xref: /linux/kernel/time/timekeeping.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28 
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32 
33 #define TK_CLEAR_NTP		(1 << 0)
34 #define TK_MIRROR		(1 << 1)
35 #define TK_CLOCK_WAS_SET	(1 << 2)
36 
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42 	seqcount_t		seq;
43 	struct timekeeper	timekeeper;
44 } tk_core ____cacheline_aligned;
45 
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48 
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:	Sequence counter for protecting updates. The lowest bit
52  *		is the index for the tk_read_base array
53  * @base:	tk_read_base array. Access is indexed by the lowest bit of
54  *		@seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59 	seqcount_t		seq;
60 	struct tk_read_base	base[2];
61 };
62 
63 /* Suspend-time cycles value for halted fast timekeeper. */
64 static u64 cycles_at_suspend;
65 
66 static u64 dummy_clock_read(struct clocksource *cs)
67 {
68 	return cycles_at_suspend;
69 }
70 
71 static struct clocksource dummy_clock = {
72 	.read = dummy_clock_read,
73 };
74 
75 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76 	.base[0] = { .clock = &dummy_clock, },
77 	.base[1] = { .clock = &dummy_clock, },
78 };
79 
80 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
81 	.base[0] = { .clock = &dummy_clock, },
82 	.base[1] = { .clock = &dummy_clock, },
83 };
84 
85 /* flag for if timekeeping is suspended */
86 int __read_mostly timekeeping_suspended;
87 
88 static inline void tk_normalize_xtime(struct timekeeper *tk)
89 {
90 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 		tk->xtime_sec++;
93 	}
94 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96 		tk->raw_sec++;
97 	}
98 }
99 
100 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
101 {
102 	struct timespec64 ts;
103 
104 	ts.tv_sec = tk->xtime_sec;
105 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 	return ts;
107 }
108 
109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 {
111 	tk->xtime_sec = ts->tv_sec;
112 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 }
114 
115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 {
117 	tk->xtime_sec += ts->tv_sec;
118 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119 	tk_normalize_xtime(tk);
120 }
121 
122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123 {
124 	struct timespec64 tmp;
125 
126 	/*
127 	 * Verify consistency of: offset_real = -wall_to_monotonic
128 	 * before modifying anything
129 	 */
130 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131 					-tk->wall_to_monotonic.tv_nsec);
132 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133 	tk->wall_to_monotonic = wtm;
134 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135 	tk->offs_real = timespec64_to_ktime(tmp);
136 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 }
138 
139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140 {
141 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 }
143 
144 /*
145  * tk_clock_read - atomic clocksource read() helper
146  *
147  * This helper is necessary to use in the read paths because, while the
148  * seqlock ensures we don't return a bad value while structures are updated,
149  * it doesn't protect from potential crashes. There is the possibility that
150  * the tkr's clocksource may change between the read reference, and the
151  * clock reference passed to the read function.  This can cause crashes if
152  * the wrong clocksource is passed to the wrong read function.
153  * This isn't necessary to use when holding the timekeeper_lock or doing
154  * a read of the fast-timekeeper tkrs (which is protected by its own locking
155  * and update logic).
156  */
157 static inline u64 tk_clock_read(struct tk_read_base *tkr)
158 {
159 	struct clocksource *clock = READ_ONCE(tkr->clock);
160 
161 	return clock->read(clock);
162 }
163 
164 #ifdef CONFIG_DEBUG_TIMEKEEPING
165 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
166 
167 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
168 {
169 
170 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171 	const char *name = tk->tkr_mono.clock->name;
172 
173 	if (offset > max_cycles) {
174 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175 				offset, name, max_cycles);
176 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177 	} else {
178 		if (offset > (max_cycles >> 1)) {
179 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180 					offset, name, max_cycles >> 1);
181 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
182 		}
183 	}
184 
185 	if (tk->underflow_seen) {
186 		if (jiffies - tk->last_warning > WARNING_FREQ) {
187 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
188 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
189 			printk_deferred("         Your kernel is probably still fine.\n");
190 			tk->last_warning = jiffies;
191 		}
192 		tk->underflow_seen = 0;
193 	}
194 
195 	if (tk->overflow_seen) {
196 		if (jiffies - tk->last_warning > WARNING_FREQ) {
197 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
198 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
199 			printk_deferred("         Your kernel is probably still fine.\n");
200 			tk->last_warning = jiffies;
201 		}
202 		tk->overflow_seen = 0;
203 	}
204 }
205 
206 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
207 {
208 	struct timekeeper *tk = &tk_core.timekeeper;
209 	u64 now, last, mask, max, delta;
210 	unsigned int seq;
211 
212 	/*
213 	 * Since we're called holding a seqlock, the data may shift
214 	 * under us while we're doing the calculation. This can cause
215 	 * false positives, since we'd note a problem but throw the
216 	 * results away. So nest another seqlock here to atomically
217 	 * grab the points we are checking with.
218 	 */
219 	do {
220 		seq = read_seqcount_begin(&tk_core.seq);
221 		now = tk_clock_read(tkr);
222 		last = tkr->cycle_last;
223 		mask = tkr->mask;
224 		max = tkr->clock->max_cycles;
225 	} while (read_seqcount_retry(&tk_core.seq, seq));
226 
227 	delta = clocksource_delta(now, last, mask);
228 
229 	/*
230 	 * Try to catch underflows by checking if we are seeing small
231 	 * mask-relative negative values.
232 	 */
233 	if (unlikely((~delta & mask) < (mask >> 3))) {
234 		tk->underflow_seen = 1;
235 		delta = 0;
236 	}
237 
238 	/* Cap delta value to the max_cycles values to avoid mult overflows */
239 	if (unlikely(delta > max)) {
240 		tk->overflow_seen = 1;
241 		delta = tkr->clock->max_cycles;
242 	}
243 
244 	return delta;
245 }
246 #else
247 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
248 {
249 }
250 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
251 {
252 	u64 cycle_now, delta;
253 
254 	/* read clocksource */
255 	cycle_now = tk_clock_read(tkr);
256 
257 	/* calculate the delta since the last update_wall_time */
258 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
259 
260 	return delta;
261 }
262 #endif
263 
264 /**
265  * tk_setup_internals - Set up internals to use clocksource clock.
266  *
267  * @tk:		The target timekeeper to setup.
268  * @clock:		Pointer to clocksource.
269  *
270  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
271  * pair and interval request.
272  *
273  * Unless you're the timekeeping code, you should not be using this!
274  */
275 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
276 {
277 	u64 interval;
278 	u64 tmp, ntpinterval;
279 	struct clocksource *old_clock;
280 
281 	++tk->cs_was_changed_seq;
282 	old_clock = tk->tkr_mono.clock;
283 	tk->tkr_mono.clock = clock;
284 	tk->tkr_mono.mask = clock->mask;
285 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
286 
287 	tk->tkr_raw.clock = clock;
288 	tk->tkr_raw.mask = clock->mask;
289 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
290 
291 	/* Do the ns -> cycle conversion first, using original mult */
292 	tmp = NTP_INTERVAL_LENGTH;
293 	tmp <<= clock->shift;
294 	ntpinterval = tmp;
295 	tmp += clock->mult/2;
296 	do_div(tmp, clock->mult);
297 	if (tmp == 0)
298 		tmp = 1;
299 
300 	interval = (u64) tmp;
301 	tk->cycle_interval = interval;
302 
303 	/* Go back from cycles -> shifted ns */
304 	tk->xtime_interval = interval * clock->mult;
305 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306 	tk->raw_interval = interval * clock->mult;
307 
308 	 /* if changing clocks, convert xtime_nsec shift units */
309 	if (old_clock) {
310 		int shift_change = clock->shift - old_clock->shift;
311 		if (shift_change < 0) {
312 			tk->tkr_mono.xtime_nsec >>= -shift_change;
313 			tk->tkr_raw.xtime_nsec >>= -shift_change;
314 		} else {
315 			tk->tkr_mono.xtime_nsec <<= shift_change;
316 			tk->tkr_raw.xtime_nsec <<= shift_change;
317 		}
318 	}
319 
320 	tk->tkr_mono.shift = clock->shift;
321 	tk->tkr_raw.shift = clock->shift;
322 
323 	tk->ntp_error = 0;
324 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
326 
327 	/*
328 	 * The timekeeper keeps its own mult values for the currently
329 	 * active clocksource. These value will be adjusted via NTP
330 	 * to counteract clock drifting.
331 	 */
332 	tk->tkr_mono.mult = clock->mult;
333 	tk->tkr_raw.mult = clock->mult;
334 	tk->ntp_err_mult = 0;
335 }
336 
337 /* Timekeeper helper functions. */
338 
339 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
340 static u32 default_arch_gettimeoffset(void) { return 0; }
341 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
342 #else
343 static inline u32 arch_gettimeoffset(void) { return 0; }
344 #endif
345 
346 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
347 {
348 	u64 nsec;
349 
350 	nsec = delta * tkr->mult + tkr->xtime_nsec;
351 	nsec >>= tkr->shift;
352 
353 	/* If arch requires, add in get_arch_timeoffset() */
354 	return nsec + arch_gettimeoffset();
355 }
356 
357 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
358 {
359 	u64 delta;
360 
361 	delta = timekeeping_get_delta(tkr);
362 	return timekeeping_delta_to_ns(tkr, delta);
363 }
364 
365 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
366 {
367 	u64 delta;
368 
369 	/* calculate the delta since the last update_wall_time */
370 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
371 	return timekeeping_delta_to_ns(tkr, delta);
372 }
373 
374 /**
375  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
376  * @tkr: Timekeeping readout base from which we take the update
377  *
378  * We want to use this from any context including NMI and tracing /
379  * instrumenting the timekeeping code itself.
380  *
381  * Employ the latch technique; see @raw_write_seqcount_latch.
382  *
383  * So if a NMI hits the update of base[0] then it will use base[1]
384  * which is still consistent. In the worst case this can result is a
385  * slightly wrong timestamp (a few nanoseconds). See
386  * @ktime_get_mono_fast_ns.
387  */
388 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
389 {
390 	struct tk_read_base *base = tkf->base;
391 
392 	/* Force readers off to base[1] */
393 	raw_write_seqcount_latch(&tkf->seq);
394 
395 	/* Update base[0] */
396 	memcpy(base, tkr, sizeof(*base));
397 
398 	/* Force readers back to base[0] */
399 	raw_write_seqcount_latch(&tkf->seq);
400 
401 	/* Update base[1] */
402 	memcpy(base + 1, base, sizeof(*base));
403 }
404 
405 /**
406  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
407  *
408  * This timestamp is not guaranteed to be monotonic across an update.
409  * The timestamp is calculated by:
410  *
411  *	now = base_mono + clock_delta * slope
412  *
413  * So if the update lowers the slope, readers who are forced to the
414  * not yet updated second array are still using the old steeper slope.
415  *
416  * tmono
417  * ^
418  * |    o  n
419  * |   o n
420  * |  u
421  * | o
422  * |o
423  * |12345678---> reader order
424  *
425  * o = old slope
426  * u = update
427  * n = new slope
428  *
429  * So reader 6 will observe time going backwards versus reader 5.
430  *
431  * While other CPUs are likely to be able observe that, the only way
432  * for a CPU local observation is when an NMI hits in the middle of
433  * the update. Timestamps taken from that NMI context might be ahead
434  * of the following timestamps. Callers need to be aware of that and
435  * deal with it.
436  */
437 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
438 {
439 	struct tk_read_base *tkr;
440 	unsigned int seq;
441 	u64 now;
442 
443 	do {
444 		seq = raw_read_seqcount_latch(&tkf->seq);
445 		tkr = tkf->base + (seq & 0x01);
446 		now = ktime_to_ns(tkr->base);
447 
448 		now += timekeeping_delta_to_ns(tkr,
449 				clocksource_delta(
450 					tk_clock_read(tkr),
451 					tkr->cycle_last,
452 					tkr->mask));
453 	} while (read_seqcount_retry(&tkf->seq, seq));
454 
455 	return now;
456 }
457 
458 u64 ktime_get_mono_fast_ns(void)
459 {
460 	return __ktime_get_fast_ns(&tk_fast_mono);
461 }
462 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
463 
464 u64 ktime_get_raw_fast_ns(void)
465 {
466 	return __ktime_get_fast_ns(&tk_fast_raw);
467 }
468 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
469 
470 /**
471  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
472  *
473  * To keep it NMI safe since we're accessing from tracing, we're not using a
474  * separate timekeeper with updates to monotonic clock and boot offset
475  * protected with seqlocks. This has the following minor side effects:
476  *
477  * (1) Its possible that a timestamp be taken after the boot offset is updated
478  * but before the timekeeper is updated. If this happens, the new boot offset
479  * is added to the old timekeeping making the clock appear to update slightly
480  * earlier:
481  *    CPU 0                                        CPU 1
482  *    timekeeping_inject_sleeptime64()
483  *    __timekeeping_inject_sleeptime(tk, delta);
484  *                                                 timestamp();
485  *    timekeeping_update(tk, TK_CLEAR_NTP...);
486  *
487  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
488  * partially updated.  Since the tk->offs_boot update is a rare event, this
489  * should be a rare occurrence which postprocessing should be able to handle.
490  */
491 u64 notrace ktime_get_boot_fast_ns(void)
492 {
493 	struct timekeeper *tk = &tk_core.timekeeper;
494 
495 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
496 }
497 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
498 
499 
500 /*
501  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
502  */
503 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
504 {
505 	struct tk_read_base *tkr;
506 	unsigned int seq;
507 	u64 now;
508 
509 	do {
510 		seq = raw_read_seqcount_latch(&tkf->seq);
511 		tkr = tkf->base + (seq & 0x01);
512 		now = ktime_to_ns(tkr->base_real);
513 
514 		now += timekeeping_delta_to_ns(tkr,
515 				clocksource_delta(
516 					tk_clock_read(tkr),
517 					tkr->cycle_last,
518 					tkr->mask));
519 	} while (read_seqcount_retry(&tkf->seq, seq));
520 
521 	return now;
522 }
523 
524 /**
525  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
526  */
527 u64 ktime_get_real_fast_ns(void)
528 {
529 	return __ktime_get_real_fast_ns(&tk_fast_mono);
530 }
531 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
532 
533 /**
534  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
535  * @tk: Timekeeper to snapshot.
536  *
537  * It generally is unsafe to access the clocksource after timekeeping has been
538  * suspended, so take a snapshot of the readout base of @tk and use it as the
539  * fast timekeeper's readout base while suspended.  It will return the same
540  * number of cycles every time until timekeeping is resumed at which time the
541  * proper readout base for the fast timekeeper will be restored automatically.
542  */
543 static void halt_fast_timekeeper(struct timekeeper *tk)
544 {
545 	static struct tk_read_base tkr_dummy;
546 	struct tk_read_base *tkr = &tk->tkr_mono;
547 
548 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
549 	cycles_at_suspend = tk_clock_read(tkr);
550 	tkr_dummy.clock = &dummy_clock;
551 	tkr_dummy.base_real = tkr->base + tk->offs_real;
552 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
553 
554 	tkr = &tk->tkr_raw;
555 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
556 	tkr_dummy.clock = &dummy_clock;
557 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
558 }
559 
560 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
561 
562 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
563 {
564 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
565 }
566 
567 /**
568  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
569  */
570 int pvclock_gtod_register_notifier(struct notifier_block *nb)
571 {
572 	struct timekeeper *tk = &tk_core.timekeeper;
573 	unsigned long flags;
574 	int ret;
575 
576 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
577 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
578 	update_pvclock_gtod(tk, true);
579 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
580 
581 	return ret;
582 }
583 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
584 
585 /**
586  * pvclock_gtod_unregister_notifier - unregister a pvclock
587  * timedata update listener
588  */
589 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
590 {
591 	unsigned long flags;
592 	int ret;
593 
594 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
595 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
596 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
597 
598 	return ret;
599 }
600 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
601 
602 /*
603  * tk_update_leap_state - helper to update the next_leap_ktime
604  */
605 static inline void tk_update_leap_state(struct timekeeper *tk)
606 {
607 	tk->next_leap_ktime = ntp_get_next_leap();
608 	if (tk->next_leap_ktime != KTIME_MAX)
609 		/* Convert to monotonic time */
610 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
611 }
612 
613 /*
614  * Update the ktime_t based scalar nsec members of the timekeeper
615  */
616 static inline void tk_update_ktime_data(struct timekeeper *tk)
617 {
618 	u64 seconds;
619 	u32 nsec;
620 
621 	/*
622 	 * The xtime based monotonic readout is:
623 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
624 	 * The ktime based monotonic readout is:
625 	 *	nsec = base_mono + now();
626 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
627 	 */
628 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
629 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
630 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
631 
632 	/*
633 	 * The sum of the nanoseconds portions of xtime and
634 	 * wall_to_monotonic can be greater/equal one second. Take
635 	 * this into account before updating tk->ktime_sec.
636 	 */
637 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
638 	if (nsec >= NSEC_PER_SEC)
639 		seconds++;
640 	tk->ktime_sec = seconds;
641 
642 	/* Update the monotonic raw base */
643 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
644 }
645 
646 /* must hold timekeeper_lock */
647 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
648 {
649 	if (action & TK_CLEAR_NTP) {
650 		tk->ntp_error = 0;
651 		ntp_clear();
652 	}
653 
654 	tk_update_leap_state(tk);
655 	tk_update_ktime_data(tk);
656 
657 	update_vsyscall(tk);
658 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
659 
660 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
661 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
662 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
663 
664 	if (action & TK_CLOCK_WAS_SET)
665 		tk->clock_was_set_seq++;
666 	/*
667 	 * The mirroring of the data to the shadow-timekeeper needs
668 	 * to happen last here to ensure we don't over-write the
669 	 * timekeeper structure on the next update with stale data
670 	 */
671 	if (action & TK_MIRROR)
672 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
673 		       sizeof(tk_core.timekeeper));
674 }
675 
676 /**
677  * timekeeping_forward_now - update clock to the current time
678  *
679  * Forward the current clock to update its state since the last call to
680  * update_wall_time(). This is useful before significant clock changes,
681  * as it avoids having to deal with this time offset explicitly.
682  */
683 static void timekeeping_forward_now(struct timekeeper *tk)
684 {
685 	u64 cycle_now, delta;
686 
687 	cycle_now = tk_clock_read(&tk->tkr_mono);
688 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
689 	tk->tkr_mono.cycle_last = cycle_now;
690 	tk->tkr_raw.cycle_last  = cycle_now;
691 
692 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
693 
694 	/* If arch requires, add in get_arch_timeoffset() */
695 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
696 
697 
698 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
699 
700 	/* If arch requires, add in get_arch_timeoffset() */
701 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
702 
703 	tk_normalize_xtime(tk);
704 }
705 
706 /**
707  * __getnstimeofday64 - Returns the time of day in a timespec64.
708  * @ts:		pointer to the timespec to be set
709  *
710  * Updates the time of day in the timespec.
711  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
712  */
713 int __getnstimeofday64(struct timespec64 *ts)
714 {
715 	struct timekeeper *tk = &tk_core.timekeeper;
716 	unsigned long seq;
717 	u64 nsecs;
718 
719 	do {
720 		seq = read_seqcount_begin(&tk_core.seq);
721 
722 		ts->tv_sec = tk->xtime_sec;
723 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
724 
725 	} while (read_seqcount_retry(&tk_core.seq, seq));
726 
727 	ts->tv_nsec = 0;
728 	timespec64_add_ns(ts, nsecs);
729 
730 	/*
731 	 * Do not bail out early, in case there were callers still using
732 	 * the value, even in the face of the WARN_ON.
733 	 */
734 	if (unlikely(timekeeping_suspended))
735 		return -EAGAIN;
736 	return 0;
737 }
738 EXPORT_SYMBOL(__getnstimeofday64);
739 
740 /**
741  * getnstimeofday64 - Returns the time of day in a timespec64.
742  * @ts:		pointer to the timespec64 to be set
743  *
744  * Returns the time of day in a timespec64 (WARN if suspended).
745  */
746 void getnstimeofday64(struct timespec64 *ts)
747 {
748 	WARN_ON(__getnstimeofday64(ts));
749 }
750 EXPORT_SYMBOL(getnstimeofday64);
751 
752 ktime_t ktime_get(void)
753 {
754 	struct timekeeper *tk = &tk_core.timekeeper;
755 	unsigned int seq;
756 	ktime_t base;
757 	u64 nsecs;
758 
759 	WARN_ON(timekeeping_suspended);
760 
761 	do {
762 		seq = read_seqcount_begin(&tk_core.seq);
763 		base = tk->tkr_mono.base;
764 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
765 
766 	} while (read_seqcount_retry(&tk_core.seq, seq));
767 
768 	return ktime_add_ns(base, nsecs);
769 }
770 EXPORT_SYMBOL_GPL(ktime_get);
771 
772 u32 ktime_get_resolution_ns(void)
773 {
774 	struct timekeeper *tk = &tk_core.timekeeper;
775 	unsigned int seq;
776 	u32 nsecs;
777 
778 	WARN_ON(timekeeping_suspended);
779 
780 	do {
781 		seq = read_seqcount_begin(&tk_core.seq);
782 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
783 	} while (read_seqcount_retry(&tk_core.seq, seq));
784 
785 	return nsecs;
786 }
787 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
788 
789 static ktime_t *offsets[TK_OFFS_MAX] = {
790 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
791 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
792 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
793 };
794 
795 ktime_t ktime_get_with_offset(enum tk_offsets offs)
796 {
797 	struct timekeeper *tk = &tk_core.timekeeper;
798 	unsigned int seq;
799 	ktime_t base, *offset = offsets[offs];
800 	u64 nsecs;
801 
802 	WARN_ON(timekeeping_suspended);
803 
804 	do {
805 		seq = read_seqcount_begin(&tk_core.seq);
806 		base = ktime_add(tk->tkr_mono.base, *offset);
807 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
808 
809 	} while (read_seqcount_retry(&tk_core.seq, seq));
810 
811 	return ktime_add_ns(base, nsecs);
812 
813 }
814 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
815 
816 /**
817  * ktime_mono_to_any() - convert mononotic time to any other time
818  * @tmono:	time to convert.
819  * @offs:	which offset to use
820  */
821 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
822 {
823 	ktime_t *offset = offsets[offs];
824 	unsigned long seq;
825 	ktime_t tconv;
826 
827 	do {
828 		seq = read_seqcount_begin(&tk_core.seq);
829 		tconv = ktime_add(tmono, *offset);
830 	} while (read_seqcount_retry(&tk_core.seq, seq));
831 
832 	return tconv;
833 }
834 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
835 
836 /**
837  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
838  */
839 ktime_t ktime_get_raw(void)
840 {
841 	struct timekeeper *tk = &tk_core.timekeeper;
842 	unsigned int seq;
843 	ktime_t base;
844 	u64 nsecs;
845 
846 	do {
847 		seq = read_seqcount_begin(&tk_core.seq);
848 		base = tk->tkr_raw.base;
849 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
850 
851 	} while (read_seqcount_retry(&tk_core.seq, seq));
852 
853 	return ktime_add_ns(base, nsecs);
854 }
855 EXPORT_SYMBOL_GPL(ktime_get_raw);
856 
857 /**
858  * ktime_get_ts64 - get the monotonic clock in timespec64 format
859  * @ts:		pointer to timespec variable
860  *
861  * The function calculates the monotonic clock from the realtime
862  * clock and the wall_to_monotonic offset and stores the result
863  * in normalized timespec64 format in the variable pointed to by @ts.
864  */
865 void ktime_get_ts64(struct timespec64 *ts)
866 {
867 	struct timekeeper *tk = &tk_core.timekeeper;
868 	struct timespec64 tomono;
869 	unsigned int seq;
870 	u64 nsec;
871 
872 	WARN_ON(timekeeping_suspended);
873 
874 	do {
875 		seq = read_seqcount_begin(&tk_core.seq);
876 		ts->tv_sec = tk->xtime_sec;
877 		nsec = timekeeping_get_ns(&tk->tkr_mono);
878 		tomono = tk->wall_to_monotonic;
879 
880 	} while (read_seqcount_retry(&tk_core.seq, seq));
881 
882 	ts->tv_sec += tomono.tv_sec;
883 	ts->tv_nsec = 0;
884 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
885 }
886 EXPORT_SYMBOL_GPL(ktime_get_ts64);
887 
888 /**
889  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
890  *
891  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
892  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
893  * works on both 32 and 64 bit systems. On 32 bit systems the readout
894  * covers ~136 years of uptime which should be enough to prevent
895  * premature wrap arounds.
896  */
897 time64_t ktime_get_seconds(void)
898 {
899 	struct timekeeper *tk = &tk_core.timekeeper;
900 
901 	WARN_ON(timekeeping_suspended);
902 	return tk->ktime_sec;
903 }
904 EXPORT_SYMBOL_GPL(ktime_get_seconds);
905 
906 /**
907  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
908  *
909  * Returns the wall clock seconds since 1970. This replaces the
910  * get_seconds() interface which is not y2038 safe on 32bit systems.
911  *
912  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
913  * 32bit systems the access must be protected with the sequence
914  * counter to provide "atomic" access to the 64bit tk->xtime_sec
915  * value.
916  */
917 time64_t ktime_get_real_seconds(void)
918 {
919 	struct timekeeper *tk = &tk_core.timekeeper;
920 	time64_t seconds;
921 	unsigned int seq;
922 
923 	if (IS_ENABLED(CONFIG_64BIT))
924 		return tk->xtime_sec;
925 
926 	do {
927 		seq = read_seqcount_begin(&tk_core.seq);
928 		seconds = tk->xtime_sec;
929 
930 	} while (read_seqcount_retry(&tk_core.seq, seq));
931 
932 	return seconds;
933 }
934 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
935 
936 /**
937  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
938  * but without the sequence counter protect. This internal function
939  * is called just when timekeeping lock is already held.
940  */
941 time64_t __ktime_get_real_seconds(void)
942 {
943 	struct timekeeper *tk = &tk_core.timekeeper;
944 
945 	return tk->xtime_sec;
946 }
947 
948 /**
949  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
950  * @systime_snapshot:	pointer to struct receiving the system time snapshot
951  */
952 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
953 {
954 	struct timekeeper *tk = &tk_core.timekeeper;
955 	unsigned long seq;
956 	ktime_t base_raw;
957 	ktime_t base_real;
958 	u64 nsec_raw;
959 	u64 nsec_real;
960 	u64 now;
961 
962 	WARN_ON_ONCE(timekeeping_suspended);
963 
964 	do {
965 		seq = read_seqcount_begin(&tk_core.seq);
966 		now = tk_clock_read(&tk->tkr_mono);
967 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
968 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
969 		base_real = ktime_add(tk->tkr_mono.base,
970 				      tk_core.timekeeper.offs_real);
971 		base_raw = tk->tkr_raw.base;
972 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
973 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
974 	} while (read_seqcount_retry(&tk_core.seq, seq));
975 
976 	systime_snapshot->cycles = now;
977 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
978 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
979 }
980 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
981 
982 /* Scale base by mult/div checking for overflow */
983 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
984 {
985 	u64 tmp, rem;
986 
987 	tmp = div64_u64_rem(*base, div, &rem);
988 
989 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
990 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
991 		return -EOVERFLOW;
992 	tmp *= mult;
993 	rem *= mult;
994 
995 	do_div(rem, div);
996 	*base = tmp + rem;
997 	return 0;
998 }
999 
1000 /**
1001  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1002  * @history:			Snapshot representing start of history
1003  * @partial_history_cycles:	Cycle offset into history (fractional part)
1004  * @total_history_cycles:	Total history length in cycles
1005  * @discontinuity:		True indicates clock was set on history period
1006  * @ts:				Cross timestamp that should be adjusted using
1007  *	partial/total ratio
1008  *
1009  * Helper function used by get_device_system_crosststamp() to correct the
1010  * crosstimestamp corresponding to the start of the current interval to the
1011  * system counter value (timestamp point) provided by the driver. The
1012  * total_history_* quantities are the total history starting at the provided
1013  * reference point and ending at the start of the current interval. The cycle
1014  * count between the driver timestamp point and the start of the current
1015  * interval is partial_history_cycles.
1016  */
1017 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1018 					 u64 partial_history_cycles,
1019 					 u64 total_history_cycles,
1020 					 bool discontinuity,
1021 					 struct system_device_crosststamp *ts)
1022 {
1023 	struct timekeeper *tk = &tk_core.timekeeper;
1024 	u64 corr_raw, corr_real;
1025 	bool interp_forward;
1026 	int ret;
1027 
1028 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1029 		return 0;
1030 
1031 	/* Interpolate shortest distance from beginning or end of history */
1032 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1033 	partial_history_cycles = interp_forward ?
1034 		total_history_cycles - partial_history_cycles :
1035 		partial_history_cycles;
1036 
1037 	/*
1038 	 * Scale the monotonic raw time delta by:
1039 	 *	partial_history_cycles / total_history_cycles
1040 	 */
1041 	corr_raw = (u64)ktime_to_ns(
1042 		ktime_sub(ts->sys_monoraw, history->raw));
1043 	ret = scale64_check_overflow(partial_history_cycles,
1044 				     total_history_cycles, &corr_raw);
1045 	if (ret)
1046 		return ret;
1047 
1048 	/*
1049 	 * If there is a discontinuity in the history, scale monotonic raw
1050 	 *	correction by:
1051 	 *	mult(real)/mult(raw) yielding the realtime correction
1052 	 * Otherwise, calculate the realtime correction similar to monotonic
1053 	 *	raw calculation
1054 	 */
1055 	if (discontinuity) {
1056 		corr_real = mul_u64_u32_div
1057 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1058 	} else {
1059 		corr_real = (u64)ktime_to_ns(
1060 			ktime_sub(ts->sys_realtime, history->real));
1061 		ret = scale64_check_overflow(partial_history_cycles,
1062 					     total_history_cycles, &corr_real);
1063 		if (ret)
1064 			return ret;
1065 	}
1066 
1067 	/* Fixup monotonic raw and real time time values */
1068 	if (interp_forward) {
1069 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1070 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1071 	} else {
1072 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1073 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1074 	}
1075 
1076 	return 0;
1077 }
1078 
1079 /*
1080  * cycle_between - true if test occurs chronologically between before and after
1081  */
1082 static bool cycle_between(u64 before, u64 test, u64 after)
1083 {
1084 	if (test > before && test < after)
1085 		return true;
1086 	if (test < before && before > after)
1087 		return true;
1088 	return false;
1089 }
1090 
1091 /**
1092  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1093  * @get_time_fn:	Callback to get simultaneous device time and
1094  *	system counter from the device driver
1095  * @ctx:		Context passed to get_time_fn()
1096  * @history_begin:	Historical reference point used to interpolate system
1097  *	time when counter provided by the driver is before the current interval
1098  * @xtstamp:		Receives simultaneously captured system and device time
1099  *
1100  * Reads a timestamp from a device and correlates it to system time
1101  */
1102 int get_device_system_crosststamp(int (*get_time_fn)
1103 				  (ktime_t *device_time,
1104 				   struct system_counterval_t *sys_counterval,
1105 				   void *ctx),
1106 				  void *ctx,
1107 				  struct system_time_snapshot *history_begin,
1108 				  struct system_device_crosststamp *xtstamp)
1109 {
1110 	struct system_counterval_t system_counterval;
1111 	struct timekeeper *tk = &tk_core.timekeeper;
1112 	u64 cycles, now, interval_start;
1113 	unsigned int clock_was_set_seq = 0;
1114 	ktime_t base_real, base_raw;
1115 	u64 nsec_real, nsec_raw;
1116 	u8 cs_was_changed_seq;
1117 	unsigned long seq;
1118 	bool do_interp;
1119 	int ret;
1120 
1121 	do {
1122 		seq = read_seqcount_begin(&tk_core.seq);
1123 		/*
1124 		 * Try to synchronously capture device time and a system
1125 		 * counter value calling back into the device driver
1126 		 */
1127 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1128 		if (ret)
1129 			return ret;
1130 
1131 		/*
1132 		 * Verify that the clocksource associated with the captured
1133 		 * system counter value is the same as the currently installed
1134 		 * timekeeper clocksource
1135 		 */
1136 		if (tk->tkr_mono.clock != system_counterval.cs)
1137 			return -ENODEV;
1138 		cycles = system_counterval.cycles;
1139 
1140 		/*
1141 		 * Check whether the system counter value provided by the
1142 		 * device driver is on the current timekeeping interval.
1143 		 */
1144 		now = tk_clock_read(&tk->tkr_mono);
1145 		interval_start = tk->tkr_mono.cycle_last;
1146 		if (!cycle_between(interval_start, cycles, now)) {
1147 			clock_was_set_seq = tk->clock_was_set_seq;
1148 			cs_was_changed_seq = tk->cs_was_changed_seq;
1149 			cycles = interval_start;
1150 			do_interp = true;
1151 		} else {
1152 			do_interp = false;
1153 		}
1154 
1155 		base_real = ktime_add(tk->tkr_mono.base,
1156 				      tk_core.timekeeper.offs_real);
1157 		base_raw = tk->tkr_raw.base;
1158 
1159 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1160 						     system_counterval.cycles);
1161 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1162 						    system_counterval.cycles);
1163 	} while (read_seqcount_retry(&tk_core.seq, seq));
1164 
1165 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1166 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1167 
1168 	/*
1169 	 * Interpolate if necessary, adjusting back from the start of the
1170 	 * current interval
1171 	 */
1172 	if (do_interp) {
1173 		u64 partial_history_cycles, total_history_cycles;
1174 		bool discontinuity;
1175 
1176 		/*
1177 		 * Check that the counter value occurs after the provided
1178 		 * history reference and that the history doesn't cross a
1179 		 * clocksource change
1180 		 */
1181 		if (!history_begin ||
1182 		    !cycle_between(history_begin->cycles,
1183 				   system_counterval.cycles, cycles) ||
1184 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1185 			return -EINVAL;
1186 		partial_history_cycles = cycles - system_counterval.cycles;
1187 		total_history_cycles = cycles - history_begin->cycles;
1188 		discontinuity =
1189 			history_begin->clock_was_set_seq != clock_was_set_seq;
1190 
1191 		ret = adjust_historical_crosststamp(history_begin,
1192 						    partial_history_cycles,
1193 						    total_history_cycles,
1194 						    discontinuity, xtstamp);
1195 		if (ret)
1196 			return ret;
1197 	}
1198 
1199 	return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1202 
1203 /**
1204  * do_gettimeofday - Returns the time of day in a timeval
1205  * @tv:		pointer to the timeval to be set
1206  *
1207  * NOTE: Users should be converted to using getnstimeofday()
1208  */
1209 void do_gettimeofday(struct timeval *tv)
1210 {
1211 	struct timespec64 now;
1212 
1213 	getnstimeofday64(&now);
1214 	tv->tv_sec = now.tv_sec;
1215 	tv->tv_usec = now.tv_nsec/1000;
1216 }
1217 EXPORT_SYMBOL(do_gettimeofday);
1218 
1219 /**
1220  * do_settimeofday64 - Sets the time of day.
1221  * @ts:     pointer to the timespec64 variable containing the new time
1222  *
1223  * Sets the time of day to the new time and update NTP and notify hrtimers
1224  */
1225 int do_settimeofday64(const struct timespec64 *ts)
1226 {
1227 	struct timekeeper *tk = &tk_core.timekeeper;
1228 	struct timespec64 ts_delta, xt;
1229 	unsigned long flags;
1230 	int ret = 0;
1231 
1232 	if (!timespec64_valid_strict(ts))
1233 		return -EINVAL;
1234 
1235 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1236 	write_seqcount_begin(&tk_core.seq);
1237 
1238 	timekeeping_forward_now(tk);
1239 
1240 	xt = tk_xtime(tk);
1241 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1242 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1243 
1244 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1245 		ret = -EINVAL;
1246 		goto out;
1247 	}
1248 
1249 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1250 
1251 	tk_set_xtime(tk, ts);
1252 out:
1253 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1254 
1255 	write_seqcount_end(&tk_core.seq);
1256 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1257 
1258 	/* signal hrtimers about time change */
1259 	clock_was_set();
1260 
1261 	return ret;
1262 }
1263 EXPORT_SYMBOL(do_settimeofday64);
1264 
1265 /**
1266  * timekeeping_inject_offset - Adds or subtracts from the current time.
1267  * @tv:		pointer to the timespec variable containing the offset
1268  *
1269  * Adds or subtracts an offset value from the current time.
1270  */
1271 static int timekeeping_inject_offset(struct timespec64 *ts)
1272 {
1273 	struct timekeeper *tk = &tk_core.timekeeper;
1274 	unsigned long flags;
1275 	struct timespec64 tmp;
1276 	int ret = 0;
1277 
1278 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1279 		return -EINVAL;
1280 
1281 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1282 	write_seqcount_begin(&tk_core.seq);
1283 
1284 	timekeeping_forward_now(tk);
1285 
1286 	/* Make sure the proposed value is valid */
1287 	tmp = timespec64_add(tk_xtime(tk), *ts);
1288 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1289 	    !timespec64_valid_strict(&tmp)) {
1290 		ret = -EINVAL;
1291 		goto error;
1292 	}
1293 
1294 	tk_xtime_add(tk, ts);
1295 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1296 
1297 error: /* even if we error out, we forwarded the time, so call update */
1298 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1299 
1300 	write_seqcount_end(&tk_core.seq);
1301 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1302 
1303 	/* signal hrtimers about time change */
1304 	clock_was_set();
1305 
1306 	return ret;
1307 }
1308 
1309 /*
1310  * Indicates if there is an offset between the system clock and the hardware
1311  * clock/persistent clock/rtc.
1312  */
1313 int persistent_clock_is_local;
1314 
1315 /*
1316  * Adjust the time obtained from the CMOS to be UTC time instead of
1317  * local time.
1318  *
1319  * This is ugly, but preferable to the alternatives.  Otherwise we
1320  * would either need to write a program to do it in /etc/rc (and risk
1321  * confusion if the program gets run more than once; it would also be
1322  * hard to make the program warp the clock precisely n hours)  or
1323  * compile in the timezone information into the kernel.  Bad, bad....
1324  *
1325  *						- TYT, 1992-01-01
1326  *
1327  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1328  * as real UNIX machines always do it. This avoids all headaches about
1329  * daylight saving times and warping kernel clocks.
1330  */
1331 void timekeeping_warp_clock(void)
1332 {
1333 	if (sys_tz.tz_minuteswest != 0) {
1334 		struct timespec64 adjust;
1335 
1336 		persistent_clock_is_local = 1;
1337 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1338 		adjust.tv_nsec = 0;
1339 		timekeeping_inject_offset(&adjust);
1340 	}
1341 }
1342 
1343 /**
1344  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1345  *
1346  */
1347 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1348 {
1349 	tk->tai_offset = tai_offset;
1350 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1351 }
1352 
1353 /**
1354  * change_clocksource - Swaps clocksources if a new one is available
1355  *
1356  * Accumulates current time interval and initializes new clocksource
1357  */
1358 static int change_clocksource(void *data)
1359 {
1360 	struct timekeeper *tk = &tk_core.timekeeper;
1361 	struct clocksource *new, *old;
1362 	unsigned long flags;
1363 
1364 	new = (struct clocksource *) data;
1365 
1366 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1367 	write_seqcount_begin(&tk_core.seq);
1368 
1369 	timekeeping_forward_now(tk);
1370 	/*
1371 	 * If the cs is in module, get a module reference. Succeeds
1372 	 * for built-in code (owner == NULL) as well.
1373 	 */
1374 	if (try_module_get(new->owner)) {
1375 		if (!new->enable || new->enable(new) == 0) {
1376 			old = tk->tkr_mono.clock;
1377 			tk_setup_internals(tk, new);
1378 			if (old->disable)
1379 				old->disable(old);
1380 			module_put(old->owner);
1381 		} else {
1382 			module_put(new->owner);
1383 		}
1384 	}
1385 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1386 
1387 	write_seqcount_end(&tk_core.seq);
1388 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1389 
1390 	return 0;
1391 }
1392 
1393 /**
1394  * timekeeping_notify - Install a new clock source
1395  * @clock:		pointer to the clock source
1396  *
1397  * This function is called from clocksource.c after a new, better clock
1398  * source has been registered. The caller holds the clocksource_mutex.
1399  */
1400 int timekeeping_notify(struct clocksource *clock)
1401 {
1402 	struct timekeeper *tk = &tk_core.timekeeper;
1403 
1404 	if (tk->tkr_mono.clock == clock)
1405 		return 0;
1406 	stop_machine(change_clocksource, clock, NULL);
1407 	tick_clock_notify();
1408 	return tk->tkr_mono.clock == clock ? 0 : -1;
1409 }
1410 
1411 /**
1412  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1413  * @ts:		pointer to the timespec64 to be set
1414  *
1415  * Returns the raw monotonic time (completely un-modified by ntp)
1416  */
1417 void getrawmonotonic64(struct timespec64 *ts)
1418 {
1419 	struct timekeeper *tk = &tk_core.timekeeper;
1420 	unsigned long seq;
1421 	u64 nsecs;
1422 
1423 	do {
1424 		seq = read_seqcount_begin(&tk_core.seq);
1425 		ts->tv_sec = tk->raw_sec;
1426 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1427 
1428 	} while (read_seqcount_retry(&tk_core.seq, seq));
1429 
1430 	ts->tv_nsec = 0;
1431 	timespec64_add_ns(ts, nsecs);
1432 }
1433 EXPORT_SYMBOL(getrawmonotonic64);
1434 
1435 
1436 /**
1437  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1438  */
1439 int timekeeping_valid_for_hres(void)
1440 {
1441 	struct timekeeper *tk = &tk_core.timekeeper;
1442 	unsigned long seq;
1443 	int ret;
1444 
1445 	do {
1446 		seq = read_seqcount_begin(&tk_core.seq);
1447 
1448 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1449 
1450 	} while (read_seqcount_retry(&tk_core.seq, seq));
1451 
1452 	return ret;
1453 }
1454 
1455 /**
1456  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1457  */
1458 u64 timekeeping_max_deferment(void)
1459 {
1460 	struct timekeeper *tk = &tk_core.timekeeper;
1461 	unsigned long seq;
1462 	u64 ret;
1463 
1464 	do {
1465 		seq = read_seqcount_begin(&tk_core.seq);
1466 
1467 		ret = tk->tkr_mono.clock->max_idle_ns;
1468 
1469 	} while (read_seqcount_retry(&tk_core.seq, seq));
1470 
1471 	return ret;
1472 }
1473 
1474 /**
1475  * read_persistent_clock -  Return time from the persistent clock.
1476  *
1477  * Weak dummy function for arches that do not yet support it.
1478  * Reads the time from the battery backed persistent clock.
1479  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1480  *
1481  *  XXX - Do be sure to remove it once all arches implement it.
1482  */
1483 void __weak read_persistent_clock(struct timespec *ts)
1484 {
1485 	ts->tv_sec = 0;
1486 	ts->tv_nsec = 0;
1487 }
1488 
1489 void __weak read_persistent_clock64(struct timespec64 *ts64)
1490 {
1491 	struct timespec ts;
1492 
1493 	read_persistent_clock(&ts);
1494 	*ts64 = timespec_to_timespec64(ts);
1495 }
1496 
1497 /**
1498  * read_boot_clock64 -  Return time of the system start.
1499  *
1500  * Weak dummy function for arches that do not yet support it.
1501  * Function to read the exact time the system has been started.
1502  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1503  *
1504  *  XXX - Do be sure to remove it once all arches implement it.
1505  */
1506 void __weak read_boot_clock64(struct timespec64 *ts)
1507 {
1508 	ts->tv_sec = 0;
1509 	ts->tv_nsec = 0;
1510 }
1511 
1512 /* Flag for if timekeeping_resume() has injected sleeptime */
1513 static bool sleeptime_injected;
1514 
1515 /* Flag for if there is a persistent clock on this platform */
1516 static bool persistent_clock_exists;
1517 
1518 /*
1519  * timekeeping_init - Initializes the clocksource and common timekeeping values
1520  */
1521 void __init timekeeping_init(void)
1522 {
1523 	struct timekeeper *tk = &tk_core.timekeeper;
1524 	struct clocksource *clock;
1525 	unsigned long flags;
1526 	struct timespec64 now, boot, tmp;
1527 
1528 	read_persistent_clock64(&now);
1529 	if (!timespec64_valid_strict(&now)) {
1530 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1531 			"         Check your CMOS/BIOS settings.\n");
1532 		now.tv_sec = 0;
1533 		now.tv_nsec = 0;
1534 	} else if (now.tv_sec || now.tv_nsec)
1535 		persistent_clock_exists = true;
1536 
1537 	read_boot_clock64(&boot);
1538 	if (!timespec64_valid_strict(&boot)) {
1539 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1540 			"         Check your CMOS/BIOS settings.\n");
1541 		boot.tv_sec = 0;
1542 		boot.tv_nsec = 0;
1543 	}
1544 
1545 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1546 	write_seqcount_begin(&tk_core.seq);
1547 	ntp_init();
1548 
1549 	clock = clocksource_default_clock();
1550 	if (clock->enable)
1551 		clock->enable(clock);
1552 	tk_setup_internals(tk, clock);
1553 
1554 	tk_set_xtime(tk, &now);
1555 	tk->raw_sec = 0;
1556 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1557 		boot = tk_xtime(tk);
1558 
1559 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1560 	tk_set_wall_to_mono(tk, tmp);
1561 
1562 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1563 
1564 	write_seqcount_end(&tk_core.seq);
1565 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1566 }
1567 
1568 /* time in seconds when suspend began for persistent clock */
1569 static struct timespec64 timekeeping_suspend_time;
1570 
1571 /**
1572  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1573  * @delta: pointer to a timespec delta value
1574  *
1575  * Takes a timespec offset measuring a suspend interval and properly
1576  * adds the sleep offset to the timekeeping variables.
1577  */
1578 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1579 					   struct timespec64 *delta)
1580 {
1581 	if (!timespec64_valid_strict(delta)) {
1582 		printk_deferred(KERN_WARNING
1583 				"__timekeeping_inject_sleeptime: Invalid "
1584 				"sleep delta value!\n");
1585 		return;
1586 	}
1587 	tk_xtime_add(tk, delta);
1588 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1589 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1590 	tk_debug_account_sleep_time(delta);
1591 }
1592 
1593 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1594 /**
1595  * We have three kinds of time sources to use for sleep time
1596  * injection, the preference order is:
1597  * 1) non-stop clocksource
1598  * 2) persistent clock (ie: RTC accessible when irqs are off)
1599  * 3) RTC
1600  *
1601  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1602  * If system has neither 1) nor 2), 3) will be used finally.
1603  *
1604  *
1605  * If timekeeping has injected sleeptime via either 1) or 2),
1606  * 3) becomes needless, so in this case we don't need to call
1607  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1608  * means.
1609  */
1610 bool timekeeping_rtc_skipresume(void)
1611 {
1612 	return sleeptime_injected;
1613 }
1614 
1615 /**
1616  * 1) can be determined whether to use or not only when doing
1617  * timekeeping_resume() which is invoked after rtc_suspend(),
1618  * so we can't skip rtc_suspend() surely if system has 1).
1619  *
1620  * But if system has 2), 2) will definitely be used, so in this
1621  * case we don't need to call rtc_suspend(), and this is what
1622  * timekeeping_rtc_skipsuspend() means.
1623  */
1624 bool timekeeping_rtc_skipsuspend(void)
1625 {
1626 	return persistent_clock_exists;
1627 }
1628 
1629 /**
1630  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1631  * @delta: pointer to a timespec64 delta value
1632  *
1633  * This hook is for architectures that cannot support read_persistent_clock64
1634  * because their RTC/persistent clock is only accessible when irqs are enabled.
1635  * and also don't have an effective nonstop clocksource.
1636  *
1637  * This function should only be called by rtc_resume(), and allows
1638  * a suspend offset to be injected into the timekeeping values.
1639  */
1640 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1641 {
1642 	struct timekeeper *tk = &tk_core.timekeeper;
1643 	unsigned long flags;
1644 
1645 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1646 	write_seqcount_begin(&tk_core.seq);
1647 
1648 	timekeeping_forward_now(tk);
1649 
1650 	__timekeeping_inject_sleeptime(tk, delta);
1651 
1652 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1653 
1654 	write_seqcount_end(&tk_core.seq);
1655 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1656 
1657 	/* signal hrtimers about time change */
1658 	clock_was_set();
1659 }
1660 #endif
1661 
1662 /**
1663  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1664  */
1665 void timekeeping_resume(void)
1666 {
1667 	struct timekeeper *tk = &tk_core.timekeeper;
1668 	struct clocksource *clock = tk->tkr_mono.clock;
1669 	unsigned long flags;
1670 	struct timespec64 ts_new, ts_delta;
1671 	u64 cycle_now;
1672 
1673 	sleeptime_injected = false;
1674 	read_persistent_clock64(&ts_new);
1675 
1676 	clockevents_resume();
1677 	clocksource_resume();
1678 
1679 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1680 	write_seqcount_begin(&tk_core.seq);
1681 
1682 	/*
1683 	 * After system resumes, we need to calculate the suspended time and
1684 	 * compensate it for the OS time. There are 3 sources that could be
1685 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1686 	 * device.
1687 	 *
1688 	 * One specific platform may have 1 or 2 or all of them, and the
1689 	 * preference will be:
1690 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1691 	 * The less preferred source will only be tried if there is no better
1692 	 * usable source. The rtc part is handled separately in rtc core code.
1693 	 */
1694 	cycle_now = tk_clock_read(&tk->tkr_mono);
1695 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1696 		cycle_now > tk->tkr_mono.cycle_last) {
1697 		u64 nsec, cyc_delta;
1698 
1699 		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1700 					      tk->tkr_mono.mask);
1701 		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1702 		ts_delta = ns_to_timespec64(nsec);
1703 		sleeptime_injected = true;
1704 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1705 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1706 		sleeptime_injected = true;
1707 	}
1708 
1709 	if (sleeptime_injected)
1710 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1711 
1712 	/* Re-base the last cycle value */
1713 	tk->tkr_mono.cycle_last = cycle_now;
1714 	tk->tkr_raw.cycle_last  = cycle_now;
1715 
1716 	tk->ntp_error = 0;
1717 	timekeeping_suspended = 0;
1718 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1719 	write_seqcount_end(&tk_core.seq);
1720 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1721 
1722 	touch_softlockup_watchdog();
1723 
1724 	tick_resume();
1725 	hrtimers_resume();
1726 }
1727 
1728 int timekeeping_suspend(void)
1729 {
1730 	struct timekeeper *tk = &tk_core.timekeeper;
1731 	unsigned long flags;
1732 	struct timespec64		delta, delta_delta;
1733 	static struct timespec64	old_delta;
1734 
1735 	read_persistent_clock64(&timekeeping_suspend_time);
1736 
1737 	/*
1738 	 * On some systems the persistent_clock can not be detected at
1739 	 * timekeeping_init by its return value, so if we see a valid
1740 	 * value returned, update the persistent_clock_exists flag.
1741 	 */
1742 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1743 		persistent_clock_exists = true;
1744 
1745 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1746 	write_seqcount_begin(&tk_core.seq);
1747 	timekeeping_forward_now(tk);
1748 	timekeeping_suspended = 1;
1749 
1750 	if (persistent_clock_exists) {
1751 		/*
1752 		 * To avoid drift caused by repeated suspend/resumes,
1753 		 * which each can add ~1 second drift error,
1754 		 * try to compensate so the difference in system time
1755 		 * and persistent_clock time stays close to constant.
1756 		 */
1757 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1758 		delta_delta = timespec64_sub(delta, old_delta);
1759 		if (abs(delta_delta.tv_sec) >= 2) {
1760 			/*
1761 			 * if delta_delta is too large, assume time correction
1762 			 * has occurred and set old_delta to the current delta.
1763 			 */
1764 			old_delta = delta;
1765 		} else {
1766 			/* Otherwise try to adjust old_system to compensate */
1767 			timekeeping_suspend_time =
1768 				timespec64_add(timekeeping_suspend_time, delta_delta);
1769 		}
1770 	}
1771 
1772 	timekeeping_update(tk, TK_MIRROR);
1773 	halt_fast_timekeeper(tk);
1774 	write_seqcount_end(&tk_core.seq);
1775 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1776 
1777 	tick_suspend();
1778 	clocksource_suspend();
1779 	clockevents_suspend();
1780 
1781 	return 0;
1782 }
1783 
1784 /* sysfs resume/suspend bits for timekeeping */
1785 static struct syscore_ops timekeeping_syscore_ops = {
1786 	.resume		= timekeeping_resume,
1787 	.suspend	= timekeeping_suspend,
1788 };
1789 
1790 static int __init timekeeping_init_ops(void)
1791 {
1792 	register_syscore_ops(&timekeeping_syscore_ops);
1793 	return 0;
1794 }
1795 device_initcall(timekeeping_init_ops);
1796 
1797 /*
1798  * Apply a multiplier adjustment to the timekeeper
1799  */
1800 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1801 							 s64 offset,
1802 							 bool negative,
1803 							 int adj_scale)
1804 {
1805 	s64 interval = tk->cycle_interval;
1806 	s32 mult_adj = 1;
1807 
1808 	if (negative) {
1809 		mult_adj = -mult_adj;
1810 		interval = -interval;
1811 		offset  = -offset;
1812 	}
1813 	mult_adj <<= adj_scale;
1814 	interval <<= adj_scale;
1815 	offset <<= adj_scale;
1816 
1817 	/*
1818 	 * So the following can be confusing.
1819 	 *
1820 	 * To keep things simple, lets assume mult_adj == 1 for now.
1821 	 *
1822 	 * When mult_adj != 1, remember that the interval and offset values
1823 	 * have been appropriately scaled so the math is the same.
1824 	 *
1825 	 * The basic idea here is that we're increasing the multiplier
1826 	 * by one, this causes the xtime_interval to be incremented by
1827 	 * one cycle_interval. This is because:
1828 	 *	xtime_interval = cycle_interval * mult
1829 	 * So if mult is being incremented by one:
1830 	 *	xtime_interval = cycle_interval * (mult + 1)
1831 	 * Its the same as:
1832 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1833 	 * Which can be shortened to:
1834 	 *	xtime_interval += cycle_interval
1835 	 *
1836 	 * So offset stores the non-accumulated cycles. Thus the current
1837 	 * time (in shifted nanoseconds) is:
1838 	 *	now = (offset * adj) + xtime_nsec
1839 	 * Now, even though we're adjusting the clock frequency, we have
1840 	 * to keep time consistent. In other words, we can't jump back
1841 	 * in time, and we also want to avoid jumping forward in time.
1842 	 *
1843 	 * So given the same offset value, we need the time to be the same
1844 	 * both before and after the freq adjustment.
1845 	 *	now = (offset * adj_1) + xtime_nsec_1
1846 	 *	now = (offset * adj_2) + xtime_nsec_2
1847 	 * So:
1848 	 *	(offset * adj_1) + xtime_nsec_1 =
1849 	 *		(offset * adj_2) + xtime_nsec_2
1850 	 * And we know:
1851 	 *	adj_2 = adj_1 + 1
1852 	 * So:
1853 	 *	(offset * adj_1) + xtime_nsec_1 =
1854 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1855 	 *	(offset * adj_1) + xtime_nsec_1 =
1856 	 *		(offset * adj_1) + offset + xtime_nsec_2
1857 	 * Canceling the sides:
1858 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1859 	 * Which gives us:
1860 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1861 	 * Which simplfies to:
1862 	 *	xtime_nsec -= offset
1863 	 *
1864 	 * XXX - TODO: Doc ntp_error calculation.
1865 	 */
1866 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1867 		/* NTP adjustment caused clocksource mult overflow */
1868 		WARN_ON_ONCE(1);
1869 		return;
1870 	}
1871 
1872 	tk->tkr_mono.mult += mult_adj;
1873 	tk->xtime_interval += interval;
1874 	tk->tkr_mono.xtime_nsec -= offset;
1875 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1876 }
1877 
1878 /*
1879  * Calculate the multiplier adjustment needed to match the frequency
1880  * specified by NTP
1881  */
1882 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1883 							s64 offset)
1884 {
1885 	s64 interval = tk->cycle_interval;
1886 	s64 xinterval = tk->xtime_interval;
1887 	u32 base = tk->tkr_mono.clock->mult;
1888 	u32 max = tk->tkr_mono.clock->maxadj;
1889 	u32 cur_adj = tk->tkr_mono.mult;
1890 	s64 tick_error;
1891 	bool negative;
1892 	u32 adj_scale;
1893 
1894 	/* Remove any current error adj from freq calculation */
1895 	if (tk->ntp_err_mult)
1896 		xinterval -= tk->cycle_interval;
1897 
1898 	tk->ntp_tick = ntp_tick_length();
1899 
1900 	/* Calculate current error per tick */
1901 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1902 	tick_error -= (xinterval + tk->xtime_remainder);
1903 
1904 	/* Don't worry about correcting it if its small */
1905 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1906 		return;
1907 
1908 	/* preserve the direction of correction */
1909 	negative = (tick_error < 0);
1910 
1911 	/* If any adjustment would pass the max, just return */
1912 	if (negative && (cur_adj - 1) <= (base - max))
1913 		return;
1914 	if (!negative && (cur_adj + 1) >= (base + max))
1915 		return;
1916 	/*
1917 	 * Sort out the magnitude of the correction, but
1918 	 * avoid making so large a correction that we go
1919 	 * over the max adjustment.
1920 	 */
1921 	adj_scale = 0;
1922 	tick_error = abs(tick_error);
1923 	while (tick_error > interval) {
1924 		u32 adj = 1 << (adj_scale + 1);
1925 
1926 		/* Check if adjustment gets us within 1 unit from the max */
1927 		if (negative && (cur_adj - adj) <= (base - max))
1928 			break;
1929 		if (!negative && (cur_adj + adj) >= (base + max))
1930 			break;
1931 
1932 		adj_scale++;
1933 		tick_error >>= 1;
1934 	}
1935 
1936 	/* scale the corrections */
1937 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1938 }
1939 
1940 /*
1941  * Adjust the timekeeper's multiplier to the correct frequency
1942  * and also to reduce the accumulated error value.
1943  */
1944 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1945 {
1946 	/* Correct for the current frequency error */
1947 	timekeeping_freqadjust(tk, offset);
1948 
1949 	/* Next make a small adjustment to fix any cumulative error */
1950 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1951 		tk->ntp_err_mult = 1;
1952 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1953 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1954 		/* Undo any existing error adjustment */
1955 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1956 		tk->ntp_err_mult = 0;
1957 	}
1958 
1959 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1960 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1961 			> tk->tkr_mono.clock->maxadj))) {
1962 		printk_once(KERN_WARNING
1963 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1964 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1965 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1966 	}
1967 
1968 	/*
1969 	 * It may be possible that when we entered this function, xtime_nsec
1970 	 * was very small.  Further, if we're slightly speeding the clocksource
1971 	 * in the code above, its possible the required corrective factor to
1972 	 * xtime_nsec could cause it to underflow.
1973 	 *
1974 	 * Now, since we already accumulated the second, cannot simply roll
1975 	 * the accumulated second back, since the NTP subsystem has been
1976 	 * notified via second_overflow. So instead we push xtime_nsec forward
1977 	 * by the amount we underflowed, and add that amount into the error.
1978 	 *
1979 	 * We'll correct this error next time through this function, when
1980 	 * xtime_nsec is not as small.
1981 	 */
1982 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1983 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1984 		tk->tkr_mono.xtime_nsec = 0;
1985 		tk->ntp_error += neg << tk->ntp_error_shift;
1986 	}
1987 }
1988 
1989 /**
1990  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1991  *
1992  * Helper function that accumulates the nsecs greater than a second
1993  * from the xtime_nsec field to the xtime_secs field.
1994  * It also calls into the NTP code to handle leapsecond processing.
1995  *
1996  */
1997 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1998 {
1999 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2000 	unsigned int clock_set = 0;
2001 
2002 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2003 		int leap;
2004 
2005 		tk->tkr_mono.xtime_nsec -= nsecps;
2006 		tk->xtime_sec++;
2007 
2008 		/* Figure out if its a leap sec and apply if needed */
2009 		leap = second_overflow(tk->xtime_sec);
2010 		if (unlikely(leap)) {
2011 			struct timespec64 ts;
2012 
2013 			tk->xtime_sec += leap;
2014 
2015 			ts.tv_sec = leap;
2016 			ts.tv_nsec = 0;
2017 			tk_set_wall_to_mono(tk,
2018 				timespec64_sub(tk->wall_to_monotonic, ts));
2019 
2020 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2021 
2022 			clock_set = TK_CLOCK_WAS_SET;
2023 		}
2024 	}
2025 	return clock_set;
2026 }
2027 
2028 /**
2029  * logarithmic_accumulation - shifted accumulation of cycles
2030  *
2031  * This functions accumulates a shifted interval of cycles into
2032  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2033  * loop.
2034  *
2035  * Returns the unconsumed cycles.
2036  */
2037 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2038 				    u32 shift, unsigned int *clock_set)
2039 {
2040 	u64 interval = tk->cycle_interval << shift;
2041 	u64 snsec_per_sec;
2042 
2043 	/* If the offset is smaller than a shifted interval, do nothing */
2044 	if (offset < interval)
2045 		return offset;
2046 
2047 	/* Accumulate one shifted interval */
2048 	offset -= interval;
2049 	tk->tkr_mono.cycle_last += interval;
2050 	tk->tkr_raw.cycle_last  += interval;
2051 
2052 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2053 	*clock_set |= accumulate_nsecs_to_secs(tk);
2054 
2055 	/* Accumulate raw time */
2056 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2057 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2058 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2059 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2060 		tk->raw_sec++;
2061 	}
2062 
2063 	/* Accumulate error between NTP and clock interval */
2064 	tk->ntp_error += tk->ntp_tick << shift;
2065 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2066 						(tk->ntp_error_shift + shift);
2067 
2068 	return offset;
2069 }
2070 
2071 /**
2072  * update_wall_time - Uses the current clocksource to increment the wall time
2073  *
2074  */
2075 void update_wall_time(void)
2076 {
2077 	struct timekeeper *real_tk = &tk_core.timekeeper;
2078 	struct timekeeper *tk = &shadow_timekeeper;
2079 	u64 offset;
2080 	int shift = 0, maxshift;
2081 	unsigned int clock_set = 0;
2082 	unsigned long flags;
2083 
2084 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2085 
2086 	/* Make sure we're fully resumed: */
2087 	if (unlikely(timekeeping_suspended))
2088 		goto out;
2089 
2090 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2091 	offset = real_tk->cycle_interval;
2092 #else
2093 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2094 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2095 #endif
2096 
2097 	/* Check if there's really nothing to do */
2098 	if (offset < real_tk->cycle_interval)
2099 		goto out;
2100 
2101 	/* Do some additional sanity checking */
2102 	timekeeping_check_update(tk, offset);
2103 
2104 	/*
2105 	 * With NO_HZ we may have to accumulate many cycle_intervals
2106 	 * (think "ticks") worth of time at once. To do this efficiently,
2107 	 * we calculate the largest doubling multiple of cycle_intervals
2108 	 * that is smaller than the offset.  We then accumulate that
2109 	 * chunk in one go, and then try to consume the next smaller
2110 	 * doubled multiple.
2111 	 */
2112 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2113 	shift = max(0, shift);
2114 	/* Bound shift to one less than what overflows tick_length */
2115 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2116 	shift = min(shift, maxshift);
2117 	while (offset >= tk->cycle_interval) {
2118 		offset = logarithmic_accumulation(tk, offset, shift,
2119 							&clock_set);
2120 		if (offset < tk->cycle_interval<<shift)
2121 			shift--;
2122 	}
2123 
2124 	/* correct the clock when NTP error is too big */
2125 	timekeeping_adjust(tk, offset);
2126 
2127 	/*
2128 	 * Finally, make sure that after the rounding
2129 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2130 	 */
2131 	clock_set |= accumulate_nsecs_to_secs(tk);
2132 
2133 	write_seqcount_begin(&tk_core.seq);
2134 	/*
2135 	 * Update the real timekeeper.
2136 	 *
2137 	 * We could avoid this memcpy by switching pointers, but that
2138 	 * requires changes to all other timekeeper usage sites as
2139 	 * well, i.e. move the timekeeper pointer getter into the
2140 	 * spinlocked/seqcount protected sections. And we trade this
2141 	 * memcpy under the tk_core.seq against one before we start
2142 	 * updating.
2143 	 */
2144 	timekeeping_update(tk, clock_set);
2145 	memcpy(real_tk, tk, sizeof(*tk));
2146 	/* The memcpy must come last. Do not put anything here! */
2147 	write_seqcount_end(&tk_core.seq);
2148 out:
2149 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2150 	if (clock_set)
2151 		/* Have to call _delayed version, since in irq context*/
2152 		clock_was_set_delayed();
2153 }
2154 
2155 /**
2156  * getboottime64 - Return the real time of system boot.
2157  * @ts:		pointer to the timespec64 to be set
2158  *
2159  * Returns the wall-time of boot in a timespec64.
2160  *
2161  * This is based on the wall_to_monotonic offset and the total suspend
2162  * time. Calls to settimeofday will affect the value returned (which
2163  * basically means that however wrong your real time clock is at boot time,
2164  * you get the right time here).
2165  */
2166 void getboottime64(struct timespec64 *ts)
2167 {
2168 	struct timekeeper *tk = &tk_core.timekeeper;
2169 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2170 
2171 	*ts = ktime_to_timespec64(t);
2172 }
2173 EXPORT_SYMBOL_GPL(getboottime64);
2174 
2175 unsigned long get_seconds(void)
2176 {
2177 	struct timekeeper *tk = &tk_core.timekeeper;
2178 
2179 	return tk->xtime_sec;
2180 }
2181 EXPORT_SYMBOL(get_seconds);
2182 
2183 struct timespec __current_kernel_time(void)
2184 {
2185 	struct timekeeper *tk = &tk_core.timekeeper;
2186 
2187 	return timespec64_to_timespec(tk_xtime(tk));
2188 }
2189 
2190 struct timespec64 current_kernel_time64(void)
2191 {
2192 	struct timekeeper *tk = &tk_core.timekeeper;
2193 	struct timespec64 now;
2194 	unsigned long seq;
2195 
2196 	do {
2197 		seq = read_seqcount_begin(&tk_core.seq);
2198 
2199 		now = tk_xtime(tk);
2200 	} while (read_seqcount_retry(&tk_core.seq, seq));
2201 
2202 	return now;
2203 }
2204 EXPORT_SYMBOL(current_kernel_time64);
2205 
2206 struct timespec64 get_monotonic_coarse64(void)
2207 {
2208 	struct timekeeper *tk = &tk_core.timekeeper;
2209 	struct timespec64 now, mono;
2210 	unsigned long seq;
2211 
2212 	do {
2213 		seq = read_seqcount_begin(&tk_core.seq);
2214 
2215 		now = tk_xtime(tk);
2216 		mono = tk->wall_to_monotonic;
2217 	} while (read_seqcount_retry(&tk_core.seq, seq));
2218 
2219 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2220 				now.tv_nsec + mono.tv_nsec);
2221 
2222 	return now;
2223 }
2224 EXPORT_SYMBOL(get_monotonic_coarse64);
2225 
2226 /*
2227  * Must hold jiffies_lock
2228  */
2229 void do_timer(unsigned long ticks)
2230 {
2231 	jiffies_64 += ticks;
2232 	calc_global_load(ticks);
2233 }
2234 
2235 /**
2236  * ktime_get_update_offsets_now - hrtimer helper
2237  * @cwsseq:	pointer to check and store the clock was set sequence number
2238  * @offs_real:	pointer to storage for monotonic -> realtime offset
2239  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2240  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2241  *
2242  * Returns current monotonic time and updates the offsets if the
2243  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2244  * different.
2245  *
2246  * Called from hrtimer_interrupt() or retrigger_next_event()
2247  */
2248 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2249 				     ktime_t *offs_boot, ktime_t *offs_tai)
2250 {
2251 	struct timekeeper *tk = &tk_core.timekeeper;
2252 	unsigned int seq;
2253 	ktime_t base;
2254 	u64 nsecs;
2255 
2256 	do {
2257 		seq = read_seqcount_begin(&tk_core.seq);
2258 
2259 		base = tk->tkr_mono.base;
2260 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2261 		base = ktime_add_ns(base, nsecs);
2262 
2263 		if (*cwsseq != tk->clock_was_set_seq) {
2264 			*cwsseq = tk->clock_was_set_seq;
2265 			*offs_real = tk->offs_real;
2266 			*offs_boot = tk->offs_boot;
2267 			*offs_tai = tk->offs_tai;
2268 		}
2269 
2270 		/* Handle leapsecond insertion adjustments */
2271 		if (unlikely(base >= tk->next_leap_ktime))
2272 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2273 
2274 	} while (read_seqcount_retry(&tk_core.seq, seq));
2275 
2276 	return base;
2277 }
2278 
2279 /**
2280  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2281  */
2282 static int timekeeping_validate_timex(struct timex *txc)
2283 {
2284 	if (txc->modes & ADJ_ADJTIME) {
2285 		/* singleshot must not be used with any other mode bits */
2286 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2287 			return -EINVAL;
2288 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2289 		    !capable(CAP_SYS_TIME))
2290 			return -EPERM;
2291 	} else {
2292 		/* In order to modify anything, you gotta be super-user! */
2293 		if (txc->modes && !capable(CAP_SYS_TIME))
2294 			return -EPERM;
2295 		/*
2296 		 * if the quartz is off by more than 10% then
2297 		 * something is VERY wrong!
2298 		 */
2299 		if (txc->modes & ADJ_TICK &&
2300 		    (txc->tick <  900000/USER_HZ ||
2301 		     txc->tick > 1100000/USER_HZ))
2302 			return -EINVAL;
2303 	}
2304 
2305 	if (txc->modes & ADJ_SETOFFSET) {
2306 		/* In order to inject time, you gotta be super-user! */
2307 		if (!capable(CAP_SYS_TIME))
2308 			return -EPERM;
2309 
2310 		/*
2311 		 * Validate if a timespec/timeval used to inject a time
2312 		 * offset is valid.  Offsets can be postive or negative, so
2313 		 * we don't check tv_sec. The value of the timeval/timespec
2314 		 * is the sum of its fields,but *NOTE*:
2315 		 * The field tv_usec/tv_nsec must always be non-negative and
2316 		 * we can't have more nanoseconds/microseconds than a second.
2317 		 */
2318 		if (txc->time.tv_usec < 0)
2319 			return -EINVAL;
2320 
2321 		if (txc->modes & ADJ_NANO) {
2322 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2323 				return -EINVAL;
2324 		} else {
2325 			if (txc->time.tv_usec >= USEC_PER_SEC)
2326 				return -EINVAL;
2327 		}
2328 	}
2329 
2330 	/*
2331 	 * Check for potential multiplication overflows that can
2332 	 * only happen on 64-bit systems:
2333 	 */
2334 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2335 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2336 			return -EINVAL;
2337 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2338 			return -EINVAL;
2339 	}
2340 
2341 	return 0;
2342 }
2343 
2344 
2345 /**
2346  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2347  */
2348 int do_adjtimex(struct timex *txc)
2349 {
2350 	struct timekeeper *tk = &tk_core.timekeeper;
2351 	unsigned long flags;
2352 	struct timespec64 ts;
2353 	s32 orig_tai, tai;
2354 	int ret;
2355 
2356 	/* Validate the data before disabling interrupts */
2357 	ret = timekeeping_validate_timex(txc);
2358 	if (ret)
2359 		return ret;
2360 
2361 	if (txc->modes & ADJ_SETOFFSET) {
2362 		struct timespec64 delta;
2363 		delta.tv_sec  = txc->time.tv_sec;
2364 		delta.tv_nsec = txc->time.tv_usec;
2365 		if (!(txc->modes & ADJ_NANO))
2366 			delta.tv_nsec *= 1000;
2367 		ret = timekeeping_inject_offset(&delta);
2368 		if (ret)
2369 			return ret;
2370 	}
2371 
2372 	getnstimeofday64(&ts);
2373 
2374 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2375 	write_seqcount_begin(&tk_core.seq);
2376 
2377 	orig_tai = tai = tk->tai_offset;
2378 	ret = __do_adjtimex(txc, &ts, &tai);
2379 
2380 	if (tai != orig_tai) {
2381 		__timekeeping_set_tai_offset(tk, tai);
2382 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2383 	}
2384 	tk_update_leap_state(tk);
2385 
2386 	write_seqcount_end(&tk_core.seq);
2387 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2388 
2389 	if (tai != orig_tai)
2390 		clock_was_set();
2391 
2392 	ntp_notify_cmos_timer();
2393 
2394 	return ret;
2395 }
2396 
2397 #ifdef CONFIG_NTP_PPS
2398 /**
2399  * hardpps() - Accessor function to NTP __hardpps function
2400  */
2401 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2402 {
2403 	unsigned long flags;
2404 
2405 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2406 	write_seqcount_begin(&tk_core.seq);
2407 
2408 	__hardpps(phase_ts, raw_ts);
2409 
2410 	write_seqcount_end(&tk_core.seq);
2411 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2412 }
2413 EXPORT_SYMBOL(hardpps);
2414 #endif /* CONFIG_NTP_PPS */
2415 
2416 /**
2417  * xtime_update() - advances the timekeeping infrastructure
2418  * @ticks:	number of ticks, that have elapsed since the last call.
2419  *
2420  * Must be called with interrupts disabled.
2421  */
2422 void xtime_update(unsigned long ticks)
2423 {
2424 	write_seqlock(&jiffies_lock);
2425 	do_timer(ticks);
2426 	write_sequnlock(&jiffies_lock);
2427 	update_wall_time();
2428 }
2429