1 /* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22 #include <linux/kernel_stat.h> 23 #include <linux/export.h> 24 #include <linux/interrupt.h> 25 #include <linux/percpu.h> 26 #include <linux/init.h> 27 #include <linux/mm.h> 28 #include <linux/swap.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/notifier.h> 31 #include <linux/thread_info.h> 32 #include <linux/time.h> 33 #include <linux/jiffies.h> 34 #include <linux/posix-timers.h> 35 #include <linux/cpu.h> 36 #include <linux/syscalls.h> 37 #include <linux/delay.h> 38 #include <linux/tick.h> 39 #include <linux/kallsyms.h> 40 #include <linux/irq_work.h> 41 #include <linux/sched.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/slab.h> 44 #include <linux/compat.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/unistd.h> 48 #include <asm/div64.h> 49 #include <asm/timex.h> 50 #include <asm/io.h> 51 52 #include "tick-internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/timer.h> 56 57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 58 59 EXPORT_SYMBOL(jiffies_64); 60 61 /* 62 * per-CPU timer vector definitions: 63 */ 64 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) 65 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) 66 #define TVN_SIZE (1 << TVN_BITS) 67 #define TVR_SIZE (1 << TVR_BITS) 68 #define TVN_MASK (TVN_SIZE - 1) 69 #define TVR_MASK (TVR_SIZE - 1) 70 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1)) 71 72 struct tvec { 73 struct hlist_head vec[TVN_SIZE]; 74 }; 75 76 struct tvec_root { 77 struct hlist_head vec[TVR_SIZE]; 78 }; 79 80 struct tvec_base { 81 spinlock_t lock; 82 struct timer_list *running_timer; 83 unsigned long timer_jiffies; 84 unsigned long next_timer; 85 unsigned long active_timers; 86 unsigned long all_timers; 87 int cpu; 88 bool migration_enabled; 89 bool nohz_active; 90 struct tvec_root tv1; 91 struct tvec tv2; 92 struct tvec tv3; 93 struct tvec tv4; 94 struct tvec tv5; 95 } ____cacheline_aligned; 96 97 98 static DEFINE_PER_CPU(struct tvec_base, tvec_bases); 99 100 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 101 unsigned int sysctl_timer_migration = 1; 102 103 void timers_update_migration(bool update_nohz) 104 { 105 bool on = sysctl_timer_migration && tick_nohz_active; 106 unsigned int cpu; 107 108 /* Avoid the loop, if nothing to update */ 109 if (this_cpu_read(tvec_bases.migration_enabled) == on) 110 return; 111 112 for_each_possible_cpu(cpu) { 113 per_cpu(tvec_bases.migration_enabled, cpu) = on; 114 per_cpu(hrtimer_bases.migration_enabled, cpu) = on; 115 if (!update_nohz) 116 continue; 117 per_cpu(tvec_bases.nohz_active, cpu) = true; 118 per_cpu(hrtimer_bases.nohz_active, cpu) = true; 119 } 120 } 121 122 int timer_migration_handler(struct ctl_table *table, int write, 123 void __user *buffer, size_t *lenp, 124 loff_t *ppos) 125 { 126 static DEFINE_MUTEX(mutex); 127 int ret; 128 129 mutex_lock(&mutex); 130 ret = proc_dointvec(table, write, buffer, lenp, ppos); 131 if (!ret && write) 132 timers_update_migration(false); 133 mutex_unlock(&mutex); 134 return ret; 135 } 136 137 static inline struct tvec_base *get_target_base(struct tvec_base *base, 138 int pinned) 139 { 140 if (pinned || !base->migration_enabled) 141 return this_cpu_ptr(&tvec_bases); 142 return per_cpu_ptr(&tvec_bases, get_nohz_timer_target()); 143 } 144 #else 145 static inline struct tvec_base *get_target_base(struct tvec_base *base, 146 int pinned) 147 { 148 return this_cpu_ptr(&tvec_bases); 149 } 150 #endif 151 152 static unsigned long round_jiffies_common(unsigned long j, int cpu, 153 bool force_up) 154 { 155 int rem; 156 unsigned long original = j; 157 158 /* 159 * We don't want all cpus firing their timers at once hitting the 160 * same lock or cachelines, so we skew each extra cpu with an extra 161 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 162 * already did this. 163 * The skew is done by adding 3*cpunr, then round, then subtract this 164 * extra offset again. 165 */ 166 j += cpu * 3; 167 168 rem = j % HZ; 169 170 /* 171 * If the target jiffie is just after a whole second (which can happen 172 * due to delays of the timer irq, long irq off times etc etc) then 173 * we should round down to the whole second, not up. Use 1/4th second 174 * as cutoff for this rounding as an extreme upper bound for this. 175 * But never round down if @force_up is set. 176 */ 177 if (rem < HZ/4 && !force_up) /* round down */ 178 j = j - rem; 179 else /* round up */ 180 j = j - rem + HZ; 181 182 /* now that we have rounded, subtract the extra skew again */ 183 j -= cpu * 3; 184 185 /* 186 * Make sure j is still in the future. Otherwise return the 187 * unmodified value. 188 */ 189 return time_is_after_jiffies(j) ? j : original; 190 } 191 192 /** 193 * __round_jiffies - function to round jiffies to a full second 194 * @j: the time in (absolute) jiffies that should be rounded 195 * @cpu: the processor number on which the timeout will happen 196 * 197 * __round_jiffies() rounds an absolute time in the future (in jiffies) 198 * up or down to (approximately) full seconds. This is useful for timers 199 * for which the exact time they fire does not matter too much, as long as 200 * they fire approximately every X seconds. 201 * 202 * By rounding these timers to whole seconds, all such timers will fire 203 * at the same time, rather than at various times spread out. The goal 204 * of this is to have the CPU wake up less, which saves power. 205 * 206 * The exact rounding is skewed for each processor to avoid all 207 * processors firing at the exact same time, which could lead 208 * to lock contention or spurious cache line bouncing. 209 * 210 * The return value is the rounded version of the @j parameter. 211 */ 212 unsigned long __round_jiffies(unsigned long j, int cpu) 213 { 214 return round_jiffies_common(j, cpu, false); 215 } 216 EXPORT_SYMBOL_GPL(__round_jiffies); 217 218 /** 219 * __round_jiffies_relative - function to round jiffies to a full second 220 * @j: the time in (relative) jiffies that should be rounded 221 * @cpu: the processor number on which the timeout will happen 222 * 223 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 224 * up or down to (approximately) full seconds. This is useful for timers 225 * for which the exact time they fire does not matter too much, as long as 226 * they fire approximately every X seconds. 227 * 228 * By rounding these timers to whole seconds, all such timers will fire 229 * at the same time, rather than at various times spread out. The goal 230 * of this is to have the CPU wake up less, which saves power. 231 * 232 * The exact rounding is skewed for each processor to avoid all 233 * processors firing at the exact same time, which could lead 234 * to lock contention or spurious cache line bouncing. 235 * 236 * The return value is the rounded version of the @j parameter. 237 */ 238 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 239 { 240 unsigned long j0 = jiffies; 241 242 /* Use j0 because jiffies might change while we run */ 243 return round_jiffies_common(j + j0, cpu, false) - j0; 244 } 245 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 246 247 /** 248 * round_jiffies - function to round jiffies to a full second 249 * @j: the time in (absolute) jiffies that should be rounded 250 * 251 * round_jiffies() rounds an absolute time in the future (in jiffies) 252 * up or down to (approximately) full seconds. This is useful for timers 253 * for which the exact time they fire does not matter too much, as long as 254 * they fire approximately every X seconds. 255 * 256 * By rounding these timers to whole seconds, all such timers will fire 257 * at the same time, rather than at various times spread out. The goal 258 * of this is to have the CPU wake up less, which saves power. 259 * 260 * The return value is the rounded version of the @j parameter. 261 */ 262 unsigned long round_jiffies(unsigned long j) 263 { 264 return round_jiffies_common(j, raw_smp_processor_id(), false); 265 } 266 EXPORT_SYMBOL_GPL(round_jiffies); 267 268 /** 269 * round_jiffies_relative - function to round jiffies to a full second 270 * @j: the time in (relative) jiffies that should be rounded 271 * 272 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 273 * up or down to (approximately) full seconds. This is useful for timers 274 * for which the exact time they fire does not matter too much, as long as 275 * they fire approximately every X seconds. 276 * 277 * By rounding these timers to whole seconds, all such timers will fire 278 * at the same time, rather than at various times spread out. The goal 279 * of this is to have the CPU wake up less, which saves power. 280 * 281 * The return value is the rounded version of the @j parameter. 282 */ 283 unsigned long round_jiffies_relative(unsigned long j) 284 { 285 return __round_jiffies_relative(j, raw_smp_processor_id()); 286 } 287 EXPORT_SYMBOL_GPL(round_jiffies_relative); 288 289 /** 290 * __round_jiffies_up - function to round jiffies up to a full second 291 * @j: the time in (absolute) jiffies that should be rounded 292 * @cpu: the processor number on which the timeout will happen 293 * 294 * This is the same as __round_jiffies() except that it will never 295 * round down. This is useful for timeouts for which the exact time 296 * of firing does not matter too much, as long as they don't fire too 297 * early. 298 */ 299 unsigned long __round_jiffies_up(unsigned long j, int cpu) 300 { 301 return round_jiffies_common(j, cpu, true); 302 } 303 EXPORT_SYMBOL_GPL(__round_jiffies_up); 304 305 /** 306 * __round_jiffies_up_relative - function to round jiffies up to a full second 307 * @j: the time in (relative) jiffies that should be rounded 308 * @cpu: the processor number on which the timeout will happen 309 * 310 * This is the same as __round_jiffies_relative() except that it will never 311 * round down. This is useful for timeouts for which the exact time 312 * of firing does not matter too much, as long as they don't fire too 313 * early. 314 */ 315 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 316 { 317 unsigned long j0 = jiffies; 318 319 /* Use j0 because jiffies might change while we run */ 320 return round_jiffies_common(j + j0, cpu, true) - j0; 321 } 322 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 323 324 /** 325 * round_jiffies_up - function to round jiffies up to a full second 326 * @j: the time in (absolute) jiffies that should be rounded 327 * 328 * This is the same as round_jiffies() except that it will never 329 * round down. This is useful for timeouts for which the exact time 330 * of firing does not matter too much, as long as they don't fire too 331 * early. 332 */ 333 unsigned long round_jiffies_up(unsigned long j) 334 { 335 return round_jiffies_common(j, raw_smp_processor_id(), true); 336 } 337 EXPORT_SYMBOL_GPL(round_jiffies_up); 338 339 /** 340 * round_jiffies_up_relative - function to round jiffies up to a full second 341 * @j: the time in (relative) jiffies that should be rounded 342 * 343 * This is the same as round_jiffies_relative() except that it will never 344 * round down. This is useful for timeouts for which the exact time 345 * of firing does not matter too much, as long as they don't fire too 346 * early. 347 */ 348 unsigned long round_jiffies_up_relative(unsigned long j) 349 { 350 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 351 } 352 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 353 354 /** 355 * set_timer_slack - set the allowed slack for a timer 356 * @timer: the timer to be modified 357 * @slack_hz: the amount of time (in jiffies) allowed for rounding 358 * 359 * Set the amount of time, in jiffies, that a certain timer has 360 * in terms of slack. By setting this value, the timer subsystem 361 * will schedule the actual timer somewhere between 362 * the time mod_timer() asks for, and that time plus the slack. 363 * 364 * By setting the slack to -1, a percentage of the delay is used 365 * instead. 366 */ 367 void set_timer_slack(struct timer_list *timer, int slack_hz) 368 { 369 timer->slack = slack_hz; 370 } 371 EXPORT_SYMBOL_GPL(set_timer_slack); 372 373 static void 374 __internal_add_timer(struct tvec_base *base, struct timer_list *timer) 375 { 376 unsigned long expires = timer->expires; 377 unsigned long idx = expires - base->timer_jiffies; 378 struct hlist_head *vec; 379 380 if (idx < TVR_SIZE) { 381 int i = expires & TVR_MASK; 382 vec = base->tv1.vec + i; 383 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { 384 int i = (expires >> TVR_BITS) & TVN_MASK; 385 vec = base->tv2.vec + i; 386 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { 387 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; 388 vec = base->tv3.vec + i; 389 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { 390 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; 391 vec = base->tv4.vec + i; 392 } else if ((signed long) idx < 0) { 393 /* 394 * Can happen if you add a timer with expires == jiffies, 395 * or you set a timer to go off in the past 396 */ 397 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); 398 } else { 399 int i; 400 /* If the timeout is larger than MAX_TVAL (on 64-bit 401 * architectures or with CONFIG_BASE_SMALL=1) then we 402 * use the maximum timeout. 403 */ 404 if (idx > MAX_TVAL) { 405 idx = MAX_TVAL; 406 expires = idx + base->timer_jiffies; 407 } 408 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; 409 vec = base->tv5.vec + i; 410 } 411 412 hlist_add_head(&timer->entry, vec); 413 } 414 415 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) 416 { 417 /* Advance base->jiffies, if the base is empty */ 418 if (!base->all_timers++) 419 base->timer_jiffies = jiffies; 420 421 __internal_add_timer(base, timer); 422 /* 423 * Update base->active_timers and base->next_timer 424 */ 425 if (!(timer->flags & TIMER_DEFERRABLE)) { 426 if (!base->active_timers++ || 427 time_before(timer->expires, base->next_timer)) 428 base->next_timer = timer->expires; 429 } 430 431 /* 432 * Check whether the other CPU is in dynticks mode and needs 433 * to be triggered to reevaluate the timer wheel. 434 * We are protected against the other CPU fiddling 435 * with the timer by holding the timer base lock. This also 436 * makes sure that a CPU on the way to stop its tick can not 437 * evaluate the timer wheel. 438 * 439 * Spare the IPI for deferrable timers on idle targets though. 440 * The next busy ticks will take care of it. Except full dynticks 441 * require special care against races with idle_cpu(), lets deal 442 * with that later. 443 */ 444 if (base->nohz_active) { 445 if (!(timer->flags & TIMER_DEFERRABLE) || 446 tick_nohz_full_cpu(base->cpu)) 447 wake_up_nohz_cpu(base->cpu); 448 } 449 } 450 451 #ifdef CONFIG_TIMER_STATS 452 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) 453 { 454 if (timer->start_site) 455 return; 456 457 timer->start_site = addr; 458 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 459 timer->start_pid = current->pid; 460 } 461 462 static void timer_stats_account_timer(struct timer_list *timer) 463 { 464 if (likely(!timer->start_site)) 465 return; 466 467 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 468 timer->function, timer->start_comm, 469 timer->flags); 470 } 471 472 #else 473 static void timer_stats_account_timer(struct timer_list *timer) {} 474 #endif 475 476 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 477 478 static struct debug_obj_descr timer_debug_descr; 479 480 static void *timer_debug_hint(void *addr) 481 { 482 return ((struct timer_list *) addr)->function; 483 } 484 485 /* 486 * fixup_init is called when: 487 * - an active object is initialized 488 */ 489 static int timer_fixup_init(void *addr, enum debug_obj_state state) 490 { 491 struct timer_list *timer = addr; 492 493 switch (state) { 494 case ODEBUG_STATE_ACTIVE: 495 del_timer_sync(timer); 496 debug_object_init(timer, &timer_debug_descr); 497 return 1; 498 default: 499 return 0; 500 } 501 } 502 503 /* Stub timer callback for improperly used timers. */ 504 static void stub_timer(unsigned long data) 505 { 506 WARN_ON(1); 507 } 508 509 /* 510 * fixup_activate is called when: 511 * - an active object is activated 512 * - an unknown object is activated (might be a statically initialized object) 513 */ 514 static int timer_fixup_activate(void *addr, enum debug_obj_state state) 515 { 516 struct timer_list *timer = addr; 517 518 switch (state) { 519 520 case ODEBUG_STATE_NOTAVAILABLE: 521 /* 522 * This is not really a fixup. The timer was 523 * statically initialized. We just make sure that it 524 * is tracked in the object tracker. 525 */ 526 if (timer->entry.pprev == NULL && 527 timer->entry.next == TIMER_ENTRY_STATIC) { 528 debug_object_init(timer, &timer_debug_descr); 529 debug_object_activate(timer, &timer_debug_descr); 530 return 0; 531 } else { 532 setup_timer(timer, stub_timer, 0); 533 return 1; 534 } 535 return 0; 536 537 case ODEBUG_STATE_ACTIVE: 538 WARN_ON(1); 539 540 default: 541 return 0; 542 } 543 } 544 545 /* 546 * fixup_free is called when: 547 * - an active object is freed 548 */ 549 static int timer_fixup_free(void *addr, enum debug_obj_state state) 550 { 551 struct timer_list *timer = addr; 552 553 switch (state) { 554 case ODEBUG_STATE_ACTIVE: 555 del_timer_sync(timer); 556 debug_object_free(timer, &timer_debug_descr); 557 return 1; 558 default: 559 return 0; 560 } 561 } 562 563 /* 564 * fixup_assert_init is called when: 565 * - an untracked/uninit-ed object is found 566 */ 567 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state) 568 { 569 struct timer_list *timer = addr; 570 571 switch (state) { 572 case ODEBUG_STATE_NOTAVAILABLE: 573 if (timer->entry.next == TIMER_ENTRY_STATIC) { 574 /* 575 * This is not really a fixup. The timer was 576 * statically initialized. We just make sure that it 577 * is tracked in the object tracker. 578 */ 579 debug_object_init(timer, &timer_debug_descr); 580 return 0; 581 } else { 582 setup_timer(timer, stub_timer, 0); 583 return 1; 584 } 585 default: 586 return 0; 587 } 588 } 589 590 static struct debug_obj_descr timer_debug_descr = { 591 .name = "timer_list", 592 .debug_hint = timer_debug_hint, 593 .fixup_init = timer_fixup_init, 594 .fixup_activate = timer_fixup_activate, 595 .fixup_free = timer_fixup_free, 596 .fixup_assert_init = timer_fixup_assert_init, 597 }; 598 599 static inline void debug_timer_init(struct timer_list *timer) 600 { 601 debug_object_init(timer, &timer_debug_descr); 602 } 603 604 static inline void debug_timer_activate(struct timer_list *timer) 605 { 606 debug_object_activate(timer, &timer_debug_descr); 607 } 608 609 static inline void debug_timer_deactivate(struct timer_list *timer) 610 { 611 debug_object_deactivate(timer, &timer_debug_descr); 612 } 613 614 static inline void debug_timer_free(struct timer_list *timer) 615 { 616 debug_object_free(timer, &timer_debug_descr); 617 } 618 619 static inline void debug_timer_assert_init(struct timer_list *timer) 620 { 621 debug_object_assert_init(timer, &timer_debug_descr); 622 } 623 624 static void do_init_timer(struct timer_list *timer, unsigned int flags, 625 const char *name, struct lock_class_key *key); 626 627 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags, 628 const char *name, struct lock_class_key *key) 629 { 630 debug_object_init_on_stack(timer, &timer_debug_descr); 631 do_init_timer(timer, flags, name, key); 632 } 633 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 634 635 void destroy_timer_on_stack(struct timer_list *timer) 636 { 637 debug_object_free(timer, &timer_debug_descr); 638 } 639 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 640 641 #else 642 static inline void debug_timer_init(struct timer_list *timer) { } 643 static inline void debug_timer_activate(struct timer_list *timer) { } 644 static inline void debug_timer_deactivate(struct timer_list *timer) { } 645 static inline void debug_timer_assert_init(struct timer_list *timer) { } 646 #endif 647 648 static inline void debug_init(struct timer_list *timer) 649 { 650 debug_timer_init(timer); 651 trace_timer_init(timer); 652 } 653 654 static inline void 655 debug_activate(struct timer_list *timer, unsigned long expires) 656 { 657 debug_timer_activate(timer); 658 trace_timer_start(timer, expires, timer->flags); 659 } 660 661 static inline void debug_deactivate(struct timer_list *timer) 662 { 663 debug_timer_deactivate(timer); 664 trace_timer_cancel(timer); 665 } 666 667 static inline void debug_assert_init(struct timer_list *timer) 668 { 669 debug_timer_assert_init(timer); 670 } 671 672 static void do_init_timer(struct timer_list *timer, unsigned int flags, 673 const char *name, struct lock_class_key *key) 674 { 675 timer->entry.pprev = NULL; 676 timer->flags = flags | raw_smp_processor_id(); 677 timer->slack = -1; 678 #ifdef CONFIG_TIMER_STATS 679 timer->start_site = NULL; 680 timer->start_pid = -1; 681 memset(timer->start_comm, 0, TASK_COMM_LEN); 682 #endif 683 lockdep_init_map(&timer->lockdep_map, name, key, 0); 684 } 685 686 /** 687 * init_timer_key - initialize a timer 688 * @timer: the timer to be initialized 689 * @flags: timer flags 690 * @name: name of the timer 691 * @key: lockdep class key of the fake lock used for tracking timer 692 * sync lock dependencies 693 * 694 * init_timer_key() must be done to a timer prior calling *any* of the 695 * other timer functions. 696 */ 697 void init_timer_key(struct timer_list *timer, unsigned int flags, 698 const char *name, struct lock_class_key *key) 699 { 700 debug_init(timer); 701 do_init_timer(timer, flags, name, key); 702 } 703 EXPORT_SYMBOL(init_timer_key); 704 705 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 706 { 707 struct hlist_node *entry = &timer->entry; 708 709 debug_deactivate(timer); 710 711 __hlist_del(entry); 712 if (clear_pending) 713 entry->pprev = NULL; 714 entry->next = LIST_POISON2; 715 } 716 717 static inline void 718 detach_expired_timer(struct timer_list *timer, struct tvec_base *base) 719 { 720 detach_timer(timer, true); 721 if (!(timer->flags & TIMER_DEFERRABLE)) 722 base->active_timers--; 723 base->all_timers--; 724 } 725 726 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base, 727 bool clear_pending) 728 { 729 if (!timer_pending(timer)) 730 return 0; 731 732 detach_timer(timer, clear_pending); 733 if (!(timer->flags & TIMER_DEFERRABLE)) { 734 base->active_timers--; 735 if (timer->expires == base->next_timer) 736 base->next_timer = base->timer_jiffies; 737 } 738 /* If this was the last timer, advance base->jiffies */ 739 if (!--base->all_timers) 740 base->timer_jiffies = jiffies; 741 return 1; 742 } 743 744 /* 745 * We are using hashed locking: holding per_cpu(tvec_bases).lock 746 * means that all timers which are tied to this base via timer->base are 747 * locked, and the base itself is locked too. 748 * 749 * So __run_timers/migrate_timers can safely modify all timers which could 750 * be found on ->tvX lists. 751 * 752 * When the timer's base is locked and removed from the list, the 753 * TIMER_MIGRATING flag is set, FIXME 754 */ 755 static struct tvec_base *lock_timer_base(struct timer_list *timer, 756 unsigned long *flags) 757 __acquires(timer->base->lock) 758 { 759 for (;;) { 760 u32 tf = timer->flags; 761 struct tvec_base *base; 762 763 if (!(tf & TIMER_MIGRATING)) { 764 base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK); 765 spin_lock_irqsave(&base->lock, *flags); 766 if (timer->flags == tf) 767 return base; 768 spin_unlock_irqrestore(&base->lock, *flags); 769 } 770 cpu_relax(); 771 } 772 } 773 774 static inline int 775 __mod_timer(struct timer_list *timer, unsigned long expires, 776 bool pending_only, int pinned) 777 { 778 struct tvec_base *base, *new_base; 779 unsigned long flags; 780 int ret = 0; 781 782 timer_stats_timer_set_start_info(timer); 783 BUG_ON(!timer->function); 784 785 base = lock_timer_base(timer, &flags); 786 787 ret = detach_if_pending(timer, base, false); 788 if (!ret && pending_only) 789 goto out_unlock; 790 791 debug_activate(timer, expires); 792 793 new_base = get_target_base(base, pinned); 794 795 if (base != new_base) { 796 /* 797 * We are trying to schedule the timer on the local CPU. 798 * However we can't change timer's base while it is running, 799 * otherwise del_timer_sync() can't detect that the timer's 800 * handler yet has not finished. This also guarantees that 801 * the timer is serialized wrt itself. 802 */ 803 if (likely(base->running_timer != timer)) { 804 /* See the comment in lock_timer_base() */ 805 timer->flags |= TIMER_MIGRATING; 806 807 spin_unlock(&base->lock); 808 base = new_base; 809 spin_lock(&base->lock); 810 timer->flags &= ~TIMER_BASEMASK; 811 timer->flags |= base->cpu; 812 } 813 } 814 815 timer->expires = expires; 816 internal_add_timer(base, timer); 817 818 out_unlock: 819 spin_unlock_irqrestore(&base->lock, flags); 820 821 return ret; 822 } 823 824 /** 825 * mod_timer_pending - modify a pending timer's timeout 826 * @timer: the pending timer to be modified 827 * @expires: new timeout in jiffies 828 * 829 * mod_timer_pending() is the same for pending timers as mod_timer(), 830 * but will not re-activate and modify already deleted timers. 831 * 832 * It is useful for unserialized use of timers. 833 */ 834 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 835 { 836 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED); 837 } 838 EXPORT_SYMBOL(mod_timer_pending); 839 840 /* 841 * Decide where to put the timer while taking the slack into account 842 * 843 * Algorithm: 844 * 1) calculate the maximum (absolute) time 845 * 2) calculate the highest bit where the expires and new max are different 846 * 3) use this bit to make a mask 847 * 4) use the bitmask to round down the maximum time, so that all last 848 * bits are zeros 849 */ 850 static inline 851 unsigned long apply_slack(struct timer_list *timer, unsigned long expires) 852 { 853 unsigned long expires_limit, mask; 854 int bit; 855 856 if (timer->slack >= 0) { 857 expires_limit = expires + timer->slack; 858 } else { 859 long delta = expires - jiffies; 860 861 if (delta < 256) 862 return expires; 863 864 expires_limit = expires + delta / 256; 865 } 866 mask = expires ^ expires_limit; 867 if (mask == 0) 868 return expires; 869 870 bit = find_last_bit(&mask, BITS_PER_LONG); 871 872 mask = (1UL << bit) - 1; 873 874 expires_limit = expires_limit & ~(mask); 875 876 return expires_limit; 877 } 878 879 /** 880 * mod_timer - modify a timer's timeout 881 * @timer: the timer to be modified 882 * @expires: new timeout in jiffies 883 * 884 * mod_timer() is a more efficient way to update the expire field of an 885 * active timer (if the timer is inactive it will be activated) 886 * 887 * mod_timer(timer, expires) is equivalent to: 888 * 889 * del_timer(timer); timer->expires = expires; add_timer(timer); 890 * 891 * Note that if there are multiple unserialized concurrent users of the 892 * same timer, then mod_timer() is the only safe way to modify the timeout, 893 * since add_timer() cannot modify an already running timer. 894 * 895 * The function returns whether it has modified a pending timer or not. 896 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 897 * active timer returns 1.) 898 */ 899 int mod_timer(struct timer_list *timer, unsigned long expires) 900 { 901 expires = apply_slack(timer, expires); 902 903 /* 904 * This is a common optimization triggered by the 905 * networking code - if the timer is re-modified 906 * to be the same thing then just return: 907 */ 908 if (timer_pending(timer) && timer->expires == expires) 909 return 1; 910 911 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); 912 } 913 EXPORT_SYMBOL(mod_timer); 914 915 /** 916 * mod_timer_pinned - modify a timer's timeout 917 * @timer: the timer to be modified 918 * @expires: new timeout in jiffies 919 * 920 * mod_timer_pinned() is a way to update the expire field of an 921 * active timer (if the timer is inactive it will be activated) 922 * and to ensure that the timer is scheduled on the current CPU. 923 * 924 * Note that this does not prevent the timer from being migrated 925 * when the current CPU goes offline. If this is a problem for 926 * you, use CPU-hotplug notifiers to handle it correctly, for 927 * example, cancelling the timer when the corresponding CPU goes 928 * offline. 929 * 930 * mod_timer_pinned(timer, expires) is equivalent to: 931 * 932 * del_timer(timer); timer->expires = expires; add_timer(timer); 933 */ 934 int mod_timer_pinned(struct timer_list *timer, unsigned long expires) 935 { 936 if (timer->expires == expires && timer_pending(timer)) 937 return 1; 938 939 return __mod_timer(timer, expires, false, TIMER_PINNED); 940 } 941 EXPORT_SYMBOL(mod_timer_pinned); 942 943 /** 944 * add_timer - start a timer 945 * @timer: the timer to be added 946 * 947 * The kernel will do a ->function(->data) callback from the 948 * timer interrupt at the ->expires point in the future. The 949 * current time is 'jiffies'. 950 * 951 * The timer's ->expires, ->function (and if the handler uses it, ->data) 952 * fields must be set prior calling this function. 953 * 954 * Timers with an ->expires field in the past will be executed in the next 955 * timer tick. 956 */ 957 void add_timer(struct timer_list *timer) 958 { 959 BUG_ON(timer_pending(timer)); 960 mod_timer(timer, timer->expires); 961 } 962 EXPORT_SYMBOL(add_timer); 963 964 /** 965 * add_timer_on - start a timer on a particular CPU 966 * @timer: the timer to be added 967 * @cpu: the CPU to start it on 968 * 969 * This is not very scalable on SMP. Double adds are not possible. 970 */ 971 void add_timer_on(struct timer_list *timer, int cpu) 972 { 973 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu); 974 unsigned long flags; 975 976 timer_stats_timer_set_start_info(timer); 977 BUG_ON(timer_pending(timer) || !timer->function); 978 spin_lock_irqsave(&base->lock, flags); 979 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 980 debug_activate(timer, timer->expires); 981 internal_add_timer(base, timer); 982 spin_unlock_irqrestore(&base->lock, flags); 983 } 984 EXPORT_SYMBOL_GPL(add_timer_on); 985 986 /** 987 * del_timer - deactive a timer. 988 * @timer: the timer to be deactivated 989 * 990 * del_timer() deactivates a timer - this works on both active and inactive 991 * timers. 992 * 993 * The function returns whether it has deactivated a pending timer or not. 994 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 995 * active timer returns 1.) 996 */ 997 int del_timer(struct timer_list *timer) 998 { 999 struct tvec_base *base; 1000 unsigned long flags; 1001 int ret = 0; 1002 1003 debug_assert_init(timer); 1004 1005 timer_stats_timer_clear_start_info(timer); 1006 if (timer_pending(timer)) { 1007 base = lock_timer_base(timer, &flags); 1008 ret = detach_if_pending(timer, base, true); 1009 spin_unlock_irqrestore(&base->lock, flags); 1010 } 1011 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(del_timer); 1015 1016 /** 1017 * try_to_del_timer_sync - Try to deactivate a timer 1018 * @timer: timer do del 1019 * 1020 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1021 * exit the timer is not queued and the handler is not running on any CPU. 1022 */ 1023 int try_to_del_timer_sync(struct timer_list *timer) 1024 { 1025 struct tvec_base *base; 1026 unsigned long flags; 1027 int ret = -1; 1028 1029 debug_assert_init(timer); 1030 1031 base = lock_timer_base(timer, &flags); 1032 1033 if (base->running_timer != timer) { 1034 timer_stats_timer_clear_start_info(timer); 1035 ret = detach_if_pending(timer, base, true); 1036 } 1037 spin_unlock_irqrestore(&base->lock, flags); 1038 1039 return ret; 1040 } 1041 EXPORT_SYMBOL(try_to_del_timer_sync); 1042 1043 #ifdef CONFIG_SMP 1044 /** 1045 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1046 * @timer: the timer to be deactivated 1047 * 1048 * This function only differs from del_timer() on SMP: besides deactivating 1049 * the timer it also makes sure the handler has finished executing on other 1050 * CPUs. 1051 * 1052 * Synchronization rules: Callers must prevent restarting of the timer, 1053 * otherwise this function is meaningless. It must not be called from 1054 * interrupt contexts unless the timer is an irqsafe one. The caller must 1055 * not hold locks which would prevent completion of the timer's 1056 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1057 * timer is not queued and the handler is not running on any CPU. 1058 * 1059 * Note: For !irqsafe timers, you must not hold locks that are held in 1060 * interrupt context while calling this function. Even if the lock has 1061 * nothing to do with the timer in question. Here's why: 1062 * 1063 * CPU0 CPU1 1064 * ---- ---- 1065 * <SOFTIRQ> 1066 * call_timer_fn(); 1067 * base->running_timer = mytimer; 1068 * spin_lock_irq(somelock); 1069 * <IRQ> 1070 * spin_lock(somelock); 1071 * del_timer_sync(mytimer); 1072 * while (base->running_timer == mytimer); 1073 * 1074 * Now del_timer_sync() will never return and never release somelock. 1075 * The interrupt on the other CPU is waiting to grab somelock but 1076 * it has interrupted the softirq that CPU0 is waiting to finish. 1077 * 1078 * The function returns whether it has deactivated a pending timer or not. 1079 */ 1080 int del_timer_sync(struct timer_list *timer) 1081 { 1082 #ifdef CONFIG_LOCKDEP 1083 unsigned long flags; 1084 1085 /* 1086 * If lockdep gives a backtrace here, please reference 1087 * the synchronization rules above. 1088 */ 1089 local_irq_save(flags); 1090 lock_map_acquire(&timer->lockdep_map); 1091 lock_map_release(&timer->lockdep_map); 1092 local_irq_restore(flags); 1093 #endif 1094 /* 1095 * don't use it in hardirq context, because it 1096 * could lead to deadlock. 1097 */ 1098 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1099 for (;;) { 1100 int ret = try_to_del_timer_sync(timer); 1101 if (ret >= 0) 1102 return ret; 1103 cpu_relax(); 1104 } 1105 } 1106 EXPORT_SYMBOL(del_timer_sync); 1107 #endif 1108 1109 static int cascade(struct tvec_base *base, struct tvec *tv, int index) 1110 { 1111 /* cascade all the timers from tv up one level */ 1112 struct timer_list *timer; 1113 struct hlist_node *tmp; 1114 struct hlist_head tv_list; 1115 1116 hlist_move_list(tv->vec + index, &tv_list); 1117 1118 /* 1119 * We are removing _all_ timers from the list, so we 1120 * don't have to detach them individually. 1121 */ 1122 hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) { 1123 /* No accounting, while moving them */ 1124 __internal_add_timer(base, timer); 1125 } 1126 1127 return index; 1128 } 1129 1130 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), 1131 unsigned long data) 1132 { 1133 int count = preempt_count(); 1134 1135 #ifdef CONFIG_LOCKDEP 1136 /* 1137 * It is permissible to free the timer from inside the 1138 * function that is called from it, this we need to take into 1139 * account for lockdep too. To avoid bogus "held lock freed" 1140 * warnings as well as problems when looking into 1141 * timer->lockdep_map, make a copy and use that here. 1142 */ 1143 struct lockdep_map lockdep_map; 1144 1145 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1146 #endif 1147 /* 1148 * Couple the lock chain with the lock chain at 1149 * del_timer_sync() by acquiring the lock_map around the fn() 1150 * call here and in del_timer_sync(). 1151 */ 1152 lock_map_acquire(&lockdep_map); 1153 1154 trace_timer_expire_entry(timer); 1155 fn(data); 1156 trace_timer_expire_exit(timer); 1157 1158 lock_map_release(&lockdep_map); 1159 1160 if (count != preempt_count()) { 1161 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1162 fn, count, preempt_count()); 1163 /* 1164 * Restore the preempt count. That gives us a decent 1165 * chance to survive and extract information. If the 1166 * callback kept a lock held, bad luck, but not worse 1167 * than the BUG() we had. 1168 */ 1169 preempt_count_set(count); 1170 } 1171 } 1172 1173 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) 1174 1175 /** 1176 * __run_timers - run all expired timers (if any) on this CPU. 1177 * @base: the timer vector to be processed. 1178 * 1179 * This function cascades all vectors and executes all expired timer 1180 * vectors. 1181 */ 1182 static inline void __run_timers(struct tvec_base *base) 1183 { 1184 struct timer_list *timer; 1185 1186 spin_lock_irq(&base->lock); 1187 1188 while (time_after_eq(jiffies, base->timer_jiffies)) { 1189 struct hlist_head work_list; 1190 struct hlist_head *head = &work_list; 1191 int index; 1192 1193 if (!base->all_timers) { 1194 base->timer_jiffies = jiffies; 1195 break; 1196 } 1197 1198 index = base->timer_jiffies & TVR_MASK; 1199 1200 /* 1201 * Cascade timers: 1202 */ 1203 if (!index && 1204 (!cascade(base, &base->tv2, INDEX(0))) && 1205 (!cascade(base, &base->tv3, INDEX(1))) && 1206 !cascade(base, &base->tv4, INDEX(2))) 1207 cascade(base, &base->tv5, INDEX(3)); 1208 ++base->timer_jiffies; 1209 hlist_move_list(base->tv1.vec + index, head); 1210 while (!hlist_empty(head)) { 1211 void (*fn)(unsigned long); 1212 unsigned long data; 1213 bool irqsafe; 1214 1215 timer = hlist_entry(head->first, struct timer_list, entry); 1216 fn = timer->function; 1217 data = timer->data; 1218 irqsafe = timer->flags & TIMER_IRQSAFE; 1219 1220 timer_stats_account_timer(timer); 1221 1222 base->running_timer = timer; 1223 detach_expired_timer(timer, base); 1224 1225 if (irqsafe) { 1226 spin_unlock(&base->lock); 1227 call_timer_fn(timer, fn, data); 1228 spin_lock(&base->lock); 1229 } else { 1230 spin_unlock_irq(&base->lock); 1231 call_timer_fn(timer, fn, data); 1232 spin_lock_irq(&base->lock); 1233 } 1234 } 1235 } 1236 base->running_timer = NULL; 1237 spin_unlock_irq(&base->lock); 1238 } 1239 1240 #ifdef CONFIG_NO_HZ_COMMON 1241 /* 1242 * Find out when the next timer event is due to happen. This 1243 * is used on S/390 to stop all activity when a CPU is idle. 1244 * This function needs to be called with interrupts disabled. 1245 */ 1246 static unsigned long __next_timer_interrupt(struct tvec_base *base) 1247 { 1248 unsigned long timer_jiffies = base->timer_jiffies; 1249 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; 1250 int index, slot, array, found = 0; 1251 struct timer_list *nte; 1252 struct tvec *varray[4]; 1253 1254 /* Look for timer events in tv1. */ 1255 index = slot = timer_jiffies & TVR_MASK; 1256 do { 1257 hlist_for_each_entry(nte, base->tv1.vec + slot, entry) { 1258 if (nte->flags & TIMER_DEFERRABLE) 1259 continue; 1260 1261 found = 1; 1262 expires = nte->expires; 1263 /* Look at the cascade bucket(s)? */ 1264 if (!index || slot < index) 1265 goto cascade; 1266 return expires; 1267 } 1268 slot = (slot + 1) & TVR_MASK; 1269 } while (slot != index); 1270 1271 cascade: 1272 /* Calculate the next cascade event */ 1273 if (index) 1274 timer_jiffies += TVR_SIZE - index; 1275 timer_jiffies >>= TVR_BITS; 1276 1277 /* Check tv2-tv5. */ 1278 varray[0] = &base->tv2; 1279 varray[1] = &base->tv3; 1280 varray[2] = &base->tv4; 1281 varray[3] = &base->tv5; 1282 1283 for (array = 0; array < 4; array++) { 1284 struct tvec *varp = varray[array]; 1285 1286 index = slot = timer_jiffies & TVN_MASK; 1287 do { 1288 hlist_for_each_entry(nte, varp->vec + slot, entry) { 1289 if (nte->flags & TIMER_DEFERRABLE) 1290 continue; 1291 1292 found = 1; 1293 if (time_before(nte->expires, expires)) 1294 expires = nte->expires; 1295 } 1296 /* 1297 * Do we still search for the first timer or are 1298 * we looking up the cascade buckets ? 1299 */ 1300 if (found) { 1301 /* Look at the cascade bucket(s)? */ 1302 if (!index || slot < index) 1303 break; 1304 return expires; 1305 } 1306 slot = (slot + 1) & TVN_MASK; 1307 } while (slot != index); 1308 1309 if (index) 1310 timer_jiffies += TVN_SIZE - index; 1311 timer_jiffies >>= TVN_BITS; 1312 } 1313 return expires; 1314 } 1315 1316 /* 1317 * Check, if the next hrtimer event is before the next timer wheel 1318 * event: 1319 */ 1320 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1321 { 1322 u64 nextevt = hrtimer_get_next_event(); 1323 1324 /* 1325 * If high resolution timers are enabled 1326 * hrtimer_get_next_event() returns KTIME_MAX. 1327 */ 1328 if (expires <= nextevt) 1329 return expires; 1330 1331 /* 1332 * If the next timer is already expired, return the tick base 1333 * time so the tick is fired immediately. 1334 */ 1335 if (nextevt <= basem) 1336 return basem; 1337 1338 /* 1339 * Round up to the next jiffie. High resolution timers are 1340 * off, so the hrtimers are expired in the tick and we need to 1341 * make sure that this tick really expires the timer to avoid 1342 * a ping pong of the nohz stop code. 1343 * 1344 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1345 */ 1346 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1347 } 1348 1349 /** 1350 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1351 * @basej: base time jiffies 1352 * @basem: base time clock monotonic 1353 * 1354 * Returns the tick aligned clock monotonic time of the next pending 1355 * timer or KTIME_MAX if no timer is pending. 1356 */ 1357 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1358 { 1359 struct tvec_base *base = this_cpu_ptr(&tvec_bases); 1360 u64 expires = KTIME_MAX; 1361 unsigned long nextevt; 1362 1363 /* 1364 * Pretend that there is no timer pending if the cpu is offline. 1365 * Possible pending timers will be migrated later to an active cpu. 1366 */ 1367 if (cpu_is_offline(smp_processor_id())) 1368 return expires; 1369 1370 spin_lock(&base->lock); 1371 if (base->active_timers) { 1372 if (time_before_eq(base->next_timer, base->timer_jiffies)) 1373 base->next_timer = __next_timer_interrupt(base); 1374 nextevt = base->next_timer; 1375 if (time_before_eq(nextevt, basej)) 1376 expires = basem; 1377 else 1378 expires = basem + (nextevt - basej) * TICK_NSEC; 1379 } 1380 spin_unlock(&base->lock); 1381 1382 return cmp_next_hrtimer_event(basem, expires); 1383 } 1384 #endif 1385 1386 /* 1387 * Called from the timer interrupt handler to charge one tick to the current 1388 * process. user_tick is 1 if the tick is user time, 0 for system. 1389 */ 1390 void update_process_times(int user_tick) 1391 { 1392 struct task_struct *p = current; 1393 1394 /* Note: this timer irq context must be accounted for as well. */ 1395 account_process_tick(p, user_tick); 1396 run_local_timers(); 1397 rcu_check_callbacks(user_tick); 1398 #ifdef CONFIG_IRQ_WORK 1399 if (in_irq()) 1400 irq_work_tick(); 1401 #endif 1402 scheduler_tick(); 1403 run_posix_cpu_timers(p); 1404 } 1405 1406 /* 1407 * This function runs timers and the timer-tq in bottom half context. 1408 */ 1409 static void run_timer_softirq(struct softirq_action *h) 1410 { 1411 struct tvec_base *base = this_cpu_ptr(&tvec_bases); 1412 1413 if (time_after_eq(jiffies, base->timer_jiffies)) 1414 __run_timers(base); 1415 } 1416 1417 /* 1418 * Called by the local, per-CPU timer interrupt on SMP. 1419 */ 1420 void run_local_timers(void) 1421 { 1422 hrtimer_run_queues(); 1423 raise_softirq(TIMER_SOFTIRQ); 1424 } 1425 1426 #ifdef __ARCH_WANT_SYS_ALARM 1427 1428 /* 1429 * For backwards compatibility? This can be done in libc so Alpha 1430 * and all newer ports shouldn't need it. 1431 */ 1432 SYSCALL_DEFINE1(alarm, unsigned int, seconds) 1433 { 1434 return alarm_setitimer(seconds); 1435 } 1436 1437 #endif 1438 1439 static void process_timeout(unsigned long __data) 1440 { 1441 wake_up_process((struct task_struct *)__data); 1442 } 1443 1444 /** 1445 * schedule_timeout - sleep until timeout 1446 * @timeout: timeout value in jiffies 1447 * 1448 * Make the current task sleep until @timeout jiffies have 1449 * elapsed. The routine will return immediately unless 1450 * the current task state has been set (see set_current_state()). 1451 * 1452 * You can set the task state as follows - 1453 * 1454 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1455 * pass before the routine returns. The routine will return 0 1456 * 1457 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1458 * delivered to the current task. In this case the remaining time 1459 * in jiffies will be returned, or 0 if the timer expired in time 1460 * 1461 * The current task state is guaranteed to be TASK_RUNNING when this 1462 * routine returns. 1463 * 1464 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1465 * the CPU away without a bound on the timeout. In this case the return 1466 * value will be %MAX_SCHEDULE_TIMEOUT. 1467 * 1468 * In all cases the return value is guaranteed to be non-negative. 1469 */ 1470 signed long __sched schedule_timeout(signed long timeout) 1471 { 1472 struct timer_list timer; 1473 unsigned long expire; 1474 1475 switch (timeout) 1476 { 1477 case MAX_SCHEDULE_TIMEOUT: 1478 /* 1479 * These two special cases are useful to be comfortable 1480 * in the caller. Nothing more. We could take 1481 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1482 * but I' d like to return a valid offset (>=0) to allow 1483 * the caller to do everything it want with the retval. 1484 */ 1485 schedule(); 1486 goto out; 1487 default: 1488 /* 1489 * Another bit of PARANOID. Note that the retval will be 1490 * 0 since no piece of kernel is supposed to do a check 1491 * for a negative retval of schedule_timeout() (since it 1492 * should never happens anyway). You just have the printk() 1493 * that will tell you if something is gone wrong and where. 1494 */ 1495 if (timeout < 0) { 1496 printk(KERN_ERR "schedule_timeout: wrong timeout " 1497 "value %lx\n", timeout); 1498 dump_stack(); 1499 current->state = TASK_RUNNING; 1500 goto out; 1501 } 1502 } 1503 1504 expire = timeout + jiffies; 1505 1506 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); 1507 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED); 1508 schedule(); 1509 del_singleshot_timer_sync(&timer); 1510 1511 /* Remove the timer from the object tracker */ 1512 destroy_timer_on_stack(&timer); 1513 1514 timeout = expire - jiffies; 1515 1516 out: 1517 return timeout < 0 ? 0 : timeout; 1518 } 1519 EXPORT_SYMBOL(schedule_timeout); 1520 1521 /* 1522 * We can use __set_current_state() here because schedule_timeout() calls 1523 * schedule() unconditionally. 1524 */ 1525 signed long __sched schedule_timeout_interruptible(signed long timeout) 1526 { 1527 __set_current_state(TASK_INTERRUPTIBLE); 1528 return schedule_timeout(timeout); 1529 } 1530 EXPORT_SYMBOL(schedule_timeout_interruptible); 1531 1532 signed long __sched schedule_timeout_killable(signed long timeout) 1533 { 1534 __set_current_state(TASK_KILLABLE); 1535 return schedule_timeout(timeout); 1536 } 1537 EXPORT_SYMBOL(schedule_timeout_killable); 1538 1539 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1540 { 1541 __set_current_state(TASK_UNINTERRUPTIBLE); 1542 return schedule_timeout(timeout); 1543 } 1544 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1545 1546 #ifdef CONFIG_HOTPLUG_CPU 1547 static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head) 1548 { 1549 struct timer_list *timer; 1550 int cpu = new_base->cpu; 1551 1552 while (!hlist_empty(head)) { 1553 timer = hlist_entry(head->first, struct timer_list, entry); 1554 /* We ignore the accounting on the dying cpu */ 1555 detach_timer(timer, false); 1556 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1557 internal_add_timer(new_base, timer); 1558 } 1559 } 1560 1561 static void migrate_timers(int cpu) 1562 { 1563 struct tvec_base *old_base; 1564 struct tvec_base *new_base; 1565 int i; 1566 1567 BUG_ON(cpu_online(cpu)); 1568 old_base = per_cpu_ptr(&tvec_bases, cpu); 1569 new_base = get_cpu_ptr(&tvec_bases); 1570 /* 1571 * The caller is globally serialized and nobody else 1572 * takes two locks at once, deadlock is not possible. 1573 */ 1574 spin_lock_irq(&new_base->lock); 1575 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1576 1577 BUG_ON(old_base->running_timer); 1578 1579 for (i = 0; i < TVR_SIZE; i++) 1580 migrate_timer_list(new_base, old_base->tv1.vec + i); 1581 for (i = 0; i < TVN_SIZE; i++) { 1582 migrate_timer_list(new_base, old_base->tv2.vec + i); 1583 migrate_timer_list(new_base, old_base->tv3.vec + i); 1584 migrate_timer_list(new_base, old_base->tv4.vec + i); 1585 migrate_timer_list(new_base, old_base->tv5.vec + i); 1586 } 1587 1588 old_base->active_timers = 0; 1589 old_base->all_timers = 0; 1590 1591 spin_unlock(&old_base->lock); 1592 spin_unlock_irq(&new_base->lock); 1593 put_cpu_ptr(&tvec_bases); 1594 } 1595 1596 static int timer_cpu_notify(struct notifier_block *self, 1597 unsigned long action, void *hcpu) 1598 { 1599 switch (action) { 1600 case CPU_DEAD: 1601 case CPU_DEAD_FROZEN: 1602 migrate_timers((long)hcpu); 1603 break; 1604 default: 1605 break; 1606 } 1607 1608 return NOTIFY_OK; 1609 } 1610 1611 static inline void timer_register_cpu_notifier(void) 1612 { 1613 cpu_notifier(timer_cpu_notify, 0); 1614 } 1615 #else 1616 static inline void timer_register_cpu_notifier(void) { } 1617 #endif /* CONFIG_HOTPLUG_CPU */ 1618 1619 static void __init init_timer_cpu(int cpu) 1620 { 1621 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu); 1622 1623 base->cpu = cpu; 1624 spin_lock_init(&base->lock); 1625 1626 base->timer_jiffies = jiffies; 1627 base->next_timer = base->timer_jiffies; 1628 } 1629 1630 static void __init init_timer_cpus(void) 1631 { 1632 int cpu; 1633 1634 for_each_possible_cpu(cpu) 1635 init_timer_cpu(cpu); 1636 } 1637 1638 void __init init_timers(void) 1639 { 1640 init_timer_cpus(); 1641 init_timer_stats(); 1642 timer_register_cpu_notifier(); 1643 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1644 } 1645 1646 /** 1647 * msleep - sleep safely even with waitqueue interruptions 1648 * @msecs: Time in milliseconds to sleep for 1649 */ 1650 void msleep(unsigned int msecs) 1651 { 1652 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1653 1654 while (timeout) 1655 timeout = schedule_timeout_uninterruptible(timeout); 1656 } 1657 1658 EXPORT_SYMBOL(msleep); 1659 1660 /** 1661 * msleep_interruptible - sleep waiting for signals 1662 * @msecs: Time in milliseconds to sleep for 1663 */ 1664 unsigned long msleep_interruptible(unsigned int msecs) 1665 { 1666 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1667 1668 while (timeout && !signal_pending(current)) 1669 timeout = schedule_timeout_interruptible(timeout); 1670 return jiffies_to_msecs(timeout); 1671 } 1672 1673 EXPORT_SYMBOL(msleep_interruptible); 1674 1675 static void __sched do_usleep_range(unsigned long min, unsigned long max) 1676 { 1677 ktime_t kmin; 1678 unsigned long delta; 1679 1680 kmin = ktime_set(0, min * NSEC_PER_USEC); 1681 delta = (max - min) * NSEC_PER_USEC; 1682 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL); 1683 } 1684 1685 /** 1686 * usleep_range - Drop in replacement for udelay where wakeup is flexible 1687 * @min: Minimum time in usecs to sleep 1688 * @max: Maximum time in usecs to sleep 1689 */ 1690 void __sched usleep_range(unsigned long min, unsigned long max) 1691 { 1692 __set_current_state(TASK_UNINTERRUPTIBLE); 1693 do_usleep_range(min, max); 1694 } 1695 EXPORT_SYMBOL(usleep_range); 1696