xref: /linux/kernel/time/timer.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 #include <linux/sysctl.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/div64.h>
52 #include <asm/timex.h>
53 #include <asm/io.h>
54 
55 #include "tick-internal.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/timer.h>
59 
60 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
61 
62 EXPORT_SYMBOL(jiffies_64);
63 
64 /*
65  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
66  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
67  * level has a different granularity.
68  *
69  * The level granularity is:		LVL_CLK_DIV ^ lvl
70  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
71  *
72  * The array level of a newly armed timer depends on the relative expiry
73  * time. The farther the expiry time is away the higher the array level and
74  * therefor the granularity becomes.
75  *
76  * Contrary to the original timer wheel implementation, which aims for 'exact'
77  * expiry of the timers, this implementation removes the need for recascading
78  * the timers into the lower array levels. The previous 'classic' timer wheel
79  * implementation of the kernel already violated the 'exact' expiry by adding
80  * slack to the expiry time to provide batched expiration. The granularity
81  * levels provide implicit batching.
82  *
83  * This is an optimization of the original timer wheel implementation for the
84  * majority of the timer wheel use cases: timeouts. The vast majority of
85  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
86  * the timeout expires it indicates that normal operation is disturbed, so it
87  * does not matter much whether the timeout comes with a slight delay.
88  *
89  * The only exception to this are networking timers with a small expiry
90  * time. They rely on the granularity. Those fit into the first wheel level,
91  * which has HZ granularity.
92  *
93  * We don't have cascading anymore. timers with a expiry time above the
94  * capacity of the last wheel level are force expired at the maximum timeout
95  * value of the last wheel level. From data sampling we know that the maximum
96  * value observed is 5 days (network connection tracking), so this should not
97  * be an issue.
98  *
99  * The currently chosen array constants values are a good compromise between
100  * array size and granularity.
101  *
102  * This results in the following granularity and range levels:
103  *
104  * HZ 1000 steps
105  * Level Offset  Granularity            Range
106  *  0      0         1 ms                0 ms -         63 ms
107  *  1     64         8 ms               64 ms -        511 ms
108  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
109  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
110  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
111  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
112  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
113  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
114  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
115  *
116  * HZ  300
117  * Level Offset  Granularity            Range
118  *  0	   0         3 ms                0 ms -        210 ms
119  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
120  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
121  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
122  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
123  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
124  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
125  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
126  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
127  *
128  * HZ  250
129  * Level Offset  Granularity            Range
130  *  0	   0         4 ms                0 ms -        255 ms
131  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
132  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
133  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
134  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
135  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
136  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
137  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
138  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
139  *
140  * HZ  100
141  * Level Offset  Granularity            Range
142  *  0	   0         10 ms               0 ms -        630 ms
143  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
144  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
145  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
146  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
147  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
148  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
149  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
150  */
151 
152 /* Clock divisor for the next level */
153 #define LVL_CLK_SHIFT	3
154 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
155 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
156 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
157 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
158 
159 /*
160  * The time start value for each level to select the bucket at enqueue
161  * time. We start from the last possible delta of the previous level
162  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
163  */
164 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
165 
166 /* Size of each clock level */
167 #define LVL_BITS	6
168 #define LVL_SIZE	(1UL << LVL_BITS)
169 #define LVL_MASK	(LVL_SIZE - 1)
170 #define LVL_OFFS(n)	((n) * LVL_SIZE)
171 
172 /* Level depth */
173 #if HZ > 100
174 # define LVL_DEPTH	9
175 # else
176 # define LVL_DEPTH	8
177 #endif
178 
179 /* The cutoff (max. capacity of the wheel) */
180 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
181 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
182 
183 /*
184  * The resulting wheel size. If NOHZ is configured we allocate two
185  * wheels so we have a separate storage for the deferrable timers.
186  */
187 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
188 
189 #ifdef CONFIG_NO_HZ_COMMON
190 # define NR_BASES	2
191 # define BASE_STD	0
192 # define BASE_DEF	1
193 #else
194 # define NR_BASES	1
195 # define BASE_STD	0
196 # define BASE_DEF	0
197 #endif
198 
199 struct timer_base {
200 	raw_spinlock_t		lock;
201 	struct timer_list	*running_timer;
202 #ifdef CONFIG_PREEMPT_RT
203 	spinlock_t		expiry_lock;
204 	atomic_t		timer_waiters;
205 #endif
206 	unsigned long		clk;
207 	unsigned long		next_expiry;
208 	unsigned int		cpu;
209 	bool			next_expiry_recalc;
210 	bool			is_idle;
211 	bool			timers_pending;
212 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
213 	struct hlist_head	vectors[WHEEL_SIZE];
214 } ____cacheline_aligned;
215 
216 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
217 
218 #ifdef CONFIG_NO_HZ_COMMON
219 
220 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
221 static DEFINE_MUTEX(timer_keys_mutex);
222 
223 static void timer_update_keys(struct work_struct *work);
224 static DECLARE_WORK(timer_update_work, timer_update_keys);
225 
226 #ifdef CONFIG_SMP
227 static unsigned int sysctl_timer_migration = 1;
228 
229 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
230 
231 static void timers_update_migration(void)
232 {
233 	if (sysctl_timer_migration && tick_nohz_active)
234 		static_branch_enable(&timers_migration_enabled);
235 	else
236 		static_branch_disable(&timers_migration_enabled);
237 }
238 
239 #ifdef CONFIG_SYSCTL
240 static int timer_migration_handler(struct ctl_table *table, int write,
241 			    void *buffer, size_t *lenp, loff_t *ppos)
242 {
243 	int ret;
244 
245 	mutex_lock(&timer_keys_mutex);
246 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
247 	if (!ret && write)
248 		timers_update_migration();
249 	mutex_unlock(&timer_keys_mutex);
250 	return ret;
251 }
252 
253 static struct ctl_table timer_sysctl[] = {
254 	{
255 		.procname	= "timer_migration",
256 		.data		= &sysctl_timer_migration,
257 		.maxlen		= sizeof(unsigned int),
258 		.mode		= 0644,
259 		.proc_handler	= timer_migration_handler,
260 		.extra1		= SYSCTL_ZERO,
261 		.extra2		= SYSCTL_ONE,
262 	},
263 	{}
264 };
265 
266 static int __init timer_sysctl_init(void)
267 {
268 	register_sysctl("kernel", timer_sysctl);
269 	return 0;
270 }
271 device_initcall(timer_sysctl_init);
272 #endif /* CONFIG_SYSCTL */
273 #else /* CONFIG_SMP */
274 static inline void timers_update_migration(void) { }
275 #endif /* !CONFIG_SMP */
276 
277 static void timer_update_keys(struct work_struct *work)
278 {
279 	mutex_lock(&timer_keys_mutex);
280 	timers_update_migration();
281 	static_branch_enable(&timers_nohz_active);
282 	mutex_unlock(&timer_keys_mutex);
283 }
284 
285 void timers_update_nohz(void)
286 {
287 	schedule_work(&timer_update_work);
288 }
289 
290 static inline bool is_timers_nohz_active(void)
291 {
292 	return static_branch_unlikely(&timers_nohz_active);
293 }
294 #else
295 static inline bool is_timers_nohz_active(void) { return false; }
296 #endif /* NO_HZ_COMMON */
297 
298 static unsigned long round_jiffies_common(unsigned long j, int cpu,
299 		bool force_up)
300 {
301 	int rem;
302 	unsigned long original = j;
303 
304 	/*
305 	 * We don't want all cpus firing their timers at once hitting the
306 	 * same lock or cachelines, so we skew each extra cpu with an extra
307 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
308 	 * already did this.
309 	 * The skew is done by adding 3*cpunr, then round, then subtract this
310 	 * extra offset again.
311 	 */
312 	j += cpu * 3;
313 
314 	rem = j % HZ;
315 
316 	/*
317 	 * If the target jiffie is just after a whole second (which can happen
318 	 * due to delays of the timer irq, long irq off times etc etc) then
319 	 * we should round down to the whole second, not up. Use 1/4th second
320 	 * as cutoff for this rounding as an extreme upper bound for this.
321 	 * But never round down if @force_up is set.
322 	 */
323 	if (rem < HZ/4 && !force_up) /* round down */
324 		j = j - rem;
325 	else /* round up */
326 		j = j - rem + HZ;
327 
328 	/* now that we have rounded, subtract the extra skew again */
329 	j -= cpu * 3;
330 
331 	/*
332 	 * Make sure j is still in the future. Otherwise return the
333 	 * unmodified value.
334 	 */
335 	return time_is_after_jiffies(j) ? j : original;
336 }
337 
338 /**
339  * __round_jiffies - function to round jiffies to a full second
340  * @j: the time in (absolute) jiffies that should be rounded
341  * @cpu: the processor number on which the timeout will happen
342  *
343  * __round_jiffies() rounds an absolute time in the future (in jiffies)
344  * up or down to (approximately) full seconds. This is useful for timers
345  * for which the exact time they fire does not matter too much, as long as
346  * they fire approximately every X seconds.
347  *
348  * By rounding these timers to whole seconds, all such timers will fire
349  * at the same time, rather than at various times spread out. The goal
350  * of this is to have the CPU wake up less, which saves power.
351  *
352  * The exact rounding is skewed for each processor to avoid all
353  * processors firing at the exact same time, which could lead
354  * to lock contention or spurious cache line bouncing.
355  *
356  * The return value is the rounded version of the @j parameter.
357  */
358 unsigned long __round_jiffies(unsigned long j, int cpu)
359 {
360 	return round_jiffies_common(j, cpu, false);
361 }
362 EXPORT_SYMBOL_GPL(__round_jiffies);
363 
364 /**
365  * __round_jiffies_relative - function to round jiffies to a full second
366  * @j: the time in (relative) jiffies that should be rounded
367  * @cpu: the processor number on which the timeout will happen
368  *
369  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
370  * up or down to (approximately) full seconds. This is useful for timers
371  * for which the exact time they fire does not matter too much, as long as
372  * they fire approximately every X seconds.
373  *
374  * By rounding these timers to whole seconds, all such timers will fire
375  * at the same time, rather than at various times spread out. The goal
376  * of this is to have the CPU wake up less, which saves power.
377  *
378  * The exact rounding is skewed for each processor to avoid all
379  * processors firing at the exact same time, which could lead
380  * to lock contention or spurious cache line bouncing.
381  *
382  * The return value is the rounded version of the @j parameter.
383  */
384 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
385 {
386 	unsigned long j0 = jiffies;
387 
388 	/* Use j0 because jiffies might change while we run */
389 	return round_jiffies_common(j + j0, cpu, false) - j0;
390 }
391 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
392 
393 /**
394  * round_jiffies - function to round jiffies to a full second
395  * @j: the time in (absolute) jiffies that should be rounded
396  *
397  * round_jiffies() rounds an absolute time in the future (in jiffies)
398  * up or down to (approximately) full seconds. This is useful for timers
399  * for which the exact time they fire does not matter too much, as long as
400  * they fire approximately every X seconds.
401  *
402  * By rounding these timers to whole seconds, all such timers will fire
403  * at the same time, rather than at various times spread out. The goal
404  * of this is to have the CPU wake up less, which saves power.
405  *
406  * The return value is the rounded version of the @j parameter.
407  */
408 unsigned long round_jiffies(unsigned long j)
409 {
410 	return round_jiffies_common(j, raw_smp_processor_id(), false);
411 }
412 EXPORT_SYMBOL_GPL(round_jiffies);
413 
414 /**
415  * round_jiffies_relative - function to round jiffies to a full second
416  * @j: the time in (relative) jiffies that should be rounded
417  *
418  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
419  * up or down to (approximately) full seconds. This is useful for timers
420  * for which the exact time they fire does not matter too much, as long as
421  * they fire approximately every X seconds.
422  *
423  * By rounding these timers to whole seconds, all such timers will fire
424  * at the same time, rather than at various times spread out. The goal
425  * of this is to have the CPU wake up less, which saves power.
426  *
427  * The return value is the rounded version of the @j parameter.
428  */
429 unsigned long round_jiffies_relative(unsigned long j)
430 {
431 	return __round_jiffies_relative(j, raw_smp_processor_id());
432 }
433 EXPORT_SYMBOL_GPL(round_jiffies_relative);
434 
435 /**
436  * __round_jiffies_up - function to round jiffies up to a full second
437  * @j: the time in (absolute) jiffies that should be rounded
438  * @cpu: the processor number on which the timeout will happen
439  *
440  * This is the same as __round_jiffies() except that it will never
441  * round down.  This is useful for timeouts for which the exact time
442  * of firing does not matter too much, as long as they don't fire too
443  * early.
444  */
445 unsigned long __round_jiffies_up(unsigned long j, int cpu)
446 {
447 	return round_jiffies_common(j, cpu, true);
448 }
449 EXPORT_SYMBOL_GPL(__round_jiffies_up);
450 
451 /**
452  * __round_jiffies_up_relative - function to round jiffies up to a full second
453  * @j: the time in (relative) jiffies that should be rounded
454  * @cpu: the processor number on which the timeout will happen
455  *
456  * This is the same as __round_jiffies_relative() except that it will never
457  * round down.  This is useful for timeouts for which the exact time
458  * of firing does not matter too much, as long as they don't fire too
459  * early.
460  */
461 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
462 {
463 	unsigned long j0 = jiffies;
464 
465 	/* Use j0 because jiffies might change while we run */
466 	return round_jiffies_common(j + j0, cpu, true) - j0;
467 }
468 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
469 
470 /**
471  * round_jiffies_up - function to round jiffies up to a full second
472  * @j: the time in (absolute) jiffies that should be rounded
473  *
474  * This is the same as round_jiffies() except that it will never
475  * round down.  This is useful for timeouts for which the exact time
476  * of firing does not matter too much, as long as they don't fire too
477  * early.
478  */
479 unsigned long round_jiffies_up(unsigned long j)
480 {
481 	return round_jiffies_common(j, raw_smp_processor_id(), true);
482 }
483 EXPORT_SYMBOL_GPL(round_jiffies_up);
484 
485 /**
486  * round_jiffies_up_relative - function to round jiffies up to a full second
487  * @j: the time in (relative) jiffies that should be rounded
488  *
489  * This is the same as round_jiffies_relative() except that it will never
490  * round down.  This is useful for timeouts for which the exact time
491  * of firing does not matter too much, as long as they don't fire too
492  * early.
493  */
494 unsigned long round_jiffies_up_relative(unsigned long j)
495 {
496 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
497 }
498 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
499 
500 
501 static inline unsigned int timer_get_idx(struct timer_list *timer)
502 {
503 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
504 }
505 
506 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
507 {
508 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
509 			idx << TIMER_ARRAYSHIFT;
510 }
511 
512 /*
513  * Helper function to calculate the array index for a given expiry
514  * time.
515  */
516 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
517 				  unsigned long *bucket_expiry)
518 {
519 
520 	/*
521 	 * The timer wheel has to guarantee that a timer does not fire
522 	 * early. Early expiry can happen due to:
523 	 * - Timer is armed at the edge of a tick
524 	 * - Truncation of the expiry time in the outer wheel levels
525 	 *
526 	 * Round up with level granularity to prevent this.
527 	 */
528 	expires = (expires >> LVL_SHIFT(lvl)) + 1;
529 	*bucket_expiry = expires << LVL_SHIFT(lvl);
530 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
531 }
532 
533 static int calc_wheel_index(unsigned long expires, unsigned long clk,
534 			    unsigned long *bucket_expiry)
535 {
536 	unsigned long delta = expires - clk;
537 	unsigned int idx;
538 
539 	if (delta < LVL_START(1)) {
540 		idx = calc_index(expires, 0, bucket_expiry);
541 	} else if (delta < LVL_START(2)) {
542 		idx = calc_index(expires, 1, bucket_expiry);
543 	} else if (delta < LVL_START(3)) {
544 		idx = calc_index(expires, 2, bucket_expiry);
545 	} else if (delta < LVL_START(4)) {
546 		idx = calc_index(expires, 3, bucket_expiry);
547 	} else if (delta < LVL_START(5)) {
548 		idx = calc_index(expires, 4, bucket_expiry);
549 	} else if (delta < LVL_START(6)) {
550 		idx = calc_index(expires, 5, bucket_expiry);
551 	} else if (delta < LVL_START(7)) {
552 		idx = calc_index(expires, 6, bucket_expiry);
553 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
554 		idx = calc_index(expires, 7, bucket_expiry);
555 	} else if ((long) delta < 0) {
556 		idx = clk & LVL_MASK;
557 		*bucket_expiry = clk;
558 	} else {
559 		/*
560 		 * Force expire obscene large timeouts to expire at the
561 		 * capacity limit of the wheel.
562 		 */
563 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
564 			expires = clk + WHEEL_TIMEOUT_MAX;
565 
566 		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
567 	}
568 	return idx;
569 }
570 
571 static void
572 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
573 {
574 	if (!is_timers_nohz_active())
575 		return;
576 
577 	/*
578 	 * TODO: This wants some optimizing similar to the code below, but we
579 	 * will do that when we switch from push to pull for deferrable timers.
580 	 */
581 	if (timer->flags & TIMER_DEFERRABLE) {
582 		if (tick_nohz_full_cpu(base->cpu))
583 			wake_up_nohz_cpu(base->cpu);
584 		return;
585 	}
586 
587 	/*
588 	 * We might have to IPI the remote CPU if the base is idle and the
589 	 * timer is not deferrable. If the other CPU is on the way to idle
590 	 * then it can't set base->is_idle as we hold the base lock:
591 	 */
592 	if (base->is_idle)
593 		wake_up_nohz_cpu(base->cpu);
594 }
595 
596 /*
597  * Enqueue the timer into the hash bucket, mark it pending in
598  * the bitmap, store the index in the timer flags then wake up
599  * the target CPU if needed.
600  */
601 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
602 			  unsigned int idx, unsigned long bucket_expiry)
603 {
604 
605 	hlist_add_head(&timer->entry, base->vectors + idx);
606 	__set_bit(idx, base->pending_map);
607 	timer_set_idx(timer, idx);
608 
609 	trace_timer_start(timer, timer->expires, timer->flags);
610 
611 	/*
612 	 * Check whether this is the new first expiring timer. The
613 	 * effective expiry time of the timer is required here
614 	 * (bucket_expiry) instead of timer->expires.
615 	 */
616 	if (time_before(bucket_expiry, base->next_expiry)) {
617 		/*
618 		 * Set the next expiry time and kick the CPU so it
619 		 * can reevaluate the wheel:
620 		 */
621 		base->next_expiry = bucket_expiry;
622 		base->timers_pending = true;
623 		base->next_expiry_recalc = false;
624 		trigger_dyntick_cpu(base, timer);
625 	}
626 }
627 
628 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
629 {
630 	unsigned long bucket_expiry;
631 	unsigned int idx;
632 
633 	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
634 	enqueue_timer(base, timer, idx, bucket_expiry);
635 }
636 
637 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
638 
639 static const struct debug_obj_descr timer_debug_descr;
640 
641 struct timer_hint {
642 	void	(*function)(struct timer_list *t);
643 	long	offset;
644 };
645 
646 #define TIMER_HINT(fn, container, timr, hintfn)			\
647 	{							\
648 		.function = fn,					\
649 		.offset	  = offsetof(container, hintfn) -	\
650 			    offsetof(container, timr)		\
651 	}
652 
653 static const struct timer_hint timer_hints[] = {
654 	TIMER_HINT(delayed_work_timer_fn,
655 		   struct delayed_work, timer, work.func),
656 	TIMER_HINT(kthread_delayed_work_timer_fn,
657 		   struct kthread_delayed_work, timer, work.func),
658 };
659 
660 static void *timer_debug_hint(void *addr)
661 {
662 	struct timer_list *timer = addr;
663 	int i;
664 
665 	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
666 		if (timer_hints[i].function == timer->function) {
667 			void (**fn)(void) = addr + timer_hints[i].offset;
668 
669 			return *fn;
670 		}
671 	}
672 
673 	return timer->function;
674 }
675 
676 static bool timer_is_static_object(void *addr)
677 {
678 	struct timer_list *timer = addr;
679 
680 	return (timer->entry.pprev == NULL &&
681 		timer->entry.next == TIMER_ENTRY_STATIC);
682 }
683 
684 /*
685  * fixup_init is called when:
686  * - an active object is initialized
687  */
688 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
689 {
690 	struct timer_list *timer = addr;
691 
692 	switch (state) {
693 	case ODEBUG_STATE_ACTIVE:
694 		del_timer_sync(timer);
695 		debug_object_init(timer, &timer_debug_descr);
696 		return true;
697 	default:
698 		return false;
699 	}
700 }
701 
702 /* Stub timer callback for improperly used timers. */
703 static void stub_timer(struct timer_list *unused)
704 {
705 	WARN_ON(1);
706 }
707 
708 /*
709  * fixup_activate is called when:
710  * - an active object is activated
711  * - an unknown non-static object is activated
712  */
713 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
714 {
715 	struct timer_list *timer = addr;
716 
717 	switch (state) {
718 	case ODEBUG_STATE_NOTAVAILABLE:
719 		timer_setup(timer, stub_timer, 0);
720 		return true;
721 
722 	case ODEBUG_STATE_ACTIVE:
723 		WARN_ON(1);
724 		fallthrough;
725 	default:
726 		return false;
727 	}
728 }
729 
730 /*
731  * fixup_free is called when:
732  * - an active object is freed
733  */
734 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
735 {
736 	struct timer_list *timer = addr;
737 
738 	switch (state) {
739 	case ODEBUG_STATE_ACTIVE:
740 		del_timer_sync(timer);
741 		debug_object_free(timer, &timer_debug_descr);
742 		return true;
743 	default:
744 		return false;
745 	}
746 }
747 
748 /*
749  * fixup_assert_init is called when:
750  * - an untracked/uninit-ed object is found
751  */
752 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
753 {
754 	struct timer_list *timer = addr;
755 
756 	switch (state) {
757 	case ODEBUG_STATE_NOTAVAILABLE:
758 		timer_setup(timer, stub_timer, 0);
759 		return true;
760 	default:
761 		return false;
762 	}
763 }
764 
765 static const struct debug_obj_descr timer_debug_descr = {
766 	.name			= "timer_list",
767 	.debug_hint		= timer_debug_hint,
768 	.is_static_object	= timer_is_static_object,
769 	.fixup_init		= timer_fixup_init,
770 	.fixup_activate		= timer_fixup_activate,
771 	.fixup_free		= timer_fixup_free,
772 	.fixup_assert_init	= timer_fixup_assert_init,
773 };
774 
775 static inline void debug_timer_init(struct timer_list *timer)
776 {
777 	debug_object_init(timer, &timer_debug_descr);
778 }
779 
780 static inline void debug_timer_activate(struct timer_list *timer)
781 {
782 	debug_object_activate(timer, &timer_debug_descr);
783 }
784 
785 static inline void debug_timer_deactivate(struct timer_list *timer)
786 {
787 	debug_object_deactivate(timer, &timer_debug_descr);
788 }
789 
790 static inline void debug_timer_assert_init(struct timer_list *timer)
791 {
792 	debug_object_assert_init(timer, &timer_debug_descr);
793 }
794 
795 static void do_init_timer(struct timer_list *timer,
796 			  void (*func)(struct timer_list *),
797 			  unsigned int flags,
798 			  const char *name, struct lock_class_key *key);
799 
800 void init_timer_on_stack_key(struct timer_list *timer,
801 			     void (*func)(struct timer_list *),
802 			     unsigned int flags,
803 			     const char *name, struct lock_class_key *key)
804 {
805 	debug_object_init_on_stack(timer, &timer_debug_descr);
806 	do_init_timer(timer, func, flags, name, key);
807 }
808 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
809 
810 void destroy_timer_on_stack(struct timer_list *timer)
811 {
812 	debug_object_free(timer, &timer_debug_descr);
813 }
814 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
815 
816 #else
817 static inline void debug_timer_init(struct timer_list *timer) { }
818 static inline void debug_timer_activate(struct timer_list *timer) { }
819 static inline void debug_timer_deactivate(struct timer_list *timer) { }
820 static inline void debug_timer_assert_init(struct timer_list *timer) { }
821 #endif
822 
823 static inline void debug_init(struct timer_list *timer)
824 {
825 	debug_timer_init(timer);
826 	trace_timer_init(timer);
827 }
828 
829 static inline void debug_deactivate(struct timer_list *timer)
830 {
831 	debug_timer_deactivate(timer);
832 	trace_timer_cancel(timer);
833 }
834 
835 static inline void debug_assert_init(struct timer_list *timer)
836 {
837 	debug_timer_assert_init(timer);
838 }
839 
840 static void do_init_timer(struct timer_list *timer,
841 			  void (*func)(struct timer_list *),
842 			  unsigned int flags,
843 			  const char *name, struct lock_class_key *key)
844 {
845 	timer->entry.pprev = NULL;
846 	timer->function = func;
847 	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
848 		flags &= TIMER_INIT_FLAGS;
849 	timer->flags = flags | raw_smp_processor_id();
850 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
851 }
852 
853 /**
854  * init_timer_key - initialize a timer
855  * @timer: the timer to be initialized
856  * @func: timer callback function
857  * @flags: timer flags
858  * @name: name of the timer
859  * @key: lockdep class key of the fake lock used for tracking timer
860  *       sync lock dependencies
861  *
862  * init_timer_key() must be done to a timer prior calling *any* of the
863  * other timer functions.
864  */
865 void init_timer_key(struct timer_list *timer,
866 		    void (*func)(struct timer_list *), unsigned int flags,
867 		    const char *name, struct lock_class_key *key)
868 {
869 	debug_init(timer);
870 	do_init_timer(timer, func, flags, name, key);
871 }
872 EXPORT_SYMBOL(init_timer_key);
873 
874 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
875 {
876 	struct hlist_node *entry = &timer->entry;
877 
878 	debug_deactivate(timer);
879 
880 	__hlist_del(entry);
881 	if (clear_pending)
882 		entry->pprev = NULL;
883 	entry->next = LIST_POISON2;
884 }
885 
886 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
887 			     bool clear_pending)
888 {
889 	unsigned idx = timer_get_idx(timer);
890 
891 	if (!timer_pending(timer))
892 		return 0;
893 
894 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
895 		__clear_bit(idx, base->pending_map);
896 		base->next_expiry_recalc = true;
897 	}
898 
899 	detach_timer(timer, clear_pending);
900 	return 1;
901 }
902 
903 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
904 {
905 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
906 
907 	/*
908 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
909 	 * to use the deferrable base.
910 	 */
911 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
912 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
913 	return base;
914 }
915 
916 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
917 {
918 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
919 
920 	/*
921 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
922 	 * to use the deferrable base.
923 	 */
924 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
925 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
926 	return base;
927 }
928 
929 static inline struct timer_base *get_timer_base(u32 tflags)
930 {
931 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
932 }
933 
934 static inline struct timer_base *
935 get_target_base(struct timer_base *base, unsigned tflags)
936 {
937 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
938 	if (static_branch_likely(&timers_migration_enabled) &&
939 	    !(tflags & TIMER_PINNED))
940 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
941 #endif
942 	return get_timer_this_cpu_base(tflags);
943 }
944 
945 static inline void forward_timer_base(struct timer_base *base)
946 {
947 	unsigned long jnow = READ_ONCE(jiffies);
948 
949 	/*
950 	 * No need to forward if we are close enough below jiffies.
951 	 * Also while executing timers, base->clk is 1 offset ahead
952 	 * of jiffies to avoid endless requeuing to current jiffies.
953 	 */
954 	if ((long)(jnow - base->clk) < 1)
955 		return;
956 
957 	/*
958 	 * If the next expiry value is > jiffies, then we fast forward to
959 	 * jiffies otherwise we forward to the next expiry value.
960 	 */
961 	if (time_after(base->next_expiry, jnow)) {
962 		base->clk = jnow;
963 	} else {
964 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
965 			return;
966 		base->clk = base->next_expiry;
967 	}
968 }
969 
970 
971 /*
972  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
973  * that all timers which are tied to this base are locked, and the base itself
974  * is locked too.
975  *
976  * So __run_timers/migrate_timers can safely modify all timers which could
977  * be found in the base->vectors array.
978  *
979  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
980  * to wait until the migration is done.
981  */
982 static struct timer_base *lock_timer_base(struct timer_list *timer,
983 					  unsigned long *flags)
984 	__acquires(timer->base->lock)
985 {
986 	for (;;) {
987 		struct timer_base *base;
988 		u32 tf;
989 
990 		/*
991 		 * We need to use READ_ONCE() here, otherwise the compiler
992 		 * might re-read @tf between the check for TIMER_MIGRATING
993 		 * and spin_lock().
994 		 */
995 		tf = READ_ONCE(timer->flags);
996 
997 		if (!(tf & TIMER_MIGRATING)) {
998 			base = get_timer_base(tf);
999 			raw_spin_lock_irqsave(&base->lock, *flags);
1000 			if (timer->flags == tf)
1001 				return base;
1002 			raw_spin_unlock_irqrestore(&base->lock, *flags);
1003 		}
1004 		cpu_relax();
1005 	}
1006 }
1007 
1008 #define MOD_TIMER_PENDING_ONLY		0x01
1009 #define MOD_TIMER_REDUCE		0x02
1010 #define MOD_TIMER_NOTPENDING		0x04
1011 
1012 static inline int
1013 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1014 {
1015 	unsigned long clk = 0, flags, bucket_expiry;
1016 	struct timer_base *base, *new_base;
1017 	unsigned int idx = UINT_MAX;
1018 	int ret = 0;
1019 
1020 	BUG_ON(!timer->function);
1021 
1022 	/*
1023 	 * This is a common optimization triggered by the networking code - if
1024 	 * the timer is re-modified to have the same timeout or ends up in the
1025 	 * same array bucket then just return:
1026 	 */
1027 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1028 		/*
1029 		 * The downside of this optimization is that it can result in
1030 		 * larger granularity than you would get from adding a new
1031 		 * timer with this expiry.
1032 		 */
1033 		long diff = timer->expires - expires;
1034 
1035 		if (!diff)
1036 			return 1;
1037 		if (options & MOD_TIMER_REDUCE && diff <= 0)
1038 			return 1;
1039 
1040 		/*
1041 		 * We lock timer base and calculate the bucket index right
1042 		 * here. If the timer ends up in the same bucket, then we
1043 		 * just update the expiry time and avoid the whole
1044 		 * dequeue/enqueue dance.
1045 		 */
1046 		base = lock_timer_base(timer, &flags);
1047 		forward_timer_base(base);
1048 
1049 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1050 		    time_before_eq(timer->expires, expires)) {
1051 			ret = 1;
1052 			goto out_unlock;
1053 		}
1054 
1055 		clk = base->clk;
1056 		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1057 
1058 		/*
1059 		 * Retrieve and compare the array index of the pending
1060 		 * timer. If it matches set the expiry to the new value so a
1061 		 * subsequent call will exit in the expires check above.
1062 		 */
1063 		if (idx == timer_get_idx(timer)) {
1064 			if (!(options & MOD_TIMER_REDUCE))
1065 				timer->expires = expires;
1066 			else if (time_after(timer->expires, expires))
1067 				timer->expires = expires;
1068 			ret = 1;
1069 			goto out_unlock;
1070 		}
1071 	} else {
1072 		base = lock_timer_base(timer, &flags);
1073 		forward_timer_base(base);
1074 	}
1075 
1076 	ret = detach_if_pending(timer, base, false);
1077 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1078 		goto out_unlock;
1079 
1080 	new_base = get_target_base(base, timer->flags);
1081 
1082 	if (base != new_base) {
1083 		/*
1084 		 * We are trying to schedule the timer on the new base.
1085 		 * However we can't change timer's base while it is running,
1086 		 * otherwise del_timer_sync() can't detect that the timer's
1087 		 * handler yet has not finished. This also guarantees that the
1088 		 * timer is serialized wrt itself.
1089 		 */
1090 		if (likely(base->running_timer != timer)) {
1091 			/* See the comment in lock_timer_base() */
1092 			timer->flags |= TIMER_MIGRATING;
1093 
1094 			raw_spin_unlock(&base->lock);
1095 			base = new_base;
1096 			raw_spin_lock(&base->lock);
1097 			WRITE_ONCE(timer->flags,
1098 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1099 			forward_timer_base(base);
1100 		}
1101 	}
1102 
1103 	debug_timer_activate(timer);
1104 
1105 	timer->expires = expires;
1106 	/*
1107 	 * If 'idx' was calculated above and the base time did not advance
1108 	 * between calculating 'idx' and possibly switching the base, only
1109 	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1110 	 * the wheel index via internal_add_timer().
1111 	 */
1112 	if (idx != UINT_MAX && clk == base->clk)
1113 		enqueue_timer(base, timer, idx, bucket_expiry);
1114 	else
1115 		internal_add_timer(base, timer);
1116 
1117 out_unlock:
1118 	raw_spin_unlock_irqrestore(&base->lock, flags);
1119 
1120 	return ret;
1121 }
1122 
1123 /**
1124  * mod_timer_pending - modify a pending timer's timeout
1125  * @timer: the pending timer to be modified
1126  * @expires: new timeout in jiffies
1127  *
1128  * mod_timer_pending() is the same for pending timers as mod_timer(),
1129  * but will not re-activate and modify already deleted timers.
1130  *
1131  * It is useful for unserialized use of timers.
1132  */
1133 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1134 {
1135 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1136 }
1137 EXPORT_SYMBOL(mod_timer_pending);
1138 
1139 /**
1140  * mod_timer - modify a timer's timeout
1141  * @timer: the timer to be modified
1142  * @expires: new timeout in jiffies
1143  *
1144  * mod_timer() is a more efficient way to update the expire field of an
1145  * active timer (if the timer is inactive it will be activated)
1146  *
1147  * mod_timer(timer, expires) is equivalent to:
1148  *
1149  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1150  *
1151  * Note that if there are multiple unserialized concurrent users of the
1152  * same timer, then mod_timer() is the only safe way to modify the timeout,
1153  * since add_timer() cannot modify an already running timer.
1154  *
1155  * The function returns whether it has modified a pending timer or not.
1156  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1157  * active timer returns 1.)
1158  */
1159 int mod_timer(struct timer_list *timer, unsigned long expires)
1160 {
1161 	return __mod_timer(timer, expires, 0);
1162 }
1163 EXPORT_SYMBOL(mod_timer);
1164 
1165 /**
1166  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1167  * @timer:	The timer to be modified
1168  * @expires:	New timeout in jiffies
1169  *
1170  * timer_reduce() is very similar to mod_timer(), except that it will only
1171  * modify a running timer if that would reduce the expiration time (it will
1172  * start a timer that isn't running).
1173  */
1174 int timer_reduce(struct timer_list *timer, unsigned long expires)
1175 {
1176 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1177 }
1178 EXPORT_SYMBOL(timer_reduce);
1179 
1180 /**
1181  * add_timer - start a timer
1182  * @timer: the timer to be added
1183  *
1184  * The kernel will do a ->function(@timer) callback from the
1185  * timer interrupt at the ->expires point in the future. The
1186  * current time is 'jiffies'.
1187  *
1188  * The timer's ->expires, ->function fields must be set prior calling this
1189  * function.
1190  *
1191  * Timers with an ->expires field in the past will be executed in the next
1192  * timer tick.
1193  */
1194 void add_timer(struct timer_list *timer)
1195 {
1196 	BUG_ON(timer_pending(timer));
1197 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1198 }
1199 EXPORT_SYMBOL(add_timer);
1200 
1201 /**
1202  * add_timer_on - start a timer on a particular CPU
1203  * @timer: the timer to be added
1204  * @cpu: the CPU to start it on
1205  *
1206  * This is not very scalable on SMP. Double adds are not possible.
1207  */
1208 void add_timer_on(struct timer_list *timer, int cpu)
1209 {
1210 	struct timer_base *new_base, *base;
1211 	unsigned long flags;
1212 
1213 	BUG_ON(timer_pending(timer) || !timer->function);
1214 
1215 	new_base = get_timer_cpu_base(timer->flags, cpu);
1216 
1217 	/*
1218 	 * If @timer was on a different CPU, it should be migrated with the
1219 	 * old base locked to prevent other operations proceeding with the
1220 	 * wrong base locked.  See lock_timer_base().
1221 	 */
1222 	base = lock_timer_base(timer, &flags);
1223 	if (base != new_base) {
1224 		timer->flags |= TIMER_MIGRATING;
1225 
1226 		raw_spin_unlock(&base->lock);
1227 		base = new_base;
1228 		raw_spin_lock(&base->lock);
1229 		WRITE_ONCE(timer->flags,
1230 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1231 	}
1232 	forward_timer_base(base);
1233 
1234 	debug_timer_activate(timer);
1235 	internal_add_timer(base, timer);
1236 	raw_spin_unlock_irqrestore(&base->lock, flags);
1237 }
1238 EXPORT_SYMBOL_GPL(add_timer_on);
1239 
1240 /**
1241  * del_timer - deactivate a timer.
1242  * @timer: the timer to be deactivated
1243  *
1244  * del_timer() deactivates a timer - this works on both active and inactive
1245  * timers.
1246  *
1247  * The function returns whether it has deactivated a pending timer or not.
1248  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1249  * active timer returns 1.)
1250  */
1251 int del_timer(struct timer_list *timer)
1252 {
1253 	struct timer_base *base;
1254 	unsigned long flags;
1255 	int ret = 0;
1256 
1257 	debug_assert_init(timer);
1258 
1259 	if (timer_pending(timer)) {
1260 		base = lock_timer_base(timer, &flags);
1261 		ret = detach_if_pending(timer, base, true);
1262 		raw_spin_unlock_irqrestore(&base->lock, flags);
1263 	}
1264 
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(del_timer);
1268 
1269 /**
1270  * try_to_del_timer_sync - Try to deactivate a timer
1271  * @timer: timer to delete
1272  *
1273  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1274  * exit the timer is not queued and the handler is not running on any CPU.
1275  */
1276 int try_to_del_timer_sync(struct timer_list *timer)
1277 {
1278 	struct timer_base *base;
1279 	unsigned long flags;
1280 	int ret = -1;
1281 
1282 	debug_assert_init(timer);
1283 
1284 	base = lock_timer_base(timer, &flags);
1285 
1286 	if (base->running_timer != timer)
1287 		ret = detach_if_pending(timer, base, true);
1288 
1289 	raw_spin_unlock_irqrestore(&base->lock, flags);
1290 
1291 	return ret;
1292 }
1293 EXPORT_SYMBOL(try_to_del_timer_sync);
1294 
1295 #ifdef CONFIG_PREEMPT_RT
1296 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1297 {
1298 	spin_lock_init(&base->expiry_lock);
1299 }
1300 
1301 static inline void timer_base_lock_expiry(struct timer_base *base)
1302 {
1303 	spin_lock(&base->expiry_lock);
1304 }
1305 
1306 static inline void timer_base_unlock_expiry(struct timer_base *base)
1307 {
1308 	spin_unlock(&base->expiry_lock);
1309 }
1310 
1311 /*
1312  * The counterpart to del_timer_wait_running().
1313  *
1314  * If there is a waiter for base->expiry_lock, then it was waiting for the
1315  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1316  * the waiter to acquire the lock and make progress.
1317  */
1318 static void timer_sync_wait_running(struct timer_base *base)
1319 {
1320 	if (atomic_read(&base->timer_waiters)) {
1321 		raw_spin_unlock_irq(&base->lock);
1322 		spin_unlock(&base->expiry_lock);
1323 		spin_lock(&base->expiry_lock);
1324 		raw_spin_lock_irq(&base->lock);
1325 	}
1326 }
1327 
1328 /*
1329  * This function is called on PREEMPT_RT kernels when the fast path
1330  * deletion of a timer failed because the timer callback function was
1331  * running.
1332  *
1333  * This prevents priority inversion, if the softirq thread on a remote CPU
1334  * got preempted, and it prevents a life lock when the task which tries to
1335  * delete a timer preempted the softirq thread running the timer callback
1336  * function.
1337  */
1338 static void del_timer_wait_running(struct timer_list *timer)
1339 {
1340 	u32 tf;
1341 
1342 	tf = READ_ONCE(timer->flags);
1343 	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1344 		struct timer_base *base = get_timer_base(tf);
1345 
1346 		/*
1347 		 * Mark the base as contended and grab the expiry lock,
1348 		 * which is held by the softirq across the timer
1349 		 * callback. Drop the lock immediately so the softirq can
1350 		 * expire the next timer. In theory the timer could already
1351 		 * be running again, but that's more than unlikely and just
1352 		 * causes another wait loop.
1353 		 */
1354 		atomic_inc(&base->timer_waiters);
1355 		spin_lock_bh(&base->expiry_lock);
1356 		atomic_dec(&base->timer_waiters);
1357 		spin_unlock_bh(&base->expiry_lock);
1358 	}
1359 }
1360 #else
1361 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1362 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1363 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1364 static inline void timer_sync_wait_running(struct timer_base *base) { }
1365 static inline void del_timer_wait_running(struct timer_list *timer) { }
1366 #endif
1367 
1368 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1369 /**
1370  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1371  * @timer: the timer to be deactivated
1372  *
1373  * This function only differs from del_timer() on SMP: besides deactivating
1374  * the timer it also makes sure the handler has finished executing on other
1375  * CPUs.
1376  *
1377  * Synchronization rules: Callers must prevent restarting of the timer,
1378  * otherwise this function is meaningless. It must not be called from
1379  * interrupt contexts unless the timer is an irqsafe one. The caller must
1380  * not hold locks which would prevent completion of the timer's
1381  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1382  * timer is not queued and the handler is not running on any CPU.
1383  *
1384  * Note: For !irqsafe timers, you must not hold locks that are held in
1385  *   interrupt context while calling this function. Even if the lock has
1386  *   nothing to do with the timer in question.  Here's why::
1387  *
1388  *    CPU0                             CPU1
1389  *    ----                             ----
1390  *                                     <SOFTIRQ>
1391  *                                       call_timer_fn();
1392  *                                       base->running_timer = mytimer;
1393  *    spin_lock_irq(somelock);
1394  *                                     <IRQ>
1395  *                                        spin_lock(somelock);
1396  *    del_timer_sync(mytimer);
1397  *    while (base->running_timer == mytimer);
1398  *
1399  * Now del_timer_sync() will never return and never release somelock.
1400  * The interrupt on the other CPU is waiting to grab somelock but
1401  * it has interrupted the softirq that CPU0 is waiting to finish.
1402  *
1403  * The function returns whether it has deactivated a pending timer or not.
1404  */
1405 int del_timer_sync(struct timer_list *timer)
1406 {
1407 	int ret;
1408 
1409 #ifdef CONFIG_LOCKDEP
1410 	unsigned long flags;
1411 
1412 	/*
1413 	 * If lockdep gives a backtrace here, please reference
1414 	 * the synchronization rules above.
1415 	 */
1416 	local_irq_save(flags);
1417 	lock_map_acquire(&timer->lockdep_map);
1418 	lock_map_release(&timer->lockdep_map);
1419 	local_irq_restore(flags);
1420 #endif
1421 	/*
1422 	 * don't use it in hardirq context, because it
1423 	 * could lead to deadlock.
1424 	 */
1425 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1426 
1427 	/*
1428 	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1429 	 * del_timer_wait_running().
1430 	 */
1431 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1432 		lockdep_assert_preemption_enabled();
1433 
1434 	do {
1435 		ret = try_to_del_timer_sync(timer);
1436 
1437 		if (unlikely(ret < 0)) {
1438 			del_timer_wait_running(timer);
1439 			cpu_relax();
1440 		}
1441 	} while (ret < 0);
1442 
1443 	return ret;
1444 }
1445 EXPORT_SYMBOL(del_timer_sync);
1446 #endif
1447 
1448 static void call_timer_fn(struct timer_list *timer,
1449 			  void (*fn)(struct timer_list *),
1450 			  unsigned long baseclk)
1451 {
1452 	int count = preempt_count();
1453 
1454 #ifdef CONFIG_LOCKDEP
1455 	/*
1456 	 * It is permissible to free the timer from inside the
1457 	 * function that is called from it, this we need to take into
1458 	 * account for lockdep too. To avoid bogus "held lock freed"
1459 	 * warnings as well as problems when looking into
1460 	 * timer->lockdep_map, make a copy and use that here.
1461 	 */
1462 	struct lockdep_map lockdep_map;
1463 
1464 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1465 #endif
1466 	/*
1467 	 * Couple the lock chain with the lock chain at
1468 	 * del_timer_sync() by acquiring the lock_map around the fn()
1469 	 * call here and in del_timer_sync().
1470 	 */
1471 	lock_map_acquire(&lockdep_map);
1472 
1473 	trace_timer_expire_entry(timer, baseclk);
1474 	fn(timer);
1475 	trace_timer_expire_exit(timer);
1476 
1477 	lock_map_release(&lockdep_map);
1478 
1479 	if (count != preempt_count()) {
1480 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1481 			  fn, count, preempt_count());
1482 		/*
1483 		 * Restore the preempt count. That gives us a decent
1484 		 * chance to survive and extract information. If the
1485 		 * callback kept a lock held, bad luck, but not worse
1486 		 * than the BUG() we had.
1487 		 */
1488 		preempt_count_set(count);
1489 	}
1490 }
1491 
1492 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1493 {
1494 	/*
1495 	 * This value is required only for tracing. base->clk was
1496 	 * incremented directly before expire_timers was called. But expiry
1497 	 * is related to the old base->clk value.
1498 	 */
1499 	unsigned long baseclk = base->clk - 1;
1500 
1501 	while (!hlist_empty(head)) {
1502 		struct timer_list *timer;
1503 		void (*fn)(struct timer_list *);
1504 
1505 		timer = hlist_entry(head->first, struct timer_list, entry);
1506 
1507 		base->running_timer = timer;
1508 		detach_timer(timer, true);
1509 
1510 		fn = timer->function;
1511 
1512 		if (timer->flags & TIMER_IRQSAFE) {
1513 			raw_spin_unlock(&base->lock);
1514 			call_timer_fn(timer, fn, baseclk);
1515 			raw_spin_lock(&base->lock);
1516 			base->running_timer = NULL;
1517 		} else {
1518 			raw_spin_unlock_irq(&base->lock);
1519 			call_timer_fn(timer, fn, baseclk);
1520 			raw_spin_lock_irq(&base->lock);
1521 			base->running_timer = NULL;
1522 			timer_sync_wait_running(base);
1523 		}
1524 	}
1525 }
1526 
1527 static int collect_expired_timers(struct timer_base *base,
1528 				  struct hlist_head *heads)
1529 {
1530 	unsigned long clk = base->clk = base->next_expiry;
1531 	struct hlist_head *vec;
1532 	int i, levels = 0;
1533 	unsigned int idx;
1534 
1535 	for (i = 0; i < LVL_DEPTH; i++) {
1536 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1537 
1538 		if (__test_and_clear_bit(idx, base->pending_map)) {
1539 			vec = base->vectors + idx;
1540 			hlist_move_list(vec, heads++);
1541 			levels++;
1542 		}
1543 		/* Is it time to look at the next level? */
1544 		if (clk & LVL_CLK_MASK)
1545 			break;
1546 		/* Shift clock for the next level granularity */
1547 		clk >>= LVL_CLK_SHIFT;
1548 	}
1549 	return levels;
1550 }
1551 
1552 /*
1553  * Find the next pending bucket of a level. Search from level start (@offset)
1554  * + @clk upwards and if nothing there, search from start of the level
1555  * (@offset) up to @offset + clk.
1556  */
1557 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1558 			       unsigned clk)
1559 {
1560 	unsigned pos, start = offset + clk;
1561 	unsigned end = offset + LVL_SIZE;
1562 
1563 	pos = find_next_bit(base->pending_map, end, start);
1564 	if (pos < end)
1565 		return pos - start;
1566 
1567 	pos = find_next_bit(base->pending_map, start, offset);
1568 	return pos < start ? pos + LVL_SIZE - start : -1;
1569 }
1570 
1571 /*
1572  * Search the first expiring timer in the various clock levels. Caller must
1573  * hold base->lock.
1574  */
1575 static unsigned long __next_timer_interrupt(struct timer_base *base)
1576 {
1577 	unsigned long clk, next, adj;
1578 	unsigned lvl, offset = 0;
1579 
1580 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1581 	clk = base->clk;
1582 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1583 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1584 		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1585 
1586 		if (pos >= 0) {
1587 			unsigned long tmp = clk + (unsigned long) pos;
1588 
1589 			tmp <<= LVL_SHIFT(lvl);
1590 			if (time_before(tmp, next))
1591 				next = tmp;
1592 
1593 			/*
1594 			 * If the next expiration happens before we reach
1595 			 * the next level, no need to check further.
1596 			 */
1597 			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1598 				break;
1599 		}
1600 		/*
1601 		 * Clock for the next level. If the current level clock lower
1602 		 * bits are zero, we look at the next level as is. If not we
1603 		 * need to advance it by one because that's going to be the
1604 		 * next expiring bucket in that level. base->clk is the next
1605 		 * expiring jiffie. So in case of:
1606 		 *
1607 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1608 		 *  0    0    0    0    0    0
1609 		 *
1610 		 * we have to look at all levels @index 0. With
1611 		 *
1612 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1613 		 *  0    0    0    0    0    2
1614 		 *
1615 		 * LVL0 has the next expiring bucket @index 2. The upper
1616 		 * levels have the next expiring bucket @index 1.
1617 		 *
1618 		 * In case that the propagation wraps the next level the same
1619 		 * rules apply:
1620 		 *
1621 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1622 		 *  0    0    0    0    F    2
1623 		 *
1624 		 * So after looking at LVL0 we get:
1625 		 *
1626 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1627 		 *  0    0    0    1    0
1628 		 *
1629 		 * So no propagation from LVL1 to LVL2 because that happened
1630 		 * with the add already, but then we need to propagate further
1631 		 * from LVL2 to LVL3.
1632 		 *
1633 		 * So the simple check whether the lower bits of the current
1634 		 * level are 0 or not is sufficient for all cases.
1635 		 */
1636 		adj = lvl_clk ? 1 : 0;
1637 		clk >>= LVL_CLK_SHIFT;
1638 		clk += adj;
1639 	}
1640 
1641 	base->next_expiry_recalc = false;
1642 	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1643 
1644 	return next;
1645 }
1646 
1647 #ifdef CONFIG_NO_HZ_COMMON
1648 /*
1649  * Check, if the next hrtimer event is before the next timer wheel
1650  * event:
1651  */
1652 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1653 {
1654 	u64 nextevt = hrtimer_get_next_event();
1655 
1656 	/*
1657 	 * If high resolution timers are enabled
1658 	 * hrtimer_get_next_event() returns KTIME_MAX.
1659 	 */
1660 	if (expires <= nextevt)
1661 		return expires;
1662 
1663 	/*
1664 	 * If the next timer is already expired, return the tick base
1665 	 * time so the tick is fired immediately.
1666 	 */
1667 	if (nextevt <= basem)
1668 		return basem;
1669 
1670 	/*
1671 	 * Round up to the next jiffie. High resolution timers are
1672 	 * off, so the hrtimers are expired in the tick and we need to
1673 	 * make sure that this tick really expires the timer to avoid
1674 	 * a ping pong of the nohz stop code.
1675 	 *
1676 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1677 	 */
1678 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1679 }
1680 
1681 /**
1682  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1683  * @basej:	base time jiffies
1684  * @basem:	base time clock monotonic
1685  *
1686  * Returns the tick aligned clock monotonic time of the next pending
1687  * timer or KTIME_MAX if no timer is pending.
1688  */
1689 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1690 {
1691 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1692 	u64 expires = KTIME_MAX;
1693 	unsigned long nextevt;
1694 
1695 	/*
1696 	 * Pretend that there is no timer pending if the cpu is offline.
1697 	 * Possible pending timers will be migrated later to an active cpu.
1698 	 */
1699 	if (cpu_is_offline(smp_processor_id()))
1700 		return expires;
1701 
1702 	raw_spin_lock(&base->lock);
1703 	if (base->next_expiry_recalc)
1704 		base->next_expiry = __next_timer_interrupt(base);
1705 	nextevt = base->next_expiry;
1706 
1707 	/*
1708 	 * We have a fresh next event. Check whether we can forward the
1709 	 * base. We can only do that when @basej is past base->clk
1710 	 * otherwise we might rewind base->clk.
1711 	 */
1712 	if (time_after(basej, base->clk)) {
1713 		if (time_after(nextevt, basej))
1714 			base->clk = basej;
1715 		else if (time_after(nextevt, base->clk))
1716 			base->clk = nextevt;
1717 	}
1718 
1719 	if (time_before_eq(nextevt, basej)) {
1720 		expires = basem;
1721 		base->is_idle = false;
1722 	} else {
1723 		if (base->timers_pending)
1724 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1725 		/*
1726 		 * If we expect to sleep more than a tick, mark the base idle.
1727 		 * Also the tick is stopped so any added timer must forward
1728 		 * the base clk itself to keep granularity small. This idle
1729 		 * logic is only maintained for the BASE_STD base, deferrable
1730 		 * timers may still see large granularity skew (by design).
1731 		 */
1732 		if ((expires - basem) > TICK_NSEC)
1733 			base->is_idle = true;
1734 	}
1735 	raw_spin_unlock(&base->lock);
1736 
1737 	return cmp_next_hrtimer_event(basem, expires);
1738 }
1739 
1740 /**
1741  * timer_clear_idle - Clear the idle state of the timer base
1742  *
1743  * Called with interrupts disabled
1744  */
1745 void timer_clear_idle(void)
1746 {
1747 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1748 
1749 	/*
1750 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1751 	 * a pointless IPI, but taking the lock would just make the window for
1752 	 * sending the IPI a few instructions smaller for the cost of taking
1753 	 * the lock in the exit from idle path.
1754 	 */
1755 	base->is_idle = false;
1756 }
1757 #endif
1758 
1759 /**
1760  * __run_timers - run all expired timers (if any) on this CPU.
1761  * @base: the timer vector to be processed.
1762  */
1763 static inline void __run_timers(struct timer_base *base)
1764 {
1765 	struct hlist_head heads[LVL_DEPTH];
1766 	int levels;
1767 
1768 	if (time_before(jiffies, base->next_expiry))
1769 		return;
1770 
1771 	timer_base_lock_expiry(base);
1772 	raw_spin_lock_irq(&base->lock);
1773 
1774 	while (time_after_eq(jiffies, base->clk) &&
1775 	       time_after_eq(jiffies, base->next_expiry)) {
1776 		levels = collect_expired_timers(base, heads);
1777 		/*
1778 		 * The two possible reasons for not finding any expired
1779 		 * timer at this clk are that all matching timers have been
1780 		 * dequeued or no timer has been queued since
1781 		 * base::next_expiry was set to base::clk +
1782 		 * NEXT_TIMER_MAX_DELTA.
1783 		 */
1784 		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
1785 			     && base->timers_pending);
1786 		base->clk++;
1787 		base->next_expiry = __next_timer_interrupt(base);
1788 
1789 		while (levels--)
1790 			expire_timers(base, heads + levels);
1791 	}
1792 	raw_spin_unlock_irq(&base->lock);
1793 	timer_base_unlock_expiry(base);
1794 }
1795 
1796 /*
1797  * This function runs timers and the timer-tq in bottom half context.
1798  */
1799 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1800 {
1801 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1802 
1803 	__run_timers(base);
1804 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1805 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1806 }
1807 
1808 /*
1809  * Called by the local, per-CPU timer interrupt on SMP.
1810  */
1811 static void run_local_timers(void)
1812 {
1813 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1814 
1815 	hrtimer_run_queues();
1816 	/* Raise the softirq only if required. */
1817 	if (time_before(jiffies, base->next_expiry)) {
1818 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1819 			return;
1820 		/* CPU is awake, so check the deferrable base. */
1821 		base++;
1822 		if (time_before(jiffies, base->next_expiry))
1823 			return;
1824 	}
1825 	raise_softirq(TIMER_SOFTIRQ);
1826 }
1827 
1828 /*
1829  * Called from the timer interrupt handler to charge one tick to the current
1830  * process.  user_tick is 1 if the tick is user time, 0 for system.
1831  */
1832 void update_process_times(int user_tick)
1833 {
1834 	struct task_struct *p = current;
1835 
1836 	/* Note: this timer irq context must be accounted for as well. */
1837 	account_process_tick(p, user_tick);
1838 	run_local_timers();
1839 	rcu_sched_clock_irq(user_tick);
1840 #ifdef CONFIG_IRQ_WORK
1841 	if (in_irq())
1842 		irq_work_tick();
1843 #endif
1844 	scheduler_tick();
1845 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1846 		run_posix_cpu_timers();
1847 }
1848 
1849 /*
1850  * Since schedule_timeout()'s timer is defined on the stack, it must store
1851  * the target task on the stack as well.
1852  */
1853 struct process_timer {
1854 	struct timer_list timer;
1855 	struct task_struct *task;
1856 };
1857 
1858 static void process_timeout(struct timer_list *t)
1859 {
1860 	struct process_timer *timeout = from_timer(timeout, t, timer);
1861 
1862 	wake_up_process(timeout->task);
1863 }
1864 
1865 /**
1866  * schedule_timeout - sleep until timeout
1867  * @timeout: timeout value in jiffies
1868  *
1869  * Make the current task sleep until @timeout jiffies have elapsed.
1870  * The function behavior depends on the current task state
1871  * (see also set_current_state() description):
1872  *
1873  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1874  * at all. That happens because sched_submit_work() does nothing for
1875  * tasks in %TASK_RUNNING state.
1876  *
1877  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1878  * pass before the routine returns unless the current task is explicitly
1879  * woken up, (e.g. by wake_up_process()).
1880  *
1881  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1882  * delivered to the current task or the current task is explicitly woken
1883  * up.
1884  *
1885  * The current task state is guaranteed to be %TASK_RUNNING when this
1886  * routine returns.
1887  *
1888  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1889  * the CPU away without a bound on the timeout. In this case the return
1890  * value will be %MAX_SCHEDULE_TIMEOUT.
1891  *
1892  * Returns 0 when the timer has expired otherwise the remaining time in
1893  * jiffies will be returned. In all cases the return value is guaranteed
1894  * to be non-negative.
1895  */
1896 signed long __sched schedule_timeout(signed long timeout)
1897 {
1898 	struct process_timer timer;
1899 	unsigned long expire;
1900 
1901 	switch (timeout)
1902 	{
1903 	case MAX_SCHEDULE_TIMEOUT:
1904 		/*
1905 		 * These two special cases are useful to be comfortable
1906 		 * in the caller. Nothing more. We could take
1907 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1908 		 * but I' d like to return a valid offset (>=0) to allow
1909 		 * the caller to do everything it want with the retval.
1910 		 */
1911 		schedule();
1912 		goto out;
1913 	default:
1914 		/*
1915 		 * Another bit of PARANOID. Note that the retval will be
1916 		 * 0 since no piece of kernel is supposed to do a check
1917 		 * for a negative retval of schedule_timeout() (since it
1918 		 * should never happens anyway). You just have the printk()
1919 		 * that will tell you if something is gone wrong and where.
1920 		 */
1921 		if (timeout < 0) {
1922 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1923 				"value %lx\n", timeout);
1924 			dump_stack();
1925 			__set_current_state(TASK_RUNNING);
1926 			goto out;
1927 		}
1928 	}
1929 
1930 	expire = timeout + jiffies;
1931 
1932 	timer.task = current;
1933 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1934 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1935 	schedule();
1936 	del_singleshot_timer_sync(&timer.timer);
1937 
1938 	/* Remove the timer from the object tracker */
1939 	destroy_timer_on_stack(&timer.timer);
1940 
1941 	timeout = expire - jiffies;
1942 
1943  out:
1944 	return timeout < 0 ? 0 : timeout;
1945 }
1946 EXPORT_SYMBOL(schedule_timeout);
1947 
1948 /*
1949  * We can use __set_current_state() here because schedule_timeout() calls
1950  * schedule() unconditionally.
1951  */
1952 signed long __sched schedule_timeout_interruptible(signed long timeout)
1953 {
1954 	__set_current_state(TASK_INTERRUPTIBLE);
1955 	return schedule_timeout(timeout);
1956 }
1957 EXPORT_SYMBOL(schedule_timeout_interruptible);
1958 
1959 signed long __sched schedule_timeout_killable(signed long timeout)
1960 {
1961 	__set_current_state(TASK_KILLABLE);
1962 	return schedule_timeout(timeout);
1963 }
1964 EXPORT_SYMBOL(schedule_timeout_killable);
1965 
1966 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1967 {
1968 	__set_current_state(TASK_UNINTERRUPTIBLE);
1969 	return schedule_timeout(timeout);
1970 }
1971 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1972 
1973 /*
1974  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1975  * to load average.
1976  */
1977 signed long __sched schedule_timeout_idle(signed long timeout)
1978 {
1979 	__set_current_state(TASK_IDLE);
1980 	return schedule_timeout(timeout);
1981 }
1982 EXPORT_SYMBOL(schedule_timeout_idle);
1983 
1984 #ifdef CONFIG_HOTPLUG_CPU
1985 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1986 {
1987 	struct timer_list *timer;
1988 	int cpu = new_base->cpu;
1989 
1990 	while (!hlist_empty(head)) {
1991 		timer = hlist_entry(head->first, struct timer_list, entry);
1992 		detach_timer(timer, false);
1993 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1994 		internal_add_timer(new_base, timer);
1995 	}
1996 }
1997 
1998 int timers_prepare_cpu(unsigned int cpu)
1999 {
2000 	struct timer_base *base;
2001 	int b;
2002 
2003 	for (b = 0; b < NR_BASES; b++) {
2004 		base = per_cpu_ptr(&timer_bases[b], cpu);
2005 		base->clk = jiffies;
2006 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2007 		base->next_expiry_recalc = false;
2008 		base->timers_pending = false;
2009 		base->is_idle = false;
2010 	}
2011 	return 0;
2012 }
2013 
2014 int timers_dead_cpu(unsigned int cpu)
2015 {
2016 	struct timer_base *old_base;
2017 	struct timer_base *new_base;
2018 	int b, i;
2019 
2020 	BUG_ON(cpu_online(cpu));
2021 
2022 	for (b = 0; b < NR_BASES; b++) {
2023 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2024 		new_base = get_cpu_ptr(&timer_bases[b]);
2025 		/*
2026 		 * The caller is globally serialized and nobody else
2027 		 * takes two locks at once, deadlock is not possible.
2028 		 */
2029 		raw_spin_lock_irq(&new_base->lock);
2030 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2031 
2032 		/*
2033 		 * The current CPUs base clock might be stale. Update it
2034 		 * before moving the timers over.
2035 		 */
2036 		forward_timer_base(new_base);
2037 
2038 		BUG_ON(old_base->running_timer);
2039 
2040 		for (i = 0; i < WHEEL_SIZE; i++)
2041 			migrate_timer_list(new_base, old_base->vectors + i);
2042 
2043 		raw_spin_unlock(&old_base->lock);
2044 		raw_spin_unlock_irq(&new_base->lock);
2045 		put_cpu_ptr(&timer_bases);
2046 	}
2047 	return 0;
2048 }
2049 
2050 #endif /* CONFIG_HOTPLUG_CPU */
2051 
2052 static void __init init_timer_cpu(int cpu)
2053 {
2054 	struct timer_base *base;
2055 	int i;
2056 
2057 	for (i = 0; i < NR_BASES; i++) {
2058 		base = per_cpu_ptr(&timer_bases[i], cpu);
2059 		base->cpu = cpu;
2060 		raw_spin_lock_init(&base->lock);
2061 		base->clk = jiffies;
2062 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2063 		timer_base_init_expiry_lock(base);
2064 	}
2065 }
2066 
2067 static void __init init_timer_cpus(void)
2068 {
2069 	int cpu;
2070 
2071 	for_each_possible_cpu(cpu)
2072 		init_timer_cpu(cpu);
2073 }
2074 
2075 void __init init_timers(void)
2076 {
2077 	init_timer_cpus();
2078 	posix_cputimers_init_work();
2079 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2080 }
2081 
2082 /**
2083  * msleep - sleep safely even with waitqueue interruptions
2084  * @msecs: Time in milliseconds to sleep for
2085  */
2086 void msleep(unsigned int msecs)
2087 {
2088 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2089 
2090 	while (timeout)
2091 		timeout = schedule_timeout_uninterruptible(timeout);
2092 }
2093 
2094 EXPORT_SYMBOL(msleep);
2095 
2096 /**
2097  * msleep_interruptible - sleep waiting for signals
2098  * @msecs: Time in milliseconds to sleep for
2099  */
2100 unsigned long msleep_interruptible(unsigned int msecs)
2101 {
2102 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2103 
2104 	while (timeout && !signal_pending(current))
2105 		timeout = schedule_timeout_interruptible(timeout);
2106 	return jiffies_to_msecs(timeout);
2107 }
2108 
2109 EXPORT_SYMBOL(msleep_interruptible);
2110 
2111 /**
2112  * usleep_range_state - Sleep for an approximate time in a given state
2113  * @min:	Minimum time in usecs to sleep
2114  * @max:	Maximum time in usecs to sleep
2115  * @state:	State of the current task that will be while sleeping
2116  *
2117  * In non-atomic context where the exact wakeup time is flexible, use
2118  * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2119  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2120  * power usage by allowing hrtimers to take advantage of an already-
2121  * scheduled interrupt instead of scheduling a new one just for this sleep.
2122  */
2123 void __sched usleep_range_state(unsigned long min, unsigned long max,
2124 				unsigned int state)
2125 {
2126 	ktime_t exp = ktime_add_us(ktime_get(), min);
2127 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2128 
2129 	for (;;) {
2130 		__set_current_state(state);
2131 		/* Do not return before the requested sleep time has elapsed */
2132 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2133 			break;
2134 	}
2135 }
2136 EXPORT_SYMBOL(usleep_range_state);
2137