1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_CLOCK_WAS_SET (1 << 1) 34 35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 36 37 enum timekeeping_adv_mode { 38 /* Update timekeeper when a tick has passed */ 39 TK_ADV_TICK, 40 41 /* Update timekeeper on a direct frequency change */ 42 TK_ADV_FREQ 43 }; 44 45 /* 46 * The most important data for readout fits into a single 64 byte 47 * cache line. 48 */ 49 struct tk_data { 50 seqcount_raw_spinlock_t seq; 51 struct timekeeper timekeeper; 52 struct timekeeper shadow_timekeeper; 53 raw_spinlock_t lock; 54 } ____cacheline_aligned; 55 56 static struct tk_data tk_core; 57 58 /* flag for if timekeeping is suspended */ 59 int __read_mostly timekeeping_suspended; 60 61 /** 62 * struct tk_fast - NMI safe timekeeper 63 * @seq: Sequence counter for protecting updates. The lowest bit 64 * is the index for the tk_read_base array 65 * @base: tk_read_base array. Access is indexed by the lowest bit of 66 * @seq. 67 * 68 * See @update_fast_timekeeper() below. 69 */ 70 struct tk_fast { 71 seqcount_latch_t seq; 72 struct tk_read_base base[2]; 73 }; 74 75 /* Suspend-time cycles value for halted fast timekeeper. */ 76 static u64 cycles_at_suspend; 77 78 static u64 dummy_clock_read(struct clocksource *cs) 79 { 80 if (timekeeping_suspended) 81 return cycles_at_suspend; 82 return local_clock(); 83 } 84 85 static struct clocksource dummy_clock = { 86 .read = dummy_clock_read, 87 }; 88 89 /* 90 * Boot time initialization which allows local_clock() to be utilized 91 * during early boot when clocksources are not available. local_clock() 92 * returns nanoseconds already so no conversion is required, hence mult=1 93 * and shift=0. When the first proper clocksource is installed then 94 * the fast time keepers are updated with the correct values. 95 */ 96 #define FAST_TK_INIT \ 97 { \ 98 .clock = &dummy_clock, \ 99 .mask = CLOCKSOURCE_MASK(64), \ 100 .mult = 1, \ 101 .shift = 0, \ 102 } 103 104 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 106 .base[0] = FAST_TK_INIT, 107 .base[1] = FAST_TK_INIT, 108 }; 109 110 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 112 .base[0] = FAST_TK_INIT, 113 .base[1] = FAST_TK_INIT, 114 }; 115 116 unsigned long timekeeper_lock_irqsave(void) 117 { 118 unsigned long flags; 119 120 raw_spin_lock_irqsave(&tk_core.lock, flags); 121 return flags; 122 } 123 124 void timekeeper_unlock_irqrestore(unsigned long flags) 125 { 126 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 127 } 128 129 /* 130 * Multigrain timestamps require tracking the latest fine-grained timestamp 131 * that has been issued, and never returning a coarse-grained timestamp that is 132 * earlier than that value. 133 * 134 * mg_floor represents the latest fine-grained time that has been handed out as 135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 136 * converted to a realtime clock value on an as-needed basis. 137 * 138 * Maintaining mg_floor ensures the multigrain interfaces never issue a 139 * timestamp earlier than one that has been previously issued. 140 * 141 * The exception to this rule is when there is a backward realtime clock jump. If 142 * such an event occurs, a timestamp can appear to be earlier than a previous one. 143 */ 144 static __cacheline_aligned_in_smp atomic64_t mg_floor; 145 146 static inline void tk_normalize_xtime(struct timekeeper *tk) 147 { 148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 150 tk->xtime_sec++; 151 } 152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 154 tk->raw_sec++; 155 } 156 } 157 158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 159 { 160 struct timespec64 ts; 161 162 ts.tv_sec = tk->xtime_sec; 163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 164 return ts; 165 } 166 167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 168 { 169 tk->xtime_sec = ts->tv_sec; 170 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 171 } 172 173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 174 { 175 tk->xtime_sec += ts->tv_sec; 176 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 177 tk_normalize_xtime(tk); 178 } 179 180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 181 { 182 struct timespec64 tmp; 183 184 /* 185 * Verify consistency of: offset_real = -wall_to_monotonic 186 * before modifying anything 187 */ 188 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 189 -tk->wall_to_monotonic.tv_nsec); 190 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 191 tk->wall_to_monotonic = wtm; 192 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 193 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 194 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 195 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 196 } 197 198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 199 { 200 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 201 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 202 /* 203 * Timespec representation for VDSO update to avoid 64bit division 204 * on every update. 205 */ 206 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 207 } 208 209 /* 210 * tk_clock_read - atomic clocksource read() helper 211 * 212 * This helper is necessary to use in the read paths because, while the 213 * seqcount ensures we don't return a bad value while structures are updated, 214 * it doesn't protect from potential crashes. There is the possibility that 215 * the tkr's clocksource may change between the read reference, and the 216 * clock reference passed to the read function. This can cause crashes if 217 * the wrong clocksource is passed to the wrong read function. 218 * This isn't necessary to use when holding the tk_core.lock or doing 219 * a read of the fast-timekeeper tkrs (which is protected by its own locking 220 * and update logic). 221 */ 222 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 223 { 224 struct clocksource *clock = READ_ONCE(tkr->clock); 225 226 return clock->read(clock); 227 } 228 229 /** 230 * tk_setup_internals - Set up internals to use clocksource clock. 231 * 232 * @tk: The target timekeeper to setup. 233 * @clock: Pointer to clocksource. 234 * 235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 236 * pair and interval request. 237 * 238 * Unless you're the timekeeping code, you should not be using this! 239 */ 240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 241 { 242 u64 interval; 243 u64 tmp, ntpinterval; 244 struct clocksource *old_clock; 245 246 ++tk->cs_was_changed_seq; 247 old_clock = tk->tkr_mono.clock; 248 tk->tkr_mono.clock = clock; 249 tk->tkr_mono.mask = clock->mask; 250 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 251 252 tk->tkr_raw.clock = clock; 253 tk->tkr_raw.mask = clock->mask; 254 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 255 256 /* Do the ns -> cycle conversion first, using original mult */ 257 tmp = NTP_INTERVAL_LENGTH; 258 tmp <<= clock->shift; 259 ntpinterval = tmp; 260 tmp += clock->mult/2; 261 do_div(tmp, clock->mult); 262 if (tmp == 0) 263 tmp = 1; 264 265 interval = (u64) tmp; 266 tk->cycle_interval = interval; 267 268 /* Go back from cycles -> shifted ns */ 269 tk->xtime_interval = interval * clock->mult; 270 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 271 tk->raw_interval = interval * clock->mult; 272 273 /* if changing clocks, convert xtime_nsec shift units */ 274 if (old_clock) { 275 int shift_change = clock->shift - old_clock->shift; 276 if (shift_change < 0) { 277 tk->tkr_mono.xtime_nsec >>= -shift_change; 278 tk->tkr_raw.xtime_nsec >>= -shift_change; 279 } else { 280 tk->tkr_mono.xtime_nsec <<= shift_change; 281 tk->tkr_raw.xtime_nsec <<= shift_change; 282 } 283 } 284 285 tk->tkr_mono.shift = clock->shift; 286 tk->tkr_raw.shift = clock->shift; 287 288 tk->ntp_error = 0; 289 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 290 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 291 292 /* 293 * The timekeeper keeps its own mult values for the currently 294 * active clocksource. These value will be adjusted via NTP 295 * to counteract clock drifting. 296 */ 297 tk->tkr_mono.mult = clock->mult; 298 tk->tkr_raw.mult = clock->mult; 299 tk->ntp_err_mult = 0; 300 tk->skip_second_overflow = 0; 301 } 302 303 /* Timekeeper helper functions. */ 304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 305 { 306 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 307 } 308 309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 310 { 311 /* Calculate the delta since the last update_wall_time() */ 312 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 313 314 /* 315 * This detects both negative motion and the case where the delta 316 * overflows the multiplication with tkr->mult. 317 */ 318 if (unlikely(delta > tkr->clock->max_cycles)) { 319 /* 320 * Handle clocksource inconsistency between CPUs to prevent 321 * time from going backwards by checking for the MSB of the 322 * mask being set in the delta. 323 */ 324 if (delta & ~(mask >> 1)) 325 return tkr->xtime_nsec >> tkr->shift; 326 327 return delta_to_ns_safe(tkr, delta); 328 } 329 330 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 331 } 332 333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 334 { 335 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 336 } 337 338 /** 339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 340 * @tkr: Timekeeping readout base from which we take the update 341 * @tkf: Pointer to NMI safe timekeeper 342 * 343 * We want to use this from any context including NMI and tracing / 344 * instrumenting the timekeeping code itself. 345 * 346 * Employ the latch technique; see @write_seqcount_latch. 347 * 348 * So if a NMI hits the update of base[0] then it will use base[1] 349 * which is still consistent. In the worst case this can result is a 350 * slightly wrong timestamp (a few nanoseconds). See 351 * @ktime_get_mono_fast_ns. 352 */ 353 static void update_fast_timekeeper(const struct tk_read_base *tkr, 354 struct tk_fast *tkf) 355 { 356 struct tk_read_base *base = tkf->base; 357 358 /* Force readers off to base[1] */ 359 write_seqcount_latch_begin(&tkf->seq); 360 361 /* Update base[0] */ 362 memcpy(base, tkr, sizeof(*base)); 363 364 /* Force readers back to base[0] */ 365 write_seqcount_latch(&tkf->seq); 366 367 /* Update base[1] */ 368 memcpy(base + 1, base, sizeof(*base)); 369 370 write_seqcount_latch_end(&tkf->seq); 371 } 372 373 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 374 { 375 struct tk_read_base *tkr; 376 unsigned int seq; 377 u64 now; 378 379 do { 380 seq = read_seqcount_latch(&tkf->seq); 381 tkr = tkf->base + (seq & 0x01); 382 now = ktime_to_ns(tkr->base); 383 now += timekeeping_get_ns(tkr); 384 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 385 386 return now; 387 } 388 389 /** 390 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 391 * 392 * This timestamp is not guaranteed to be monotonic across an update. 393 * The timestamp is calculated by: 394 * 395 * now = base_mono + clock_delta * slope 396 * 397 * So if the update lowers the slope, readers who are forced to the 398 * not yet updated second array are still using the old steeper slope. 399 * 400 * tmono 401 * ^ 402 * | o n 403 * | o n 404 * | u 405 * | o 406 * |o 407 * |12345678---> reader order 408 * 409 * o = old slope 410 * u = update 411 * n = new slope 412 * 413 * So reader 6 will observe time going backwards versus reader 5. 414 * 415 * While other CPUs are likely to be able to observe that, the only way 416 * for a CPU local observation is when an NMI hits in the middle of 417 * the update. Timestamps taken from that NMI context might be ahead 418 * of the following timestamps. Callers need to be aware of that and 419 * deal with it. 420 */ 421 u64 notrace ktime_get_mono_fast_ns(void) 422 { 423 return __ktime_get_fast_ns(&tk_fast_mono); 424 } 425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 426 427 /** 428 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 429 * 430 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 431 * conversion factor is not affected by NTP/PTP correction. 432 */ 433 u64 notrace ktime_get_raw_fast_ns(void) 434 { 435 return __ktime_get_fast_ns(&tk_fast_raw); 436 } 437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 438 439 /** 440 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 441 * 442 * To keep it NMI safe since we're accessing from tracing, we're not using a 443 * separate timekeeper with updates to monotonic clock and boot offset 444 * protected with seqcounts. This has the following minor side effects: 445 * 446 * (1) Its possible that a timestamp be taken after the boot offset is updated 447 * but before the timekeeper is updated. If this happens, the new boot offset 448 * is added to the old timekeeping making the clock appear to update slightly 449 * earlier: 450 * CPU 0 CPU 1 451 * timekeeping_inject_sleeptime64() 452 * __timekeeping_inject_sleeptime(tk, delta); 453 * timestamp(); 454 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 455 * 456 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 457 * partially updated. Since the tk->offs_boot update is a rare event, this 458 * should be a rare occurrence which postprocessing should be able to handle. 459 * 460 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 461 * apply as well. 462 */ 463 u64 notrace ktime_get_boot_fast_ns(void) 464 { 465 struct timekeeper *tk = &tk_core.timekeeper; 466 467 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 468 } 469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 470 471 /** 472 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 473 * 474 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 475 * mono time and the TAI offset are not read atomically which may yield wrong 476 * readouts. However, an update of the TAI offset is an rare event e.g., caused 477 * by settime or adjtimex with an offset. The user of this function has to deal 478 * with the possibility of wrong timestamps in post processing. 479 */ 480 u64 notrace ktime_get_tai_fast_ns(void) 481 { 482 struct timekeeper *tk = &tk_core.timekeeper; 483 484 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 485 } 486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 487 488 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 489 { 490 struct tk_read_base *tkr; 491 u64 basem, baser, delta; 492 unsigned int seq; 493 494 do { 495 seq = raw_read_seqcount_latch(&tkf->seq); 496 tkr = tkf->base + (seq & 0x01); 497 basem = ktime_to_ns(tkr->base); 498 baser = ktime_to_ns(tkr->base_real); 499 delta = timekeeping_get_ns(tkr); 500 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 501 502 if (mono) 503 *mono = basem + delta; 504 return baser + delta; 505 } 506 507 /** 508 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 509 * 510 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 511 */ 512 u64 ktime_get_real_fast_ns(void) 513 { 514 return __ktime_get_real_fast(&tk_fast_mono, NULL); 515 } 516 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 517 518 /** 519 * ktime_get_fast_timestamps: - NMI safe timestamps 520 * @snapshot: Pointer to timestamp storage 521 * 522 * Stores clock monotonic, boottime and realtime timestamps. 523 * 524 * Boot time is a racy access on 32bit systems if the sleep time injection 525 * happens late during resume and not in timekeeping_resume(). That could 526 * be avoided by expanding struct tk_read_base with boot offset for 32bit 527 * and adding more overhead to the update. As this is a hard to observe 528 * once per resume event which can be filtered with reasonable effort using 529 * the accurate mono/real timestamps, it's probably not worth the trouble. 530 * 531 * Aside of that it might be possible on 32 and 64 bit to observe the 532 * following when the sleep time injection happens late: 533 * 534 * CPU 0 CPU 1 535 * timekeeping_resume() 536 * ktime_get_fast_timestamps() 537 * mono, real = __ktime_get_real_fast() 538 * inject_sleep_time() 539 * update boot offset 540 * boot = mono + bootoffset; 541 * 542 * That means that boot time already has the sleep time adjustment, but 543 * real time does not. On the next readout both are in sync again. 544 * 545 * Preventing this for 64bit is not really feasible without destroying the 546 * careful cache layout of the timekeeper because the sequence count and 547 * struct tk_read_base would then need two cache lines instead of one. 548 * 549 * Access to the time keeper clock source is disabled across the innermost 550 * steps of suspend/resume. The accessors still work, but the timestamps 551 * are frozen until time keeping is resumed which happens very early. 552 * 553 * For regular suspend/resume there is no observable difference vs. sched 554 * clock, but it might affect some of the nasty low level debug printks. 555 * 556 * OTOH, access to sched clock is not guaranteed across suspend/resume on 557 * all systems either so it depends on the hardware in use. 558 * 559 * If that turns out to be a real problem then this could be mitigated by 560 * using sched clock in a similar way as during early boot. But it's not as 561 * trivial as on early boot because it needs some careful protection 562 * against the clock monotonic timestamp jumping backwards on resume. 563 */ 564 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 565 { 566 struct timekeeper *tk = &tk_core.timekeeper; 567 568 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 569 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 570 } 571 572 /** 573 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 574 * @tk: Timekeeper to snapshot. 575 * 576 * It generally is unsafe to access the clocksource after timekeeping has been 577 * suspended, so take a snapshot of the readout base of @tk and use it as the 578 * fast timekeeper's readout base while suspended. It will return the same 579 * number of cycles every time until timekeeping is resumed at which time the 580 * proper readout base for the fast timekeeper will be restored automatically. 581 */ 582 static void halt_fast_timekeeper(const struct timekeeper *tk) 583 { 584 static struct tk_read_base tkr_dummy; 585 const struct tk_read_base *tkr = &tk->tkr_mono; 586 587 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 588 cycles_at_suspend = tk_clock_read(tkr); 589 tkr_dummy.clock = &dummy_clock; 590 tkr_dummy.base_real = tkr->base + tk->offs_real; 591 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 592 593 tkr = &tk->tkr_raw; 594 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 595 tkr_dummy.clock = &dummy_clock; 596 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 597 } 598 599 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 600 601 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 602 { 603 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 604 } 605 606 /** 607 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 608 * @nb: Pointer to the notifier block to register 609 */ 610 int pvclock_gtod_register_notifier(struct notifier_block *nb) 611 { 612 struct timekeeper *tk = &tk_core.timekeeper; 613 int ret; 614 615 guard(raw_spinlock_irqsave)(&tk_core.lock); 616 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 617 update_pvclock_gtod(tk, true); 618 619 return ret; 620 } 621 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 622 623 /** 624 * pvclock_gtod_unregister_notifier - unregister a pvclock 625 * timedata update listener 626 * @nb: Pointer to the notifier block to unregister 627 */ 628 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 629 { 630 guard(raw_spinlock_irqsave)(&tk_core.lock); 631 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 632 } 633 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 634 635 /* 636 * tk_update_leap_state - helper to update the next_leap_ktime 637 */ 638 static inline void tk_update_leap_state(struct timekeeper *tk) 639 { 640 tk->next_leap_ktime = ntp_get_next_leap(); 641 if (tk->next_leap_ktime != KTIME_MAX) 642 /* Convert to monotonic time */ 643 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 644 } 645 646 /* 647 * Leap state update for both shadow and the real timekeeper 648 * Separate to spare a full memcpy() of the timekeeper. 649 */ 650 static void tk_update_leap_state_all(struct tk_data *tkd) 651 { 652 write_seqcount_begin(&tkd->seq); 653 tk_update_leap_state(&tkd->shadow_timekeeper); 654 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 655 write_seqcount_end(&tkd->seq); 656 } 657 658 /* 659 * Update the ktime_t based scalar nsec members of the timekeeper 660 */ 661 static inline void tk_update_ktime_data(struct timekeeper *tk) 662 { 663 u64 seconds; 664 u32 nsec; 665 666 /* 667 * The xtime based monotonic readout is: 668 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 669 * The ktime based monotonic readout is: 670 * nsec = base_mono + now(); 671 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 672 */ 673 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 674 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 675 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 676 677 /* 678 * The sum of the nanoseconds portions of xtime and 679 * wall_to_monotonic can be greater/equal one second. Take 680 * this into account before updating tk->ktime_sec. 681 */ 682 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 683 if (nsec >= NSEC_PER_SEC) 684 seconds++; 685 tk->ktime_sec = seconds; 686 687 /* Update the monotonic raw base */ 688 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 689 } 690 691 /* 692 * Restore the shadow timekeeper from the real timekeeper. 693 */ 694 static void timekeeping_restore_shadow(struct tk_data *tkd) 695 { 696 lockdep_assert_held(&tkd->lock); 697 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 698 } 699 700 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 701 { 702 struct timekeeper *tk = &tk_core.shadow_timekeeper; 703 704 lockdep_assert_held(&tkd->lock); 705 706 /* 707 * Block out readers before running the updates below because that 708 * updates VDSO and other time related infrastructure. Not blocking 709 * the readers might let a reader see time going backwards when 710 * reading from the VDSO after the VDSO update and then reading in 711 * the kernel from the timekeeper before that got updated. 712 */ 713 write_seqcount_begin(&tkd->seq); 714 715 if (action & TK_CLEAR_NTP) { 716 tk->ntp_error = 0; 717 ntp_clear(); 718 } 719 720 tk_update_leap_state(tk); 721 tk_update_ktime_data(tk); 722 723 update_vsyscall(tk); 724 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 725 726 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 727 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 728 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 729 730 if (action & TK_CLOCK_WAS_SET) 731 tk->clock_was_set_seq++; 732 733 /* 734 * Update the real timekeeper. 735 * 736 * We could avoid this memcpy() by switching pointers, but that has 737 * the downside that the reader side does not longer benefit from 738 * the cacheline optimized data layout of the timekeeper and requires 739 * another indirection. 740 */ 741 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 742 write_seqcount_end(&tkd->seq); 743 } 744 745 /** 746 * timekeeping_forward_now - update clock to the current time 747 * @tk: Pointer to the timekeeper to update 748 * 749 * Forward the current clock to update its state since the last call to 750 * update_wall_time(). This is useful before significant clock changes, 751 * as it avoids having to deal with this time offset explicitly. 752 */ 753 static void timekeeping_forward_now(struct timekeeper *tk) 754 { 755 u64 cycle_now, delta; 756 757 cycle_now = tk_clock_read(&tk->tkr_mono); 758 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 759 tk->tkr_mono.cycle_last = cycle_now; 760 tk->tkr_raw.cycle_last = cycle_now; 761 762 while (delta > 0) { 763 u64 max = tk->tkr_mono.clock->max_cycles; 764 u64 incr = delta < max ? delta : max; 765 766 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 767 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 768 tk_normalize_xtime(tk); 769 delta -= incr; 770 } 771 } 772 773 /** 774 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 775 * @ts: pointer to the timespec to be set 776 * 777 * Returns the time of day in a timespec64 (WARN if suspended). 778 */ 779 void ktime_get_real_ts64(struct timespec64 *ts) 780 { 781 struct timekeeper *tk = &tk_core.timekeeper; 782 unsigned int seq; 783 u64 nsecs; 784 785 WARN_ON(timekeeping_suspended); 786 787 do { 788 seq = read_seqcount_begin(&tk_core.seq); 789 790 ts->tv_sec = tk->xtime_sec; 791 nsecs = timekeeping_get_ns(&tk->tkr_mono); 792 793 } while (read_seqcount_retry(&tk_core.seq, seq)); 794 795 ts->tv_nsec = 0; 796 timespec64_add_ns(ts, nsecs); 797 } 798 EXPORT_SYMBOL(ktime_get_real_ts64); 799 800 ktime_t ktime_get(void) 801 { 802 struct timekeeper *tk = &tk_core.timekeeper; 803 unsigned int seq; 804 ktime_t base; 805 u64 nsecs; 806 807 WARN_ON(timekeeping_suspended); 808 809 do { 810 seq = read_seqcount_begin(&tk_core.seq); 811 base = tk->tkr_mono.base; 812 nsecs = timekeeping_get_ns(&tk->tkr_mono); 813 814 } while (read_seqcount_retry(&tk_core.seq, seq)); 815 816 return ktime_add_ns(base, nsecs); 817 } 818 EXPORT_SYMBOL_GPL(ktime_get); 819 820 u32 ktime_get_resolution_ns(void) 821 { 822 struct timekeeper *tk = &tk_core.timekeeper; 823 unsigned int seq; 824 u32 nsecs; 825 826 WARN_ON(timekeeping_suspended); 827 828 do { 829 seq = read_seqcount_begin(&tk_core.seq); 830 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 831 } while (read_seqcount_retry(&tk_core.seq, seq)); 832 833 return nsecs; 834 } 835 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 836 837 static ktime_t *offsets[TK_OFFS_MAX] = { 838 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 839 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 840 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 841 }; 842 843 ktime_t ktime_get_with_offset(enum tk_offsets offs) 844 { 845 struct timekeeper *tk = &tk_core.timekeeper; 846 unsigned int seq; 847 ktime_t base, *offset = offsets[offs]; 848 u64 nsecs; 849 850 WARN_ON(timekeeping_suspended); 851 852 do { 853 seq = read_seqcount_begin(&tk_core.seq); 854 base = ktime_add(tk->tkr_mono.base, *offset); 855 nsecs = timekeeping_get_ns(&tk->tkr_mono); 856 857 } while (read_seqcount_retry(&tk_core.seq, seq)); 858 859 return ktime_add_ns(base, nsecs); 860 861 } 862 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 863 864 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 865 { 866 struct timekeeper *tk = &tk_core.timekeeper; 867 unsigned int seq; 868 ktime_t base, *offset = offsets[offs]; 869 u64 nsecs; 870 871 WARN_ON(timekeeping_suspended); 872 873 do { 874 seq = read_seqcount_begin(&tk_core.seq); 875 base = ktime_add(tk->tkr_mono.base, *offset); 876 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 877 878 } while (read_seqcount_retry(&tk_core.seq, seq)); 879 880 return ktime_add_ns(base, nsecs); 881 } 882 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 883 884 /** 885 * ktime_mono_to_any() - convert monotonic time to any other time 886 * @tmono: time to convert. 887 * @offs: which offset to use 888 */ 889 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 890 { 891 ktime_t *offset = offsets[offs]; 892 unsigned int seq; 893 ktime_t tconv; 894 895 if (IS_ENABLED(CONFIG_64BIT)) { 896 /* 897 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 898 * tk_update_sleep_time(). 899 */ 900 return ktime_add(tmono, READ_ONCE(*offset)); 901 } 902 903 do { 904 seq = read_seqcount_begin(&tk_core.seq); 905 tconv = ktime_add(tmono, *offset); 906 } while (read_seqcount_retry(&tk_core.seq, seq)); 907 908 return tconv; 909 } 910 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 911 912 /** 913 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 914 */ 915 ktime_t ktime_get_raw(void) 916 { 917 struct timekeeper *tk = &tk_core.timekeeper; 918 unsigned int seq; 919 ktime_t base; 920 u64 nsecs; 921 922 do { 923 seq = read_seqcount_begin(&tk_core.seq); 924 base = tk->tkr_raw.base; 925 nsecs = timekeeping_get_ns(&tk->tkr_raw); 926 927 } while (read_seqcount_retry(&tk_core.seq, seq)); 928 929 return ktime_add_ns(base, nsecs); 930 } 931 EXPORT_SYMBOL_GPL(ktime_get_raw); 932 933 /** 934 * ktime_get_ts64 - get the monotonic clock in timespec64 format 935 * @ts: pointer to timespec variable 936 * 937 * The function calculates the monotonic clock from the realtime 938 * clock and the wall_to_monotonic offset and stores the result 939 * in normalized timespec64 format in the variable pointed to by @ts. 940 */ 941 void ktime_get_ts64(struct timespec64 *ts) 942 { 943 struct timekeeper *tk = &tk_core.timekeeper; 944 struct timespec64 tomono; 945 unsigned int seq; 946 u64 nsec; 947 948 WARN_ON(timekeeping_suspended); 949 950 do { 951 seq = read_seqcount_begin(&tk_core.seq); 952 ts->tv_sec = tk->xtime_sec; 953 nsec = timekeeping_get_ns(&tk->tkr_mono); 954 tomono = tk->wall_to_monotonic; 955 956 } while (read_seqcount_retry(&tk_core.seq, seq)); 957 958 ts->tv_sec += tomono.tv_sec; 959 ts->tv_nsec = 0; 960 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 961 } 962 EXPORT_SYMBOL_GPL(ktime_get_ts64); 963 964 /** 965 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 966 * 967 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 968 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 969 * works on both 32 and 64 bit systems. On 32 bit systems the readout 970 * covers ~136 years of uptime which should be enough to prevent 971 * premature wrap arounds. 972 */ 973 time64_t ktime_get_seconds(void) 974 { 975 struct timekeeper *tk = &tk_core.timekeeper; 976 977 WARN_ON(timekeeping_suspended); 978 return tk->ktime_sec; 979 } 980 EXPORT_SYMBOL_GPL(ktime_get_seconds); 981 982 /** 983 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 984 * 985 * Returns the wall clock seconds since 1970. 986 * 987 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 988 * 32bit systems the access must be protected with the sequence 989 * counter to provide "atomic" access to the 64bit tk->xtime_sec 990 * value. 991 */ 992 time64_t ktime_get_real_seconds(void) 993 { 994 struct timekeeper *tk = &tk_core.timekeeper; 995 time64_t seconds; 996 unsigned int seq; 997 998 if (IS_ENABLED(CONFIG_64BIT)) 999 return tk->xtime_sec; 1000 1001 do { 1002 seq = read_seqcount_begin(&tk_core.seq); 1003 seconds = tk->xtime_sec; 1004 1005 } while (read_seqcount_retry(&tk_core.seq, seq)); 1006 1007 return seconds; 1008 } 1009 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1010 1011 /** 1012 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1013 * but without the sequence counter protect. This internal function 1014 * is called just when timekeeping lock is already held. 1015 */ 1016 noinstr time64_t __ktime_get_real_seconds(void) 1017 { 1018 struct timekeeper *tk = &tk_core.timekeeper; 1019 1020 return tk->xtime_sec; 1021 } 1022 1023 /** 1024 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1025 * @systime_snapshot: pointer to struct receiving the system time snapshot 1026 */ 1027 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1028 { 1029 struct timekeeper *tk = &tk_core.timekeeper; 1030 unsigned int seq; 1031 ktime_t base_raw; 1032 ktime_t base_real; 1033 ktime_t base_boot; 1034 u64 nsec_raw; 1035 u64 nsec_real; 1036 u64 now; 1037 1038 WARN_ON_ONCE(timekeeping_suspended); 1039 1040 do { 1041 seq = read_seqcount_begin(&tk_core.seq); 1042 now = tk_clock_read(&tk->tkr_mono); 1043 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1044 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1045 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1046 base_real = ktime_add(tk->tkr_mono.base, 1047 tk_core.timekeeper.offs_real); 1048 base_boot = ktime_add(tk->tkr_mono.base, 1049 tk_core.timekeeper.offs_boot); 1050 base_raw = tk->tkr_raw.base; 1051 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1052 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1053 } while (read_seqcount_retry(&tk_core.seq, seq)); 1054 1055 systime_snapshot->cycles = now; 1056 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1057 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1058 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1059 } 1060 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1061 1062 /* Scale base by mult/div checking for overflow */ 1063 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1064 { 1065 u64 tmp, rem; 1066 1067 tmp = div64_u64_rem(*base, div, &rem); 1068 1069 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1070 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1071 return -EOVERFLOW; 1072 tmp *= mult; 1073 1074 rem = div64_u64(rem * mult, div); 1075 *base = tmp + rem; 1076 return 0; 1077 } 1078 1079 /** 1080 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1081 * @history: Snapshot representing start of history 1082 * @partial_history_cycles: Cycle offset into history (fractional part) 1083 * @total_history_cycles: Total history length in cycles 1084 * @discontinuity: True indicates clock was set on history period 1085 * @ts: Cross timestamp that should be adjusted using 1086 * partial/total ratio 1087 * 1088 * Helper function used by get_device_system_crosststamp() to correct the 1089 * crosstimestamp corresponding to the start of the current interval to the 1090 * system counter value (timestamp point) provided by the driver. The 1091 * total_history_* quantities are the total history starting at the provided 1092 * reference point and ending at the start of the current interval. The cycle 1093 * count between the driver timestamp point and the start of the current 1094 * interval is partial_history_cycles. 1095 */ 1096 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1097 u64 partial_history_cycles, 1098 u64 total_history_cycles, 1099 bool discontinuity, 1100 struct system_device_crosststamp *ts) 1101 { 1102 struct timekeeper *tk = &tk_core.timekeeper; 1103 u64 corr_raw, corr_real; 1104 bool interp_forward; 1105 int ret; 1106 1107 if (total_history_cycles == 0 || partial_history_cycles == 0) 1108 return 0; 1109 1110 /* Interpolate shortest distance from beginning or end of history */ 1111 interp_forward = partial_history_cycles > total_history_cycles / 2; 1112 partial_history_cycles = interp_forward ? 1113 total_history_cycles - partial_history_cycles : 1114 partial_history_cycles; 1115 1116 /* 1117 * Scale the monotonic raw time delta by: 1118 * partial_history_cycles / total_history_cycles 1119 */ 1120 corr_raw = (u64)ktime_to_ns( 1121 ktime_sub(ts->sys_monoraw, history->raw)); 1122 ret = scale64_check_overflow(partial_history_cycles, 1123 total_history_cycles, &corr_raw); 1124 if (ret) 1125 return ret; 1126 1127 /* 1128 * If there is a discontinuity in the history, scale monotonic raw 1129 * correction by: 1130 * mult(real)/mult(raw) yielding the realtime correction 1131 * Otherwise, calculate the realtime correction similar to monotonic 1132 * raw calculation 1133 */ 1134 if (discontinuity) { 1135 corr_real = mul_u64_u32_div 1136 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1137 } else { 1138 corr_real = (u64)ktime_to_ns( 1139 ktime_sub(ts->sys_realtime, history->real)); 1140 ret = scale64_check_overflow(partial_history_cycles, 1141 total_history_cycles, &corr_real); 1142 if (ret) 1143 return ret; 1144 } 1145 1146 /* Fixup monotonic raw and real time time values */ 1147 if (interp_forward) { 1148 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1149 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1150 } else { 1151 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1152 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1153 } 1154 1155 return 0; 1156 } 1157 1158 /* 1159 * timestamp_in_interval - true if ts is chronologically in [start, end] 1160 * 1161 * True if ts occurs chronologically at or after start, and before or at end. 1162 */ 1163 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1164 { 1165 if (ts >= start && ts <= end) 1166 return true; 1167 if (start > end && (ts >= start || ts <= end)) 1168 return true; 1169 return false; 1170 } 1171 1172 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1173 { 1174 u64 rem, res; 1175 1176 if (!numerator || !denominator) 1177 return false; 1178 1179 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1180 *val = res + div_u64(rem * numerator, denominator); 1181 return true; 1182 } 1183 1184 static bool convert_base_to_cs(struct system_counterval_t *scv) 1185 { 1186 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1187 struct clocksource_base *base; 1188 u32 num, den; 1189 1190 /* The timestamp was taken from the time keeper clock source */ 1191 if (cs->id == scv->cs_id) 1192 return true; 1193 1194 /* 1195 * Check whether cs_id matches the base clock. Prevent the compiler from 1196 * re-evaluating @base as the clocksource might change concurrently. 1197 */ 1198 base = READ_ONCE(cs->base); 1199 if (!base || base->id != scv->cs_id) 1200 return false; 1201 1202 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1203 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1204 1205 if (!convert_clock(&scv->cycles, num, den)) 1206 return false; 1207 1208 scv->cycles += base->offset; 1209 return true; 1210 } 1211 1212 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1213 { 1214 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1215 struct clocksource_base *base; 1216 1217 /* 1218 * Check whether base_id matches the base clock. Prevent the compiler from 1219 * re-evaluating @base as the clocksource might change concurrently. 1220 */ 1221 base = READ_ONCE(cs->base); 1222 if (!base || base->id != base_id) 1223 return false; 1224 1225 *cycles -= base->offset; 1226 if (!convert_clock(cycles, base->denominator, base->numerator)) 1227 return false; 1228 return true; 1229 } 1230 1231 static bool convert_ns_to_cs(u64 *delta) 1232 { 1233 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1234 1235 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1236 return false; 1237 1238 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1239 return true; 1240 } 1241 1242 /** 1243 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1244 * @treal: CLOCK_REALTIME timestamp to convert 1245 * @base_id: base clocksource id 1246 * @cycles: pointer to store the converted base clock timestamp 1247 * 1248 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1249 * 1250 * Return: true if the conversion is successful, false otherwise. 1251 */ 1252 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1253 { 1254 struct timekeeper *tk = &tk_core.timekeeper; 1255 unsigned int seq; 1256 u64 delta; 1257 1258 do { 1259 seq = read_seqcount_begin(&tk_core.seq); 1260 if ((u64)treal < tk->tkr_mono.base_real) 1261 return false; 1262 delta = (u64)treal - tk->tkr_mono.base_real; 1263 if (!convert_ns_to_cs(&delta)) 1264 return false; 1265 *cycles = tk->tkr_mono.cycle_last + delta; 1266 if (!convert_cs_to_base(cycles, base_id)) 1267 return false; 1268 } while (read_seqcount_retry(&tk_core.seq, seq)); 1269 1270 return true; 1271 } 1272 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1273 1274 /** 1275 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1276 * @get_time_fn: Callback to get simultaneous device time and 1277 * system counter from the device driver 1278 * @ctx: Context passed to get_time_fn() 1279 * @history_begin: Historical reference point used to interpolate system 1280 * time when counter provided by the driver is before the current interval 1281 * @xtstamp: Receives simultaneously captured system and device time 1282 * 1283 * Reads a timestamp from a device and correlates it to system time 1284 */ 1285 int get_device_system_crosststamp(int (*get_time_fn) 1286 (ktime_t *device_time, 1287 struct system_counterval_t *sys_counterval, 1288 void *ctx), 1289 void *ctx, 1290 struct system_time_snapshot *history_begin, 1291 struct system_device_crosststamp *xtstamp) 1292 { 1293 struct system_counterval_t system_counterval; 1294 struct timekeeper *tk = &tk_core.timekeeper; 1295 u64 cycles, now, interval_start; 1296 unsigned int clock_was_set_seq = 0; 1297 ktime_t base_real, base_raw; 1298 u64 nsec_real, nsec_raw; 1299 u8 cs_was_changed_seq; 1300 unsigned int seq; 1301 bool do_interp; 1302 int ret; 1303 1304 do { 1305 seq = read_seqcount_begin(&tk_core.seq); 1306 /* 1307 * Try to synchronously capture device time and a system 1308 * counter value calling back into the device driver 1309 */ 1310 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1311 if (ret) 1312 return ret; 1313 1314 /* 1315 * Verify that the clocksource ID associated with the captured 1316 * system counter value is the same as for the currently 1317 * installed timekeeper clocksource 1318 */ 1319 if (system_counterval.cs_id == CSID_GENERIC || 1320 !convert_base_to_cs(&system_counterval)) 1321 return -ENODEV; 1322 cycles = system_counterval.cycles; 1323 1324 /* 1325 * Check whether the system counter value provided by the 1326 * device driver is on the current timekeeping interval. 1327 */ 1328 now = tk_clock_read(&tk->tkr_mono); 1329 interval_start = tk->tkr_mono.cycle_last; 1330 if (!timestamp_in_interval(interval_start, now, cycles)) { 1331 clock_was_set_seq = tk->clock_was_set_seq; 1332 cs_was_changed_seq = tk->cs_was_changed_seq; 1333 cycles = interval_start; 1334 do_interp = true; 1335 } else { 1336 do_interp = false; 1337 } 1338 1339 base_real = ktime_add(tk->tkr_mono.base, 1340 tk_core.timekeeper.offs_real); 1341 base_raw = tk->tkr_raw.base; 1342 1343 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1344 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1345 } while (read_seqcount_retry(&tk_core.seq, seq)); 1346 1347 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1348 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1349 1350 /* 1351 * Interpolate if necessary, adjusting back from the start of the 1352 * current interval 1353 */ 1354 if (do_interp) { 1355 u64 partial_history_cycles, total_history_cycles; 1356 bool discontinuity; 1357 1358 /* 1359 * Check that the counter value is not before the provided 1360 * history reference and that the history doesn't cross a 1361 * clocksource change 1362 */ 1363 if (!history_begin || 1364 !timestamp_in_interval(history_begin->cycles, 1365 cycles, system_counterval.cycles) || 1366 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1367 return -EINVAL; 1368 partial_history_cycles = cycles - system_counterval.cycles; 1369 total_history_cycles = cycles - history_begin->cycles; 1370 discontinuity = 1371 history_begin->clock_was_set_seq != clock_was_set_seq; 1372 1373 ret = adjust_historical_crosststamp(history_begin, 1374 partial_history_cycles, 1375 total_history_cycles, 1376 discontinuity, xtstamp); 1377 if (ret) 1378 return ret; 1379 } 1380 1381 return 0; 1382 } 1383 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1384 1385 /** 1386 * timekeeping_clocksource_has_base - Check whether the current clocksource 1387 * is based on given a base clock 1388 * @id: base clocksource ID 1389 * 1390 * Note: The return value is a snapshot which can become invalid right 1391 * after the function returns. 1392 * 1393 * Return: true if the timekeeper clocksource has a base clock with @id, 1394 * false otherwise 1395 */ 1396 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1397 { 1398 /* 1399 * This is a snapshot, so no point in using the sequence 1400 * count. Just prevent the compiler from re-evaluating @base as the 1401 * clocksource might change concurrently. 1402 */ 1403 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1404 1405 return base ? base->id == id : false; 1406 } 1407 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1408 1409 /** 1410 * do_settimeofday64 - Sets the time of day. 1411 * @ts: pointer to the timespec64 variable containing the new time 1412 * 1413 * Sets the time of day to the new time and update NTP and notify hrtimers 1414 */ 1415 int do_settimeofday64(const struct timespec64 *ts) 1416 { 1417 struct timespec64 ts_delta, xt; 1418 1419 if (!timespec64_valid_settod(ts)) 1420 return -EINVAL; 1421 1422 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1423 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1424 1425 timekeeping_forward_now(tks); 1426 1427 xt = tk_xtime(tks); 1428 ts_delta = timespec64_sub(*ts, xt); 1429 1430 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1431 timekeeping_restore_shadow(&tk_core); 1432 return -EINVAL; 1433 } 1434 1435 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1436 tk_set_xtime(tks, ts); 1437 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1438 } 1439 1440 /* Signal hrtimers about time change */ 1441 clock_was_set(CLOCK_SET_WALL); 1442 1443 audit_tk_injoffset(ts_delta); 1444 add_device_randomness(ts, sizeof(*ts)); 1445 return 0; 1446 } 1447 EXPORT_SYMBOL(do_settimeofday64); 1448 1449 /** 1450 * timekeeping_inject_offset - Adds or subtracts from the current time. 1451 * @ts: Pointer to the timespec variable containing the offset 1452 * 1453 * Adds or subtracts an offset value from the current time. 1454 */ 1455 static int timekeeping_inject_offset(const struct timespec64 *ts) 1456 { 1457 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1458 return -EINVAL; 1459 1460 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1461 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1462 struct timespec64 tmp; 1463 1464 timekeeping_forward_now(tks); 1465 1466 /* Make sure the proposed value is valid */ 1467 tmp = timespec64_add(tk_xtime(tks), *ts); 1468 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1469 !timespec64_valid_settod(&tmp)) { 1470 timekeeping_restore_shadow(&tk_core); 1471 return -EINVAL; 1472 } 1473 1474 tk_xtime_add(tks, ts); 1475 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1476 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1477 } 1478 1479 /* Signal hrtimers about time change */ 1480 clock_was_set(CLOCK_SET_WALL); 1481 return 0; 1482 } 1483 1484 /* 1485 * Indicates if there is an offset between the system clock and the hardware 1486 * clock/persistent clock/rtc. 1487 */ 1488 int persistent_clock_is_local; 1489 1490 /* 1491 * Adjust the time obtained from the CMOS to be UTC time instead of 1492 * local time. 1493 * 1494 * This is ugly, but preferable to the alternatives. Otherwise we 1495 * would either need to write a program to do it in /etc/rc (and risk 1496 * confusion if the program gets run more than once; it would also be 1497 * hard to make the program warp the clock precisely n hours) or 1498 * compile in the timezone information into the kernel. Bad, bad.... 1499 * 1500 * - TYT, 1992-01-01 1501 * 1502 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1503 * as real UNIX machines always do it. This avoids all headaches about 1504 * daylight saving times and warping kernel clocks. 1505 */ 1506 void timekeeping_warp_clock(void) 1507 { 1508 if (sys_tz.tz_minuteswest != 0) { 1509 struct timespec64 adjust; 1510 1511 persistent_clock_is_local = 1; 1512 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1513 adjust.tv_nsec = 0; 1514 timekeeping_inject_offset(&adjust); 1515 } 1516 } 1517 1518 /* 1519 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1520 */ 1521 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1522 { 1523 tk->tai_offset = tai_offset; 1524 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1525 } 1526 1527 /* 1528 * change_clocksource - Swaps clocksources if a new one is available 1529 * 1530 * Accumulates current time interval and initializes new clocksource 1531 */ 1532 static int change_clocksource(void *data) 1533 { 1534 struct clocksource *new = data, *old = NULL; 1535 1536 /* 1537 * If the clocksource is in a module, get a module reference. 1538 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1539 * reference can't be acquired. 1540 */ 1541 if (!try_module_get(new->owner)) 1542 return 0; 1543 1544 /* Abort if the device can't be enabled */ 1545 if (new->enable && new->enable(new) != 0) { 1546 module_put(new->owner); 1547 return 0; 1548 } 1549 1550 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1551 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1552 1553 timekeeping_forward_now(tks); 1554 old = tks->tkr_mono.clock; 1555 tk_setup_internals(tks, new); 1556 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1557 } 1558 1559 if (old) { 1560 if (old->disable) 1561 old->disable(old); 1562 module_put(old->owner); 1563 } 1564 1565 return 0; 1566 } 1567 1568 /** 1569 * timekeeping_notify - Install a new clock source 1570 * @clock: pointer to the clock source 1571 * 1572 * This function is called from clocksource.c after a new, better clock 1573 * source has been registered. The caller holds the clocksource_mutex. 1574 */ 1575 int timekeeping_notify(struct clocksource *clock) 1576 { 1577 struct timekeeper *tk = &tk_core.timekeeper; 1578 1579 if (tk->tkr_mono.clock == clock) 1580 return 0; 1581 stop_machine(change_clocksource, clock, NULL); 1582 tick_clock_notify(); 1583 return tk->tkr_mono.clock == clock ? 0 : -1; 1584 } 1585 1586 /** 1587 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1588 * @ts: pointer to the timespec64 to be set 1589 * 1590 * Returns the raw monotonic time (completely un-modified by ntp) 1591 */ 1592 void ktime_get_raw_ts64(struct timespec64 *ts) 1593 { 1594 struct timekeeper *tk = &tk_core.timekeeper; 1595 unsigned int seq; 1596 u64 nsecs; 1597 1598 do { 1599 seq = read_seqcount_begin(&tk_core.seq); 1600 ts->tv_sec = tk->raw_sec; 1601 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1602 1603 } while (read_seqcount_retry(&tk_core.seq, seq)); 1604 1605 ts->tv_nsec = 0; 1606 timespec64_add_ns(ts, nsecs); 1607 } 1608 EXPORT_SYMBOL(ktime_get_raw_ts64); 1609 1610 1611 /** 1612 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1613 */ 1614 int timekeeping_valid_for_hres(void) 1615 { 1616 struct timekeeper *tk = &tk_core.timekeeper; 1617 unsigned int seq; 1618 int ret; 1619 1620 do { 1621 seq = read_seqcount_begin(&tk_core.seq); 1622 1623 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1624 1625 } while (read_seqcount_retry(&tk_core.seq, seq)); 1626 1627 return ret; 1628 } 1629 1630 /** 1631 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1632 */ 1633 u64 timekeeping_max_deferment(void) 1634 { 1635 struct timekeeper *tk = &tk_core.timekeeper; 1636 unsigned int seq; 1637 u64 ret; 1638 1639 do { 1640 seq = read_seqcount_begin(&tk_core.seq); 1641 1642 ret = tk->tkr_mono.clock->max_idle_ns; 1643 1644 } while (read_seqcount_retry(&tk_core.seq, seq)); 1645 1646 return ret; 1647 } 1648 1649 /** 1650 * read_persistent_clock64 - Return time from the persistent clock. 1651 * @ts: Pointer to the storage for the readout value 1652 * 1653 * Weak dummy function for arches that do not yet support it. 1654 * Reads the time from the battery backed persistent clock. 1655 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1656 * 1657 * XXX - Do be sure to remove it once all arches implement it. 1658 */ 1659 void __weak read_persistent_clock64(struct timespec64 *ts) 1660 { 1661 ts->tv_sec = 0; 1662 ts->tv_nsec = 0; 1663 } 1664 1665 /** 1666 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1667 * from the boot. 1668 * @wall_time: current time as returned by persistent clock 1669 * @boot_offset: offset that is defined as wall_time - boot_time 1670 * 1671 * Weak dummy function for arches that do not yet support it. 1672 * 1673 * The default function calculates offset based on the current value of 1674 * local_clock(). This way architectures that support sched_clock() but don't 1675 * support dedicated boot time clock will provide the best estimate of the 1676 * boot time. 1677 */ 1678 void __weak __init 1679 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1680 struct timespec64 *boot_offset) 1681 { 1682 read_persistent_clock64(wall_time); 1683 *boot_offset = ns_to_timespec64(local_clock()); 1684 } 1685 1686 static __init void tkd_basic_setup(struct tk_data *tkd) 1687 { 1688 raw_spin_lock_init(&tkd->lock); 1689 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1690 } 1691 1692 /* 1693 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1694 * 1695 * The flag starts of false and is only set when a suspend reaches 1696 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1697 * timekeeper clocksource is not stopping across suspend and has been 1698 * used to update sleep time. If the timekeeper clocksource has stopped 1699 * then the flag stays true and is used by the RTC resume code to decide 1700 * whether sleeptime must be injected and if so the flag gets false then. 1701 * 1702 * If a suspend fails before reaching timekeeping_resume() then the flag 1703 * stays false and prevents erroneous sleeptime injection. 1704 */ 1705 static bool suspend_timing_needed; 1706 1707 /* Flag for if there is a persistent clock on this platform */ 1708 static bool persistent_clock_exists; 1709 1710 /* 1711 * timekeeping_init - Initializes the clocksource and common timekeeping values 1712 */ 1713 void __init timekeeping_init(void) 1714 { 1715 struct timespec64 wall_time, boot_offset, wall_to_mono; 1716 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1717 struct clocksource *clock; 1718 1719 tkd_basic_setup(&tk_core); 1720 1721 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1722 if (timespec64_valid_settod(&wall_time) && 1723 timespec64_to_ns(&wall_time) > 0) { 1724 persistent_clock_exists = true; 1725 } else if (timespec64_to_ns(&wall_time) != 0) { 1726 pr_warn("Persistent clock returned invalid value"); 1727 wall_time = (struct timespec64){0}; 1728 } 1729 1730 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1731 boot_offset = (struct timespec64){0}; 1732 1733 /* 1734 * We want set wall_to_mono, so the following is true: 1735 * wall time + wall_to_mono = boot time 1736 */ 1737 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1738 1739 guard(raw_spinlock_irqsave)(&tk_core.lock); 1740 1741 ntp_init(); 1742 1743 clock = clocksource_default_clock(); 1744 if (clock->enable) 1745 clock->enable(clock); 1746 tk_setup_internals(tks, clock); 1747 1748 tk_set_xtime(tks, &wall_time); 1749 tks->raw_sec = 0; 1750 1751 tk_set_wall_to_mono(tks, wall_to_mono); 1752 1753 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1754 } 1755 1756 /* time in seconds when suspend began for persistent clock */ 1757 static struct timespec64 timekeeping_suspend_time; 1758 1759 /** 1760 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1761 * @tk: Pointer to the timekeeper to be updated 1762 * @delta: Pointer to the delta value in timespec64 format 1763 * 1764 * Takes a timespec offset measuring a suspend interval and properly 1765 * adds the sleep offset to the timekeeping variables. 1766 */ 1767 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1768 const struct timespec64 *delta) 1769 { 1770 if (!timespec64_valid_strict(delta)) { 1771 printk_deferred(KERN_WARNING 1772 "__timekeeping_inject_sleeptime: Invalid " 1773 "sleep delta value!\n"); 1774 return; 1775 } 1776 tk_xtime_add(tk, delta); 1777 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1778 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1779 tk_debug_account_sleep_time(delta); 1780 } 1781 1782 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1783 /* 1784 * We have three kinds of time sources to use for sleep time 1785 * injection, the preference order is: 1786 * 1) non-stop clocksource 1787 * 2) persistent clock (ie: RTC accessible when irqs are off) 1788 * 3) RTC 1789 * 1790 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1791 * If system has neither 1) nor 2), 3) will be used finally. 1792 * 1793 * 1794 * If timekeeping has injected sleeptime via either 1) or 2), 1795 * 3) becomes needless, so in this case we don't need to call 1796 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1797 * means. 1798 */ 1799 bool timekeeping_rtc_skipresume(void) 1800 { 1801 return !suspend_timing_needed; 1802 } 1803 1804 /* 1805 * 1) can be determined whether to use or not only when doing 1806 * timekeeping_resume() which is invoked after rtc_suspend(), 1807 * so we can't skip rtc_suspend() surely if system has 1). 1808 * 1809 * But if system has 2), 2) will definitely be used, so in this 1810 * case we don't need to call rtc_suspend(), and this is what 1811 * timekeeping_rtc_skipsuspend() means. 1812 */ 1813 bool timekeeping_rtc_skipsuspend(void) 1814 { 1815 return persistent_clock_exists; 1816 } 1817 1818 /** 1819 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1820 * @delta: pointer to a timespec64 delta value 1821 * 1822 * This hook is for architectures that cannot support read_persistent_clock64 1823 * because their RTC/persistent clock is only accessible when irqs are enabled. 1824 * and also don't have an effective nonstop clocksource. 1825 * 1826 * This function should only be called by rtc_resume(), and allows 1827 * a suspend offset to be injected into the timekeeping values. 1828 */ 1829 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1830 { 1831 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1832 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1833 1834 suspend_timing_needed = false; 1835 timekeeping_forward_now(tks); 1836 __timekeeping_inject_sleeptime(tks, delta); 1837 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1838 } 1839 1840 /* Signal hrtimers about time change */ 1841 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1842 } 1843 #endif 1844 1845 /** 1846 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1847 */ 1848 void timekeeping_resume(void) 1849 { 1850 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1851 struct clocksource *clock = tks->tkr_mono.clock; 1852 struct timespec64 ts_new, ts_delta; 1853 bool inject_sleeptime = false; 1854 u64 cycle_now, nsec; 1855 unsigned long flags; 1856 1857 read_persistent_clock64(&ts_new); 1858 1859 clockevents_resume(); 1860 clocksource_resume(); 1861 1862 raw_spin_lock_irqsave(&tk_core.lock, flags); 1863 1864 /* 1865 * After system resumes, we need to calculate the suspended time and 1866 * compensate it for the OS time. There are 3 sources that could be 1867 * used: Nonstop clocksource during suspend, persistent clock and rtc 1868 * device. 1869 * 1870 * One specific platform may have 1 or 2 or all of them, and the 1871 * preference will be: 1872 * suspend-nonstop clocksource -> persistent clock -> rtc 1873 * The less preferred source will only be tried if there is no better 1874 * usable source. The rtc part is handled separately in rtc core code. 1875 */ 1876 cycle_now = tk_clock_read(&tks->tkr_mono); 1877 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1878 if (nsec > 0) { 1879 ts_delta = ns_to_timespec64(nsec); 1880 inject_sleeptime = true; 1881 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1882 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1883 inject_sleeptime = true; 1884 } 1885 1886 if (inject_sleeptime) { 1887 suspend_timing_needed = false; 1888 __timekeeping_inject_sleeptime(tks, &ts_delta); 1889 } 1890 1891 /* Re-base the last cycle value */ 1892 tks->tkr_mono.cycle_last = cycle_now; 1893 tks->tkr_raw.cycle_last = cycle_now; 1894 1895 tks->ntp_error = 0; 1896 timekeeping_suspended = 0; 1897 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1898 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1899 1900 touch_softlockup_watchdog(); 1901 1902 /* Resume the clockevent device(s) and hrtimers */ 1903 tick_resume(); 1904 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1905 timerfd_resume(); 1906 } 1907 1908 int timekeeping_suspend(void) 1909 { 1910 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1911 struct timespec64 delta, delta_delta; 1912 static struct timespec64 old_delta; 1913 struct clocksource *curr_clock; 1914 unsigned long flags; 1915 u64 cycle_now; 1916 1917 read_persistent_clock64(&timekeeping_suspend_time); 1918 1919 /* 1920 * On some systems the persistent_clock can not be detected at 1921 * timekeeping_init by its return value, so if we see a valid 1922 * value returned, update the persistent_clock_exists flag. 1923 */ 1924 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1925 persistent_clock_exists = true; 1926 1927 suspend_timing_needed = true; 1928 1929 raw_spin_lock_irqsave(&tk_core.lock, flags); 1930 timekeeping_forward_now(tks); 1931 timekeeping_suspended = 1; 1932 1933 /* 1934 * Since we've called forward_now, cycle_last stores the value 1935 * just read from the current clocksource. Save this to potentially 1936 * use in suspend timing. 1937 */ 1938 curr_clock = tks->tkr_mono.clock; 1939 cycle_now = tks->tkr_mono.cycle_last; 1940 clocksource_start_suspend_timing(curr_clock, cycle_now); 1941 1942 if (persistent_clock_exists) { 1943 /* 1944 * To avoid drift caused by repeated suspend/resumes, 1945 * which each can add ~1 second drift error, 1946 * try to compensate so the difference in system time 1947 * and persistent_clock time stays close to constant. 1948 */ 1949 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 1950 delta_delta = timespec64_sub(delta, old_delta); 1951 if (abs(delta_delta.tv_sec) >= 2) { 1952 /* 1953 * if delta_delta is too large, assume time correction 1954 * has occurred and set old_delta to the current delta. 1955 */ 1956 old_delta = delta; 1957 } else { 1958 /* Otherwise try to adjust old_system to compensate */ 1959 timekeeping_suspend_time = 1960 timespec64_add(timekeeping_suspend_time, delta_delta); 1961 } 1962 } 1963 1964 timekeeping_update_from_shadow(&tk_core, 0); 1965 halt_fast_timekeeper(tks); 1966 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1967 1968 tick_suspend(); 1969 clocksource_suspend(); 1970 clockevents_suspend(); 1971 1972 return 0; 1973 } 1974 1975 /* sysfs resume/suspend bits for timekeeping */ 1976 static struct syscore_ops timekeeping_syscore_ops = { 1977 .resume = timekeeping_resume, 1978 .suspend = timekeeping_suspend, 1979 }; 1980 1981 static int __init timekeeping_init_ops(void) 1982 { 1983 register_syscore_ops(&timekeeping_syscore_ops); 1984 return 0; 1985 } 1986 device_initcall(timekeeping_init_ops); 1987 1988 /* 1989 * Apply a multiplier adjustment to the timekeeper 1990 */ 1991 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1992 s64 offset, 1993 s32 mult_adj) 1994 { 1995 s64 interval = tk->cycle_interval; 1996 1997 if (mult_adj == 0) { 1998 return; 1999 } else if (mult_adj == -1) { 2000 interval = -interval; 2001 offset = -offset; 2002 } else if (mult_adj != 1) { 2003 interval *= mult_adj; 2004 offset *= mult_adj; 2005 } 2006 2007 /* 2008 * So the following can be confusing. 2009 * 2010 * To keep things simple, lets assume mult_adj == 1 for now. 2011 * 2012 * When mult_adj != 1, remember that the interval and offset values 2013 * have been appropriately scaled so the math is the same. 2014 * 2015 * The basic idea here is that we're increasing the multiplier 2016 * by one, this causes the xtime_interval to be incremented by 2017 * one cycle_interval. This is because: 2018 * xtime_interval = cycle_interval * mult 2019 * So if mult is being incremented by one: 2020 * xtime_interval = cycle_interval * (mult + 1) 2021 * Its the same as: 2022 * xtime_interval = (cycle_interval * mult) + cycle_interval 2023 * Which can be shortened to: 2024 * xtime_interval += cycle_interval 2025 * 2026 * So offset stores the non-accumulated cycles. Thus the current 2027 * time (in shifted nanoseconds) is: 2028 * now = (offset * adj) + xtime_nsec 2029 * Now, even though we're adjusting the clock frequency, we have 2030 * to keep time consistent. In other words, we can't jump back 2031 * in time, and we also want to avoid jumping forward in time. 2032 * 2033 * So given the same offset value, we need the time to be the same 2034 * both before and after the freq adjustment. 2035 * now = (offset * adj_1) + xtime_nsec_1 2036 * now = (offset * adj_2) + xtime_nsec_2 2037 * So: 2038 * (offset * adj_1) + xtime_nsec_1 = 2039 * (offset * adj_2) + xtime_nsec_2 2040 * And we know: 2041 * adj_2 = adj_1 + 1 2042 * So: 2043 * (offset * adj_1) + xtime_nsec_1 = 2044 * (offset * (adj_1+1)) + xtime_nsec_2 2045 * (offset * adj_1) + xtime_nsec_1 = 2046 * (offset * adj_1) + offset + xtime_nsec_2 2047 * Canceling the sides: 2048 * xtime_nsec_1 = offset + xtime_nsec_2 2049 * Which gives us: 2050 * xtime_nsec_2 = xtime_nsec_1 - offset 2051 * Which simplifies to: 2052 * xtime_nsec -= offset 2053 */ 2054 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2055 /* NTP adjustment caused clocksource mult overflow */ 2056 WARN_ON_ONCE(1); 2057 return; 2058 } 2059 2060 tk->tkr_mono.mult += mult_adj; 2061 tk->xtime_interval += interval; 2062 tk->tkr_mono.xtime_nsec -= offset; 2063 } 2064 2065 /* 2066 * Adjust the timekeeper's multiplier to the correct frequency 2067 * and also to reduce the accumulated error value. 2068 */ 2069 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2070 { 2071 u64 ntp_tl = ntp_tick_length(); 2072 u32 mult; 2073 2074 /* 2075 * Determine the multiplier from the current NTP tick length. 2076 * Avoid expensive division when the tick length doesn't change. 2077 */ 2078 if (likely(tk->ntp_tick == ntp_tl)) { 2079 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2080 } else { 2081 tk->ntp_tick = ntp_tl; 2082 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2083 tk->xtime_remainder, tk->cycle_interval); 2084 } 2085 2086 /* 2087 * If the clock is behind the NTP time, increase the multiplier by 1 2088 * to catch up with it. If it's ahead and there was a remainder in the 2089 * tick division, the clock will slow down. Otherwise it will stay 2090 * ahead until the tick length changes to a non-divisible value. 2091 */ 2092 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2093 mult += tk->ntp_err_mult; 2094 2095 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2096 2097 if (unlikely(tk->tkr_mono.clock->maxadj && 2098 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2099 > tk->tkr_mono.clock->maxadj))) { 2100 printk_once(KERN_WARNING 2101 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2102 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2103 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2104 } 2105 2106 /* 2107 * It may be possible that when we entered this function, xtime_nsec 2108 * was very small. Further, if we're slightly speeding the clocksource 2109 * in the code above, its possible the required corrective factor to 2110 * xtime_nsec could cause it to underflow. 2111 * 2112 * Now, since we have already accumulated the second and the NTP 2113 * subsystem has been notified via second_overflow(), we need to skip 2114 * the next update. 2115 */ 2116 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2117 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2118 tk->tkr_mono.shift; 2119 tk->xtime_sec--; 2120 tk->skip_second_overflow = 1; 2121 } 2122 } 2123 2124 /* 2125 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2126 * 2127 * Helper function that accumulates the nsecs greater than a second 2128 * from the xtime_nsec field to the xtime_secs field. 2129 * It also calls into the NTP code to handle leapsecond processing. 2130 */ 2131 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2132 { 2133 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2134 unsigned int clock_set = 0; 2135 2136 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2137 int leap; 2138 2139 tk->tkr_mono.xtime_nsec -= nsecps; 2140 tk->xtime_sec++; 2141 2142 /* 2143 * Skip NTP update if this second was accumulated before, 2144 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2145 */ 2146 if (unlikely(tk->skip_second_overflow)) { 2147 tk->skip_second_overflow = 0; 2148 continue; 2149 } 2150 2151 /* Figure out if its a leap sec and apply if needed */ 2152 leap = second_overflow(tk->xtime_sec); 2153 if (unlikely(leap)) { 2154 struct timespec64 ts; 2155 2156 tk->xtime_sec += leap; 2157 2158 ts.tv_sec = leap; 2159 ts.tv_nsec = 0; 2160 tk_set_wall_to_mono(tk, 2161 timespec64_sub(tk->wall_to_monotonic, ts)); 2162 2163 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2164 2165 clock_set = TK_CLOCK_WAS_SET; 2166 } 2167 } 2168 return clock_set; 2169 } 2170 2171 /* 2172 * logarithmic_accumulation - shifted accumulation of cycles 2173 * 2174 * This functions accumulates a shifted interval of cycles into 2175 * a shifted interval nanoseconds. Allows for O(log) accumulation 2176 * loop. 2177 * 2178 * Returns the unconsumed cycles. 2179 */ 2180 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2181 u32 shift, unsigned int *clock_set) 2182 { 2183 u64 interval = tk->cycle_interval << shift; 2184 u64 snsec_per_sec; 2185 2186 /* If the offset is smaller than a shifted interval, do nothing */ 2187 if (offset < interval) 2188 return offset; 2189 2190 /* Accumulate one shifted interval */ 2191 offset -= interval; 2192 tk->tkr_mono.cycle_last += interval; 2193 tk->tkr_raw.cycle_last += interval; 2194 2195 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2196 *clock_set |= accumulate_nsecs_to_secs(tk); 2197 2198 /* Accumulate raw time */ 2199 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2200 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2201 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2202 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2203 tk->raw_sec++; 2204 } 2205 2206 /* Accumulate error between NTP and clock interval */ 2207 tk->ntp_error += tk->ntp_tick << shift; 2208 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2209 (tk->ntp_error_shift + shift); 2210 2211 return offset; 2212 } 2213 2214 /* 2215 * timekeeping_advance - Updates the timekeeper to the current time and 2216 * current NTP tick length 2217 */ 2218 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2219 { 2220 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2221 struct timekeeper *real_tk = &tk_core.timekeeper; 2222 unsigned int clock_set = 0; 2223 int shift = 0, maxshift; 2224 u64 offset; 2225 2226 guard(raw_spinlock_irqsave)(&tk_core.lock); 2227 2228 /* Make sure we're fully resumed: */ 2229 if (unlikely(timekeeping_suspended)) 2230 return false; 2231 2232 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2233 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2234 2235 /* Check if there's really nothing to do */ 2236 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2237 return false; 2238 2239 /* 2240 * With NO_HZ we may have to accumulate many cycle_intervals 2241 * (think "ticks") worth of time at once. To do this efficiently, 2242 * we calculate the largest doubling multiple of cycle_intervals 2243 * that is smaller than the offset. We then accumulate that 2244 * chunk in one go, and then try to consume the next smaller 2245 * doubled multiple. 2246 */ 2247 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2248 shift = max(0, shift); 2249 /* Bound shift to one less than what overflows tick_length */ 2250 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2251 shift = min(shift, maxshift); 2252 while (offset >= tk->cycle_interval) { 2253 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2254 if (offset < tk->cycle_interval<<shift) 2255 shift--; 2256 } 2257 2258 /* Adjust the multiplier to correct NTP error */ 2259 timekeeping_adjust(tk, offset); 2260 2261 /* 2262 * Finally, make sure that after the rounding 2263 * xtime_nsec isn't larger than NSEC_PER_SEC 2264 */ 2265 clock_set |= accumulate_nsecs_to_secs(tk); 2266 2267 timekeeping_update_from_shadow(&tk_core, clock_set); 2268 2269 return !!clock_set; 2270 } 2271 2272 /** 2273 * update_wall_time - Uses the current clocksource to increment the wall time 2274 * 2275 */ 2276 void update_wall_time(void) 2277 { 2278 if (timekeeping_advance(TK_ADV_TICK)) 2279 clock_was_set_delayed(); 2280 } 2281 2282 /** 2283 * getboottime64 - Return the real time of system boot. 2284 * @ts: pointer to the timespec64 to be set 2285 * 2286 * Returns the wall-time of boot in a timespec64. 2287 * 2288 * This is based on the wall_to_monotonic offset and the total suspend 2289 * time. Calls to settimeofday will affect the value returned (which 2290 * basically means that however wrong your real time clock is at boot time, 2291 * you get the right time here). 2292 */ 2293 void getboottime64(struct timespec64 *ts) 2294 { 2295 struct timekeeper *tk = &tk_core.timekeeper; 2296 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2297 2298 *ts = ktime_to_timespec64(t); 2299 } 2300 EXPORT_SYMBOL_GPL(getboottime64); 2301 2302 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2303 { 2304 struct timekeeper *tk = &tk_core.timekeeper; 2305 unsigned int seq; 2306 2307 do { 2308 seq = read_seqcount_begin(&tk_core.seq); 2309 2310 *ts = tk_xtime(tk); 2311 } while (read_seqcount_retry(&tk_core.seq, seq)); 2312 } 2313 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2314 2315 /** 2316 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2317 * @ts: timespec64 to be filled 2318 * 2319 * Fetch the global mg_floor value, convert it to realtime and compare it 2320 * to the current coarse-grained time. Fill @ts with whichever is 2321 * latest. Note that this is a filesystem-specific interface and should be 2322 * avoided outside of that context. 2323 */ 2324 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2325 { 2326 struct timekeeper *tk = &tk_core.timekeeper; 2327 u64 floor = atomic64_read(&mg_floor); 2328 ktime_t f_real, offset, coarse; 2329 unsigned int seq; 2330 2331 do { 2332 seq = read_seqcount_begin(&tk_core.seq); 2333 *ts = tk_xtime(tk); 2334 offset = tk_core.timekeeper.offs_real; 2335 } while (read_seqcount_retry(&tk_core.seq, seq)); 2336 2337 coarse = timespec64_to_ktime(*ts); 2338 f_real = ktime_add(floor, offset); 2339 if (ktime_after(f_real, coarse)) 2340 *ts = ktime_to_timespec64(f_real); 2341 } 2342 2343 /** 2344 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2345 * @ts: pointer to the timespec to be set 2346 * 2347 * Get a monotonic fine-grained time value and attempt to swap it into 2348 * mg_floor. If that succeeds then accept the new floor value. If it fails 2349 * then another task raced in during the interim time and updated the 2350 * floor. Since any update to the floor must be later than the previous 2351 * floor, either outcome is acceptable. 2352 * 2353 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2354 * and determining that the resulting coarse-grained timestamp did not effect 2355 * a change in ctime. Any more recent floor value would effect a change to 2356 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2357 * 2358 * @ts will be filled with the latest floor value, regardless of the outcome of 2359 * the cmpxchg. Note that this is a filesystem specific interface and should be 2360 * avoided outside of that context. 2361 */ 2362 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2363 { 2364 struct timekeeper *tk = &tk_core.timekeeper; 2365 ktime_t old = atomic64_read(&mg_floor); 2366 ktime_t offset, mono; 2367 unsigned int seq; 2368 u64 nsecs; 2369 2370 do { 2371 seq = read_seqcount_begin(&tk_core.seq); 2372 2373 ts->tv_sec = tk->xtime_sec; 2374 mono = tk->tkr_mono.base; 2375 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2376 offset = tk_core.timekeeper.offs_real; 2377 } while (read_seqcount_retry(&tk_core.seq, seq)); 2378 2379 mono = ktime_add_ns(mono, nsecs); 2380 2381 /* 2382 * Attempt to update the floor with the new time value. As any 2383 * update must be later then the existing floor, and would effect 2384 * a change to ctime from the perspective of the current task, 2385 * accept the resulting floor value regardless of the outcome of 2386 * the swap. 2387 */ 2388 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2389 ts->tv_nsec = 0; 2390 timespec64_add_ns(ts, nsecs); 2391 timekeeping_inc_mg_floor_swaps(); 2392 } else { 2393 /* 2394 * Another task changed mg_floor since "old" was fetched. 2395 * "old" has been updated with the latest value of "mg_floor". 2396 * That value is newer than the previous floor value, which 2397 * is enough to effect a change to ctime. Accept it. 2398 */ 2399 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2400 } 2401 } 2402 2403 void ktime_get_coarse_ts64(struct timespec64 *ts) 2404 { 2405 struct timekeeper *tk = &tk_core.timekeeper; 2406 struct timespec64 now, mono; 2407 unsigned int seq; 2408 2409 do { 2410 seq = read_seqcount_begin(&tk_core.seq); 2411 2412 now = tk_xtime(tk); 2413 mono = tk->wall_to_monotonic; 2414 } while (read_seqcount_retry(&tk_core.seq, seq)); 2415 2416 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2417 now.tv_nsec + mono.tv_nsec); 2418 } 2419 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2420 2421 /* 2422 * Must hold jiffies_lock 2423 */ 2424 void do_timer(unsigned long ticks) 2425 { 2426 jiffies_64 += ticks; 2427 calc_global_load(); 2428 } 2429 2430 /** 2431 * ktime_get_update_offsets_now - hrtimer helper 2432 * @cwsseq: pointer to check and store the clock was set sequence number 2433 * @offs_real: pointer to storage for monotonic -> realtime offset 2434 * @offs_boot: pointer to storage for monotonic -> boottime offset 2435 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2436 * 2437 * Returns current monotonic time and updates the offsets if the 2438 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2439 * different. 2440 * 2441 * Called from hrtimer_interrupt() or retrigger_next_event() 2442 */ 2443 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2444 ktime_t *offs_boot, ktime_t *offs_tai) 2445 { 2446 struct timekeeper *tk = &tk_core.timekeeper; 2447 unsigned int seq; 2448 ktime_t base; 2449 u64 nsecs; 2450 2451 do { 2452 seq = read_seqcount_begin(&tk_core.seq); 2453 2454 base = tk->tkr_mono.base; 2455 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2456 base = ktime_add_ns(base, nsecs); 2457 2458 if (*cwsseq != tk->clock_was_set_seq) { 2459 *cwsseq = tk->clock_was_set_seq; 2460 *offs_real = tk->offs_real; 2461 *offs_boot = tk->offs_boot; 2462 *offs_tai = tk->offs_tai; 2463 } 2464 2465 /* Handle leapsecond insertion adjustments */ 2466 if (unlikely(base >= tk->next_leap_ktime)) 2467 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2468 2469 } while (read_seqcount_retry(&tk_core.seq, seq)); 2470 2471 return base; 2472 } 2473 2474 /* 2475 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2476 */ 2477 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2478 { 2479 if (txc->modes & ADJ_ADJTIME) { 2480 /* singleshot must not be used with any other mode bits */ 2481 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2482 return -EINVAL; 2483 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2484 !capable(CAP_SYS_TIME)) 2485 return -EPERM; 2486 } else { 2487 /* In order to modify anything, you gotta be super-user! */ 2488 if (txc->modes && !capable(CAP_SYS_TIME)) 2489 return -EPERM; 2490 /* 2491 * if the quartz is off by more than 10% then 2492 * something is VERY wrong! 2493 */ 2494 if (txc->modes & ADJ_TICK && 2495 (txc->tick < 900000/USER_HZ || 2496 txc->tick > 1100000/USER_HZ)) 2497 return -EINVAL; 2498 } 2499 2500 if (txc->modes & ADJ_SETOFFSET) { 2501 /* In order to inject time, you gotta be super-user! */ 2502 if (!capable(CAP_SYS_TIME)) 2503 return -EPERM; 2504 2505 /* 2506 * Validate if a timespec/timeval used to inject a time 2507 * offset is valid. Offsets can be positive or negative, so 2508 * we don't check tv_sec. The value of the timeval/timespec 2509 * is the sum of its fields,but *NOTE*: 2510 * The field tv_usec/tv_nsec must always be non-negative and 2511 * we can't have more nanoseconds/microseconds than a second. 2512 */ 2513 if (txc->time.tv_usec < 0) 2514 return -EINVAL; 2515 2516 if (txc->modes & ADJ_NANO) { 2517 if (txc->time.tv_usec >= NSEC_PER_SEC) 2518 return -EINVAL; 2519 } else { 2520 if (txc->time.tv_usec >= USEC_PER_SEC) 2521 return -EINVAL; 2522 } 2523 } 2524 2525 /* 2526 * Check for potential multiplication overflows that can 2527 * only happen on 64-bit systems: 2528 */ 2529 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2530 if (LLONG_MIN / PPM_SCALE > txc->freq) 2531 return -EINVAL; 2532 if (LLONG_MAX / PPM_SCALE < txc->freq) 2533 return -EINVAL; 2534 } 2535 2536 return 0; 2537 } 2538 2539 /** 2540 * random_get_entropy_fallback - Returns the raw clock source value, 2541 * used by random.c for platforms with no valid random_get_entropy(). 2542 */ 2543 unsigned long random_get_entropy_fallback(void) 2544 { 2545 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2546 struct clocksource *clock = READ_ONCE(tkr->clock); 2547 2548 if (unlikely(timekeeping_suspended || !clock)) 2549 return 0; 2550 return clock->read(clock); 2551 } 2552 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2553 2554 /** 2555 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2556 * @txc: Pointer to kernel_timex structure containing NTP parameters 2557 */ 2558 int do_adjtimex(struct __kernel_timex *txc) 2559 { 2560 struct audit_ntp_data ad; 2561 bool offset_set = false; 2562 bool clock_set = false; 2563 struct timespec64 ts; 2564 int ret; 2565 2566 /* Validate the data before disabling interrupts */ 2567 ret = timekeeping_validate_timex(txc); 2568 if (ret) 2569 return ret; 2570 add_device_randomness(txc, sizeof(*txc)); 2571 2572 if (txc->modes & ADJ_SETOFFSET) { 2573 struct timespec64 delta; 2574 2575 delta.tv_sec = txc->time.tv_sec; 2576 delta.tv_nsec = txc->time.tv_usec; 2577 if (!(txc->modes & ADJ_NANO)) 2578 delta.tv_nsec *= 1000; 2579 ret = timekeeping_inject_offset(&delta); 2580 if (ret) 2581 return ret; 2582 2583 offset_set = delta.tv_sec != 0; 2584 audit_tk_injoffset(delta); 2585 } 2586 2587 audit_ntp_init(&ad); 2588 2589 ktime_get_real_ts64(&ts); 2590 add_device_randomness(&ts, sizeof(ts)); 2591 2592 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 2593 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2594 s32 orig_tai, tai; 2595 2596 orig_tai = tai = tks->tai_offset; 2597 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2598 2599 if (tai != orig_tai) { 2600 __timekeeping_set_tai_offset(tks, tai); 2601 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 2602 clock_set = true; 2603 } else { 2604 tk_update_leap_state_all(&tk_core); 2605 } 2606 } 2607 2608 audit_ntp_log(&ad); 2609 2610 /* Update the multiplier immediately if frequency was set directly */ 2611 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2612 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2613 2614 if (clock_set) 2615 clock_was_set(CLOCK_SET_WALL); 2616 2617 ntp_notify_cmos_timer(offset_set); 2618 2619 return ret; 2620 } 2621 2622 #ifdef CONFIG_NTP_PPS 2623 /** 2624 * hardpps() - Accessor function to NTP __hardpps function 2625 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2626 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2627 */ 2628 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2629 { 2630 guard(raw_spinlock_irqsave)(&tk_core.lock); 2631 __hardpps(phase_ts, raw_ts); 2632 } 2633 EXPORT_SYMBOL(hardpps); 2634 #endif /* CONFIG_NTP_PPS */ 2635