xref: /linux/kernel/time/timer.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51 
52 #include "tick-internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56 
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58 
59 EXPORT_SYMBOL(jiffies_64);
60 
61 /*
62  * per-CPU timer vector definitions:
63  */
64 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66 #define TVN_SIZE (1 << TVN_BITS)
67 #define TVR_SIZE (1 << TVR_BITS)
68 #define TVN_MASK (TVN_SIZE - 1)
69 #define TVR_MASK (TVR_SIZE - 1)
70 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
71 
72 struct tvec {
73 	struct hlist_head vec[TVN_SIZE];
74 };
75 
76 struct tvec_root {
77 	struct hlist_head vec[TVR_SIZE];
78 };
79 
80 struct tvec_base {
81 	spinlock_t lock;
82 	struct timer_list *running_timer;
83 	unsigned long timer_jiffies;
84 	unsigned long next_timer;
85 	unsigned long active_timers;
86 	unsigned long all_timers;
87 	int cpu;
88 	bool migration_enabled;
89 	bool nohz_active;
90 	struct tvec_root tv1;
91 	struct tvec tv2;
92 	struct tvec tv3;
93 	struct tvec tv4;
94 	struct tvec tv5;
95 } ____cacheline_aligned;
96 
97 
98 static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
99 
100 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
101 unsigned int sysctl_timer_migration = 1;
102 
103 void timers_update_migration(bool update_nohz)
104 {
105 	bool on = sysctl_timer_migration && tick_nohz_active;
106 	unsigned int cpu;
107 
108 	/* Avoid the loop, if nothing to update */
109 	if (this_cpu_read(tvec_bases.migration_enabled) == on)
110 		return;
111 
112 	for_each_possible_cpu(cpu) {
113 		per_cpu(tvec_bases.migration_enabled, cpu) = on;
114 		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
115 		if (!update_nohz)
116 			continue;
117 		per_cpu(tvec_bases.nohz_active, cpu) = true;
118 		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
119 	}
120 }
121 
122 int timer_migration_handler(struct ctl_table *table, int write,
123 			    void __user *buffer, size_t *lenp,
124 			    loff_t *ppos)
125 {
126 	static DEFINE_MUTEX(mutex);
127 	int ret;
128 
129 	mutex_lock(&mutex);
130 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
131 	if (!ret && write)
132 		timers_update_migration(false);
133 	mutex_unlock(&mutex);
134 	return ret;
135 }
136 
137 static inline struct tvec_base *get_target_base(struct tvec_base *base,
138 						int pinned)
139 {
140 	if (pinned || !base->migration_enabled)
141 		return this_cpu_ptr(&tvec_bases);
142 	return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
143 }
144 #else
145 static inline struct tvec_base *get_target_base(struct tvec_base *base,
146 						int pinned)
147 {
148 	return this_cpu_ptr(&tvec_bases);
149 }
150 #endif
151 
152 static unsigned long round_jiffies_common(unsigned long j, int cpu,
153 		bool force_up)
154 {
155 	int rem;
156 	unsigned long original = j;
157 
158 	/*
159 	 * We don't want all cpus firing their timers at once hitting the
160 	 * same lock or cachelines, so we skew each extra cpu with an extra
161 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
162 	 * already did this.
163 	 * The skew is done by adding 3*cpunr, then round, then subtract this
164 	 * extra offset again.
165 	 */
166 	j += cpu * 3;
167 
168 	rem = j % HZ;
169 
170 	/*
171 	 * If the target jiffie is just after a whole second (which can happen
172 	 * due to delays of the timer irq, long irq off times etc etc) then
173 	 * we should round down to the whole second, not up. Use 1/4th second
174 	 * as cutoff for this rounding as an extreme upper bound for this.
175 	 * But never round down if @force_up is set.
176 	 */
177 	if (rem < HZ/4 && !force_up) /* round down */
178 		j = j - rem;
179 	else /* round up */
180 		j = j - rem + HZ;
181 
182 	/* now that we have rounded, subtract the extra skew again */
183 	j -= cpu * 3;
184 
185 	/*
186 	 * Make sure j is still in the future. Otherwise return the
187 	 * unmodified value.
188 	 */
189 	return time_is_after_jiffies(j) ? j : original;
190 }
191 
192 /**
193  * __round_jiffies - function to round jiffies to a full second
194  * @j: the time in (absolute) jiffies that should be rounded
195  * @cpu: the processor number on which the timeout will happen
196  *
197  * __round_jiffies() rounds an absolute time in the future (in jiffies)
198  * up or down to (approximately) full seconds. This is useful for timers
199  * for which the exact time they fire does not matter too much, as long as
200  * they fire approximately every X seconds.
201  *
202  * By rounding these timers to whole seconds, all such timers will fire
203  * at the same time, rather than at various times spread out. The goal
204  * of this is to have the CPU wake up less, which saves power.
205  *
206  * The exact rounding is skewed for each processor to avoid all
207  * processors firing at the exact same time, which could lead
208  * to lock contention or spurious cache line bouncing.
209  *
210  * The return value is the rounded version of the @j parameter.
211  */
212 unsigned long __round_jiffies(unsigned long j, int cpu)
213 {
214 	return round_jiffies_common(j, cpu, false);
215 }
216 EXPORT_SYMBOL_GPL(__round_jiffies);
217 
218 /**
219  * __round_jiffies_relative - function to round jiffies to a full second
220  * @j: the time in (relative) jiffies that should be rounded
221  * @cpu: the processor number on which the timeout will happen
222  *
223  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
224  * up or down to (approximately) full seconds. This is useful for timers
225  * for which the exact time they fire does not matter too much, as long as
226  * they fire approximately every X seconds.
227  *
228  * By rounding these timers to whole seconds, all such timers will fire
229  * at the same time, rather than at various times spread out. The goal
230  * of this is to have the CPU wake up less, which saves power.
231  *
232  * The exact rounding is skewed for each processor to avoid all
233  * processors firing at the exact same time, which could lead
234  * to lock contention or spurious cache line bouncing.
235  *
236  * The return value is the rounded version of the @j parameter.
237  */
238 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
239 {
240 	unsigned long j0 = jiffies;
241 
242 	/* Use j0 because jiffies might change while we run */
243 	return round_jiffies_common(j + j0, cpu, false) - j0;
244 }
245 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
246 
247 /**
248  * round_jiffies - function to round jiffies to a full second
249  * @j: the time in (absolute) jiffies that should be rounded
250  *
251  * round_jiffies() rounds an absolute time in the future (in jiffies)
252  * up or down to (approximately) full seconds. This is useful for timers
253  * for which the exact time they fire does not matter too much, as long as
254  * they fire approximately every X seconds.
255  *
256  * By rounding these timers to whole seconds, all such timers will fire
257  * at the same time, rather than at various times spread out. The goal
258  * of this is to have the CPU wake up less, which saves power.
259  *
260  * The return value is the rounded version of the @j parameter.
261  */
262 unsigned long round_jiffies(unsigned long j)
263 {
264 	return round_jiffies_common(j, raw_smp_processor_id(), false);
265 }
266 EXPORT_SYMBOL_GPL(round_jiffies);
267 
268 /**
269  * round_jiffies_relative - function to round jiffies to a full second
270  * @j: the time in (relative) jiffies that should be rounded
271  *
272  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
273  * up or down to (approximately) full seconds. This is useful for timers
274  * for which the exact time they fire does not matter too much, as long as
275  * they fire approximately every X seconds.
276  *
277  * By rounding these timers to whole seconds, all such timers will fire
278  * at the same time, rather than at various times spread out. The goal
279  * of this is to have the CPU wake up less, which saves power.
280  *
281  * The return value is the rounded version of the @j parameter.
282  */
283 unsigned long round_jiffies_relative(unsigned long j)
284 {
285 	return __round_jiffies_relative(j, raw_smp_processor_id());
286 }
287 EXPORT_SYMBOL_GPL(round_jiffies_relative);
288 
289 /**
290  * __round_jiffies_up - function to round jiffies up to a full second
291  * @j: the time in (absolute) jiffies that should be rounded
292  * @cpu: the processor number on which the timeout will happen
293  *
294  * This is the same as __round_jiffies() except that it will never
295  * round down.  This is useful for timeouts for which the exact time
296  * of firing does not matter too much, as long as they don't fire too
297  * early.
298  */
299 unsigned long __round_jiffies_up(unsigned long j, int cpu)
300 {
301 	return round_jiffies_common(j, cpu, true);
302 }
303 EXPORT_SYMBOL_GPL(__round_jiffies_up);
304 
305 /**
306  * __round_jiffies_up_relative - function to round jiffies up to a full second
307  * @j: the time in (relative) jiffies that should be rounded
308  * @cpu: the processor number on which the timeout will happen
309  *
310  * This is the same as __round_jiffies_relative() except that it will never
311  * round down.  This is useful for timeouts for which the exact time
312  * of firing does not matter too much, as long as they don't fire too
313  * early.
314  */
315 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
316 {
317 	unsigned long j0 = jiffies;
318 
319 	/* Use j0 because jiffies might change while we run */
320 	return round_jiffies_common(j + j0, cpu, true) - j0;
321 }
322 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
323 
324 /**
325  * round_jiffies_up - function to round jiffies up to a full second
326  * @j: the time in (absolute) jiffies that should be rounded
327  *
328  * This is the same as round_jiffies() except that it will never
329  * round down.  This is useful for timeouts for which the exact time
330  * of firing does not matter too much, as long as they don't fire too
331  * early.
332  */
333 unsigned long round_jiffies_up(unsigned long j)
334 {
335 	return round_jiffies_common(j, raw_smp_processor_id(), true);
336 }
337 EXPORT_SYMBOL_GPL(round_jiffies_up);
338 
339 /**
340  * round_jiffies_up_relative - function to round jiffies up to a full second
341  * @j: the time in (relative) jiffies that should be rounded
342  *
343  * This is the same as round_jiffies_relative() except that it will never
344  * round down.  This is useful for timeouts for which the exact time
345  * of firing does not matter too much, as long as they don't fire too
346  * early.
347  */
348 unsigned long round_jiffies_up_relative(unsigned long j)
349 {
350 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
351 }
352 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
353 
354 /**
355  * set_timer_slack - set the allowed slack for a timer
356  * @timer: the timer to be modified
357  * @slack_hz: the amount of time (in jiffies) allowed for rounding
358  *
359  * Set the amount of time, in jiffies, that a certain timer has
360  * in terms of slack. By setting this value, the timer subsystem
361  * will schedule the actual timer somewhere between
362  * the time mod_timer() asks for, and that time plus the slack.
363  *
364  * By setting the slack to -1, a percentage of the delay is used
365  * instead.
366  */
367 void set_timer_slack(struct timer_list *timer, int slack_hz)
368 {
369 	timer->slack = slack_hz;
370 }
371 EXPORT_SYMBOL_GPL(set_timer_slack);
372 
373 static void
374 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
375 {
376 	unsigned long expires = timer->expires;
377 	unsigned long idx = expires - base->timer_jiffies;
378 	struct hlist_head *vec;
379 
380 	if (idx < TVR_SIZE) {
381 		int i = expires & TVR_MASK;
382 		vec = base->tv1.vec + i;
383 	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
384 		int i = (expires >> TVR_BITS) & TVN_MASK;
385 		vec = base->tv2.vec + i;
386 	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
387 		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
388 		vec = base->tv3.vec + i;
389 	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
390 		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
391 		vec = base->tv4.vec + i;
392 	} else if ((signed long) idx < 0) {
393 		/*
394 		 * Can happen if you add a timer with expires == jiffies,
395 		 * or you set a timer to go off in the past
396 		 */
397 		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
398 	} else {
399 		int i;
400 		/* If the timeout is larger than MAX_TVAL (on 64-bit
401 		 * architectures or with CONFIG_BASE_SMALL=1) then we
402 		 * use the maximum timeout.
403 		 */
404 		if (idx > MAX_TVAL) {
405 			idx = MAX_TVAL;
406 			expires = idx + base->timer_jiffies;
407 		}
408 		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
409 		vec = base->tv5.vec + i;
410 	}
411 
412 	hlist_add_head(&timer->entry, vec);
413 }
414 
415 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
416 {
417 	/* Advance base->jiffies, if the base is empty */
418 	if (!base->all_timers++)
419 		base->timer_jiffies = jiffies;
420 
421 	__internal_add_timer(base, timer);
422 	/*
423 	 * Update base->active_timers and base->next_timer
424 	 */
425 	if (!(timer->flags & TIMER_DEFERRABLE)) {
426 		if (!base->active_timers++ ||
427 		    time_before(timer->expires, base->next_timer))
428 			base->next_timer = timer->expires;
429 	}
430 
431 	/*
432 	 * Check whether the other CPU is in dynticks mode and needs
433 	 * to be triggered to reevaluate the timer wheel.
434 	 * We are protected against the other CPU fiddling
435 	 * with the timer by holding the timer base lock. This also
436 	 * makes sure that a CPU on the way to stop its tick can not
437 	 * evaluate the timer wheel.
438 	 *
439 	 * Spare the IPI for deferrable timers on idle targets though.
440 	 * The next busy ticks will take care of it. Except full dynticks
441 	 * require special care against races with idle_cpu(), lets deal
442 	 * with that later.
443 	 */
444 	if (base->nohz_active) {
445 		if (!(timer->flags & TIMER_DEFERRABLE) ||
446 		    tick_nohz_full_cpu(base->cpu))
447 			wake_up_nohz_cpu(base->cpu);
448 	}
449 }
450 
451 #ifdef CONFIG_TIMER_STATS
452 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
453 {
454 	if (timer->start_site)
455 		return;
456 
457 	timer->start_site = addr;
458 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
459 	timer->start_pid = current->pid;
460 }
461 
462 static void timer_stats_account_timer(struct timer_list *timer)
463 {
464 	void *site;
465 
466 	/*
467 	 * start_site can be concurrently reset by
468 	 * timer_stats_timer_clear_start_info()
469 	 */
470 	site = READ_ONCE(timer->start_site);
471 	if (likely(!site))
472 		return;
473 
474 	timer_stats_update_stats(timer, timer->start_pid, site,
475 				 timer->function, timer->start_comm,
476 				 timer->flags);
477 }
478 
479 #else
480 static void timer_stats_account_timer(struct timer_list *timer) {}
481 #endif
482 
483 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
484 
485 static struct debug_obj_descr timer_debug_descr;
486 
487 static void *timer_debug_hint(void *addr)
488 {
489 	return ((struct timer_list *) addr)->function;
490 }
491 
492 static bool timer_is_static_object(void *addr)
493 {
494 	struct timer_list *timer = addr;
495 
496 	return (timer->entry.pprev == NULL &&
497 		timer->entry.next == TIMER_ENTRY_STATIC);
498 }
499 
500 /*
501  * fixup_init is called when:
502  * - an active object is initialized
503  */
504 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
505 {
506 	struct timer_list *timer = addr;
507 
508 	switch (state) {
509 	case ODEBUG_STATE_ACTIVE:
510 		del_timer_sync(timer);
511 		debug_object_init(timer, &timer_debug_descr);
512 		return true;
513 	default:
514 		return false;
515 	}
516 }
517 
518 /* Stub timer callback for improperly used timers. */
519 static void stub_timer(unsigned long data)
520 {
521 	WARN_ON(1);
522 }
523 
524 /*
525  * fixup_activate is called when:
526  * - an active object is activated
527  * - an unknown non-static object is activated
528  */
529 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
530 {
531 	struct timer_list *timer = addr;
532 
533 	switch (state) {
534 	case ODEBUG_STATE_NOTAVAILABLE:
535 		setup_timer(timer, stub_timer, 0);
536 		return true;
537 
538 	case ODEBUG_STATE_ACTIVE:
539 		WARN_ON(1);
540 
541 	default:
542 		return false;
543 	}
544 }
545 
546 /*
547  * fixup_free is called when:
548  * - an active object is freed
549  */
550 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
551 {
552 	struct timer_list *timer = addr;
553 
554 	switch (state) {
555 	case ODEBUG_STATE_ACTIVE:
556 		del_timer_sync(timer);
557 		debug_object_free(timer, &timer_debug_descr);
558 		return true;
559 	default:
560 		return false;
561 	}
562 }
563 
564 /*
565  * fixup_assert_init is called when:
566  * - an untracked/uninit-ed object is found
567  */
568 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
569 {
570 	struct timer_list *timer = addr;
571 
572 	switch (state) {
573 	case ODEBUG_STATE_NOTAVAILABLE:
574 		setup_timer(timer, stub_timer, 0);
575 		return true;
576 	default:
577 		return false;
578 	}
579 }
580 
581 static struct debug_obj_descr timer_debug_descr = {
582 	.name			= "timer_list",
583 	.debug_hint		= timer_debug_hint,
584 	.is_static_object	= timer_is_static_object,
585 	.fixup_init		= timer_fixup_init,
586 	.fixup_activate		= timer_fixup_activate,
587 	.fixup_free		= timer_fixup_free,
588 	.fixup_assert_init	= timer_fixup_assert_init,
589 };
590 
591 static inline void debug_timer_init(struct timer_list *timer)
592 {
593 	debug_object_init(timer, &timer_debug_descr);
594 }
595 
596 static inline void debug_timer_activate(struct timer_list *timer)
597 {
598 	debug_object_activate(timer, &timer_debug_descr);
599 }
600 
601 static inline void debug_timer_deactivate(struct timer_list *timer)
602 {
603 	debug_object_deactivate(timer, &timer_debug_descr);
604 }
605 
606 static inline void debug_timer_free(struct timer_list *timer)
607 {
608 	debug_object_free(timer, &timer_debug_descr);
609 }
610 
611 static inline void debug_timer_assert_init(struct timer_list *timer)
612 {
613 	debug_object_assert_init(timer, &timer_debug_descr);
614 }
615 
616 static void do_init_timer(struct timer_list *timer, unsigned int flags,
617 			  const char *name, struct lock_class_key *key);
618 
619 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
620 			     const char *name, struct lock_class_key *key)
621 {
622 	debug_object_init_on_stack(timer, &timer_debug_descr);
623 	do_init_timer(timer, flags, name, key);
624 }
625 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
626 
627 void destroy_timer_on_stack(struct timer_list *timer)
628 {
629 	debug_object_free(timer, &timer_debug_descr);
630 }
631 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
632 
633 #else
634 static inline void debug_timer_init(struct timer_list *timer) { }
635 static inline void debug_timer_activate(struct timer_list *timer) { }
636 static inline void debug_timer_deactivate(struct timer_list *timer) { }
637 static inline void debug_timer_assert_init(struct timer_list *timer) { }
638 #endif
639 
640 static inline void debug_init(struct timer_list *timer)
641 {
642 	debug_timer_init(timer);
643 	trace_timer_init(timer);
644 }
645 
646 static inline void
647 debug_activate(struct timer_list *timer, unsigned long expires)
648 {
649 	debug_timer_activate(timer);
650 	trace_timer_start(timer, expires, timer->flags);
651 }
652 
653 static inline void debug_deactivate(struct timer_list *timer)
654 {
655 	debug_timer_deactivate(timer);
656 	trace_timer_cancel(timer);
657 }
658 
659 static inline void debug_assert_init(struct timer_list *timer)
660 {
661 	debug_timer_assert_init(timer);
662 }
663 
664 static void do_init_timer(struct timer_list *timer, unsigned int flags,
665 			  const char *name, struct lock_class_key *key)
666 {
667 	timer->entry.pprev = NULL;
668 	timer->flags = flags | raw_smp_processor_id();
669 	timer->slack = -1;
670 #ifdef CONFIG_TIMER_STATS
671 	timer->start_site = NULL;
672 	timer->start_pid = -1;
673 	memset(timer->start_comm, 0, TASK_COMM_LEN);
674 #endif
675 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
676 }
677 
678 /**
679  * init_timer_key - initialize a timer
680  * @timer: the timer to be initialized
681  * @flags: timer flags
682  * @name: name of the timer
683  * @key: lockdep class key of the fake lock used for tracking timer
684  *       sync lock dependencies
685  *
686  * init_timer_key() must be done to a timer prior calling *any* of the
687  * other timer functions.
688  */
689 void init_timer_key(struct timer_list *timer, unsigned int flags,
690 		    const char *name, struct lock_class_key *key)
691 {
692 	debug_init(timer);
693 	do_init_timer(timer, flags, name, key);
694 }
695 EXPORT_SYMBOL(init_timer_key);
696 
697 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
698 {
699 	struct hlist_node *entry = &timer->entry;
700 
701 	debug_deactivate(timer);
702 
703 	__hlist_del(entry);
704 	if (clear_pending)
705 		entry->pprev = NULL;
706 	entry->next = LIST_POISON2;
707 }
708 
709 static inline void
710 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
711 {
712 	detach_timer(timer, true);
713 	if (!(timer->flags & TIMER_DEFERRABLE))
714 		base->active_timers--;
715 	base->all_timers--;
716 }
717 
718 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
719 			     bool clear_pending)
720 {
721 	if (!timer_pending(timer))
722 		return 0;
723 
724 	detach_timer(timer, clear_pending);
725 	if (!(timer->flags & TIMER_DEFERRABLE)) {
726 		base->active_timers--;
727 		if (timer->expires == base->next_timer)
728 			base->next_timer = base->timer_jiffies;
729 	}
730 	/* If this was the last timer, advance base->jiffies */
731 	if (!--base->all_timers)
732 		base->timer_jiffies = jiffies;
733 	return 1;
734 }
735 
736 /*
737  * We are using hashed locking: holding per_cpu(tvec_bases).lock
738  * means that all timers which are tied to this base via timer->base are
739  * locked, and the base itself is locked too.
740  *
741  * So __run_timers/migrate_timers can safely modify all timers which could
742  * be found on ->tvX lists.
743  *
744  * When the timer's base is locked and removed from the list, the
745  * TIMER_MIGRATING flag is set, FIXME
746  */
747 static struct tvec_base *lock_timer_base(struct timer_list *timer,
748 					unsigned long *flags)
749 	__acquires(timer->base->lock)
750 {
751 	for (;;) {
752 		u32 tf = timer->flags;
753 		struct tvec_base *base;
754 
755 		if (!(tf & TIMER_MIGRATING)) {
756 			base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
757 			spin_lock_irqsave(&base->lock, *flags);
758 			if (timer->flags == tf)
759 				return base;
760 			spin_unlock_irqrestore(&base->lock, *flags);
761 		}
762 		cpu_relax();
763 	}
764 }
765 
766 static inline int
767 __mod_timer(struct timer_list *timer, unsigned long expires,
768 	    bool pending_only, int pinned)
769 {
770 	struct tvec_base *base, *new_base;
771 	unsigned long flags;
772 	int ret = 0;
773 
774 	timer_stats_timer_set_start_info(timer);
775 	BUG_ON(!timer->function);
776 
777 	base = lock_timer_base(timer, &flags);
778 
779 	ret = detach_if_pending(timer, base, false);
780 	if (!ret && pending_only)
781 		goto out_unlock;
782 
783 	debug_activate(timer, expires);
784 
785 	new_base = get_target_base(base, pinned);
786 
787 	if (base != new_base) {
788 		/*
789 		 * We are trying to schedule the timer on the local CPU.
790 		 * However we can't change timer's base while it is running,
791 		 * otherwise del_timer_sync() can't detect that the timer's
792 		 * handler yet has not finished. This also guarantees that
793 		 * the timer is serialized wrt itself.
794 		 */
795 		if (likely(base->running_timer != timer)) {
796 			/* See the comment in lock_timer_base() */
797 			timer->flags |= TIMER_MIGRATING;
798 
799 			spin_unlock(&base->lock);
800 			base = new_base;
801 			spin_lock(&base->lock);
802 			WRITE_ONCE(timer->flags,
803 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
804 		}
805 	}
806 
807 	timer->expires = expires;
808 	internal_add_timer(base, timer);
809 
810 out_unlock:
811 	spin_unlock_irqrestore(&base->lock, flags);
812 
813 	return ret;
814 }
815 
816 /**
817  * mod_timer_pending - modify a pending timer's timeout
818  * @timer: the pending timer to be modified
819  * @expires: new timeout in jiffies
820  *
821  * mod_timer_pending() is the same for pending timers as mod_timer(),
822  * but will not re-activate and modify already deleted timers.
823  *
824  * It is useful for unserialized use of timers.
825  */
826 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
827 {
828 	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
829 }
830 EXPORT_SYMBOL(mod_timer_pending);
831 
832 /*
833  * Decide where to put the timer while taking the slack into account
834  *
835  * Algorithm:
836  *   1) calculate the maximum (absolute) time
837  *   2) calculate the highest bit where the expires and new max are different
838  *   3) use this bit to make a mask
839  *   4) use the bitmask to round down the maximum time, so that all last
840  *      bits are zeros
841  */
842 static inline
843 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
844 {
845 	unsigned long expires_limit, mask;
846 	int bit;
847 
848 	if (timer->slack >= 0) {
849 		expires_limit = expires + timer->slack;
850 	} else {
851 		long delta = expires - jiffies;
852 
853 		if (delta < 256)
854 			return expires;
855 
856 		expires_limit = expires + delta / 256;
857 	}
858 	mask = expires ^ expires_limit;
859 	if (mask == 0)
860 		return expires;
861 
862 	bit = __fls(mask);
863 
864 	mask = (1UL << bit) - 1;
865 
866 	expires_limit = expires_limit & ~(mask);
867 
868 	return expires_limit;
869 }
870 
871 /**
872  * mod_timer - modify a timer's timeout
873  * @timer: the timer to be modified
874  * @expires: new timeout in jiffies
875  *
876  * mod_timer() is a more efficient way to update the expire field of an
877  * active timer (if the timer is inactive it will be activated)
878  *
879  * mod_timer(timer, expires) is equivalent to:
880  *
881  *     del_timer(timer); timer->expires = expires; add_timer(timer);
882  *
883  * Note that if there are multiple unserialized concurrent users of the
884  * same timer, then mod_timer() is the only safe way to modify the timeout,
885  * since add_timer() cannot modify an already running timer.
886  *
887  * The function returns whether it has modified a pending timer or not.
888  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
889  * active timer returns 1.)
890  */
891 int mod_timer(struct timer_list *timer, unsigned long expires)
892 {
893 	expires = apply_slack(timer, expires);
894 
895 	/*
896 	 * This is a common optimization triggered by the
897 	 * networking code - if the timer is re-modified
898 	 * to be the same thing then just return:
899 	 */
900 	if (timer_pending(timer) && timer->expires == expires)
901 		return 1;
902 
903 	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
904 }
905 EXPORT_SYMBOL(mod_timer);
906 
907 /**
908  * mod_timer_pinned - modify a timer's timeout
909  * @timer: the timer to be modified
910  * @expires: new timeout in jiffies
911  *
912  * mod_timer_pinned() is a way to update the expire field of an
913  * active timer (if the timer is inactive it will be activated)
914  * and to ensure that the timer is scheduled on the current CPU.
915  *
916  * Note that this does not prevent the timer from being migrated
917  * when the current CPU goes offline.  If this is a problem for
918  * you, use CPU-hotplug notifiers to handle it correctly, for
919  * example, cancelling the timer when the corresponding CPU goes
920  * offline.
921  *
922  * mod_timer_pinned(timer, expires) is equivalent to:
923  *
924  *     del_timer(timer); timer->expires = expires; add_timer(timer);
925  */
926 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
927 {
928 	if (timer->expires == expires && timer_pending(timer))
929 		return 1;
930 
931 	return __mod_timer(timer, expires, false, TIMER_PINNED);
932 }
933 EXPORT_SYMBOL(mod_timer_pinned);
934 
935 /**
936  * add_timer - start a timer
937  * @timer: the timer to be added
938  *
939  * The kernel will do a ->function(->data) callback from the
940  * timer interrupt at the ->expires point in the future. The
941  * current time is 'jiffies'.
942  *
943  * The timer's ->expires, ->function (and if the handler uses it, ->data)
944  * fields must be set prior calling this function.
945  *
946  * Timers with an ->expires field in the past will be executed in the next
947  * timer tick.
948  */
949 void add_timer(struct timer_list *timer)
950 {
951 	BUG_ON(timer_pending(timer));
952 	mod_timer(timer, timer->expires);
953 }
954 EXPORT_SYMBOL(add_timer);
955 
956 /**
957  * add_timer_on - start a timer on a particular CPU
958  * @timer: the timer to be added
959  * @cpu: the CPU to start it on
960  *
961  * This is not very scalable on SMP. Double adds are not possible.
962  */
963 void add_timer_on(struct timer_list *timer, int cpu)
964 {
965 	struct tvec_base *new_base = per_cpu_ptr(&tvec_bases, cpu);
966 	struct tvec_base *base;
967 	unsigned long flags;
968 
969 	timer_stats_timer_set_start_info(timer);
970 	BUG_ON(timer_pending(timer) || !timer->function);
971 
972 	/*
973 	 * If @timer was on a different CPU, it should be migrated with the
974 	 * old base locked to prevent other operations proceeding with the
975 	 * wrong base locked.  See lock_timer_base().
976 	 */
977 	base = lock_timer_base(timer, &flags);
978 	if (base != new_base) {
979 		timer->flags |= TIMER_MIGRATING;
980 
981 		spin_unlock(&base->lock);
982 		base = new_base;
983 		spin_lock(&base->lock);
984 		WRITE_ONCE(timer->flags,
985 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
986 	}
987 
988 	debug_activate(timer, timer->expires);
989 	internal_add_timer(base, timer);
990 	spin_unlock_irqrestore(&base->lock, flags);
991 }
992 EXPORT_SYMBOL_GPL(add_timer_on);
993 
994 /**
995  * del_timer - deactive a timer.
996  * @timer: the timer to be deactivated
997  *
998  * del_timer() deactivates a timer - this works on both active and inactive
999  * timers.
1000  *
1001  * The function returns whether it has deactivated a pending timer or not.
1002  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1003  * active timer returns 1.)
1004  */
1005 int del_timer(struct timer_list *timer)
1006 {
1007 	struct tvec_base *base;
1008 	unsigned long flags;
1009 	int ret = 0;
1010 
1011 	debug_assert_init(timer);
1012 
1013 	timer_stats_timer_clear_start_info(timer);
1014 	if (timer_pending(timer)) {
1015 		base = lock_timer_base(timer, &flags);
1016 		ret = detach_if_pending(timer, base, true);
1017 		spin_unlock_irqrestore(&base->lock, flags);
1018 	}
1019 
1020 	return ret;
1021 }
1022 EXPORT_SYMBOL(del_timer);
1023 
1024 /**
1025  * try_to_del_timer_sync - Try to deactivate a timer
1026  * @timer: timer do del
1027  *
1028  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1029  * exit the timer is not queued and the handler is not running on any CPU.
1030  */
1031 int try_to_del_timer_sync(struct timer_list *timer)
1032 {
1033 	struct tvec_base *base;
1034 	unsigned long flags;
1035 	int ret = -1;
1036 
1037 	debug_assert_init(timer);
1038 
1039 	base = lock_timer_base(timer, &flags);
1040 
1041 	if (base->running_timer != timer) {
1042 		timer_stats_timer_clear_start_info(timer);
1043 		ret = detach_if_pending(timer, base, true);
1044 	}
1045 	spin_unlock_irqrestore(&base->lock, flags);
1046 
1047 	return ret;
1048 }
1049 EXPORT_SYMBOL(try_to_del_timer_sync);
1050 
1051 #ifdef CONFIG_SMP
1052 /**
1053  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1054  * @timer: the timer to be deactivated
1055  *
1056  * This function only differs from del_timer() on SMP: besides deactivating
1057  * the timer it also makes sure the handler has finished executing on other
1058  * CPUs.
1059  *
1060  * Synchronization rules: Callers must prevent restarting of the timer,
1061  * otherwise this function is meaningless. It must not be called from
1062  * interrupt contexts unless the timer is an irqsafe one. The caller must
1063  * not hold locks which would prevent completion of the timer's
1064  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1065  * timer is not queued and the handler is not running on any CPU.
1066  *
1067  * Note: For !irqsafe timers, you must not hold locks that are held in
1068  *   interrupt context while calling this function. Even if the lock has
1069  *   nothing to do with the timer in question.  Here's why:
1070  *
1071  *    CPU0                             CPU1
1072  *    ----                             ----
1073  *                                   <SOFTIRQ>
1074  *                                   call_timer_fn();
1075  *                                     base->running_timer = mytimer;
1076  *  spin_lock_irq(somelock);
1077  *                                     <IRQ>
1078  *                                        spin_lock(somelock);
1079  *  del_timer_sync(mytimer);
1080  *   while (base->running_timer == mytimer);
1081  *
1082  * Now del_timer_sync() will never return and never release somelock.
1083  * The interrupt on the other CPU is waiting to grab somelock but
1084  * it has interrupted the softirq that CPU0 is waiting to finish.
1085  *
1086  * The function returns whether it has deactivated a pending timer or not.
1087  */
1088 int del_timer_sync(struct timer_list *timer)
1089 {
1090 #ifdef CONFIG_LOCKDEP
1091 	unsigned long flags;
1092 
1093 	/*
1094 	 * If lockdep gives a backtrace here, please reference
1095 	 * the synchronization rules above.
1096 	 */
1097 	local_irq_save(flags);
1098 	lock_map_acquire(&timer->lockdep_map);
1099 	lock_map_release(&timer->lockdep_map);
1100 	local_irq_restore(flags);
1101 #endif
1102 	/*
1103 	 * don't use it in hardirq context, because it
1104 	 * could lead to deadlock.
1105 	 */
1106 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1107 	for (;;) {
1108 		int ret = try_to_del_timer_sync(timer);
1109 		if (ret >= 0)
1110 			return ret;
1111 		cpu_relax();
1112 	}
1113 }
1114 EXPORT_SYMBOL(del_timer_sync);
1115 #endif
1116 
1117 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1118 {
1119 	/* cascade all the timers from tv up one level */
1120 	struct timer_list *timer;
1121 	struct hlist_node *tmp;
1122 	struct hlist_head tv_list;
1123 
1124 	hlist_move_list(tv->vec + index, &tv_list);
1125 
1126 	/*
1127 	 * We are removing _all_ timers from the list, so we
1128 	 * don't have to detach them individually.
1129 	 */
1130 	hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1131 		/* No accounting, while moving them */
1132 		__internal_add_timer(base, timer);
1133 	}
1134 
1135 	return index;
1136 }
1137 
1138 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1139 			  unsigned long data)
1140 {
1141 	int count = preempt_count();
1142 
1143 #ifdef CONFIG_LOCKDEP
1144 	/*
1145 	 * It is permissible to free the timer from inside the
1146 	 * function that is called from it, this we need to take into
1147 	 * account for lockdep too. To avoid bogus "held lock freed"
1148 	 * warnings as well as problems when looking into
1149 	 * timer->lockdep_map, make a copy and use that here.
1150 	 */
1151 	struct lockdep_map lockdep_map;
1152 
1153 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1154 #endif
1155 	/*
1156 	 * Couple the lock chain with the lock chain at
1157 	 * del_timer_sync() by acquiring the lock_map around the fn()
1158 	 * call here and in del_timer_sync().
1159 	 */
1160 	lock_map_acquire(&lockdep_map);
1161 
1162 	trace_timer_expire_entry(timer);
1163 	fn(data);
1164 	trace_timer_expire_exit(timer);
1165 
1166 	lock_map_release(&lockdep_map);
1167 
1168 	if (count != preempt_count()) {
1169 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1170 			  fn, count, preempt_count());
1171 		/*
1172 		 * Restore the preempt count. That gives us a decent
1173 		 * chance to survive and extract information. If the
1174 		 * callback kept a lock held, bad luck, but not worse
1175 		 * than the BUG() we had.
1176 		 */
1177 		preempt_count_set(count);
1178 	}
1179 }
1180 
1181 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1182 
1183 /**
1184  * __run_timers - run all expired timers (if any) on this CPU.
1185  * @base: the timer vector to be processed.
1186  *
1187  * This function cascades all vectors and executes all expired timer
1188  * vectors.
1189  */
1190 static inline void __run_timers(struct tvec_base *base)
1191 {
1192 	struct timer_list *timer;
1193 
1194 	spin_lock_irq(&base->lock);
1195 
1196 	while (time_after_eq(jiffies, base->timer_jiffies)) {
1197 		struct hlist_head work_list;
1198 		struct hlist_head *head = &work_list;
1199 		int index;
1200 
1201 		if (!base->all_timers) {
1202 			base->timer_jiffies = jiffies;
1203 			break;
1204 		}
1205 
1206 		index = base->timer_jiffies & TVR_MASK;
1207 
1208 		/*
1209 		 * Cascade timers:
1210 		 */
1211 		if (!index &&
1212 			(!cascade(base, &base->tv2, INDEX(0))) &&
1213 				(!cascade(base, &base->tv3, INDEX(1))) &&
1214 					!cascade(base, &base->tv4, INDEX(2)))
1215 			cascade(base, &base->tv5, INDEX(3));
1216 		++base->timer_jiffies;
1217 		hlist_move_list(base->tv1.vec + index, head);
1218 		while (!hlist_empty(head)) {
1219 			void (*fn)(unsigned long);
1220 			unsigned long data;
1221 			bool irqsafe;
1222 
1223 			timer = hlist_entry(head->first, struct timer_list, entry);
1224 			fn = timer->function;
1225 			data = timer->data;
1226 			irqsafe = timer->flags & TIMER_IRQSAFE;
1227 
1228 			timer_stats_account_timer(timer);
1229 
1230 			base->running_timer = timer;
1231 			detach_expired_timer(timer, base);
1232 
1233 			if (irqsafe) {
1234 				spin_unlock(&base->lock);
1235 				call_timer_fn(timer, fn, data);
1236 				spin_lock(&base->lock);
1237 			} else {
1238 				spin_unlock_irq(&base->lock);
1239 				call_timer_fn(timer, fn, data);
1240 				spin_lock_irq(&base->lock);
1241 			}
1242 		}
1243 	}
1244 	base->running_timer = NULL;
1245 	spin_unlock_irq(&base->lock);
1246 }
1247 
1248 #ifdef CONFIG_NO_HZ_COMMON
1249 /*
1250  * Find out when the next timer event is due to happen. This
1251  * is used on S/390 to stop all activity when a CPU is idle.
1252  * This function needs to be called with interrupts disabled.
1253  */
1254 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1255 {
1256 	unsigned long timer_jiffies = base->timer_jiffies;
1257 	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1258 	int index, slot, array, found = 0;
1259 	struct timer_list *nte;
1260 	struct tvec *varray[4];
1261 
1262 	/* Look for timer events in tv1. */
1263 	index = slot = timer_jiffies & TVR_MASK;
1264 	do {
1265 		hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1266 			if (nte->flags & TIMER_DEFERRABLE)
1267 				continue;
1268 
1269 			found = 1;
1270 			expires = nte->expires;
1271 			/* Look at the cascade bucket(s)? */
1272 			if (!index || slot < index)
1273 				goto cascade;
1274 			return expires;
1275 		}
1276 		slot = (slot + 1) & TVR_MASK;
1277 	} while (slot != index);
1278 
1279 cascade:
1280 	/* Calculate the next cascade event */
1281 	if (index)
1282 		timer_jiffies += TVR_SIZE - index;
1283 	timer_jiffies >>= TVR_BITS;
1284 
1285 	/* Check tv2-tv5. */
1286 	varray[0] = &base->tv2;
1287 	varray[1] = &base->tv3;
1288 	varray[2] = &base->tv4;
1289 	varray[3] = &base->tv5;
1290 
1291 	for (array = 0; array < 4; array++) {
1292 		struct tvec *varp = varray[array];
1293 
1294 		index = slot = timer_jiffies & TVN_MASK;
1295 		do {
1296 			hlist_for_each_entry(nte, varp->vec + slot, entry) {
1297 				if (nte->flags & TIMER_DEFERRABLE)
1298 					continue;
1299 
1300 				found = 1;
1301 				if (time_before(nte->expires, expires))
1302 					expires = nte->expires;
1303 			}
1304 			/*
1305 			 * Do we still search for the first timer or are
1306 			 * we looking up the cascade buckets ?
1307 			 */
1308 			if (found) {
1309 				/* Look at the cascade bucket(s)? */
1310 				if (!index || slot < index)
1311 					break;
1312 				return expires;
1313 			}
1314 			slot = (slot + 1) & TVN_MASK;
1315 		} while (slot != index);
1316 
1317 		if (index)
1318 			timer_jiffies += TVN_SIZE - index;
1319 		timer_jiffies >>= TVN_BITS;
1320 	}
1321 	return expires;
1322 }
1323 
1324 /*
1325  * Check, if the next hrtimer event is before the next timer wheel
1326  * event:
1327  */
1328 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1329 {
1330 	u64 nextevt = hrtimer_get_next_event();
1331 
1332 	/*
1333 	 * If high resolution timers are enabled
1334 	 * hrtimer_get_next_event() returns KTIME_MAX.
1335 	 */
1336 	if (expires <= nextevt)
1337 		return expires;
1338 
1339 	/*
1340 	 * If the next timer is already expired, return the tick base
1341 	 * time so the tick is fired immediately.
1342 	 */
1343 	if (nextevt <= basem)
1344 		return basem;
1345 
1346 	/*
1347 	 * Round up to the next jiffie. High resolution timers are
1348 	 * off, so the hrtimers are expired in the tick and we need to
1349 	 * make sure that this tick really expires the timer to avoid
1350 	 * a ping pong of the nohz stop code.
1351 	 *
1352 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1353 	 */
1354 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1355 }
1356 
1357 /**
1358  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1359  * @basej:	base time jiffies
1360  * @basem:	base time clock monotonic
1361  *
1362  * Returns the tick aligned clock monotonic time of the next pending
1363  * timer or KTIME_MAX if no timer is pending.
1364  */
1365 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1366 {
1367 	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1368 	u64 expires = KTIME_MAX;
1369 	unsigned long nextevt;
1370 
1371 	/*
1372 	 * Pretend that there is no timer pending if the cpu is offline.
1373 	 * Possible pending timers will be migrated later to an active cpu.
1374 	 */
1375 	if (cpu_is_offline(smp_processor_id()))
1376 		return expires;
1377 
1378 	spin_lock(&base->lock);
1379 	if (base->active_timers) {
1380 		if (time_before_eq(base->next_timer, base->timer_jiffies))
1381 			base->next_timer = __next_timer_interrupt(base);
1382 		nextevt = base->next_timer;
1383 		if (time_before_eq(nextevt, basej))
1384 			expires = basem;
1385 		else
1386 			expires = basem + (nextevt - basej) * TICK_NSEC;
1387 	}
1388 	spin_unlock(&base->lock);
1389 
1390 	return cmp_next_hrtimer_event(basem, expires);
1391 }
1392 #endif
1393 
1394 /*
1395  * Called from the timer interrupt handler to charge one tick to the current
1396  * process.  user_tick is 1 if the tick is user time, 0 for system.
1397  */
1398 void update_process_times(int user_tick)
1399 {
1400 	struct task_struct *p = current;
1401 
1402 	/* Note: this timer irq context must be accounted for as well. */
1403 	account_process_tick(p, user_tick);
1404 	run_local_timers();
1405 	rcu_check_callbacks(user_tick);
1406 #ifdef CONFIG_IRQ_WORK
1407 	if (in_irq())
1408 		irq_work_tick();
1409 #endif
1410 	scheduler_tick();
1411 	run_posix_cpu_timers(p);
1412 }
1413 
1414 /*
1415  * This function runs timers and the timer-tq in bottom half context.
1416  */
1417 static void run_timer_softirq(struct softirq_action *h)
1418 {
1419 	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1420 
1421 	if (time_after_eq(jiffies, base->timer_jiffies))
1422 		__run_timers(base);
1423 }
1424 
1425 /*
1426  * Called by the local, per-CPU timer interrupt on SMP.
1427  */
1428 void run_local_timers(void)
1429 {
1430 	hrtimer_run_queues();
1431 	raise_softirq(TIMER_SOFTIRQ);
1432 }
1433 
1434 #ifdef __ARCH_WANT_SYS_ALARM
1435 
1436 /*
1437  * For backwards compatibility?  This can be done in libc so Alpha
1438  * and all newer ports shouldn't need it.
1439  */
1440 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1441 {
1442 	return alarm_setitimer(seconds);
1443 }
1444 
1445 #endif
1446 
1447 static void process_timeout(unsigned long __data)
1448 {
1449 	wake_up_process((struct task_struct *)__data);
1450 }
1451 
1452 /**
1453  * schedule_timeout - sleep until timeout
1454  * @timeout: timeout value in jiffies
1455  *
1456  * Make the current task sleep until @timeout jiffies have
1457  * elapsed. The routine will return immediately unless
1458  * the current task state has been set (see set_current_state()).
1459  *
1460  * You can set the task state as follows -
1461  *
1462  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1463  * pass before the routine returns. The routine will return 0
1464  *
1465  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1466  * delivered to the current task. In this case the remaining time
1467  * in jiffies will be returned, or 0 if the timer expired in time
1468  *
1469  * The current task state is guaranteed to be TASK_RUNNING when this
1470  * routine returns.
1471  *
1472  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1473  * the CPU away without a bound on the timeout. In this case the return
1474  * value will be %MAX_SCHEDULE_TIMEOUT.
1475  *
1476  * In all cases the return value is guaranteed to be non-negative.
1477  */
1478 signed long __sched schedule_timeout(signed long timeout)
1479 {
1480 	struct timer_list timer;
1481 	unsigned long expire;
1482 
1483 	switch (timeout)
1484 	{
1485 	case MAX_SCHEDULE_TIMEOUT:
1486 		/*
1487 		 * These two special cases are useful to be comfortable
1488 		 * in the caller. Nothing more. We could take
1489 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1490 		 * but I' d like to return a valid offset (>=0) to allow
1491 		 * the caller to do everything it want with the retval.
1492 		 */
1493 		schedule();
1494 		goto out;
1495 	default:
1496 		/*
1497 		 * Another bit of PARANOID. Note that the retval will be
1498 		 * 0 since no piece of kernel is supposed to do a check
1499 		 * for a negative retval of schedule_timeout() (since it
1500 		 * should never happens anyway). You just have the printk()
1501 		 * that will tell you if something is gone wrong and where.
1502 		 */
1503 		if (timeout < 0) {
1504 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1505 				"value %lx\n", timeout);
1506 			dump_stack();
1507 			current->state = TASK_RUNNING;
1508 			goto out;
1509 		}
1510 	}
1511 
1512 	expire = timeout + jiffies;
1513 
1514 	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1515 	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1516 	schedule();
1517 	del_singleshot_timer_sync(&timer);
1518 
1519 	/* Remove the timer from the object tracker */
1520 	destroy_timer_on_stack(&timer);
1521 
1522 	timeout = expire - jiffies;
1523 
1524  out:
1525 	return timeout < 0 ? 0 : timeout;
1526 }
1527 EXPORT_SYMBOL(schedule_timeout);
1528 
1529 /*
1530  * We can use __set_current_state() here because schedule_timeout() calls
1531  * schedule() unconditionally.
1532  */
1533 signed long __sched schedule_timeout_interruptible(signed long timeout)
1534 {
1535 	__set_current_state(TASK_INTERRUPTIBLE);
1536 	return schedule_timeout(timeout);
1537 }
1538 EXPORT_SYMBOL(schedule_timeout_interruptible);
1539 
1540 signed long __sched schedule_timeout_killable(signed long timeout)
1541 {
1542 	__set_current_state(TASK_KILLABLE);
1543 	return schedule_timeout(timeout);
1544 }
1545 EXPORT_SYMBOL(schedule_timeout_killable);
1546 
1547 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1548 {
1549 	__set_current_state(TASK_UNINTERRUPTIBLE);
1550 	return schedule_timeout(timeout);
1551 }
1552 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1553 
1554 /*
1555  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1556  * to load average.
1557  */
1558 signed long __sched schedule_timeout_idle(signed long timeout)
1559 {
1560 	__set_current_state(TASK_IDLE);
1561 	return schedule_timeout(timeout);
1562 }
1563 EXPORT_SYMBOL(schedule_timeout_idle);
1564 
1565 #ifdef CONFIG_HOTPLUG_CPU
1566 static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
1567 {
1568 	struct timer_list *timer;
1569 	int cpu = new_base->cpu;
1570 
1571 	while (!hlist_empty(head)) {
1572 		timer = hlist_entry(head->first, struct timer_list, entry);
1573 		/* We ignore the accounting on the dying cpu */
1574 		detach_timer(timer, false);
1575 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1576 		internal_add_timer(new_base, timer);
1577 	}
1578 }
1579 
1580 static void migrate_timers(int cpu)
1581 {
1582 	struct tvec_base *old_base;
1583 	struct tvec_base *new_base;
1584 	int i;
1585 
1586 	BUG_ON(cpu_online(cpu));
1587 	old_base = per_cpu_ptr(&tvec_bases, cpu);
1588 	new_base = get_cpu_ptr(&tvec_bases);
1589 	/*
1590 	 * The caller is globally serialized and nobody else
1591 	 * takes two locks at once, deadlock is not possible.
1592 	 */
1593 	spin_lock_irq(&new_base->lock);
1594 	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1595 
1596 	BUG_ON(old_base->running_timer);
1597 
1598 	for (i = 0; i < TVR_SIZE; i++)
1599 		migrate_timer_list(new_base, old_base->tv1.vec + i);
1600 	for (i = 0; i < TVN_SIZE; i++) {
1601 		migrate_timer_list(new_base, old_base->tv2.vec + i);
1602 		migrate_timer_list(new_base, old_base->tv3.vec + i);
1603 		migrate_timer_list(new_base, old_base->tv4.vec + i);
1604 		migrate_timer_list(new_base, old_base->tv5.vec + i);
1605 	}
1606 
1607 	old_base->active_timers = 0;
1608 	old_base->all_timers = 0;
1609 
1610 	spin_unlock(&old_base->lock);
1611 	spin_unlock_irq(&new_base->lock);
1612 	put_cpu_ptr(&tvec_bases);
1613 }
1614 
1615 static int timer_cpu_notify(struct notifier_block *self,
1616 				unsigned long action, void *hcpu)
1617 {
1618 	switch (action) {
1619 	case CPU_DEAD:
1620 	case CPU_DEAD_FROZEN:
1621 		migrate_timers((long)hcpu);
1622 		break;
1623 	default:
1624 		break;
1625 	}
1626 
1627 	return NOTIFY_OK;
1628 }
1629 
1630 static inline void timer_register_cpu_notifier(void)
1631 {
1632 	cpu_notifier(timer_cpu_notify, 0);
1633 }
1634 #else
1635 static inline void timer_register_cpu_notifier(void) { }
1636 #endif /* CONFIG_HOTPLUG_CPU */
1637 
1638 static void __init init_timer_cpu(int cpu)
1639 {
1640 	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1641 
1642 	base->cpu = cpu;
1643 	spin_lock_init(&base->lock);
1644 
1645 	base->timer_jiffies = jiffies;
1646 	base->next_timer = base->timer_jiffies;
1647 }
1648 
1649 static void __init init_timer_cpus(void)
1650 {
1651 	int cpu;
1652 
1653 	for_each_possible_cpu(cpu)
1654 		init_timer_cpu(cpu);
1655 }
1656 
1657 void __init init_timers(void)
1658 {
1659 	init_timer_cpus();
1660 	init_timer_stats();
1661 	timer_register_cpu_notifier();
1662 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1663 }
1664 
1665 /**
1666  * msleep - sleep safely even with waitqueue interruptions
1667  * @msecs: Time in milliseconds to sleep for
1668  */
1669 void msleep(unsigned int msecs)
1670 {
1671 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1672 
1673 	while (timeout)
1674 		timeout = schedule_timeout_uninterruptible(timeout);
1675 }
1676 
1677 EXPORT_SYMBOL(msleep);
1678 
1679 /**
1680  * msleep_interruptible - sleep waiting for signals
1681  * @msecs: Time in milliseconds to sleep for
1682  */
1683 unsigned long msleep_interruptible(unsigned int msecs)
1684 {
1685 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1686 
1687 	while (timeout && !signal_pending(current))
1688 		timeout = schedule_timeout_interruptible(timeout);
1689 	return jiffies_to_msecs(timeout);
1690 }
1691 
1692 EXPORT_SYMBOL(msleep_interruptible);
1693 
1694 static void __sched do_usleep_range(unsigned long min, unsigned long max)
1695 {
1696 	ktime_t kmin;
1697 	u64 delta;
1698 
1699 	kmin = ktime_set(0, min * NSEC_PER_USEC);
1700 	delta = (u64)(max - min) * NSEC_PER_USEC;
1701 	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1702 }
1703 
1704 /**
1705  * usleep_range - Drop in replacement for udelay where wakeup is flexible
1706  * @min: Minimum time in usecs to sleep
1707  * @max: Maximum time in usecs to sleep
1708  */
1709 void __sched usleep_range(unsigned long min, unsigned long max)
1710 {
1711 	__set_current_state(TASK_UNINTERRUPTIBLE);
1712 	do_usleep_range(min, max);
1713 }
1714 EXPORT_SYMBOL(usleep_range);
1715