xref: /linux/kernel/time/timekeeping.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 
25 
26 static struct timekeeper timekeeper;
27 
28 /*
29  * This read-write spinlock protects us from races in SMP while
30  * playing with xtime.
31  */
32 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
33 
34 /* flag for if timekeeping is suspended */
35 int __read_mostly timekeeping_suspended;
36 
37 static inline void tk_normalize_xtime(struct timekeeper *tk)
38 {
39 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
40 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
41 		tk->xtime_sec++;
42 	}
43 }
44 
45 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
46 {
47 	tk->xtime_sec = ts->tv_sec;
48 	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
49 }
50 
51 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
52 {
53 	tk->xtime_sec += ts->tv_sec;
54 	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
55 	tk_normalize_xtime(tk);
56 }
57 
58 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
59 {
60 	struct timespec tmp;
61 
62 	/*
63 	 * Verify consistency of: offset_real = -wall_to_monotonic
64 	 * before modifying anything
65 	 */
66 	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
67 					-tk->wall_to_monotonic.tv_nsec);
68 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
69 	tk->wall_to_monotonic = wtm;
70 	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
71 	tk->offs_real = timespec_to_ktime(tmp);
72 }
73 
74 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
75 {
76 	/* Verify consistency before modifying */
77 	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
78 
79 	tk->total_sleep_time	= t;
80 	tk->offs_boot		= timespec_to_ktime(t);
81 }
82 
83 /**
84  * timekeeper_setup_internals - Set up internals to use clocksource clock.
85  *
86  * @clock:		Pointer to clocksource.
87  *
88  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
89  * pair and interval request.
90  *
91  * Unless you're the timekeeping code, you should not be using this!
92  */
93 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
94 {
95 	cycle_t interval;
96 	u64 tmp, ntpinterval;
97 	struct clocksource *old_clock;
98 
99 	old_clock = tk->clock;
100 	tk->clock = clock;
101 	clock->cycle_last = clock->read(clock);
102 
103 	/* Do the ns -> cycle conversion first, using original mult */
104 	tmp = NTP_INTERVAL_LENGTH;
105 	tmp <<= clock->shift;
106 	ntpinterval = tmp;
107 	tmp += clock->mult/2;
108 	do_div(tmp, clock->mult);
109 	if (tmp == 0)
110 		tmp = 1;
111 
112 	interval = (cycle_t) tmp;
113 	tk->cycle_interval = interval;
114 
115 	/* Go back from cycles -> shifted ns */
116 	tk->xtime_interval = (u64) interval * clock->mult;
117 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
118 	tk->raw_interval =
119 		((u64) interval * clock->mult) >> clock->shift;
120 
121 	 /* if changing clocks, convert xtime_nsec shift units */
122 	if (old_clock) {
123 		int shift_change = clock->shift - old_clock->shift;
124 		if (shift_change < 0)
125 			tk->xtime_nsec >>= -shift_change;
126 		else
127 			tk->xtime_nsec <<= shift_change;
128 	}
129 	tk->shift = clock->shift;
130 
131 	tk->ntp_error = 0;
132 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
133 
134 	/*
135 	 * The timekeeper keeps its own mult values for the currently
136 	 * active clocksource. These value will be adjusted via NTP
137 	 * to counteract clock drifting.
138 	 */
139 	tk->mult = clock->mult;
140 }
141 
142 /* Timekeeper helper functions. */
143 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
144 {
145 	cycle_t cycle_now, cycle_delta;
146 	struct clocksource *clock;
147 	s64 nsec;
148 
149 	/* read clocksource: */
150 	clock = tk->clock;
151 	cycle_now = clock->read(clock);
152 
153 	/* calculate the delta since the last update_wall_time: */
154 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
155 
156 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
157 	nsec >>= tk->shift;
158 
159 	/* If arch requires, add in gettimeoffset() */
160 	return nsec + arch_gettimeoffset();
161 }
162 
163 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
164 {
165 	cycle_t cycle_now, cycle_delta;
166 	struct clocksource *clock;
167 	s64 nsec;
168 
169 	/* read clocksource: */
170 	clock = tk->clock;
171 	cycle_now = clock->read(clock);
172 
173 	/* calculate the delta since the last update_wall_time: */
174 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
175 
176 	/* convert delta to nanoseconds. */
177 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
178 
179 	/* If arch requires, add in gettimeoffset() */
180 	return nsec + arch_gettimeoffset();
181 }
182 
183 /* must hold write on timekeeper.lock */
184 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
185 {
186 	if (clearntp) {
187 		tk->ntp_error = 0;
188 		ntp_clear();
189 	}
190 	update_vsyscall(tk);
191 }
192 
193 /**
194  * timekeeping_forward_now - update clock to the current time
195  *
196  * Forward the current clock to update its state since the last call to
197  * update_wall_time(). This is useful before significant clock changes,
198  * as it avoids having to deal with this time offset explicitly.
199  */
200 static void timekeeping_forward_now(struct timekeeper *tk)
201 {
202 	cycle_t cycle_now, cycle_delta;
203 	struct clocksource *clock;
204 	s64 nsec;
205 
206 	clock = tk->clock;
207 	cycle_now = clock->read(clock);
208 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
209 	clock->cycle_last = cycle_now;
210 
211 	tk->xtime_nsec += cycle_delta * tk->mult;
212 
213 	/* If arch requires, add in gettimeoffset() */
214 	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
215 
216 	tk_normalize_xtime(tk);
217 
218 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
219 	timespec_add_ns(&tk->raw_time, nsec);
220 }
221 
222 /**
223  * getnstimeofday - Returns the time of day in a timespec
224  * @ts:		pointer to the timespec to be set
225  *
226  * Returns the time of day in a timespec.
227  */
228 void getnstimeofday(struct timespec *ts)
229 {
230 	struct timekeeper *tk = &timekeeper;
231 	unsigned long seq;
232 	s64 nsecs = 0;
233 
234 	WARN_ON(timekeeping_suspended);
235 
236 	do {
237 		seq = read_seqbegin(&tk->lock);
238 
239 		ts->tv_sec = tk->xtime_sec;
240 		nsecs = timekeeping_get_ns(tk);
241 
242 	} while (read_seqretry(&tk->lock, seq));
243 
244 	ts->tv_nsec = 0;
245 	timespec_add_ns(ts, nsecs);
246 }
247 EXPORT_SYMBOL(getnstimeofday);
248 
249 ktime_t ktime_get(void)
250 {
251 	struct timekeeper *tk = &timekeeper;
252 	unsigned int seq;
253 	s64 secs, nsecs;
254 
255 	WARN_ON(timekeeping_suspended);
256 
257 	do {
258 		seq = read_seqbegin(&tk->lock);
259 		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
260 		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
261 
262 	} while (read_seqretry(&tk->lock, seq));
263 	/*
264 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
265 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
266 	 */
267 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
268 }
269 EXPORT_SYMBOL_GPL(ktime_get);
270 
271 /**
272  * ktime_get_ts - get the monotonic clock in timespec format
273  * @ts:		pointer to timespec variable
274  *
275  * The function calculates the monotonic clock from the realtime
276  * clock and the wall_to_monotonic offset and stores the result
277  * in normalized timespec format in the variable pointed to by @ts.
278  */
279 void ktime_get_ts(struct timespec *ts)
280 {
281 	struct timekeeper *tk = &timekeeper;
282 	struct timespec tomono;
283 	s64 nsec;
284 	unsigned int seq;
285 
286 	WARN_ON(timekeeping_suspended);
287 
288 	do {
289 		seq = read_seqbegin(&tk->lock);
290 		ts->tv_sec = tk->xtime_sec;
291 		nsec = timekeeping_get_ns(tk);
292 		tomono = tk->wall_to_monotonic;
293 
294 	} while (read_seqretry(&tk->lock, seq));
295 
296 	ts->tv_sec += tomono.tv_sec;
297 	ts->tv_nsec = 0;
298 	timespec_add_ns(ts, nsec + tomono.tv_nsec);
299 }
300 EXPORT_SYMBOL_GPL(ktime_get_ts);
301 
302 #ifdef CONFIG_NTP_PPS
303 
304 /**
305  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
306  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
307  * @ts_real:	pointer to the timespec to be set to the time of day
308  *
309  * This function reads both the time of day and raw monotonic time at the
310  * same time atomically and stores the resulting timestamps in timespec
311  * format.
312  */
313 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
314 {
315 	struct timekeeper *tk = &timekeeper;
316 	unsigned long seq;
317 	s64 nsecs_raw, nsecs_real;
318 
319 	WARN_ON_ONCE(timekeeping_suspended);
320 
321 	do {
322 		seq = read_seqbegin(&tk->lock);
323 
324 		*ts_raw = tk->raw_time;
325 		ts_real->tv_sec = tk->xtime_sec;
326 		ts_real->tv_nsec = 0;
327 
328 		nsecs_raw = timekeeping_get_ns_raw(tk);
329 		nsecs_real = timekeeping_get_ns(tk);
330 
331 	} while (read_seqretry(&tk->lock, seq));
332 
333 	timespec_add_ns(ts_raw, nsecs_raw);
334 	timespec_add_ns(ts_real, nsecs_real);
335 }
336 EXPORT_SYMBOL(getnstime_raw_and_real);
337 
338 #endif /* CONFIG_NTP_PPS */
339 
340 /**
341  * do_gettimeofday - Returns the time of day in a timeval
342  * @tv:		pointer to the timeval to be set
343  *
344  * NOTE: Users should be converted to using getnstimeofday()
345  */
346 void do_gettimeofday(struct timeval *tv)
347 {
348 	struct timespec now;
349 
350 	getnstimeofday(&now);
351 	tv->tv_sec = now.tv_sec;
352 	tv->tv_usec = now.tv_nsec/1000;
353 }
354 EXPORT_SYMBOL(do_gettimeofday);
355 
356 /**
357  * do_settimeofday - Sets the time of day
358  * @tv:		pointer to the timespec variable containing the new time
359  *
360  * Sets the time of day to the new time and update NTP and notify hrtimers
361  */
362 int do_settimeofday(const struct timespec *tv)
363 {
364 	struct timekeeper *tk = &timekeeper;
365 	struct timespec ts_delta, xt;
366 	unsigned long flags;
367 
368 	if (!timespec_valid_strict(tv))
369 		return -EINVAL;
370 
371 	write_seqlock_irqsave(&tk->lock, flags);
372 
373 	timekeeping_forward_now(tk);
374 
375 	xt = tk_xtime(tk);
376 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
377 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
378 
379 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
380 
381 	tk_set_xtime(tk, tv);
382 
383 	timekeeping_update(tk, true);
384 
385 	write_sequnlock_irqrestore(&tk->lock, flags);
386 
387 	/* signal hrtimers about time change */
388 	clock_was_set();
389 
390 	return 0;
391 }
392 EXPORT_SYMBOL(do_settimeofday);
393 
394 /**
395  * timekeeping_inject_offset - Adds or subtracts from the current time.
396  * @tv:		pointer to the timespec variable containing the offset
397  *
398  * Adds or subtracts an offset value from the current time.
399  */
400 int timekeeping_inject_offset(struct timespec *ts)
401 {
402 	struct timekeeper *tk = &timekeeper;
403 	unsigned long flags;
404 	struct timespec tmp;
405 	int ret = 0;
406 
407 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
408 		return -EINVAL;
409 
410 	write_seqlock_irqsave(&tk->lock, flags);
411 
412 	timekeeping_forward_now(tk);
413 
414 	/* Make sure the proposed value is valid */
415 	tmp = timespec_add(tk_xtime(tk),  *ts);
416 	if (!timespec_valid_strict(&tmp)) {
417 		ret = -EINVAL;
418 		goto error;
419 	}
420 
421 	tk_xtime_add(tk, ts);
422 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
423 
424 error: /* even if we error out, we forwarded the time, so call update */
425 	timekeeping_update(tk, true);
426 
427 	write_sequnlock_irqrestore(&tk->lock, flags);
428 
429 	/* signal hrtimers about time change */
430 	clock_was_set();
431 
432 	return ret;
433 }
434 EXPORT_SYMBOL(timekeeping_inject_offset);
435 
436 /**
437  * change_clocksource - Swaps clocksources if a new one is available
438  *
439  * Accumulates current time interval and initializes new clocksource
440  */
441 static int change_clocksource(void *data)
442 {
443 	struct timekeeper *tk = &timekeeper;
444 	struct clocksource *new, *old;
445 	unsigned long flags;
446 
447 	new = (struct clocksource *) data;
448 
449 	write_seqlock_irqsave(&tk->lock, flags);
450 
451 	timekeeping_forward_now(tk);
452 	if (!new->enable || new->enable(new) == 0) {
453 		old = tk->clock;
454 		tk_setup_internals(tk, new);
455 		if (old->disable)
456 			old->disable(old);
457 	}
458 	timekeeping_update(tk, true);
459 
460 	write_sequnlock_irqrestore(&tk->lock, flags);
461 
462 	return 0;
463 }
464 
465 /**
466  * timekeeping_notify - Install a new clock source
467  * @clock:		pointer to the clock source
468  *
469  * This function is called from clocksource.c after a new, better clock
470  * source has been registered. The caller holds the clocksource_mutex.
471  */
472 void timekeeping_notify(struct clocksource *clock)
473 {
474 	struct timekeeper *tk = &timekeeper;
475 
476 	if (tk->clock == clock)
477 		return;
478 	stop_machine(change_clocksource, clock, NULL);
479 	tick_clock_notify();
480 }
481 
482 /**
483  * ktime_get_real - get the real (wall-) time in ktime_t format
484  *
485  * returns the time in ktime_t format
486  */
487 ktime_t ktime_get_real(void)
488 {
489 	struct timespec now;
490 
491 	getnstimeofday(&now);
492 
493 	return timespec_to_ktime(now);
494 }
495 EXPORT_SYMBOL_GPL(ktime_get_real);
496 
497 /**
498  * getrawmonotonic - Returns the raw monotonic time in a timespec
499  * @ts:		pointer to the timespec to be set
500  *
501  * Returns the raw monotonic time (completely un-modified by ntp)
502  */
503 void getrawmonotonic(struct timespec *ts)
504 {
505 	struct timekeeper *tk = &timekeeper;
506 	unsigned long seq;
507 	s64 nsecs;
508 
509 	do {
510 		seq = read_seqbegin(&tk->lock);
511 		nsecs = timekeeping_get_ns_raw(tk);
512 		*ts = tk->raw_time;
513 
514 	} while (read_seqretry(&tk->lock, seq));
515 
516 	timespec_add_ns(ts, nsecs);
517 }
518 EXPORT_SYMBOL(getrawmonotonic);
519 
520 /**
521  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
522  */
523 int timekeeping_valid_for_hres(void)
524 {
525 	struct timekeeper *tk = &timekeeper;
526 	unsigned long seq;
527 	int ret;
528 
529 	do {
530 		seq = read_seqbegin(&tk->lock);
531 
532 		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
533 
534 	} while (read_seqretry(&tk->lock, seq));
535 
536 	return ret;
537 }
538 
539 /**
540  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
541  */
542 u64 timekeeping_max_deferment(void)
543 {
544 	struct timekeeper *tk = &timekeeper;
545 	unsigned long seq;
546 	u64 ret;
547 
548 	do {
549 		seq = read_seqbegin(&tk->lock);
550 
551 		ret = tk->clock->max_idle_ns;
552 
553 	} while (read_seqretry(&tk->lock, seq));
554 
555 	return ret;
556 }
557 
558 /**
559  * read_persistent_clock -  Return time from the persistent clock.
560  *
561  * Weak dummy function for arches that do not yet support it.
562  * Reads the time from the battery backed persistent clock.
563  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
564  *
565  *  XXX - Do be sure to remove it once all arches implement it.
566  */
567 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
568 {
569 	ts->tv_sec = 0;
570 	ts->tv_nsec = 0;
571 }
572 
573 /**
574  * read_boot_clock -  Return time of the system start.
575  *
576  * Weak dummy function for arches that do not yet support it.
577  * Function to read the exact time the system has been started.
578  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
579  *
580  *  XXX - Do be sure to remove it once all arches implement it.
581  */
582 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
583 {
584 	ts->tv_sec = 0;
585 	ts->tv_nsec = 0;
586 }
587 
588 /*
589  * timekeeping_init - Initializes the clocksource and common timekeeping values
590  */
591 void __init timekeeping_init(void)
592 {
593 	struct timekeeper *tk = &timekeeper;
594 	struct clocksource *clock;
595 	unsigned long flags;
596 	struct timespec now, boot, tmp;
597 
598 	read_persistent_clock(&now);
599 	if (!timespec_valid_strict(&now)) {
600 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
601 			"         Check your CMOS/BIOS settings.\n");
602 		now.tv_sec = 0;
603 		now.tv_nsec = 0;
604 	}
605 
606 	read_boot_clock(&boot);
607 	if (!timespec_valid_strict(&boot)) {
608 		pr_warn("WARNING: Boot clock returned invalid value!\n"
609 			"         Check your CMOS/BIOS settings.\n");
610 		boot.tv_sec = 0;
611 		boot.tv_nsec = 0;
612 	}
613 
614 	seqlock_init(&tk->lock);
615 
616 	ntp_init();
617 
618 	write_seqlock_irqsave(&tk->lock, flags);
619 	clock = clocksource_default_clock();
620 	if (clock->enable)
621 		clock->enable(clock);
622 	tk_setup_internals(tk, clock);
623 
624 	tk_set_xtime(tk, &now);
625 	tk->raw_time.tv_sec = 0;
626 	tk->raw_time.tv_nsec = 0;
627 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
628 		boot = tk_xtime(tk);
629 
630 	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
631 	tk_set_wall_to_mono(tk, tmp);
632 
633 	tmp.tv_sec = 0;
634 	tmp.tv_nsec = 0;
635 	tk_set_sleep_time(tk, tmp);
636 
637 	write_sequnlock_irqrestore(&tk->lock, flags);
638 }
639 
640 /* time in seconds when suspend began */
641 static struct timespec timekeeping_suspend_time;
642 
643 /**
644  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
645  * @delta: pointer to a timespec delta value
646  *
647  * Takes a timespec offset measuring a suspend interval and properly
648  * adds the sleep offset to the timekeeping variables.
649  */
650 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
651 							struct timespec *delta)
652 {
653 	if (!timespec_valid_strict(delta)) {
654 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
655 					"sleep delta value!\n");
656 		return;
657 	}
658 	tk_xtime_add(tk, delta);
659 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
660 	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
661 }
662 
663 /**
664  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
665  * @delta: pointer to a timespec delta value
666  *
667  * This hook is for architectures that cannot support read_persistent_clock
668  * because their RTC/persistent clock is only accessible when irqs are enabled.
669  *
670  * This function should only be called by rtc_resume(), and allows
671  * a suspend offset to be injected into the timekeeping values.
672  */
673 void timekeeping_inject_sleeptime(struct timespec *delta)
674 {
675 	struct timekeeper *tk = &timekeeper;
676 	unsigned long flags;
677 	struct timespec ts;
678 
679 	/* Make sure we don't set the clock twice */
680 	read_persistent_clock(&ts);
681 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
682 		return;
683 
684 	write_seqlock_irqsave(&tk->lock, flags);
685 
686 	timekeeping_forward_now(tk);
687 
688 	__timekeeping_inject_sleeptime(tk, delta);
689 
690 	timekeeping_update(tk, true);
691 
692 	write_sequnlock_irqrestore(&tk->lock, flags);
693 
694 	/* signal hrtimers about time change */
695 	clock_was_set();
696 }
697 
698 /**
699  * timekeeping_resume - Resumes the generic timekeeping subsystem.
700  *
701  * This is for the generic clocksource timekeeping.
702  * xtime/wall_to_monotonic/jiffies/etc are
703  * still managed by arch specific suspend/resume code.
704  */
705 static void timekeeping_resume(void)
706 {
707 	struct timekeeper *tk = &timekeeper;
708 	unsigned long flags;
709 	struct timespec ts;
710 
711 	read_persistent_clock(&ts);
712 
713 	clockevents_resume();
714 	clocksource_resume();
715 
716 	write_seqlock_irqsave(&tk->lock, flags);
717 
718 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
719 		ts = timespec_sub(ts, timekeeping_suspend_time);
720 		__timekeeping_inject_sleeptime(tk, &ts);
721 	}
722 	/* re-base the last cycle value */
723 	tk->clock->cycle_last = tk->clock->read(tk->clock);
724 	tk->ntp_error = 0;
725 	timekeeping_suspended = 0;
726 	timekeeping_update(tk, false);
727 	write_sequnlock_irqrestore(&tk->lock, flags);
728 
729 	touch_softlockup_watchdog();
730 
731 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
732 
733 	/* Resume hrtimers */
734 	hrtimers_resume();
735 }
736 
737 static int timekeeping_suspend(void)
738 {
739 	struct timekeeper *tk = &timekeeper;
740 	unsigned long flags;
741 	struct timespec		delta, delta_delta;
742 	static struct timespec	old_delta;
743 
744 	read_persistent_clock(&timekeeping_suspend_time);
745 
746 	write_seqlock_irqsave(&tk->lock, flags);
747 	timekeeping_forward_now(tk);
748 	timekeeping_suspended = 1;
749 
750 	/*
751 	 * To avoid drift caused by repeated suspend/resumes,
752 	 * which each can add ~1 second drift error,
753 	 * try to compensate so the difference in system time
754 	 * and persistent_clock time stays close to constant.
755 	 */
756 	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
757 	delta_delta = timespec_sub(delta, old_delta);
758 	if (abs(delta_delta.tv_sec)  >= 2) {
759 		/*
760 		 * if delta_delta is too large, assume time correction
761 		 * has occured and set old_delta to the current delta.
762 		 */
763 		old_delta = delta;
764 	} else {
765 		/* Otherwise try to adjust old_system to compensate */
766 		timekeeping_suspend_time =
767 			timespec_add(timekeeping_suspend_time, delta_delta);
768 	}
769 	write_sequnlock_irqrestore(&tk->lock, flags);
770 
771 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
772 	clocksource_suspend();
773 	clockevents_suspend();
774 
775 	return 0;
776 }
777 
778 /* sysfs resume/suspend bits for timekeeping */
779 static struct syscore_ops timekeeping_syscore_ops = {
780 	.resume		= timekeeping_resume,
781 	.suspend	= timekeeping_suspend,
782 };
783 
784 static int __init timekeeping_init_ops(void)
785 {
786 	register_syscore_ops(&timekeeping_syscore_ops);
787 	return 0;
788 }
789 
790 device_initcall(timekeeping_init_ops);
791 
792 /*
793  * If the error is already larger, we look ahead even further
794  * to compensate for late or lost adjustments.
795  */
796 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
797 						 s64 error, s64 *interval,
798 						 s64 *offset)
799 {
800 	s64 tick_error, i;
801 	u32 look_ahead, adj;
802 	s32 error2, mult;
803 
804 	/*
805 	 * Use the current error value to determine how much to look ahead.
806 	 * The larger the error the slower we adjust for it to avoid problems
807 	 * with losing too many ticks, otherwise we would overadjust and
808 	 * produce an even larger error.  The smaller the adjustment the
809 	 * faster we try to adjust for it, as lost ticks can do less harm
810 	 * here.  This is tuned so that an error of about 1 msec is adjusted
811 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
812 	 */
813 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
814 	error2 = abs(error2);
815 	for (look_ahead = 0; error2 > 0; look_ahead++)
816 		error2 >>= 2;
817 
818 	/*
819 	 * Now calculate the error in (1 << look_ahead) ticks, but first
820 	 * remove the single look ahead already included in the error.
821 	 */
822 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
823 	tick_error -= tk->xtime_interval >> 1;
824 	error = ((error - tick_error) >> look_ahead) + tick_error;
825 
826 	/* Finally calculate the adjustment shift value.  */
827 	i = *interval;
828 	mult = 1;
829 	if (error < 0) {
830 		error = -error;
831 		*interval = -*interval;
832 		*offset = -*offset;
833 		mult = -1;
834 	}
835 	for (adj = 0; error > i; adj++)
836 		error >>= 1;
837 
838 	*interval <<= adj;
839 	*offset <<= adj;
840 	return mult << adj;
841 }
842 
843 /*
844  * Adjust the multiplier to reduce the error value,
845  * this is optimized for the most common adjustments of -1,0,1,
846  * for other values we can do a bit more work.
847  */
848 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
849 {
850 	s64 error, interval = tk->cycle_interval;
851 	int adj;
852 
853 	/*
854 	 * The point of this is to check if the error is greater than half
855 	 * an interval.
856 	 *
857 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
858 	 *
859 	 * Note we subtract one in the shift, so that error is really error*2.
860 	 * This "saves" dividing(shifting) interval twice, but keeps the
861 	 * (error > interval) comparison as still measuring if error is
862 	 * larger than half an interval.
863 	 *
864 	 * Note: It does not "save" on aggravation when reading the code.
865 	 */
866 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
867 	if (error > interval) {
868 		/*
869 		 * We now divide error by 4(via shift), which checks if
870 		 * the error is greater than twice the interval.
871 		 * If it is greater, we need a bigadjust, if its smaller,
872 		 * we can adjust by 1.
873 		 */
874 		error >>= 2;
875 		/*
876 		 * XXX - In update_wall_time, we round up to the next
877 		 * nanosecond, and store the amount rounded up into
878 		 * the error. This causes the likely below to be unlikely.
879 		 *
880 		 * The proper fix is to avoid rounding up by using
881 		 * the high precision tk->xtime_nsec instead of
882 		 * xtime.tv_nsec everywhere. Fixing this will take some
883 		 * time.
884 		 */
885 		if (likely(error <= interval))
886 			adj = 1;
887 		else
888 			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
889 	} else {
890 		if (error < -interval) {
891 			/* See comment above, this is just switched for the negative */
892 			error >>= 2;
893 			if (likely(error >= -interval)) {
894 				adj = -1;
895 				interval = -interval;
896 				offset = -offset;
897 			} else {
898 				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
899 			}
900 		} else {
901 			goto out_adjust;
902 		}
903 	}
904 
905 	if (unlikely(tk->clock->maxadj &&
906 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
907 		printk_once(KERN_WARNING
908 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
909 			tk->clock->name, (long)tk->mult + adj,
910 			(long)tk->clock->mult + tk->clock->maxadj);
911 	}
912 	/*
913 	 * So the following can be confusing.
914 	 *
915 	 * To keep things simple, lets assume adj == 1 for now.
916 	 *
917 	 * When adj != 1, remember that the interval and offset values
918 	 * have been appropriately scaled so the math is the same.
919 	 *
920 	 * The basic idea here is that we're increasing the multiplier
921 	 * by one, this causes the xtime_interval to be incremented by
922 	 * one cycle_interval. This is because:
923 	 *	xtime_interval = cycle_interval * mult
924 	 * So if mult is being incremented by one:
925 	 *	xtime_interval = cycle_interval * (mult + 1)
926 	 * Its the same as:
927 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
928 	 * Which can be shortened to:
929 	 *	xtime_interval += cycle_interval
930 	 *
931 	 * So offset stores the non-accumulated cycles. Thus the current
932 	 * time (in shifted nanoseconds) is:
933 	 *	now = (offset * adj) + xtime_nsec
934 	 * Now, even though we're adjusting the clock frequency, we have
935 	 * to keep time consistent. In other words, we can't jump back
936 	 * in time, and we also want to avoid jumping forward in time.
937 	 *
938 	 * So given the same offset value, we need the time to be the same
939 	 * both before and after the freq adjustment.
940 	 *	now = (offset * adj_1) + xtime_nsec_1
941 	 *	now = (offset * adj_2) + xtime_nsec_2
942 	 * So:
943 	 *	(offset * adj_1) + xtime_nsec_1 =
944 	 *		(offset * adj_2) + xtime_nsec_2
945 	 * And we know:
946 	 *	adj_2 = adj_1 + 1
947 	 * So:
948 	 *	(offset * adj_1) + xtime_nsec_1 =
949 	 *		(offset * (adj_1+1)) + xtime_nsec_2
950 	 *	(offset * adj_1) + xtime_nsec_1 =
951 	 *		(offset * adj_1) + offset + xtime_nsec_2
952 	 * Canceling the sides:
953 	 *	xtime_nsec_1 = offset + xtime_nsec_2
954 	 * Which gives us:
955 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
956 	 * Which simplfies to:
957 	 *	xtime_nsec -= offset
958 	 *
959 	 * XXX - TODO: Doc ntp_error calculation.
960 	 */
961 	tk->mult += adj;
962 	tk->xtime_interval += interval;
963 	tk->xtime_nsec -= offset;
964 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
965 
966 out_adjust:
967 	/*
968 	 * It may be possible that when we entered this function, xtime_nsec
969 	 * was very small.  Further, if we're slightly speeding the clocksource
970 	 * in the code above, its possible the required corrective factor to
971 	 * xtime_nsec could cause it to underflow.
972 	 *
973 	 * Now, since we already accumulated the second, cannot simply roll
974 	 * the accumulated second back, since the NTP subsystem has been
975 	 * notified via second_overflow. So instead we push xtime_nsec forward
976 	 * by the amount we underflowed, and add that amount into the error.
977 	 *
978 	 * We'll correct this error next time through this function, when
979 	 * xtime_nsec is not as small.
980 	 */
981 	if (unlikely((s64)tk->xtime_nsec < 0)) {
982 		s64 neg = -(s64)tk->xtime_nsec;
983 		tk->xtime_nsec = 0;
984 		tk->ntp_error += neg << tk->ntp_error_shift;
985 	}
986 
987 }
988 
989 /**
990  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
991  *
992  * Helper function that accumulates a the nsecs greater then a second
993  * from the xtime_nsec field to the xtime_secs field.
994  * It also calls into the NTP code to handle leapsecond processing.
995  *
996  */
997 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
998 {
999 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1000 
1001 	while (tk->xtime_nsec >= nsecps) {
1002 		int leap;
1003 
1004 		tk->xtime_nsec -= nsecps;
1005 		tk->xtime_sec++;
1006 
1007 		/* Figure out if its a leap sec and apply if needed */
1008 		leap = second_overflow(tk->xtime_sec);
1009 		if (unlikely(leap)) {
1010 			struct timespec ts;
1011 
1012 			tk->xtime_sec += leap;
1013 
1014 			ts.tv_sec = leap;
1015 			ts.tv_nsec = 0;
1016 			tk_set_wall_to_mono(tk,
1017 				timespec_sub(tk->wall_to_monotonic, ts));
1018 
1019 			clock_was_set_delayed();
1020 		}
1021 	}
1022 }
1023 
1024 /**
1025  * logarithmic_accumulation - shifted accumulation of cycles
1026  *
1027  * This functions accumulates a shifted interval of cycles into
1028  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1029  * loop.
1030  *
1031  * Returns the unconsumed cycles.
1032  */
1033 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1034 						u32 shift)
1035 {
1036 	u64 raw_nsecs;
1037 
1038 	/* If the offset is smaller then a shifted interval, do nothing */
1039 	if (offset < tk->cycle_interval<<shift)
1040 		return offset;
1041 
1042 	/* Accumulate one shifted interval */
1043 	offset -= tk->cycle_interval << shift;
1044 	tk->clock->cycle_last += tk->cycle_interval << shift;
1045 
1046 	tk->xtime_nsec += tk->xtime_interval << shift;
1047 	accumulate_nsecs_to_secs(tk);
1048 
1049 	/* Accumulate raw time */
1050 	raw_nsecs = (u64)tk->raw_interval << shift;
1051 	raw_nsecs += tk->raw_time.tv_nsec;
1052 	if (raw_nsecs >= NSEC_PER_SEC) {
1053 		u64 raw_secs = raw_nsecs;
1054 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1055 		tk->raw_time.tv_sec += raw_secs;
1056 	}
1057 	tk->raw_time.tv_nsec = raw_nsecs;
1058 
1059 	/* Accumulate error between NTP and clock interval */
1060 	tk->ntp_error += ntp_tick_length() << shift;
1061 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1062 						(tk->ntp_error_shift + shift);
1063 
1064 	return offset;
1065 }
1066 
1067 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1068 static inline void old_vsyscall_fixup(struct timekeeper *tk)
1069 {
1070 	s64 remainder;
1071 
1072 	/*
1073 	* Store only full nanoseconds into xtime_nsec after rounding
1074 	* it up and add the remainder to the error difference.
1075 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1076 	* by truncating the remainder in vsyscalls. However, it causes
1077 	* additional work to be done in timekeeping_adjust(). Once
1078 	* the vsyscall implementations are converted to use xtime_nsec
1079 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1080 	* users are removed, this can be killed.
1081 	*/
1082 	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1083 	tk->xtime_nsec -= remainder;
1084 	tk->xtime_nsec += 1ULL << tk->shift;
1085 	tk->ntp_error += remainder << tk->ntp_error_shift;
1086 
1087 }
1088 #else
1089 #define old_vsyscall_fixup(tk)
1090 #endif
1091 
1092 
1093 
1094 /**
1095  * update_wall_time - Uses the current clocksource to increment the wall time
1096  *
1097  */
1098 static void update_wall_time(void)
1099 {
1100 	struct clocksource *clock;
1101 	struct timekeeper *tk = &timekeeper;
1102 	cycle_t offset;
1103 	int shift = 0, maxshift;
1104 	unsigned long flags;
1105 
1106 	write_seqlock_irqsave(&tk->lock, flags);
1107 
1108 	/* Make sure we're fully resumed: */
1109 	if (unlikely(timekeeping_suspended))
1110 		goto out;
1111 
1112 	clock = tk->clock;
1113 
1114 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1115 	offset = tk->cycle_interval;
1116 #else
1117 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1118 #endif
1119 
1120 	/* Check if there's really nothing to do */
1121 	if (offset < tk->cycle_interval)
1122 		goto out;
1123 
1124 	/*
1125 	 * With NO_HZ we may have to accumulate many cycle_intervals
1126 	 * (think "ticks") worth of time at once. To do this efficiently,
1127 	 * we calculate the largest doubling multiple of cycle_intervals
1128 	 * that is smaller than the offset.  We then accumulate that
1129 	 * chunk in one go, and then try to consume the next smaller
1130 	 * doubled multiple.
1131 	 */
1132 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1133 	shift = max(0, shift);
1134 	/* Bound shift to one less than what overflows tick_length */
1135 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1136 	shift = min(shift, maxshift);
1137 	while (offset >= tk->cycle_interval) {
1138 		offset = logarithmic_accumulation(tk, offset, shift);
1139 		if (offset < tk->cycle_interval<<shift)
1140 			shift--;
1141 	}
1142 
1143 	/* correct the clock when NTP error is too big */
1144 	timekeeping_adjust(tk, offset);
1145 
1146 	/*
1147 	 * XXX This can be killed once everyone converts
1148 	 * to the new update_vsyscall.
1149 	 */
1150 	old_vsyscall_fixup(tk);
1151 
1152 	/*
1153 	 * Finally, make sure that after the rounding
1154 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1155 	 */
1156 	accumulate_nsecs_to_secs(tk);
1157 
1158 	timekeeping_update(tk, false);
1159 
1160 out:
1161 	write_sequnlock_irqrestore(&tk->lock, flags);
1162 
1163 }
1164 
1165 /**
1166  * getboottime - Return the real time of system boot.
1167  * @ts:		pointer to the timespec to be set
1168  *
1169  * Returns the wall-time of boot in a timespec.
1170  *
1171  * This is based on the wall_to_monotonic offset and the total suspend
1172  * time. Calls to settimeofday will affect the value returned (which
1173  * basically means that however wrong your real time clock is at boot time,
1174  * you get the right time here).
1175  */
1176 void getboottime(struct timespec *ts)
1177 {
1178 	struct timekeeper *tk = &timekeeper;
1179 	struct timespec boottime = {
1180 		.tv_sec = tk->wall_to_monotonic.tv_sec +
1181 				tk->total_sleep_time.tv_sec,
1182 		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
1183 				tk->total_sleep_time.tv_nsec
1184 	};
1185 
1186 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1187 }
1188 EXPORT_SYMBOL_GPL(getboottime);
1189 
1190 /**
1191  * get_monotonic_boottime - Returns monotonic time since boot
1192  * @ts:		pointer to the timespec to be set
1193  *
1194  * Returns the monotonic time since boot in a timespec.
1195  *
1196  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1197  * includes the time spent in suspend.
1198  */
1199 void get_monotonic_boottime(struct timespec *ts)
1200 {
1201 	struct timekeeper *tk = &timekeeper;
1202 	struct timespec tomono, sleep;
1203 	s64 nsec;
1204 	unsigned int seq;
1205 
1206 	WARN_ON(timekeeping_suspended);
1207 
1208 	do {
1209 		seq = read_seqbegin(&tk->lock);
1210 		ts->tv_sec = tk->xtime_sec;
1211 		nsec = timekeeping_get_ns(tk);
1212 		tomono = tk->wall_to_monotonic;
1213 		sleep = tk->total_sleep_time;
1214 
1215 	} while (read_seqretry(&tk->lock, seq));
1216 
1217 	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1218 	ts->tv_nsec = 0;
1219 	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1220 }
1221 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1222 
1223 /**
1224  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1225  *
1226  * Returns the monotonic time since boot in a ktime
1227  *
1228  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1229  * includes the time spent in suspend.
1230  */
1231 ktime_t ktime_get_boottime(void)
1232 {
1233 	struct timespec ts;
1234 
1235 	get_monotonic_boottime(&ts);
1236 	return timespec_to_ktime(ts);
1237 }
1238 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1239 
1240 /**
1241  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1242  * @ts:		pointer to the timespec to be converted
1243  */
1244 void monotonic_to_bootbased(struct timespec *ts)
1245 {
1246 	struct timekeeper *tk = &timekeeper;
1247 
1248 	*ts = timespec_add(*ts, tk->total_sleep_time);
1249 }
1250 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1251 
1252 unsigned long get_seconds(void)
1253 {
1254 	struct timekeeper *tk = &timekeeper;
1255 
1256 	return tk->xtime_sec;
1257 }
1258 EXPORT_SYMBOL(get_seconds);
1259 
1260 struct timespec __current_kernel_time(void)
1261 {
1262 	struct timekeeper *tk = &timekeeper;
1263 
1264 	return tk_xtime(tk);
1265 }
1266 
1267 struct timespec current_kernel_time(void)
1268 {
1269 	struct timekeeper *tk = &timekeeper;
1270 	struct timespec now;
1271 	unsigned long seq;
1272 
1273 	do {
1274 		seq = read_seqbegin(&tk->lock);
1275 
1276 		now = tk_xtime(tk);
1277 	} while (read_seqretry(&tk->lock, seq));
1278 
1279 	return now;
1280 }
1281 EXPORT_SYMBOL(current_kernel_time);
1282 
1283 struct timespec get_monotonic_coarse(void)
1284 {
1285 	struct timekeeper *tk = &timekeeper;
1286 	struct timespec now, mono;
1287 	unsigned long seq;
1288 
1289 	do {
1290 		seq = read_seqbegin(&tk->lock);
1291 
1292 		now = tk_xtime(tk);
1293 		mono = tk->wall_to_monotonic;
1294 	} while (read_seqretry(&tk->lock, seq));
1295 
1296 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1297 				now.tv_nsec + mono.tv_nsec);
1298 	return now;
1299 }
1300 
1301 /*
1302  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1303  * without sampling the sequence number in xtime_lock.
1304  * jiffies is defined in the linker script...
1305  */
1306 void do_timer(unsigned long ticks)
1307 {
1308 	jiffies_64 += ticks;
1309 	update_wall_time();
1310 	calc_global_load(ticks);
1311 }
1312 
1313 /**
1314  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1315  *    and sleep offsets.
1316  * @xtim:	pointer to timespec to be set with xtime
1317  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1318  * @sleep:	pointer to timespec to be set with time in suspend
1319  */
1320 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1321 				struct timespec *wtom, struct timespec *sleep)
1322 {
1323 	struct timekeeper *tk = &timekeeper;
1324 	unsigned long seq;
1325 
1326 	do {
1327 		seq = read_seqbegin(&tk->lock);
1328 		*xtim = tk_xtime(tk);
1329 		*wtom = tk->wall_to_monotonic;
1330 		*sleep = tk->total_sleep_time;
1331 	} while (read_seqretry(&tk->lock, seq));
1332 }
1333 
1334 #ifdef CONFIG_HIGH_RES_TIMERS
1335 /**
1336  * ktime_get_update_offsets - hrtimer helper
1337  * @offs_real:	pointer to storage for monotonic -> realtime offset
1338  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1339  *
1340  * Returns current monotonic time and updates the offsets
1341  * Called from hrtimer_interupt() or retrigger_next_event()
1342  */
1343 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1344 {
1345 	struct timekeeper *tk = &timekeeper;
1346 	ktime_t now;
1347 	unsigned int seq;
1348 	u64 secs, nsecs;
1349 
1350 	do {
1351 		seq = read_seqbegin(&tk->lock);
1352 
1353 		secs = tk->xtime_sec;
1354 		nsecs = timekeeping_get_ns(tk);
1355 
1356 		*offs_real = tk->offs_real;
1357 		*offs_boot = tk->offs_boot;
1358 	} while (read_seqretry(&tk->lock, seq));
1359 
1360 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1361 	now = ktime_sub(now, *offs_real);
1362 	return now;
1363 }
1364 #endif
1365 
1366 /**
1367  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1368  */
1369 ktime_t ktime_get_monotonic_offset(void)
1370 {
1371 	struct timekeeper *tk = &timekeeper;
1372 	unsigned long seq;
1373 	struct timespec wtom;
1374 
1375 	do {
1376 		seq = read_seqbegin(&tk->lock);
1377 		wtom = tk->wall_to_monotonic;
1378 	} while (read_seqretry(&tk->lock, seq));
1379 
1380 	return timespec_to_ktime(wtom);
1381 }
1382 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1383 
1384 /**
1385  * xtime_update() - advances the timekeeping infrastructure
1386  * @ticks:	number of ticks, that have elapsed since the last call.
1387  *
1388  * Must be called with interrupts disabled.
1389  */
1390 void xtime_update(unsigned long ticks)
1391 {
1392 	write_seqlock(&xtime_lock);
1393 	do_timer(ticks);
1394 	write_sequnlock(&xtime_lock);
1395 }
1396