us(ktime_get(), min); 2773 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 2774 2775 for (;;) { 2776 __set_current_state(state); 2777 /* Do not return before the requested sleep time has elapsed */ 2778 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 2779 break; 2780 } 2781 } 2782 EXPORT_SYMBOL(usleep_range_state); 2783