1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/nmi.h> 18 #include <linux/sched.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/syscore_ops.h> 21 #include <linux/clocksource.h> 22 #include <linux/jiffies.h> 23 #include <linux/time.h> 24 #include <linux/tick.h> 25 #include <linux/stop_machine.h> 26 #include <linux/pvclock_gtod.h> 27 #include <linux/compiler.h> 28 29 #include "tick-internal.h" 30 #include "ntp_internal.h" 31 #include "timekeeping_internal.h" 32 33 #define TK_CLEAR_NTP (1 << 0) 34 #define TK_MIRROR (1 << 1) 35 #define TK_CLOCK_WAS_SET (1 << 2) 36 37 /* 38 * The most important data for readout fits into a single 64 byte 39 * cache line. 40 */ 41 static struct { 42 seqcount_t seq; 43 struct timekeeper timekeeper; 44 } tk_core ____cacheline_aligned; 45 46 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 47 static struct timekeeper shadow_timekeeper; 48 49 /** 50 * struct tk_fast - NMI safe timekeeper 51 * @seq: Sequence counter for protecting updates. The lowest bit 52 * is the index for the tk_read_base array 53 * @base: tk_read_base array. Access is indexed by the lowest bit of 54 * @seq. 55 * 56 * See @update_fast_timekeeper() below. 57 */ 58 struct tk_fast { 59 seqcount_t seq; 60 struct tk_read_base base[2]; 61 }; 62 63 /* Suspend-time cycles value for halted fast timekeeper. */ 64 static u64 cycles_at_suspend; 65 66 static u64 dummy_clock_read(struct clocksource *cs) 67 { 68 return cycles_at_suspend; 69 } 70 71 static struct clocksource dummy_clock = { 72 .read = dummy_clock_read, 73 }; 74 75 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 76 .base[0] = { .clock = &dummy_clock, }, 77 .base[1] = { .clock = &dummy_clock, }, 78 }; 79 80 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 81 .base[0] = { .clock = &dummy_clock, }, 82 .base[1] = { .clock = &dummy_clock, }, 83 }; 84 85 /* flag for if timekeeping is suspended */ 86 int __read_mostly timekeeping_suspended; 87 88 static inline void tk_normalize_xtime(struct timekeeper *tk) 89 { 90 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 91 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 92 tk->xtime_sec++; 93 } 94 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 95 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 96 tk->raw_sec++; 97 } 98 } 99 100 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 101 { 102 struct timespec64 ts; 103 104 ts.tv_sec = tk->xtime_sec; 105 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 106 return ts; 107 } 108 109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 110 { 111 tk->xtime_sec = ts->tv_sec; 112 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 113 } 114 115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 116 { 117 tk->xtime_sec += ts->tv_sec; 118 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 119 tk_normalize_xtime(tk); 120 } 121 122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 123 { 124 struct timespec64 tmp; 125 126 /* 127 * Verify consistency of: offset_real = -wall_to_monotonic 128 * before modifying anything 129 */ 130 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 131 -tk->wall_to_monotonic.tv_nsec); 132 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 133 tk->wall_to_monotonic = wtm; 134 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 135 tk->offs_real = timespec64_to_ktime(tmp); 136 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 137 } 138 139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 140 { 141 tk->offs_boot = ktime_add(tk->offs_boot, delta); 142 } 143 144 /* 145 * tk_clock_read - atomic clocksource read() helper 146 * 147 * This helper is necessary to use in the read paths because, while the 148 * seqlock ensures we don't return a bad value while structures are updated, 149 * it doesn't protect from potential crashes. There is the possibility that 150 * the tkr's clocksource may change between the read reference, and the 151 * clock reference passed to the read function. This can cause crashes if 152 * the wrong clocksource is passed to the wrong read function. 153 * This isn't necessary to use when holding the timekeeper_lock or doing 154 * a read of the fast-timekeeper tkrs (which is protected by its own locking 155 * and update logic). 156 */ 157 static inline u64 tk_clock_read(struct tk_read_base *tkr) 158 { 159 struct clocksource *clock = READ_ONCE(tkr->clock); 160 161 return clock->read(clock); 162 } 163 164 #ifdef CONFIG_DEBUG_TIMEKEEPING 165 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 166 167 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 168 { 169 170 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 171 const char *name = tk->tkr_mono.clock->name; 172 173 if (offset > max_cycles) { 174 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 175 offset, name, max_cycles); 176 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 177 } else { 178 if (offset > (max_cycles >> 1)) { 179 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 180 offset, name, max_cycles >> 1); 181 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 182 } 183 } 184 185 if (tk->underflow_seen) { 186 if (jiffies - tk->last_warning > WARNING_FREQ) { 187 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 188 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 189 printk_deferred(" Your kernel is probably still fine.\n"); 190 tk->last_warning = jiffies; 191 } 192 tk->underflow_seen = 0; 193 } 194 195 if (tk->overflow_seen) { 196 if (jiffies - tk->last_warning > WARNING_FREQ) { 197 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 198 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 199 printk_deferred(" Your kernel is probably still fine.\n"); 200 tk->last_warning = jiffies; 201 } 202 tk->overflow_seen = 0; 203 } 204 } 205 206 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 207 { 208 struct timekeeper *tk = &tk_core.timekeeper; 209 u64 now, last, mask, max, delta; 210 unsigned int seq; 211 212 /* 213 * Since we're called holding a seqlock, the data may shift 214 * under us while we're doing the calculation. This can cause 215 * false positives, since we'd note a problem but throw the 216 * results away. So nest another seqlock here to atomically 217 * grab the points we are checking with. 218 */ 219 do { 220 seq = read_seqcount_begin(&tk_core.seq); 221 now = tk_clock_read(tkr); 222 last = tkr->cycle_last; 223 mask = tkr->mask; 224 max = tkr->clock->max_cycles; 225 } while (read_seqcount_retry(&tk_core.seq, seq)); 226 227 delta = clocksource_delta(now, last, mask); 228 229 /* 230 * Try to catch underflows by checking if we are seeing small 231 * mask-relative negative values. 232 */ 233 if (unlikely((~delta & mask) < (mask >> 3))) { 234 tk->underflow_seen = 1; 235 delta = 0; 236 } 237 238 /* Cap delta value to the max_cycles values to avoid mult overflows */ 239 if (unlikely(delta > max)) { 240 tk->overflow_seen = 1; 241 delta = tkr->clock->max_cycles; 242 } 243 244 return delta; 245 } 246 #else 247 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 248 { 249 } 250 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 251 { 252 u64 cycle_now, delta; 253 254 /* read clocksource */ 255 cycle_now = tk_clock_read(tkr); 256 257 /* calculate the delta since the last update_wall_time */ 258 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 259 260 return delta; 261 } 262 #endif 263 264 /** 265 * tk_setup_internals - Set up internals to use clocksource clock. 266 * 267 * @tk: The target timekeeper to setup. 268 * @clock: Pointer to clocksource. 269 * 270 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 271 * pair and interval request. 272 * 273 * Unless you're the timekeeping code, you should not be using this! 274 */ 275 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 276 { 277 u64 interval; 278 u64 tmp, ntpinterval; 279 struct clocksource *old_clock; 280 281 ++tk->cs_was_changed_seq; 282 old_clock = tk->tkr_mono.clock; 283 tk->tkr_mono.clock = clock; 284 tk->tkr_mono.mask = clock->mask; 285 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 286 287 tk->tkr_raw.clock = clock; 288 tk->tkr_raw.mask = clock->mask; 289 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 290 291 /* Do the ns -> cycle conversion first, using original mult */ 292 tmp = NTP_INTERVAL_LENGTH; 293 tmp <<= clock->shift; 294 ntpinterval = tmp; 295 tmp += clock->mult/2; 296 do_div(tmp, clock->mult); 297 if (tmp == 0) 298 tmp = 1; 299 300 interval = (u64) tmp; 301 tk->cycle_interval = interval; 302 303 /* Go back from cycles -> shifted ns */ 304 tk->xtime_interval = interval * clock->mult; 305 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 306 tk->raw_interval = interval * clock->mult; 307 308 /* if changing clocks, convert xtime_nsec shift units */ 309 if (old_clock) { 310 int shift_change = clock->shift - old_clock->shift; 311 if (shift_change < 0) { 312 tk->tkr_mono.xtime_nsec >>= -shift_change; 313 tk->tkr_raw.xtime_nsec >>= -shift_change; 314 } else { 315 tk->tkr_mono.xtime_nsec <<= shift_change; 316 tk->tkr_raw.xtime_nsec <<= shift_change; 317 } 318 } 319 320 tk->tkr_mono.shift = clock->shift; 321 tk->tkr_raw.shift = clock->shift; 322 323 tk->ntp_error = 0; 324 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 325 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 326 327 /* 328 * The timekeeper keeps its own mult values for the currently 329 * active clocksource. These value will be adjusted via NTP 330 * to counteract clock drifting. 331 */ 332 tk->tkr_mono.mult = clock->mult; 333 tk->tkr_raw.mult = clock->mult; 334 tk->ntp_err_mult = 0; 335 } 336 337 /* Timekeeper helper functions. */ 338 339 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 340 static u32 default_arch_gettimeoffset(void) { return 0; } 341 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 342 #else 343 static inline u32 arch_gettimeoffset(void) { return 0; } 344 #endif 345 346 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) 347 { 348 u64 nsec; 349 350 nsec = delta * tkr->mult + tkr->xtime_nsec; 351 nsec >>= tkr->shift; 352 353 /* If arch requires, add in get_arch_timeoffset() */ 354 return nsec + arch_gettimeoffset(); 355 } 356 357 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 358 { 359 u64 delta; 360 361 delta = timekeeping_get_delta(tkr); 362 return timekeeping_delta_to_ns(tkr, delta); 363 } 364 365 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) 366 { 367 u64 delta; 368 369 /* calculate the delta since the last update_wall_time */ 370 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 371 return timekeeping_delta_to_ns(tkr, delta); 372 } 373 374 /** 375 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 376 * @tkr: Timekeeping readout base from which we take the update 377 * 378 * We want to use this from any context including NMI and tracing / 379 * instrumenting the timekeeping code itself. 380 * 381 * Employ the latch technique; see @raw_write_seqcount_latch. 382 * 383 * So if a NMI hits the update of base[0] then it will use base[1] 384 * which is still consistent. In the worst case this can result is a 385 * slightly wrong timestamp (a few nanoseconds). See 386 * @ktime_get_mono_fast_ns. 387 */ 388 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 389 { 390 struct tk_read_base *base = tkf->base; 391 392 /* Force readers off to base[1] */ 393 raw_write_seqcount_latch(&tkf->seq); 394 395 /* Update base[0] */ 396 memcpy(base, tkr, sizeof(*base)); 397 398 /* Force readers back to base[0] */ 399 raw_write_seqcount_latch(&tkf->seq); 400 401 /* Update base[1] */ 402 memcpy(base + 1, base, sizeof(*base)); 403 } 404 405 /** 406 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 407 * 408 * This timestamp is not guaranteed to be monotonic across an update. 409 * The timestamp is calculated by: 410 * 411 * now = base_mono + clock_delta * slope 412 * 413 * So if the update lowers the slope, readers who are forced to the 414 * not yet updated second array are still using the old steeper slope. 415 * 416 * tmono 417 * ^ 418 * | o n 419 * | o n 420 * | u 421 * | o 422 * |o 423 * |12345678---> reader order 424 * 425 * o = old slope 426 * u = update 427 * n = new slope 428 * 429 * So reader 6 will observe time going backwards versus reader 5. 430 * 431 * While other CPUs are likely to be able observe that, the only way 432 * for a CPU local observation is when an NMI hits in the middle of 433 * the update. Timestamps taken from that NMI context might be ahead 434 * of the following timestamps. Callers need to be aware of that and 435 * deal with it. 436 */ 437 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 438 { 439 struct tk_read_base *tkr; 440 unsigned int seq; 441 u64 now; 442 443 do { 444 seq = raw_read_seqcount_latch(&tkf->seq); 445 tkr = tkf->base + (seq & 0x01); 446 now = ktime_to_ns(tkr->base); 447 448 now += timekeeping_delta_to_ns(tkr, 449 clocksource_delta( 450 tk_clock_read(tkr), 451 tkr->cycle_last, 452 tkr->mask)); 453 } while (read_seqcount_retry(&tkf->seq, seq)); 454 455 return now; 456 } 457 458 u64 ktime_get_mono_fast_ns(void) 459 { 460 return __ktime_get_fast_ns(&tk_fast_mono); 461 } 462 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 463 464 u64 ktime_get_raw_fast_ns(void) 465 { 466 return __ktime_get_fast_ns(&tk_fast_raw); 467 } 468 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 469 470 /** 471 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 472 * 473 * To keep it NMI safe since we're accessing from tracing, we're not using a 474 * separate timekeeper with updates to monotonic clock and boot offset 475 * protected with seqlocks. This has the following minor side effects: 476 * 477 * (1) Its possible that a timestamp be taken after the boot offset is updated 478 * but before the timekeeper is updated. If this happens, the new boot offset 479 * is added to the old timekeeping making the clock appear to update slightly 480 * earlier: 481 * CPU 0 CPU 1 482 * timekeeping_inject_sleeptime64() 483 * __timekeeping_inject_sleeptime(tk, delta); 484 * timestamp(); 485 * timekeeping_update(tk, TK_CLEAR_NTP...); 486 * 487 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 488 * partially updated. Since the tk->offs_boot update is a rare event, this 489 * should be a rare occurrence which postprocessing should be able to handle. 490 */ 491 u64 notrace ktime_get_boot_fast_ns(void) 492 { 493 struct timekeeper *tk = &tk_core.timekeeper; 494 495 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 496 } 497 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 498 499 500 /* 501 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 502 */ 503 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 504 { 505 struct tk_read_base *tkr; 506 unsigned int seq; 507 u64 now; 508 509 do { 510 seq = raw_read_seqcount_latch(&tkf->seq); 511 tkr = tkf->base + (seq & 0x01); 512 now = ktime_to_ns(tkr->base_real); 513 514 now += timekeeping_delta_to_ns(tkr, 515 clocksource_delta( 516 tk_clock_read(tkr), 517 tkr->cycle_last, 518 tkr->mask)); 519 } while (read_seqcount_retry(&tkf->seq, seq)); 520 521 return now; 522 } 523 524 /** 525 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 526 */ 527 u64 ktime_get_real_fast_ns(void) 528 { 529 return __ktime_get_real_fast_ns(&tk_fast_mono); 530 } 531 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 532 533 /** 534 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 535 * @tk: Timekeeper to snapshot. 536 * 537 * It generally is unsafe to access the clocksource after timekeeping has been 538 * suspended, so take a snapshot of the readout base of @tk and use it as the 539 * fast timekeeper's readout base while suspended. It will return the same 540 * number of cycles every time until timekeeping is resumed at which time the 541 * proper readout base for the fast timekeeper will be restored automatically. 542 */ 543 static void halt_fast_timekeeper(struct timekeeper *tk) 544 { 545 static struct tk_read_base tkr_dummy; 546 struct tk_read_base *tkr = &tk->tkr_mono; 547 548 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 549 cycles_at_suspend = tk_clock_read(tkr); 550 tkr_dummy.clock = &dummy_clock; 551 tkr_dummy.base_real = tkr->base + tk->offs_real; 552 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 553 554 tkr = &tk->tkr_raw; 555 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 556 tkr_dummy.clock = &dummy_clock; 557 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 558 } 559 560 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 561 562 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 563 { 564 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 565 } 566 567 /** 568 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 569 */ 570 int pvclock_gtod_register_notifier(struct notifier_block *nb) 571 { 572 struct timekeeper *tk = &tk_core.timekeeper; 573 unsigned long flags; 574 int ret; 575 576 raw_spin_lock_irqsave(&timekeeper_lock, flags); 577 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 578 update_pvclock_gtod(tk, true); 579 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 580 581 return ret; 582 } 583 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 584 585 /** 586 * pvclock_gtod_unregister_notifier - unregister a pvclock 587 * timedata update listener 588 */ 589 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 590 { 591 unsigned long flags; 592 int ret; 593 594 raw_spin_lock_irqsave(&timekeeper_lock, flags); 595 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 596 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 597 598 return ret; 599 } 600 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 601 602 /* 603 * tk_update_leap_state - helper to update the next_leap_ktime 604 */ 605 static inline void tk_update_leap_state(struct timekeeper *tk) 606 { 607 tk->next_leap_ktime = ntp_get_next_leap(); 608 if (tk->next_leap_ktime != KTIME_MAX) 609 /* Convert to monotonic time */ 610 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 611 } 612 613 /* 614 * Update the ktime_t based scalar nsec members of the timekeeper 615 */ 616 static inline void tk_update_ktime_data(struct timekeeper *tk) 617 { 618 u64 seconds; 619 u32 nsec; 620 621 /* 622 * The xtime based monotonic readout is: 623 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 624 * The ktime based monotonic readout is: 625 * nsec = base_mono + now(); 626 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 627 */ 628 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 629 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 630 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 631 632 /* 633 * The sum of the nanoseconds portions of xtime and 634 * wall_to_monotonic can be greater/equal one second. Take 635 * this into account before updating tk->ktime_sec. 636 */ 637 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 638 if (nsec >= NSEC_PER_SEC) 639 seconds++; 640 tk->ktime_sec = seconds; 641 642 /* Update the monotonic raw base */ 643 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 644 } 645 646 /* must hold timekeeper_lock */ 647 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 648 { 649 if (action & TK_CLEAR_NTP) { 650 tk->ntp_error = 0; 651 ntp_clear(); 652 } 653 654 tk_update_leap_state(tk); 655 tk_update_ktime_data(tk); 656 657 update_vsyscall(tk); 658 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 659 660 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 661 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 662 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 663 664 if (action & TK_CLOCK_WAS_SET) 665 tk->clock_was_set_seq++; 666 /* 667 * The mirroring of the data to the shadow-timekeeper needs 668 * to happen last here to ensure we don't over-write the 669 * timekeeper structure on the next update with stale data 670 */ 671 if (action & TK_MIRROR) 672 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 673 sizeof(tk_core.timekeeper)); 674 } 675 676 /** 677 * timekeeping_forward_now - update clock to the current time 678 * 679 * Forward the current clock to update its state since the last call to 680 * update_wall_time(). This is useful before significant clock changes, 681 * as it avoids having to deal with this time offset explicitly. 682 */ 683 static void timekeeping_forward_now(struct timekeeper *tk) 684 { 685 u64 cycle_now, delta; 686 687 cycle_now = tk_clock_read(&tk->tkr_mono); 688 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 689 tk->tkr_mono.cycle_last = cycle_now; 690 tk->tkr_raw.cycle_last = cycle_now; 691 692 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 693 694 /* If arch requires, add in get_arch_timeoffset() */ 695 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 696 697 698 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 699 700 /* If arch requires, add in get_arch_timeoffset() */ 701 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 702 703 tk_normalize_xtime(tk); 704 } 705 706 /** 707 * __getnstimeofday64 - Returns the time of day in a timespec64. 708 * @ts: pointer to the timespec to be set 709 * 710 * Updates the time of day in the timespec. 711 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 712 */ 713 int __getnstimeofday64(struct timespec64 *ts) 714 { 715 struct timekeeper *tk = &tk_core.timekeeper; 716 unsigned long seq; 717 u64 nsecs; 718 719 do { 720 seq = read_seqcount_begin(&tk_core.seq); 721 722 ts->tv_sec = tk->xtime_sec; 723 nsecs = timekeeping_get_ns(&tk->tkr_mono); 724 725 } while (read_seqcount_retry(&tk_core.seq, seq)); 726 727 ts->tv_nsec = 0; 728 timespec64_add_ns(ts, nsecs); 729 730 /* 731 * Do not bail out early, in case there were callers still using 732 * the value, even in the face of the WARN_ON. 733 */ 734 if (unlikely(timekeeping_suspended)) 735 return -EAGAIN; 736 return 0; 737 } 738 EXPORT_SYMBOL(__getnstimeofday64); 739 740 /** 741 * getnstimeofday64 - Returns the time of day in a timespec64. 742 * @ts: pointer to the timespec64 to be set 743 * 744 * Returns the time of day in a timespec64 (WARN if suspended). 745 */ 746 void getnstimeofday64(struct timespec64 *ts) 747 { 748 WARN_ON(__getnstimeofday64(ts)); 749 } 750 EXPORT_SYMBOL(getnstimeofday64); 751 752 ktime_t ktime_get(void) 753 { 754 struct timekeeper *tk = &tk_core.timekeeper; 755 unsigned int seq; 756 ktime_t base; 757 u64 nsecs; 758 759 WARN_ON(timekeeping_suspended); 760 761 do { 762 seq = read_seqcount_begin(&tk_core.seq); 763 base = tk->tkr_mono.base; 764 nsecs = timekeeping_get_ns(&tk->tkr_mono); 765 766 } while (read_seqcount_retry(&tk_core.seq, seq)); 767 768 return ktime_add_ns(base, nsecs); 769 } 770 EXPORT_SYMBOL_GPL(ktime_get); 771 772 u32 ktime_get_resolution_ns(void) 773 { 774 struct timekeeper *tk = &tk_core.timekeeper; 775 unsigned int seq; 776 u32 nsecs; 777 778 WARN_ON(timekeeping_suspended); 779 780 do { 781 seq = read_seqcount_begin(&tk_core.seq); 782 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 783 } while (read_seqcount_retry(&tk_core.seq, seq)); 784 785 return nsecs; 786 } 787 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 788 789 static ktime_t *offsets[TK_OFFS_MAX] = { 790 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 791 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 792 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 793 }; 794 795 ktime_t ktime_get_with_offset(enum tk_offsets offs) 796 { 797 struct timekeeper *tk = &tk_core.timekeeper; 798 unsigned int seq; 799 ktime_t base, *offset = offsets[offs]; 800 u64 nsecs; 801 802 WARN_ON(timekeeping_suspended); 803 804 do { 805 seq = read_seqcount_begin(&tk_core.seq); 806 base = ktime_add(tk->tkr_mono.base, *offset); 807 nsecs = timekeeping_get_ns(&tk->tkr_mono); 808 809 } while (read_seqcount_retry(&tk_core.seq, seq)); 810 811 return ktime_add_ns(base, nsecs); 812 813 } 814 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 815 816 /** 817 * ktime_mono_to_any() - convert mononotic time to any other time 818 * @tmono: time to convert. 819 * @offs: which offset to use 820 */ 821 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 822 { 823 ktime_t *offset = offsets[offs]; 824 unsigned long seq; 825 ktime_t tconv; 826 827 do { 828 seq = read_seqcount_begin(&tk_core.seq); 829 tconv = ktime_add(tmono, *offset); 830 } while (read_seqcount_retry(&tk_core.seq, seq)); 831 832 return tconv; 833 } 834 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 835 836 /** 837 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 838 */ 839 ktime_t ktime_get_raw(void) 840 { 841 struct timekeeper *tk = &tk_core.timekeeper; 842 unsigned int seq; 843 ktime_t base; 844 u64 nsecs; 845 846 do { 847 seq = read_seqcount_begin(&tk_core.seq); 848 base = tk->tkr_raw.base; 849 nsecs = timekeeping_get_ns(&tk->tkr_raw); 850 851 } while (read_seqcount_retry(&tk_core.seq, seq)); 852 853 return ktime_add_ns(base, nsecs); 854 } 855 EXPORT_SYMBOL_GPL(ktime_get_raw); 856 857 /** 858 * ktime_get_ts64 - get the monotonic clock in timespec64 format 859 * @ts: pointer to timespec variable 860 * 861 * The function calculates the monotonic clock from the realtime 862 * clock and the wall_to_monotonic offset and stores the result 863 * in normalized timespec64 format in the variable pointed to by @ts. 864 */ 865 void ktime_get_ts64(struct timespec64 *ts) 866 { 867 struct timekeeper *tk = &tk_core.timekeeper; 868 struct timespec64 tomono; 869 unsigned int seq; 870 u64 nsec; 871 872 WARN_ON(timekeeping_suspended); 873 874 do { 875 seq = read_seqcount_begin(&tk_core.seq); 876 ts->tv_sec = tk->xtime_sec; 877 nsec = timekeeping_get_ns(&tk->tkr_mono); 878 tomono = tk->wall_to_monotonic; 879 880 } while (read_seqcount_retry(&tk_core.seq, seq)); 881 882 ts->tv_sec += tomono.tv_sec; 883 ts->tv_nsec = 0; 884 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 885 } 886 EXPORT_SYMBOL_GPL(ktime_get_ts64); 887 888 /** 889 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 890 * 891 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 892 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 893 * works on both 32 and 64 bit systems. On 32 bit systems the readout 894 * covers ~136 years of uptime which should be enough to prevent 895 * premature wrap arounds. 896 */ 897 time64_t ktime_get_seconds(void) 898 { 899 struct timekeeper *tk = &tk_core.timekeeper; 900 901 WARN_ON(timekeeping_suspended); 902 return tk->ktime_sec; 903 } 904 EXPORT_SYMBOL_GPL(ktime_get_seconds); 905 906 /** 907 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 908 * 909 * Returns the wall clock seconds since 1970. This replaces the 910 * get_seconds() interface which is not y2038 safe on 32bit systems. 911 * 912 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 913 * 32bit systems the access must be protected with the sequence 914 * counter to provide "atomic" access to the 64bit tk->xtime_sec 915 * value. 916 */ 917 time64_t ktime_get_real_seconds(void) 918 { 919 struct timekeeper *tk = &tk_core.timekeeper; 920 time64_t seconds; 921 unsigned int seq; 922 923 if (IS_ENABLED(CONFIG_64BIT)) 924 return tk->xtime_sec; 925 926 do { 927 seq = read_seqcount_begin(&tk_core.seq); 928 seconds = tk->xtime_sec; 929 930 } while (read_seqcount_retry(&tk_core.seq, seq)); 931 932 return seconds; 933 } 934 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 935 936 /** 937 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 938 * but without the sequence counter protect. This internal function 939 * is called just when timekeeping lock is already held. 940 */ 941 time64_t __ktime_get_real_seconds(void) 942 { 943 struct timekeeper *tk = &tk_core.timekeeper; 944 945 return tk->xtime_sec; 946 } 947 948 /** 949 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 950 * @systime_snapshot: pointer to struct receiving the system time snapshot 951 */ 952 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 953 { 954 struct timekeeper *tk = &tk_core.timekeeper; 955 unsigned long seq; 956 ktime_t base_raw; 957 ktime_t base_real; 958 u64 nsec_raw; 959 u64 nsec_real; 960 u64 now; 961 962 WARN_ON_ONCE(timekeeping_suspended); 963 964 do { 965 seq = read_seqcount_begin(&tk_core.seq); 966 now = tk_clock_read(&tk->tkr_mono); 967 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 968 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 969 base_real = ktime_add(tk->tkr_mono.base, 970 tk_core.timekeeper.offs_real); 971 base_raw = tk->tkr_raw.base; 972 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 973 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 974 } while (read_seqcount_retry(&tk_core.seq, seq)); 975 976 systime_snapshot->cycles = now; 977 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 978 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 979 } 980 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 981 982 /* Scale base by mult/div checking for overflow */ 983 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 984 { 985 u64 tmp, rem; 986 987 tmp = div64_u64_rem(*base, div, &rem); 988 989 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 990 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 991 return -EOVERFLOW; 992 tmp *= mult; 993 rem *= mult; 994 995 do_div(rem, div); 996 *base = tmp + rem; 997 return 0; 998 } 999 1000 /** 1001 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1002 * @history: Snapshot representing start of history 1003 * @partial_history_cycles: Cycle offset into history (fractional part) 1004 * @total_history_cycles: Total history length in cycles 1005 * @discontinuity: True indicates clock was set on history period 1006 * @ts: Cross timestamp that should be adjusted using 1007 * partial/total ratio 1008 * 1009 * Helper function used by get_device_system_crosststamp() to correct the 1010 * crosstimestamp corresponding to the start of the current interval to the 1011 * system counter value (timestamp point) provided by the driver. The 1012 * total_history_* quantities are the total history starting at the provided 1013 * reference point and ending at the start of the current interval. The cycle 1014 * count between the driver timestamp point and the start of the current 1015 * interval is partial_history_cycles. 1016 */ 1017 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1018 u64 partial_history_cycles, 1019 u64 total_history_cycles, 1020 bool discontinuity, 1021 struct system_device_crosststamp *ts) 1022 { 1023 struct timekeeper *tk = &tk_core.timekeeper; 1024 u64 corr_raw, corr_real; 1025 bool interp_forward; 1026 int ret; 1027 1028 if (total_history_cycles == 0 || partial_history_cycles == 0) 1029 return 0; 1030 1031 /* Interpolate shortest distance from beginning or end of history */ 1032 interp_forward = partial_history_cycles > total_history_cycles / 2; 1033 partial_history_cycles = interp_forward ? 1034 total_history_cycles - partial_history_cycles : 1035 partial_history_cycles; 1036 1037 /* 1038 * Scale the monotonic raw time delta by: 1039 * partial_history_cycles / total_history_cycles 1040 */ 1041 corr_raw = (u64)ktime_to_ns( 1042 ktime_sub(ts->sys_monoraw, history->raw)); 1043 ret = scale64_check_overflow(partial_history_cycles, 1044 total_history_cycles, &corr_raw); 1045 if (ret) 1046 return ret; 1047 1048 /* 1049 * If there is a discontinuity in the history, scale monotonic raw 1050 * correction by: 1051 * mult(real)/mult(raw) yielding the realtime correction 1052 * Otherwise, calculate the realtime correction similar to monotonic 1053 * raw calculation 1054 */ 1055 if (discontinuity) { 1056 corr_real = mul_u64_u32_div 1057 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1058 } else { 1059 corr_real = (u64)ktime_to_ns( 1060 ktime_sub(ts->sys_realtime, history->real)); 1061 ret = scale64_check_overflow(partial_history_cycles, 1062 total_history_cycles, &corr_real); 1063 if (ret) 1064 return ret; 1065 } 1066 1067 /* Fixup monotonic raw and real time time values */ 1068 if (interp_forward) { 1069 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1070 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1071 } else { 1072 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1073 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1074 } 1075 1076 return 0; 1077 } 1078 1079 /* 1080 * cycle_between - true if test occurs chronologically between before and after 1081 */ 1082 static bool cycle_between(u64 before, u64 test, u64 after) 1083 { 1084 if (test > before && test < after) 1085 return true; 1086 if (test < before && before > after) 1087 return true; 1088 return false; 1089 } 1090 1091 /** 1092 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1093 * @get_time_fn: Callback to get simultaneous device time and 1094 * system counter from the device driver 1095 * @ctx: Context passed to get_time_fn() 1096 * @history_begin: Historical reference point used to interpolate system 1097 * time when counter provided by the driver is before the current interval 1098 * @xtstamp: Receives simultaneously captured system and device time 1099 * 1100 * Reads a timestamp from a device and correlates it to system time 1101 */ 1102 int get_device_system_crosststamp(int (*get_time_fn) 1103 (ktime_t *device_time, 1104 struct system_counterval_t *sys_counterval, 1105 void *ctx), 1106 void *ctx, 1107 struct system_time_snapshot *history_begin, 1108 struct system_device_crosststamp *xtstamp) 1109 { 1110 struct system_counterval_t system_counterval; 1111 struct timekeeper *tk = &tk_core.timekeeper; 1112 u64 cycles, now, interval_start; 1113 unsigned int clock_was_set_seq = 0; 1114 ktime_t base_real, base_raw; 1115 u64 nsec_real, nsec_raw; 1116 u8 cs_was_changed_seq; 1117 unsigned long seq; 1118 bool do_interp; 1119 int ret; 1120 1121 do { 1122 seq = read_seqcount_begin(&tk_core.seq); 1123 /* 1124 * Try to synchronously capture device time and a system 1125 * counter value calling back into the device driver 1126 */ 1127 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1128 if (ret) 1129 return ret; 1130 1131 /* 1132 * Verify that the clocksource associated with the captured 1133 * system counter value is the same as the currently installed 1134 * timekeeper clocksource 1135 */ 1136 if (tk->tkr_mono.clock != system_counterval.cs) 1137 return -ENODEV; 1138 cycles = system_counterval.cycles; 1139 1140 /* 1141 * Check whether the system counter value provided by the 1142 * device driver is on the current timekeeping interval. 1143 */ 1144 now = tk_clock_read(&tk->tkr_mono); 1145 interval_start = tk->tkr_mono.cycle_last; 1146 if (!cycle_between(interval_start, cycles, now)) { 1147 clock_was_set_seq = tk->clock_was_set_seq; 1148 cs_was_changed_seq = tk->cs_was_changed_seq; 1149 cycles = interval_start; 1150 do_interp = true; 1151 } else { 1152 do_interp = false; 1153 } 1154 1155 base_real = ktime_add(tk->tkr_mono.base, 1156 tk_core.timekeeper.offs_real); 1157 base_raw = tk->tkr_raw.base; 1158 1159 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1160 system_counterval.cycles); 1161 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1162 system_counterval.cycles); 1163 } while (read_seqcount_retry(&tk_core.seq, seq)); 1164 1165 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1166 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1167 1168 /* 1169 * Interpolate if necessary, adjusting back from the start of the 1170 * current interval 1171 */ 1172 if (do_interp) { 1173 u64 partial_history_cycles, total_history_cycles; 1174 bool discontinuity; 1175 1176 /* 1177 * Check that the counter value occurs after the provided 1178 * history reference and that the history doesn't cross a 1179 * clocksource change 1180 */ 1181 if (!history_begin || 1182 !cycle_between(history_begin->cycles, 1183 system_counterval.cycles, cycles) || 1184 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1185 return -EINVAL; 1186 partial_history_cycles = cycles - system_counterval.cycles; 1187 total_history_cycles = cycles - history_begin->cycles; 1188 discontinuity = 1189 history_begin->clock_was_set_seq != clock_was_set_seq; 1190 1191 ret = adjust_historical_crosststamp(history_begin, 1192 partial_history_cycles, 1193 total_history_cycles, 1194 discontinuity, xtstamp); 1195 if (ret) 1196 return ret; 1197 } 1198 1199 return 0; 1200 } 1201 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1202 1203 /** 1204 * do_gettimeofday - Returns the time of day in a timeval 1205 * @tv: pointer to the timeval to be set 1206 * 1207 * NOTE: Users should be converted to using getnstimeofday() 1208 */ 1209 void do_gettimeofday(struct timeval *tv) 1210 { 1211 struct timespec64 now; 1212 1213 getnstimeofday64(&now); 1214 tv->tv_sec = now.tv_sec; 1215 tv->tv_usec = now.tv_nsec/1000; 1216 } 1217 EXPORT_SYMBOL(do_gettimeofday); 1218 1219 /** 1220 * do_settimeofday64 - Sets the time of day. 1221 * @ts: pointer to the timespec64 variable containing the new time 1222 * 1223 * Sets the time of day to the new time and update NTP and notify hrtimers 1224 */ 1225 int do_settimeofday64(const struct timespec64 *ts) 1226 { 1227 struct timekeeper *tk = &tk_core.timekeeper; 1228 struct timespec64 ts_delta, xt; 1229 unsigned long flags; 1230 int ret = 0; 1231 1232 if (!timespec64_valid_strict(ts)) 1233 return -EINVAL; 1234 1235 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1236 write_seqcount_begin(&tk_core.seq); 1237 1238 timekeeping_forward_now(tk); 1239 1240 xt = tk_xtime(tk); 1241 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1242 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1243 1244 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1245 ret = -EINVAL; 1246 goto out; 1247 } 1248 1249 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1250 1251 tk_set_xtime(tk, ts); 1252 out: 1253 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1254 1255 write_seqcount_end(&tk_core.seq); 1256 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1257 1258 /* signal hrtimers about time change */ 1259 clock_was_set(); 1260 1261 return ret; 1262 } 1263 EXPORT_SYMBOL(do_settimeofday64); 1264 1265 /** 1266 * timekeeping_inject_offset - Adds or subtracts from the current time. 1267 * @tv: pointer to the timespec variable containing the offset 1268 * 1269 * Adds or subtracts an offset value from the current time. 1270 */ 1271 static int timekeeping_inject_offset(struct timespec64 *ts) 1272 { 1273 struct timekeeper *tk = &tk_core.timekeeper; 1274 unsigned long flags; 1275 struct timespec64 tmp; 1276 int ret = 0; 1277 1278 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1279 return -EINVAL; 1280 1281 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1282 write_seqcount_begin(&tk_core.seq); 1283 1284 timekeeping_forward_now(tk); 1285 1286 /* Make sure the proposed value is valid */ 1287 tmp = timespec64_add(tk_xtime(tk), *ts); 1288 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1289 !timespec64_valid_strict(&tmp)) { 1290 ret = -EINVAL; 1291 goto error; 1292 } 1293 1294 tk_xtime_add(tk, ts); 1295 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1296 1297 error: /* even if we error out, we forwarded the time, so call update */ 1298 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1299 1300 write_seqcount_end(&tk_core.seq); 1301 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1302 1303 /* signal hrtimers about time change */ 1304 clock_was_set(); 1305 1306 return ret; 1307 } 1308 1309 /* 1310 * Indicates if there is an offset between the system clock and the hardware 1311 * clock/persistent clock/rtc. 1312 */ 1313 int persistent_clock_is_local; 1314 1315 /* 1316 * Adjust the time obtained from the CMOS to be UTC time instead of 1317 * local time. 1318 * 1319 * This is ugly, but preferable to the alternatives. Otherwise we 1320 * would either need to write a program to do it in /etc/rc (and risk 1321 * confusion if the program gets run more than once; it would also be 1322 * hard to make the program warp the clock precisely n hours) or 1323 * compile in the timezone information into the kernel. Bad, bad.... 1324 * 1325 * - TYT, 1992-01-01 1326 * 1327 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1328 * as real UNIX machines always do it. This avoids all headaches about 1329 * daylight saving times and warping kernel clocks. 1330 */ 1331 void timekeeping_warp_clock(void) 1332 { 1333 if (sys_tz.tz_minuteswest != 0) { 1334 struct timespec64 adjust; 1335 1336 persistent_clock_is_local = 1; 1337 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1338 adjust.tv_nsec = 0; 1339 timekeeping_inject_offset(&adjust); 1340 } 1341 } 1342 1343 /** 1344 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1345 * 1346 */ 1347 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1348 { 1349 tk->tai_offset = tai_offset; 1350 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1351 } 1352 1353 /** 1354 * change_clocksource - Swaps clocksources if a new one is available 1355 * 1356 * Accumulates current time interval and initializes new clocksource 1357 */ 1358 static int change_clocksource(void *data) 1359 { 1360 struct timekeeper *tk = &tk_core.timekeeper; 1361 struct clocksource *new, *old; 1362 unsigned long flags; 1363 1364 new = (struct clocksource *) data; 1365 1366 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1367 write_seqcount_begin(&tk_core.seq); 1368 1369 timekeeping_forward_now(tk); 1370 /* 1371 * If the cs is in module, get a module reference. Succeeds 1372 * for built-in code (owner == NULL) as well. 1373 */ 1374 if (try_module_get(new->owner)) { 1375 if (!new->enable || new->enable(new) == 0) { 1376 old = tk->tkr_mono.clock; 1377 tk_setup_internals(tk, new); 1378 if (old->disable) 1379 old->disable(old); 1380 module_put(old->owner); 1381 } else { 1382 module_put(new->owner); 1383 } 1384 } 1385 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1386 1387 write_seqcount_end(&tk_core.seq); 1388 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1389 1390 return 0; 1391 } 1392 1393 /** 1394 * timekeeping_notify - Install a new clock source 1395 * @clock: pointer to the clock source 1396 * 1397 * This function is called from clocksource.c after a new, better clock 1398 * source has been registered. The caller holds the clocksource_mutex. 1399 */ 1400 int timekeeping_notify(struct clocksource *clock) 1401 { 1402 struct timekeeper *tk = &tk_core.timekeeper; 1403 1404 if (tk->tkr_mono.clock == clock) 1405 return 0; 1406 stop_machine(change_clocksource, clock, NULL); 1407 tick_clock_notify(); 1408 return tk->tkr_mono.clock == clock ? 0 : -1; 1409 } 1410 1411 /** 1412 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1413 * @ts: pointer to the timespec64 to be set 1414 * 1415 * Returns the raw monotonic time (completely un-modified by ntp) 1416 */ 1417 void getrawmonotonic64(struct timespec64 *ts) 1418 { 1419 struct timekeeper *tk = &tk_core.timekeeper; 1420 unsigned long seq; 1421 u64 nsecs; 1422 1423 do { 1424 seq = read_seqcount_begin(&tk_core.seq); 1425 ts->tv_sec = tk->raw_sec; 1426 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1427 1428 } while (read_seqcount_retry(&tk_core.seq, seq)); 1429 1430 ts->tv_nsec = 0; 1431 timespec64_add_ns(ts, nsecs); 1432 } 1433 EXPORT_SYMBOL(getrawmonotonic64); 1434 1435 1436 /** 1437 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1438 */ 1439 int timekeeping_valid_for_hres(void) 1440 { 1441 struct timekeeper *tk = &tk_core.timekeeper; 1442 unsigned long seq; 1443 int ret; 1444 1445 do { 1446 seq = read_seqcount_begin(&tk_core.seq); 1447 1448 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1449 1450 } while (read_seqcount_retry(&tk_core.seq, seq)); 1451 1452 return ret; 1453 } 1454 1455 /** 1456 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1457 */ 1458 u64 timekeeping_max_deferment(void) 1459 { 1460 struct timekeeper *tk = &tk_core.timekeeper; 1461 unsigned long seq; 1462 u64 ret; 1463 1464 do { 1465 seq = read_seqcount_begin(&tk_core.seq); 1466 1467 ret = tk->tkr_mono.clock->max_idle_ns; 1468 1469 } while (read_seqcount_retry(&tk_core.seq, seq)); 1470 1471 return ret; 1472 } 1473 1474 /** 1475 * read_persistent_clock - Return time from the persistent clock. 1476 * 1477 * Weak dummy function for arches that do not yet support it. 1478 * Reads the time from the battery backed persistent clock. 1479 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1480 * 1481 * XXX - Do be sure to remove it once all arches implement it. 1482 */ 1483 void __weak read_persistent_clock(struct timespec *ts) 1484 { 1485 ts->tv_sec = 0; 1486 ts->tv_nsec = 0; 1487 } 1488 1489 void __weak read_persistent_clock64(struct timespec64 *ts64) 1490 { 1491 struct timespec ts; 1492 1493 read_persistent_clock(&ts); 1494 *ts64 = timespec_to_timespec64(ts); 1495 } 1496 1497 /** 1498 * read_boot_clock64 - Return time of the system start. 1499 * 1500 * Weak dummy function for arches that do not yet support it. 1501 * Function to read the exact time the system has been started. 1502 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1503 * 1504 * XXX - Do be sure to remove it once all arches implement it. 1505 */ 1506 void __weak read_boot_clock64(struct timespec64 *ts) 1507 { 1508 ts->tv_sec = 0; 1509 ts->tv_nsec = 0; 1510 } 1511 1512 /* Flag for if timekeeping_resume() has injected sleeptime */ 1513 static bool sleeptime_injected; 1514 1515 /* Flag for if there is a persistent clock on this platform */ 1516 static bool persistent_clock_exists; 1517 1518 /* 1519 * timekeeping_init - Initializes the clocksource and common timekeeping values 1520 */ 1521 void __init timekeeping_init(void) 1522 { 1523 struct timekeeper *tk = &tk_core.timekeeper; 1524 struct clocksource *clock; 1525 unsigned long flags; 1526 struct timespec64 now, boot, tmp; 1527 1528 read_persistent_clock64(&now); 1529 if (!timespec64_valid_strict(&now)) { 1530 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1531 " Check your CMOS/BIOS settings.\n"); 1532 now.tv_sec = 0; 1533 now.tv_nsec = 0; 1534 } else if (now.tv_sec || now.tv_nsec) 1535 persistent_clock_exists = true; 1536 1537 read_boot_clock64(&boot); 1538 if (!timespec64_valid_strict(&boot)) { 1539 pr_warn("WARNING: Boot clock returned invalid value!\n" 1540 " Check your CMOS/BIOS settings.\n"); 1541 boot.tv_sec = 0; 1542 boot.tv_nsec = 0; 1543 } 1544 1545 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1546 write_seqcount_begin(&tk_core.seq); 1547 ntp_init(); 1548 1549 clock = clocksource_default_clock(); 1550 if (clock->enable) 1551 clock->enable(clock); 1552 tk_setup_internals(tk, clock); 1553 1554 tk_set_xtime(tk, &now); 1555 tk->raw_sec = 0; 1556 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1557 boot = tk_xtime(tk); 1558 1559 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1560 tk_set_wall_to_mono(tk, tmp); 1561 1562 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1563 1564 write_seqcount_end(&tk_core.seq); 1565 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1566 } 1567 1568 /* time in seconds when suspend began for persistent clock */ 1569 static struct timespec64 timekeeping_suspend_time; 1570 1571 /** 1572 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1573 * @delta: pointer to a timespec delta value 1574 * 1575 * Takes a timespec offset measuring a suspend interval and properly 1576 * adds the sleep offset to the timekeeping variables. 1577 */ 1578 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1579 struct timespec64 *delta) 1580 { 1581 if (!timespec64_valid_strict(delta)) { 1582 printk_deferred(KERN_WARNING 1583 "__timekeeping_inject_sleeptime: Invalid " 1584 "sleep delta value!\n"); 1585 return; 1586 } 1587 tk_xtime_add(tk, delta); 1588 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1589 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1590 tk_debug_account_sleep_time(delta); 1591 } 1592 1593 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1594 /** 1595 * We have three kinds of time sources to use for sleep time 1596 * injection, the preference order is: 1597 * 1) non-stop clocksource 1598 * 2) persistent clock (ie: RTC accessible when irqs are off) 1599 * 3) RTC 1600 * 1601 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1602 * If system has neither 1) nor 2), 3) will be used finally. 1603 * 1604 * 1605 * If timekeeping has injected sleeptime via either 1) or 2), 1606 * 3) becomes needless, so in this case we don't need to call 1607 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1608 * means. 1609 */ 1610 bool timekeeping_rtc_skipresume(void) 1611 { 1612 return sleeptime_injected; 1613 } 1614 1615 /** 1616 * 1) can be determined whether to use or not only when doing 1617 * timekeeping_resume() which is invoked after rtc_suspend(), 1618 * so we can't skip rtc_suspend() surely if system has 1). 1619 * 1620 * But if system has 2), 2) will definitely be used, so in this 1621 * case we don't need to call rtc_suspend(), and this is what 1622 * timekeeping_rtc_skipsuspend() means. 1623 */ 1624 bool timekeeping_rtc_skipsuspend(void) 1625 { 1626 return persistent_clock_exists; 1627 } 1628 1629 /** 1630 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1631 * @delta: pointer to a timespec64 delta value 1632 * 1633 * This hook is for architectures that cannot support read_persistent_clock64 1634 * because their RTC/persistent clock is only accessible when irqs are enabled. 1635 * and also don't have an effective nonstop clocksource. 1636 * 1637 * This function should only be called by rtc_resume(), and allows 1638 * a suspend offset to be injected into the timekeeping values. 1639 */ 1640 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1641 { 1642 struct timekeeper *tk = &tk_core.timekeeper; 1643 unsigned long flags; 1644 1645 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1646 write_seqcount_begin(&tk_core.seq); 1647 1648 timekeeping_forward_now(tk); 1649 1650 __timekeeping_inject_sleeptime(tk, delta); 1651 1652 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1653 1654 write_seqcount_end(&tk_core.seq); 1655 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1656 1657 /* signal hrtimers about time change */ 1658 clock_was_set(); 1659 } 1660 #endif 1661 1662 /** 1663 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1664 */ 1665 void timekeeping_resume(void) 1666 { 1667 struct timekeeper *tk = &tk_core.timekeeper; 1668 struct clocksource *clock = tk->tkr_mono.clock; 1669 unsigned long flags; 1670 struct timespec64 ts_new, ts_delta; 1671 u64 cycle_now; 1672 1673 sleeptime_injected = false; 1674 read_persistent_clock64(&ts_new); 1675 1676 clockevents_resume(); 1677 clocksource_resume(); 1678 1679 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1680 write_seqcount_begin(&tk_core.seq); 1681 1682 /* 1683 * After system resumes, we need to calculate the suspended time and 1684 * compensate it for the OS time. There are 3 sources that could be 1685 * used: Nonstop clocksource during suspend, persistent clock and rtc 1686 * device. 1687 * 1688 * One specific platform may have 1 or 2 or all of them, and the 1689 * preference will be: 1690 * suspend-nonstop clocksource -> persistent clock -> rtc 1691 * The less preferred source will only be tried if there is no better 1692 * usable source. The rtc part is handled separately in rtc core code. 1693 */ 1694 cycle_now = tk_clock_read(&tk->tkr_mono); 1695 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1696 cycle_now > tk->tkr_mono.cycle_last) { 1697 u64 nsec, cyc_delta; 1698 1699 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1700 tk->tkr_mono.mask); 1701 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1702 ts_delta = ns_to_timespec64(nsec); 1703 sleeptime_injected = true; 1704 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1705 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1706 sleeptime_injected = true; 1707 } 1708 1709 if (sleeptime_injected) 1710 __timekeeping_inject_sleeptime(tk, &ts_delta); 1711 1712 /* Re-base the last cycle value */ 1713 tk->tkr_mono.cycle_last = cycle_now; 1714 tk->tkr_raw.cycle_last = cycle_now; 1715 1716 tk->ntp_error = 0; 1717 timekeeping_suspended = 0; 1718 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1719 write_seqcount_end(&tk_core.seq); 1720 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1721 1722 touch_softlockup_watchdog(); 1723 1724 tick_resume(); 1725 hrtimers_resume(); 1726 } 1727 1728 int timekeeping_suspend(void) 1729 { 1730 struct timekeeper *tk = &tk_core.timekeeper; 1731 unsigned long flags; 1732 struct timespec64 delta, delta_delta; 1733 static struct timespec64 old_delta; 1734 1735 read_persistent_clock64(&timekeeping_suspend_time); 1736 1737 /* 1738 * On some systems the persistent_clock can not be detected at 1739 * timekeeping_init by its return value, so if we see a valid 1740 * value returned, update the persistent_clock_exists flag. 1741 */ 1742 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1743 persistent_clock_exists = true; 1744 1745 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1746 write_seqcount_begin(&tk_core.seq); 1747 timekeeping_forward_now(tk); 1748 timekeeping_suspended = 1; 1749 1750 if (persistent_clock_exists) { 1751 /* 1752 * To avoid drift caused by repeated suspend/resumes, 1753 * which each can add ~1 second drift error, 1754 * try to compensate so the difference in system time 1755 * and persistent_clock time stays close to constant. 1756 */ 1757 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1758 delta_delta = timespec64_sub(delta, old_delta); 1759 if (abs(delta_delta.tv_sec) >= 2) { 1760 /* 1761 * if delta_delta is too large, assume time correction 1762 * has occurred and set old_delta to the current delta. 1763 */ 1764 old_delta = delta; 1765 } else { 1766 /* Otherwise try to adjust old_system to compensate */ 1767 timekeeping_suspend_time = 1768 timespec64_add(timekeeping_suspend_time, delta_delta); 1769 } 1770 } 1771 1772 timekeeping_update(tk, TK_MIRROR); 1773 halt_fast_timekeeper(tk); 1774 write_seqcount_end(&tk_core.seq); 1775 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1776 1777 tick_suspend(); 1778 clocksource_suspend(); 1779 clockevents_suspend(); 1780 1781 return 0; 1782 } 1783 1784 /* sysfs resume/suspend bits for timekeeping */ 1785 static struct syscore_ops timekeeping_syscore_ops = { 1786 .resume = timekeeping_resume, 1787 .suspend = timekeeping_suspend, 1788 }; 1789 1790 static int __init timekeeping_init_ops(void) 1791 { 1792 register_syscore_ops(&timekeeping_syscore_ops); 1793 return 0; 1794 } 1795 device_initcall(timekeeping_init_ops); 1796 1797 /* 1798 * Apply a multiplier adjustment to the timekeeper 1799 */ 1800 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1801 s64 offset, 1802 bool negative, 1803 int adj_scale) 1804 { 1805 s64 interval = tk->cycle_interval; 1806 s32 mult_adj = 1; 1807 1808 if (negative) { 1809 mult_adj = -mult_adj; 1810 interval = -interval; 1811 offset = -offset; 1812 } 1813 mult_adj <<= adj_scale; 1814 interval <<= adj_scale; 1815 offset <<= adj_scale; 1816 1817 /* 1818 * So the following can be confusing. 1819 * 1820 * To keep things simple, lets assume mult_adj == 1 for now. 1821 * 1822 * When mult_adj != 1, remember that the interval and offset values 1823 * have been appropriately scaled so the math is the same. 1824 * 1825 * The basic idea here is that we're increasing the multiplier 1826 * by one, this causes the xtime_interval to be incremented by 1827 * one cycle_interval. This is because: 1828 * xtime_interval = cycle_interval * mult 1829 * So if mult is being incremented by one: 1830 * xtime_interval = cycle_interval * (mult + 1) 1831 * Its the same as: 1832 * xtime_interval = (cycle_interval * mult) + cycle_interval 1833 * Which can be shortened to: 1834 * xtime_interval += cycle_interval 1835 * 1836 * So offset stores the non-accumulated cycles. Thus the current 1837 * time (in shifted nanoseconds) is: 1838 * now = (offset * adj) + xtime_nsec 1839 * Now, even though we're adjusting the clock frequency, we have 1840 * to keep time consistent. In other words, we can't jump back 1841 * in time, and we also want to avoid jumping forward in time. 1842 * 1843 * So given the same offset value, we need the time to be the same 1844 * both before and after the freq adjustment. 1845 * now = (offset * adj_1) + xtime_nsec_1 1846 * now = (offset * adj_2) + xtime_nsec_2 1847 * So: 1848 * (offset * adj_1) + xtime_nsec_1 = 1849 * (offset * adj_2) + xtime_nsec_2 1850 * And we know: 1851 * adj_2 = adj_1 + 1 1852 * So: 1853 * (offset * adj_1) + xtime_nsec_1 = 1854 * (offset * (adj_1+1)) + xtime_nsec_2 1855 * (offset * adj_1) + xtime_nsec_1 = 1856 * (offset * adj_1) + offset + xtime_nsec_2 1857 * Canceling the sides: 1858 * xtime_nsec_1 = offset + xtime_nsec_2 1859 * Which gives us: 1860 * xtime_nsec_2 = xtime_nsec_1 - offset 1861 * Which simplfies to: 1862 * xtime_nsec -= offset 1863 * 1864 * XXX - TODO: Doc ntp_error calculation. 1865 */ 1866 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1867 /* NTP adjustment caused clocksource mult overflow */ 1868 WARN_ON_ONCE(1); 1869 return; 1870 } 1871 1872 tk->tkr_mono.mult += mult_adj; 1873 tk->xtime_interval += interval; 1874 tk->tkr_mono.xtime_nsec -= offset; 1875 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1876 } 1877 1878 /* 1879 * Calculate the multiplier adjustment needed to match the frequency 1880 * specified by NTP 1881 */ 1882 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1883 s64 offset) 1884 { 1885 s64 interval = tk->cycle_interval; 1886 s64 xinterval = tk->xtime_interval; 1887 u32 base = tk->tkr_mono.clock->mult; 1888 u32 max = tk->tkr_mono.clock->maxadj; 1889 u32 cur_adj = tk->tkr_mono.mult; 1890 s64 tick_error; 1891 bool negative; 1892 u32 adj_scale; 1893 1894 /* Remove any current error adj from freq calculation */ 1895 if (tk->ntp_err_mult) 1896 xinterval -= tk->cycle_interval; 1897 1898 tk->ntp_tick = ntp_tick_length(); 1899 1900 /* Calculate current error per tick */ 1901 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1902 tick_error -= (xinterval + tk->xtime_remainder); 1903 1904 /* Don't worry about correcting it if its small */ 1905 if (likely((tick_error >= 0) && (tick_error <= interval))) 1906 return; 1907 1908 /* preserve the direction of correction */ 1909 negative = (tick_error < 0); 1910 1911 /* If any adjustment would pass the max, just return */ 1912 if (negative && (cur_adj - 1) <= (base - max)) 1913 return; 1914 if (!negative && (cur_adj + 1) >= (base + max)) 1915 return; 1916 /* 1917 * Sort out the magnitude of the correction, but 1918 * avoid making so large a correction that we go 1919 * over the max adjustment. 1920 */ 1921 adj_scale = 0; 1922 tick_error = abs(tick_error); 1923 while (tick_error > interval) { 1924 u32 adj = 1 << (adj_scale + 1); 1925 1926 /* Check if adjustment gets us within 1 unit from the max */ 1927 if (negative && (cur_adj - adj) <= (base - max)) 1928 break; 1929 if (!negative && (cur_adj + adj) >= (base + max)) 1930 break; 1931 1932 adj_scale++; 1933 tick_error >>= 1; 1934 } 1935 1936 /* scale the corrections */ 1937 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1938 } 1939 1940 /* 1941 * Adjust the timekeeper's multiplier to the correct frequency 1942 * and also to reduce the accumulated error value. 1943 */ 1944 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1945 { 1946 /* Correct for the current frequency error */ 1947 timekeeping_freqadjust(tk, offset); 1948 1949 /* Next make a small adjustment to fix any cumulative error */ 1950 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1951 tk->ntp_err_mult = 1; 1952 timekeeping_apply_adjustment(tk, offset, 0, 0); 1953 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1954 /* Undo any existing error adjustment */ 1955 timekeeping_apply_adjustment(tk, offset, 1, 0); 1956 tk->ntp_err_mult = 0; 1957 } 1958 1959 if (unlikely(tk->tkr_mono.clock->maxadj && 1960 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1961 > tk->tkr_mono.clock->maxadj))) { 1962 printk_once(KERN_WARNING 1963 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1964 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1965 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1966 } 1967 1968 /* 1969 * It may be possible that when we entered this function, xtime_nsec 1970 * was very small. Further, if we're slightly speeding the clocksource 1971 * in the code above, its possible the required corrective factor to 1972 * xtime_nsec could cause it to underflow. 1973 * 1974 * Now, since we already accumulated the second, cannot simply roll 1975 * the accumulated second back, since the NTP subsystem has been 1976 * notified via second_overflow. So instead we push xtime_nsec forward 1977 * by the amount we underflowed, and add that amount into the error. 1978 * 1979 * We'll correct this error next time through this function, when 1980 * xtime_nsec is not as small. 1981 */ 1982 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1983 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1984 tk->tkr_mono.xtime_nsec = 0; 1985 tk->ntp_error += neg << tk->ntp_error_shift; 1986 } 1987 } 1988 1989 /** 1990 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1991 * 1992 * Helper function that accumulates the nsecs greater than a second 1993 * from the xtime_nsec field to the xtime_secs field. 1994 * It also calls into the NTP code to handle leapsecond processing. 1995 * 1996 */ 1997 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1998 { 1999 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2000 unsigned int clock_set = 0; 2001 2002 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2003 int leap; 2004 2005 tk->tkr_mono.xtime_nsec -= nsecps; 2006 tk->xtime_sec++; 2007 2008 /* Figure out if its a leap sec and apply if needed */ 2009 leap = second_overflow(tk->xtime_sec); 2010 if (unlikely(leap)) { 2011 struct timespec64 ts; 2012 2013 tk->xtime_sec += leap; 2014 2015 ts.tv_sec = leap; 2016 ts.tv_nsec = 0; 2017 tk_set_wall_to_mono(tk, 2018 timespec64_sub(tk->wall_to_monotonic, ts)); 2019 2020 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2021 2022 clock_set = TK_CLOCK_WAS_SET; 2023 } 2024 } 2025 return clock_set; 2026 } 2027 2028 /** 2029 * logarithmic_accumulation - shifted accumulation of cycles 2030 * 2031 * This functions accumulates a shifted interval of cycles into 2032 * into a shifted interval nanoseconds. Allows for O(log) accumulation 2033 * loop. 2034 * 2035 * Returns the unconsumed cycles. 2036 */ 2037 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2038 u32 shift, unsigned int *clock_set) 2039 { 2040 u64 interval = tk->cycle_interval << shift; 2041 u64 snsec_per_sec; 2042 2043 /* If the offset is smaller than a shifted interval, do nothing */ 2044 if (offset < interval) 2045 return offset; 2046 2047 /* Accumulate one shifted interval */ 2048 offset -= interval; 2049 tk->tkr_mono.cycle_last += interval; 2050 tk->tkr_raw.cycle_last += interval; 2051 2052 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2053 *clock_set |= accumulate_nsecs_to_secs(tk); 2054 2055 /* Accumulate raw time */ 2056 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2057 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2058 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2059 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2060 tk->raw_sec++; 2061 } 2062 2063 /* Accumulate error between NTP and clock interval */ 2064 tk->ntp_error += tk->ntp_tick << shift; 2065 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2066 (tk->ntp_error_shift + shift); 2067 2068 return offset; 2069 } 2070 2071 /** 2072 * update_wall_time - Uses the current clocksource to increment the wall time 2073 * 2074 */ 2075 void update_wall_time(void) 2076 { 2077 struct timekeeper *real_tk = &tk_core.timekeeper; 2078 struct timekeeper *tk = &shadow_timekeeper; 2079 u64 offset; 2080 int shift = 0, maxshift; 2081 unsigned int clock_set = 0; 2082 unsigned long flags; 2083 2084 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2085 2086 /* Make sure we're fully resumed: */ 2087 if (unlikely(timekeeping_suspended)) 2088 goto out; 2089 2090 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2091 offset = real_tk->cycle_interval; 2092 #else 2093 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2094 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2095 #endif 2096 2097 /* Check if there's really nothing to do */ 2098 if (offset < real_tk->cycle_interval) 2099 goto out; 2100 2101 /* Do some additional sanity checking */ 2102 timekeeping_check_update(tk, offset); 2103 2104 /* 2105 * With NO_HZ we may have to accumulate many cycle_intervals 2106 * (think "ticks") worth of time at once. To do this efficiently, 2107 * we calculate the largest doubling multiple of cycle_intervals 2108 * that is smaller than the offset. We then accumulate that 2109 * chunk in one go, and then try to consume the next smaller 2110 * doubled multiple. 2111 */ 2112 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2113 shift = max(0, shift); 2114 /* Bound shift to one less than what overflows tick_length */ 2115 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2116 shift = min(shift, maxshift); 2117 while (offset >= tk->cycle_interval) { 2118 offset = logarithmic_accumulation(tk, offset, shift, 2119 &clock_set); 2120 if (offset < tk->cycle_interval<<shift) 2121 shift--; 2122 } 2123 2124 /* correct the clock when NTP error is too big */ 2125 timekeeping_adjust(tk, offset); 2126 2127 /* 2128 * Finally, make sure that after the rounding 2129 * xtime_nsec isn't larger than NSEC_PER_SEC 2130 */ 2131 clock_set |= accumulate_nsecs_to_secs(tk); 2132 2133 write_seqcount_begin(&tk_core.seq); 2134 /* 2135 * Update the real timekeeper. 2136 * 2137 * We could avoid this memcpy by switching pointers, but that 2138 * requires changes to all other timekeeper usage sites as 2139 * well, i.e. move the timekeeper pointer getter into the 2140 * spinlocked/seqcount protected sections. And we trade this 2141 * memcpy under the tk_core.seq against one before we start 2142 * updating. 2143 */ 2144 timekeeping_update(tk, clock_set); 2145 memcpy(real_tk, tk, sizeof(*tk)); 2146 /* The memcpy must come last. Do not put anything here! */ 2147 write_seqcount_end(&tk_core.seq); 2148 out: 2149 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2150 if (clock_set) 2151 /* Have to call _delayed version, since in irq context*/ 2152 clock_was_set_delayed(); 2153 } 2154 2155 /** 2156 * getboottime64 - Return the real time of system boot. 2157 * @ts: pointer to the timespec64 to be set 2158 * 2159 * Returns the wall-time of boot in a timespec64. 2160 * 2161 * This is based on the wall_to_monotonic offset and the total suspend 2162 * time. Calls to settimeofday will affect the value returned (which 2163 * basically means that however wrong your real time clock is at boot time, 2164 * you get the right time here). 2165 */ 2166 void getboottime64(struct timespec64 *ts) 2167 { 2168 struct timekeeper *tk = &tk_core.timekeeper; 2169 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2170 2171 *ts = ktime_to_timespec64(t); 2172 } 2173 EXPORT_SYMBOL_GPL(getboottime64); 2174 2175 unsigned long get_seconds(void) 2176 { 2177 struct timekeeper *tk = &tk_core.timekeeper; 2178 2179 return tk->xtime_sec; 2180 } 2181 EXPORT_SYMBOL(get_seconds); 2182 2183 struct timespec __current_kernel_time(void) 2184 { 2185 struct timekeeper *tk = &tk_core.timekeeper; 2186 2187 return timespec64_to_timespec(tk_xtime(tk)); 2188 } 2189 2190 struct timespec64 current_kernel_time64(void) 2191 { 2192 struct timekeeper *tk = &tk_core.timekeeper; 2193 struct timespec64 now; 2194 unsigned long seq; 2195 2196 do { 2197 seq = read_seqcount_begin(&tk_core.seq); 2198 2199 now = tk_xtime(tk); 2200 } while (read_seqcount_retry(&tk_core.seq, seq)); 2201 2202 return now; 2203 } 2204 EXPORT_SYMBOL(current_kernel_time64); 2205 2206 struct timespec64 get_monotonic_coarse64(void) 2207 { 2208 struct timekeeper *tk = &tk_core.timekeeper; 2209 struct timespec64 now, mono; 2210 unsigned long seq; 2211 2212 do { 2213 seq = read_seqcount_begin(&tk_core.seq); 2214 2215 now = tk_xtime(tk); 2216 mono = tk->wall_to_monotonic; 2217 } while (read_seqcount_retry(&tk_core.seq, seq)); 2218 2219 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2220 now.tv_nsec + mono.tv_nsec); 2221 2222 return now; 2223 } 2224 EXPORT_SYMBOL(get_monotonic_coarse64); 2225 2226 /* 2227 * Must hold jiffies_lock 2228 */ 2229 void do_timer(unsigned long ticks) 2230 { 2231 jiffies_64 += ticks; 2232 calc_global_load(ticks); 2233 } 2234 2235 /** 2236 * ktime_get_update_offsets_now - hrtimer helper 2237 * @cwsseq: pointer to check and store the clock was set sequence number 2238 * @offs_real: pointer to storage for monotonic -> realtime offset 2239 * @offs_boot: pointer to storage for monotonic -> boottime offset 2240 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2241 * 2242 * Returns current monotonic time and updates the offsets if the 2243 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2244 * different. 2245 * 2246 * Called from hrtimer_interrupt() or retrigger_next_event() 2247 */ 2248 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2249 ktime_t *offs_boot, ktime_t *offs_tai) 2250 { 2251 struct timekeeper *tk = &tk_core.timekeeper; 2252 unsigned int seq; 2253 ktime_t base; 2254 u64 nsecs; 2255 2256 do { 2257 seq = read_seqcount_begin(&tk_core.seq); 2258 2259 base = tk->tkr_mono.base; 2260 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2261 base = ktime_add_ns(base, nsecs); 2262 2263 if (*cwsseq != tk->clock_was_set_seq) { 2264 *cwsseq = tk->clock_was_set_seq; 2265 *offs_real = tk->offs_real; 2266 *offs_boot = tk->offs_boot; 2267 *offs_tai = tk->offs_tai; 2268 } 2269 2270 /* Handle leapsecond insertion adjustments */ 2271 if (unlikely(base >= tk->next_leap_ktime)) 2272 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2273 2274 } while (read_seqcount_retry(&tk_core.seq, seq)); 2275 2276 return base; 2277 } 2278 2279 /** 2280 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2281 */ 2282 static int timekeeping_validate_timex(struct timex *txc) 2283 { 2284 if (txc->modes & ADJ_ADJTIME) { 2285 /* singleshot must not be used with any other mode bits */ 2286 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2287 return -EINVAL; 2288 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2289 !capable(CAP_SYS_TIME)) 2290 return -EPERM; 2291 } else { 2292 /* In order to modify anything, you gotta be super-user! */ 2293 if (txc->modes && !capable(CAP_SYS_TIME)) 2294 return -EPERM; 2295 /* 2296 * if the quartz is off by more than 10% then 2297 * something is VERY wrong! 2298 */ 2299 if (txc->modes & ADJ_TICK && 2300 (txc->tick < 900000/USER_HZ || 2301 txc->tick > 1100000/USER_HZ)) 2302 return -EINVAL; 2303 } 2304 2305 if (txc->modes & ADJ_SETOFFSET) { 2306 /* In order to inject time, you gotta be super-user! */ 2307 if (!capable(CAP_SYS_TIME)) 2308 return -EPERM; 2309 2310 /* 2311 * Validate if a timespec/timeval used to inject a time 2312 * offset is valid. Offsets can be postive or negative, so 2313 * we don't check tv_sec. The value of the timeval/timespec 2314 * is the sum of its fields,but *NOTE*: 2315 * The field tv_usec/tv_nsec must always be non-negative and 2316 * we can't have more nanoseconds/microseconds than a second. 2317 */ 2318 if (txc->time.tv_usec < 0) 2319 return -EINVAL; 2320 2321 if (txc->modes & ADJ_NANO) { 2322 if (txc->time.tv_usec >= NSEC_PER_SEC) 2323 return -EINVAL; 2324 } else { 2325 if (txc->time.tv_usec >= USEC_PER_SEC) 2326 return -EINVAL; 2327 } 2328 } 2329 2330 /* 2331 * Check for potential multiplication overflows that can 2332 * only happen on 64-bit systems: 2333 */ 2334 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2335 if (LLONG_MIN / PPM_SCALE > txc->freq) 2336 return -EINVAL; 2337 if (LLONG_MAX / PPM_SCALE < txc->freq) 2338 return -EINVAL; 2339 } 2340 2341 return 0; 2342 } 2343 2344 2345 /** 2346 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2347 */ 2348 int do_adjtimex(struct timex *txc) 2349 { 2350 struct timekeeper *tk = &tk_core.timekeeper; 2351 unsigned long flags; 2352 struct timespec64 ts; 2353 s32 orig_tai, tai; 2354 int ret; 2355 2356 /* Validate the data before disabling interrupts */ 2357 ret = timekeeping_validate_timex(txc); 2358 if (ret) 2359 return ret; 2360 2361 if (txc->modes & ADJ_SETOFFSET) { 2362 struct timespec64 delta; 2363 delta.tv_sec = txc->time.tv_sec; 2364 delta.tv_nsec = txc->time.tv_usec; 2365 if (!(txc->modes & ADJ_NANO)) 2366 delta.tv_nsec *= 1000; 2367 ret = timekeeping_inject_offset(&delta); 2368 if (ret) 2369 return ret; 2370 } 2371 2372 getnstimeofday64(&ts); 2373 2374 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2375 write_seqcount_begin(&tk_core.seq); 2376 2377 orig_tai = tai = tk->tai_offset; 2378 ret = __do_adjtimex(txc, &ts, &tai); 2379 2380 if (tai != orig_tai) { 2381 __timekeeping_set_tai_offset(tk, tai); 2382 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2383 } 2384 tk_update_leap_state(tk); 2385 2386 write_seqcount_end(&tk_core.seq); 2387 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2388 2389 if (tai != orig_tai) 2390 clock_was_set(); 2391 2392 ntp_notify_cmos_timer(); 2393 2394 return ret; 2395 } 2396 2397 #ifdef CONFIG_NTP_PPS 2398 /** 2399 * hardpps() - Accessor function to NTP __hardpps function 2400 */ 2401 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2402 { 2403 unsigned long flags; 2404 2405 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2406 write_seqcount_begin(&tk_core.seq); 2407 2408 __hardpps(phase_ts, raw_ts); 2409 2410 write_seqcount_end(&tk_core.seq); 2411 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2412 } 2413 EXPORT_SYMBOL(hardpps); 2414 #endif /* CONFIG_NTP_PPS */ 2415 2416 /** 2417 * xtime_update() - advances the timekeeping infrastructure 2418 * @ticks: number of ticks, that have elapsed since the last call. 2419 * 2420 * Must be called with interrupts disabled. 2421 */ 2422 void xtime_update(unsigned long ticks) 2423 { 2424 write_seqlock(&jiffies_lock); 2425 do_timer(ticks); 2426 write_sequnlock(&jiffies_lock); 2427 update_wall_time(); 2428 } 2429