xref: /linux/kernel/time/timekeeping.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 
26 
27 static struct timekeeper timekeeper;
28 
29 /* flag for if timekeeping is suspended */
30 int __read_mostly timekeeping_suspended;
31 
32 /* Flag for if there is a persistent clock on this platform */
33 bool __read_mostly persistent_clock_exist = false;
34 
35 static inline void tk_normalize_xtime(struct timekeeper *tk)
36 {
37 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
38 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
39 		tk->xtime_sec++;
40 	}
41 }
42 
43 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
44 {
45 	tk->xtime_sec = ts->tv_sec;
46 	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
47 }
48 
49 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
50 {
51 	tk->xtime_sec += ts->tv_sec;
52 	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
53 	tk_normalize_xtime(tk);
54 }
55 
56 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
57 {
58 	struct timespec tmp;
59 
60 	/*
61 	 * Verify consistency of: offset_real = -wall_to_monotonic
62 	 * before modifying anything
63 	 */
64 	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
65 					-tk->wall_to_monotonic.tv_nsec);
66 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
67 	tk->wall_to_monotonic = wtm;
68 	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
69 	tk->offs_real = timespec_to_ktime(tmp);
70 }
71 
72 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
73 {
74 	/* Verify consistency before modifying */
75 	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
76 
77 	tk->total_sleep_time	= t;
78 	tk->offs_boot		= timespec_to_ktime(t);
79 }
80 
81 /**
82  * timekeeper_setup_internals - Set up internals to use clocksource clock.
83  *
84  * @clock:		Pointer to clocksource.
85  *
86  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
87  * pair and interval request.
88  *
89  * Unless you're the timekeeping code, you should not be using this!
90  */
91 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
92 {
93 	cycle_t interval;
94 	u64 tmp, ntpinterval;
95 	struct clocksource *old_clock;
96 
97 	old_clock = tk->clock;
98 	tk->clock = clock;
99 	clock->cycle_last = clock->read(clock);
100 
101 	/* Do the ns -> cycle conversion first, using original mult */
102 	tmp = NTP_INTERVAL_LENGTH;
103 	tmp <<= clock->shift;
104 	ntpinterval = tmp;
105 	tmp += clock->mult/2;
106 	do_div(tmp, clock->mult);
107 	if (tmp == 0)
108 		tmp = 1;
109 
110 	interval = (cycle_t) tmp;
111 	tk->cycle_interval = interval;
112 
113 	/* Go back from cycles -> shifted ns */
114 	tk->xtime_interval = (u64) interval * clock->mult;
115 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
116 	tk->raw_interval =
117 		((u64) interval * clock->mult) >> clock->shift;
118 
119 	 /* if changing clocks, convert xtime_nsec shift units */
120 	if (old_clock) {
121 		int shift_change = clock->shift - old_clock->shift;
122 		if (shift_change < 0)
123 			tk->xtime_nsec >>= -shift_change;
124 		else
125 			tk->xtime_nsec <<= shift_change;
126 	}
127 	tk->shift = clock->shift;
128 
129 	tk->ntp_error = 0;
130 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
131 
132 	/*
133 	 * The timekeeper keeps its own mult values for the currently
134 	 * active clocksource. These value will be adjusted via NTP
135 	 * to counteract clock drifting.
136 	 */
137 	tk->mult = clock->mult;
138 }
139 
140 /* Timekeeper helper functions. */
141 
142 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
143 u32 (*arch_gettimeoffset)(void);
144 
145 u32 get_arch_timeoffset(void)
146 {
147 	if (likely(arch_gettimeoffset))
148 		return arch_gettimeoffset();
149 	return 0;
150 }
151 #else
152 static inline u32 get_arch_timeoffset(void) { return 0; }
153 #endif
154 
155 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
156 {
157 	cycle_t cycle_now, cycle_delta;
158 	struct clocksource *clock;
159 	s64 nsec;
160 
161 	/* read clocksource: */
162 	clock = tk->clock;
163 	cycle_now = clock->read(clock);
164 
165 	/* calculate the delta since the last update_wall_time: */
166 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
167 
168 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
169 	nsec >>= tk->shift;
170 
171 	/* If arch requires, add in get_arch_timeoffset() */
172 	return nsec + get_arch_timeoffset();
173 }
174 
175 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
176 {
177 	cycle_t cycle_now, cycle_delta;
178 	struct clocksource *clock;
179 	s64 nsec;
180 
181 	/* read clocksource: */
182 	clock = tk->clock;
183 	cycle_now = clock->read(clock);
184 
185 	/* calculate the delta since the last update_wall_time: */
186 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
187 
188 	/* convert delta to nanoseconds. */
189 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
190 
191 	/* If arch requires, add in get_arch_timeoffset() */
192 	return nsec + get_arch_timeoffset();
193 }
194 
195 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
196 
197 static void update_pvclock_gtod(struct timekeeper *tk)
198 {
199 	raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
200 }
201 
202 /**
203  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
204  *
205  * Must hold write on timekeeper.lock
206  */
207 int pvclock_gtod_register_notifier(struct notifier_block *nb)
208 {
209 	struct timekeeper *tk = &timekeeper;
210 	unsigned long flags;
211 	int ret;
212 
213 	write_seqlock_irqsave(&tk->lock, flags);
214 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
215 	/* update timekeeping data */
216 	update_pvclock_gtod(tk);
217 	write_sequnlock_irqrestore(&tk->lock, flags);
218 
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
222 
223 /**
224  * pvclock_gtod_unregister_notifier - unregister a pvclock
225  * timedata update listener
226  *
227  * Must hold write on timekeeper.lock
228  */
229 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
230 {
231 	struct timekeeper *tk = &timekeeper;
232 	unsigned long flags;
233 	int ret;
234 
235 	write_seqlock_irqsave(&tk->lock, flags);
236 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
237 	write_sequnlock_irqrestore(&tk->lock, flags);
238 
239 	return ret;
240 }
241 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
242 
243 /* must hold write on timekeeper.lock */
244 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
245 {
246 	if (clearntp) {
247 		tk->ntp_error = 0;
248 		ntp_clear();
249 	}
250 	update_vsyscall(tk);
251 	update_pvclock_gtod(tk);
252 }
253 
254 /**
255  * timekeeping_forward_now - update clock to the current time
256  *
257  * Forward the current clock to update its state since the last call to
258  * update_wall_time(). This is useful before significant clock changes,
259  * as it avoids having to deal with this time offset explicitly.
260  */
261 static void timekeeping_forward_now(struct timekeeper *tk)
262 {
263 	cycle_t cycle_now, cycle_delta;
264 	struct clocksource *clock;
265 	s64 nsec;
266 
267 	clock = tk->clock;
268 	cycle_now = clock->read(clock);
269 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
270 	clock->cycle_last = cycle_now;
271 
272 	tk->xtime_nsec += cycle_delta * tk->mult;
273 
274 	/* If arch requires, add in get_arch_timeoffset() */
275 	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
276 
277 	tk_normalize_xtime(tk);
278 
279 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
280 	timespec_add_ns(&tk->raw_time, nsec);
281 }
282 
283 /**
284  * __getnstimeofday - Returns the time of day in a timespec.
285  * @ts:		pointer to the timespec to be set
286  *
287  * Updates the time of day in the timespec.
288  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
289  */
290 int __getnstimeofday(struct timespec *ts)
291 {
292 	struct timekeeper *tk = &timekeeper;
293 	unsigned long seq;
294 	s64 nsecs = 0;
295 
296 	do {
297 		seq = read_seqbegin(&tk->lock);
298 
299 		ts->tv_sec = tk->xtime_sec;
300 		nsecs = timekeeping_get_ns(tk);
301 
302 	} while (read_seqretry(&tk->lock, seq));
303 
304 	ts->tv_nsec = 0;
305 	timespec_add_ns(ts, nsecs);
306 
307 	/*
308 	 * Do not bail out early, in case there were callers still using
309 	 * the value, even in the face of the WARN_ON.
310 	 */
311 	if (unlikely(timekeeping_suspended))
312 		return -EAGAIN;
313 	return 0;
314 }
315 EXPORT_SYMBOL(__getnstimeofday);
316 
317 /**
318  * getnstimeofday - Returns the time of day in a timespec.
319  * @ts:		pointer to the timespec to be set
320  *
321  * Returns the time of day in a timespec (WARN if suspended).
322  */
323 void getnstimeofday(struct timespec *ts)
324 {
325 	WARN_ON(__getnstimeofday(ts));
326 }
327 EXPORT_SYMBOL(getnstimeofday);
328 
329 ktime_t ktime_get(void)
330 {
331 	struct timekeeper *tk = &timekeeper;
332 	unsigned int seq;
333 	s64 secs, nsecs;
334 
335 	WARN_ON(timekeeping_suspended);
336 
337 	do {
338 		seq = read_seqbegin(&tk->lock);
339 		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
340 		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
341 
342 	} while (read_seqretry(&tk->lock, seq));
343 	/*
344 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
345 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
346 	 */
347 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
348 }
349 EXPORT_SYMBOL_GPL(ktime_get);
350 
351 /**
352  * ktime_get_ts - get the monotonic clock in timespec format
353  * @ts:		pointer to timespec variable
354  *
355  * The function calculates the monotonic clock from the realtime
356  * clock and the wall_to_monotonic offset and stores the result
357  * in normalized timespec format in the variable pointed to by @ts.
358  */
359 void ktime_get_ts(struct timespec *ts)
360 {
361 	struct timekeeper *tk = &timekeeper;
362 	struct timespec tomono;
363 	s64 nsec;
364 	unsigned int seq;
365 
366 	WARN_ON(timekeeping_suspended);
367 
368 	do {
369 		seq = read_seqbegin(&tk->lock);
370 		ts->tv_sec = tk->xtime_sec;
371 		nsec = timekeeping_get_ns(tk);
372 		tomono = tk->wall_to_monotonic;
373 
374 	} while (read_seqretry(&tk->lock, seq));
375 
376 	ts->tv_sec += tomono.tv_sec;
377 	ts->tv_nsec = 0;
378 	timespec_add_ns(ts, nsec + tomono.tv_nsec);
379 }
380 EXPORT_SYMBOL_GPL(ktime_get_ts);
381 
382 #ifdef CONFIG_NTP_PPS
383 
384 /**
385  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
386  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
387  * @ts_real:	pointer to the timespec to be set to the time of day
388  *
389  * This function reads both the time of day and raw monotonic time at the
390  * same time atomically and stores the resulting timestamps in timespec
391  * format.
392  */
393 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
394 {
395 	struct timekeeper *tk = &timekeeper;
396 	unsigned long seq;
397 	s64 nsecs_raw, nsecs_real;
398 
399 	WARN_ON_ONCE(timekeeping_suspended);
400 
401 	do {
402 		seq = read_seqbegin(&tk->lock);
403 
404 		*ts_raw = tk->raw_time;
405 		ts_real->tv_sec = tk->xtime_sec;
406 		ts_real->tv_nsec = 0;
407 
408 		nsecs_raw = timekeeping_get_ns_raw(tk);
409 		nsecs_real = timekeeping_get_ns(tk);
410 
411 	} while (read_seqretry(&tk->lock, seq));
412 
413 	timespec_add_ns(ts_raw, nsecs_raw);
414 	timespec_add_ns(ts_real, nsecs_real);
415 }
416 EXPORT_SYMBOL(getnstime_raw_and_real);
417 
418 #endif /* CONFIG_NTP_PPS */
419 
420 /**
421  * do_gettimeofday - Returns the time of day in a timeval
422  * @tv:		pointer to the timeval to be set
423  *
424  * NOTE: Users should be converted to using getnstimeofday()
425  */
426 void do_gettimeofday(struct timeval *tv)
427 {
428 	struct timespec now;
429 
430 	getnstimeofday(&now);
431 	tv->tv_sec = now.tv_sec;
432 	tv->tv_usec = now.tv_nsec/1000;
433 }
434 EXPORT_SYMBOL(do_gettimeofday);
435 
436 /**
437  * do_settimeofday - Sets the time of day
438  * @tv:		pointer to the timespec variable containing the new time
439  *
440  * Sets the time of day to the new time and update NTP and notify hrtimers
441  */
442 int do_settimeofday(const struct timespec *tv)
443 {
444 	struct timekeeper *tk = &timekeeper;
445 	struct timespec ts_delta, xt;
446 	unsigned long flags;
447 
448 	if (!timespec_valid_strict(tv))
449 		return -EINVAL;
450 
451 	write_seqlock_irqsave(&tk->lock, flags);
452 
453 	timekeeping_forward_now(tk);
454 
455 	xt = tk_xtime(tk);
456 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
457 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
458 
459 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
460 
461 	tk_set_xtime(tk, tv);
462 
463 	timekeeping_update(tk, true);
464 
465 	write_sequnlock_irqrestore(&tk->lock, flags);
466 
467 	/* signal hrtimers about time change */
468 	clock_was_set();
469 
470 	return 0;
471 }
472 EXPORT_SYMBOL(do_settimeofday);
473 
474 /**
475  * timekeeping_inject_offset - Adds or subtracts from the current time.
476  * @tv:		pointer to the timespec variable containing the offset
477  *
478  * Adds or subtracts an offset value from the current time.
479  */
480 int timekeeping_inject_offset(struct timespec *ts)
481 {
482 	struct timekeeper *tk = &timekeeper;
483 	unsigned long flags;
484 	struct timespec tmp;
485 	int ret = 0;
486 
487 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
488 		return -EINVAL;
489 
490 	write_seqlock_irqsave(&tk->lock, flags);
491 
492 	timekeeping_forward_now(tk);
493 
494 	/* Make sure the proposed value is valid */
495 	tmp = timespec_add(tk_xtime(tk),  *ts);
496 	if (!timespec_valid_strict(&tmp)) {
497 		ret = -EINVAL;
498 		goto error;
499 	}
500 
501 	tk_xtime_add(tk, ts);
502 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
503 
504 error: /* even if we error out, we forwarded the time, so call update */
505 	timekeeping_update(tk, true);
506 
507 	write_sequnlock_irqrestore(&tk->lock, flags);
508 
509 	/* signal hrtimers about time change */
510 	clock_was_set();
511 
512 	return ret;
513 }
514 EXPORT_SYMBOL(timekeeping_inject_offset);
515 
516 /**
517  * change_clocksource - Swaps clocksources if a new one is available
518  *
519  * Accumulates current time interval and initializes new clocksource
520  */
521 static int change_clocksource(void *data)
522 {
523 	struct timekeeper *tk = &timekeeper;
524 	struct clocksource *new, *old;
525 	unsigned long flags;
526 
527 	new = (struct clocksource *) data;
528 
529 	write_seqlock_irqsave(&tk->lock, flags);
530 
531 	timekeeping_forward_now(tk);
532 	if (!new->enable || new->enable(new) == 0) {
533 		old = tk->clock;
534 		tk_setup_internals(tk, new);
535 		if (old->disable)
536 			old->disable(old);
537 	}
538 	timekeeping_update(tk, true);
539 
540 	write_sequnlock_irqrestore(&tk->lock, flags);
541 
542 	return 0;
543 }
544 
545 /**
546  * timekeeping_notify - Install a new clock source
547  * @clock:		pointer to the clock source
548  *
549  * This function is called from clocksource.c after a new, better clock
550  * source has been registered. The caller holds the clocksource_mutex.
551  */
552 void timekeeping_notify(struct clocksource *clock)
553 {
554 	struct timekeeper *tk = &timekeeper;
555 
556 	if (tk->clock == clock)
557 		return;
558 	stop_machine(change_clocksource, clock, NULL);
559 	tick_clock_notify();
560 }
561 
562 /**
563  * ktime_get_real - get the real (wall-) time in ktime_t format
564  *
565  * returns the time in ktime_t format
566  */
567 ktime_t ktime_get_real(void)
568 {
569 	struct timespec now;
570 
571 	getnstimeofday(&now);
572 
573 	return timespec_to_ktime(now);
574 }
575 EXPORT_SYMBOL_GPL(ktime_get_real);
576 
577 /**
578  * getrawmonotonic - Returns the raw monotonic time in a timespec
579  * @ts:		pointer to the timespec to be set
580  *
581  * Returns the raw monotonic time (completely un-modified by ntp)
582  */
583 void getrawmonotonic(struct timespec *ts)
584 {
585 	struct timekeeper *tk = &timekeeper;
586 	unsigned long seq;
587 	s64 nsecs;
588 
589 	do {
590 		seq = read_seqbegin(&tk->lock);
591 		nsecs = timekeeping_get_ns_raw(tk);
592 		*ts = tk->raw_time;
593 
594 	} while (read_seqretry(&tk->lock, seq));
595 
596 	timespec_add_ns(ts, nsecs);
597 }
598 EXPORT_SYMBOL(getrawmonotonic);
599 
600 /**
601  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
602  */
603 int timekeeping_valid_for_hres(void)
604 {
605 	struct timekeeper *tk = &timekeeper;
606 	unsigned long seq;
607 	int ret;
608 
609 	do {
610 		seq = read_seqbegin(&tk->lock);
611 
612 		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
613 
614 	} while (read_seqretry(&tk->lock, seq));
615 
616 	return ret;
617 }
618 
619 /**
620  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
621  */
622 u64 timekeeping_max_deferment(void)
623 {
624 	struct timekeeper *tk = &timekeeper;
625 	unsigned long seq;
626 	u64 ret;
627 
628 	do {
629 		seq = read_seqbegin(&tk->lock);
630 
631 		ret = tk->clock->max_idle_ns;
632 
633 	} while (read_seqretry(&tk->lock, seq));
634 
635 	return ret;
636 }
637 
638 /**
639  * read_persistent_clock -  Return time from the persistent clock.
640  *
641  * Weak dummy function for arches that do not yet support it.
642  * Reads the time from the battery backed persistent clock.
643  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
644  *
645  *  XXX - Do be sure to remove it once all arches implement it.
646  */
647 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
648 {
649 	ts->tv_sec = 0;
650 	ts->tv_nsec = 0;
651 }
652 
653 /**
654  * read_boot_clock -  Return time of the system start.
655  *
656  * Weak dummy function for arches that do not yet support it.
657  * Function to read the exact time the system has been started.
658  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
659  *
660  *  XXX - Do be sure to remove it once all arches implement it.
661  */
662 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
663 {
664 	ts->tv_sec = 0;
665 	ts->tv_nsec = 0;
666 }
667 
668 /*
669  * timekeeping_init - Initializes the clocksource and common timekeeping values
670  */
671 void __init timekeeping_init(void)
672 {
673 	struct timekeeper *tk = &timekeeper;
674 	struct clocksource *clock;
675 	unsigned long flags;
676 	struct timespec now, boot, tmp;
677 
678 	read_persistent_clock(&now);
679 
680 	if (!timespec_valid_strict(&now)) {
681 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
682 			"         Check your CMOS/BIOS settings.\n");
683 		now.tv_sec = 0;
684 		now.tv_nsec = 0;
685 	} else if (now.tv_sec || now.tv_nsec)
686 		persistent_clock_exist = true;
687 
688 	read_boot_clock(&boot);
689 	if (!timespec_valid_strict(&boot)) {
690 		pr_warn("WARNING: Boot clock returned invalid value!\n"
691 			"         Check your CMOS/BIOS settings.\n");
692 		boot.tv_sec = 0;
693 		boot.tv_nsec = 0;
694 	}
695 
696 	seqlock_init(&tk->lock);
697 
698 	ntp_init();
699 
700 	write_seqlock_irqsave(&tk->lock, flags);
701 	clock = clocksource_default_clock();
702 	if (clock->enable)
703 		clock->enable(clock);
704 	tk_setup_internals(tk, clock);
705 
706 	tk_set_xtime(tk, &now);
707 	tk->raw_time.tv_sec = 0;
708 	tk->raw_time.tv_nsec = 0;
709 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
710 		boot = tk_xtime(tk);
711 
712 	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
713 	tk_set_wall_to_mono(tk, tmp);
714 
715 	tmp.tv_sec = 0;
716 	tmp.tv_nsec = 0;
717 	tk_set_sleep_time(tk, tmp);
718 
719 	write_sequnlock_irqrestore(&tk->lock, flags);
720 }
721 
722 /* time in seconds when suspend began */
723 static struct timespec timekeeping_suspend_time;
724 
725 /**
726  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
727  * @delta: pointer to a timespec delta value
728  *
729  * Takes a timespec offset measuring a suspend interval and properly
730  * adds the sleep offset to the timekeeping variables.
731  */
732 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
733 							struct timespec *delta)
734 {
735 	if (!timespec_valid_strict(delta)) {
736 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
737 					"sleep delta value!\n");
738 		return;
739 	}
740 	tk_xtime_add(tk, delta);
741 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
742 	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
743 }
744 
745 /**
746  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
747  * @delta: pointer to a timespec delta value
748  *
749  * This hook is for architectures that cannot support read_persistent_clock
750  * because their RTC/persistent clock is only accessible when irqs are enabled.
751  *
752  * This function should only be called by rtc_resume(), and allows
753  * a suspend offset to be injected into the timekeeping values.
754  */
755 void timekeeping_inject_sleeptime(struct timespec *delta)
756 {
757 	struct timekeeper *tk = &timekeeper;
758 	unsigned long flags;
759 
760 	/*
761 	 * Make sure we don't set the clock twice, as timekeeping_resume()
762 	 * already did it
763 	 */
764 	if (has_persistent_clock())
765 		return;
766 
767 	write_seqlock_irqsave(&tk->lock, flags);
768 
769 	timekeeping_forward_now(tk);
770 
771 	__timekeeping_inject_sleeptime(tk, delta);
772 
773 	timekeeping_update(tk, true);
774 
775 	write_sequnlock_irqrestore(&tk->lock, flags);
776 
777 	/* signal hrtimers about time change */
778 	clock_was_set();
779 }
780 
781 /**
782  * timekeeping_resume - Resumes the generic timekeeping subsystem.
783  *
784  * This is for the generic clocksource timekeeping.
785  * xtime/wall_to_monotonic/jiffies/etc are
786  * still managed by arch specific suspend/resume code.
787  */
788 static void timekeeping_resume(void)
789 {
790 	struct timekeeper *tk = &timekeeper;
791 	unsigned long flags;
792 	struct timespec ts;
793 
794 	read_persistent_clock(&ts);
795 
796 	clockevents_resume();
797 	clocksource_resume();
798 
799 	write_seqlock_irqsave(&tk->lock, flags);
800 
801 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
802 		ts = timespec_sub(ts, timekeeping_suspend_time);
803 		__timekeeping_inject_sleeptime(tk, &ts);
804 	}
805 	/* re-base the last cycle value */
806 	tk->clock->cycle_last = tk->clock->read(tk->clock);
807 	tk->ntp_error = 0;
808 	timekeeping_suspended = 0;
809 	timekeeping_update(tk, false);
810 	write_sequnlock_irqrestore(&tk->lock, flags);
811 
812 	touch_softlockup_watchdog();
813 
814 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
815 
816 	/* Resume hrtimers */
817 	hrtimers_resume();
818 }
819 
820 static int timekeeping_suspend(void)
821 {
822 	struct timekeeper *tk = &timekeeper;
823 	unsigned long flags;
824 	struct timespec		delta, delta_delta;
825 	static struct timespec	old_delta;
826 
827 	read_persistent_clock(&timekeeping_suspend_time);
828 
829 	write_seqlock_irqsave(&tk->lock, flags);
830 	timekeeping_forward_now(tk);
831 	timekeeping_suspended = 1;
832 
833 	/*
834 	 * To avoid drift caused by repeated suspend/resumes,
835 	 * which each can add ~1 second drift error,
836 	 * try to compensate so the difference in system time
837 	 * and persistent_clock time stays close to constant.
838 	 */
839 	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
840 	delta_delta = timespec_sub(delta, old_delta);
841 	if (abs(delta_delta.tv_sec)  >= 2) {
842 		/*
843 		 * if delta_delta is too large, assume time correction
844 		 * has occured and set old_delta to the current delta.
845 		 */
846 		old_delta = delta;
847 	} else {
848 		/* Otherwise try to adjust old_system to compensate */
849 		timekeeping_suspend_time =
850 			timespec_add(timekeeping_suspend_time, delta_delta);
851 	}
852 	write_sequnlock_irqrestore(&tk->lock, flags);
853 
854 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
855 	clocksource_suspend();
856 	clockevents_suspend();
857 
858 	return 0;
859 }
860 
861 /* sysfs resume/suspend bits for timekeeping */
862 static struct syscore_ops timekeeping_syscore_ops = {
863 	.resume		= timekeeping_resume,
864 	.suspend	= timekeeping_suspend,
865 };
866 
867 static int __init timekeeping_init_ops(void)
868 {
869 	register_syscore_ops(&timekeeping_syscore_ops);
870 	return 0;
871 }
872 
873 device_initcall(timekeeping_init_ops);
874 
875 /*
876  * If the error is already larger, we look ahead even further
877  * to compensate for late or lost adjustments.
878  */
879 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
880 						 s64 error, s64 *interval,
881 						 s64 *offset)
882 {
883 	s64 tick_error, i;
884 	u32 look_ahead, adj;
885 	s32 error2, mult;
886 
887 	/*
888 	 * Use the current error value to determine how much to look ahead.
889 	 * The larger the error the slower we adjust for it to avoid problems
890 	 * with losing too many ticks, otherwise we would overadjust and
891 	 * produce an even larger error.  The smaller the adjustment the
892 	 * faster we try to adjust for it, as lost ticks can do less harm
893 	 * here.  This is tuned so that an error of about 1 msec is adjusted
894 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
895 	 */
896 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
897 	error2 = abs(error2);
898 	for (look_ahead = 0; error2 > 0; look_ahead++)
899 		error2 >>= 2;
900 
901 	/*
902 	 * Now calculate the error in (1 << look_ahead) ticks, but first
903 	 * remove the single look ahead already included in the error.
904 	 */
905 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
906 	tick_error -= tk->xtime_interval >> 1;
907 	error = ((error - tick_error) >> look_ahead) + tick_error;
908 
909 	/* Finally calculate the adjustment shift value.  */
910 	i = *interval;
911 	mult = 1;
912 	if (error < 0) {
913 		error = -error;
914 		*interval = -*interval;
915 		*offset = -*offset;
916 		mult = -1;
917 	}
918 	for (adj = 0; error > i; adj++)
919 		error >>= 1;
920 
921 	*interval <<= adj;
922 	*offset <<= adj;
923 	return mult << adj;
924 }
925 
926 /*
927  * Adjust the multiplier to reduce the error value,
928  * this is optimized for the most common adjustments of -1,0,1,
929  * for other values we can do a bit more work.
930  */
931 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
932 {
933 	s64 error, interval = tk->cycle_interval;
934 	int adj;
935 
936 	/*
937 	 * The point of this is to check if the error is greater than half
938 	 * an interval.
939 	 *
940 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
941 	 *
942 	 * Note we subtract one in the shift, so that error is really error*2.
943 	 * This "saves" dividing(shifting) interval twice, but keeps the
944 	 * (error > interval) comparison as still measuring if error is
945 	 * larger than half an interval.
946 	 *
947 	 * Note: It does not "save" on aggravation when reading the code.
948 	 */
949 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
950 	if (error > interval) {
951 		/*
952 		 * We now divide error by 4(via shift), which checks if
953 		 * the error is greater than twice the interval.
954 		 * If it is greater, we need a bigadjust, if its smaller,
955 		 * we can adjust by 1.
956 		 */
957 		error >>= 2;
958 		/*
959 		 * XXX - In update_wall_time, we round up to the next
960 		 * nanosecond, and store the amount rounded up into
961 		 * the error. This causes the likely below to be unlikely.
962 		 *
963 		 * The proper fix is to avoid rounding up by using
964 		 * the high precision tk->xtime_nsec instead of
965 		 * xtime.tv_nsec everywhere. Fixing this will take some
966 		 * time.
967 		 */
968 		if (likely(error <= interval))
969 			adj = 1;
970 		else
971 			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
972 	} else {
973 		if (error < -interval) {
974 			/* See comment above, this is just switched for the negative */
975 			error >>= 2;
976 			if (likely(error >= -interval)) {
977 				adj = -1;
978 				interval = -interval;
979 				offset = -offset;
980 			} else {
981 				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
982 			}
983 		} else {
984 			goto out_adjust;
985 		}
986 	}
987 
988 	if (unlikely(tk->clock->maxadj &&
989 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
990 		printk_once(KERN_WARNING
991 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
992 			tk->clock->name, (long)tk->mult + adj,
993 			(long)tk->clock->mult + tk->clock->maxadj);
994 	}
995 	/*
996 	 * So the following can be confusing.
997 	 *
998 	 * To keep things simple, lets assume adj == 1 for now.
999 	 *
1000 	 * When adj != 1, remember that the interval and offset values
1001 	 * have been appropriately scaled so the math is the same.
1002 	 *
1003 	 * The basic idea here is that we're increasing the multiplier
1004 	 * by one, this causes the xtime_interval to be incremented by
1005 	 * one cycle_interval. This is because:
1006 	 *	xtime_interval = cycle_interval * mult
1007 	 * So if mult is being incremented by one:
1008 	 *	xtime_interval = cycle_interval * (mult + 1)
1009 	 * Its the same as:
1010 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1011 	 * Which can be shortened to:
1012 	 *	xtime_interval += cycle_interval
1013 	 *
1014 	 * So offset stores the non-accumulated cycles. Thus the current
1015 	 * time (in shifted nanoseconds) is:
1016 	 *	now = (offset * adj) + xtime_nsec
1017 	 * Now, even though we're adjusting the clock frequency, we have
1018 	 * to keep time consistent. In other words, we can't jump back
1019 	 * in time, and we also want to avoid jumping forward in time.
1020 	 *
1021 	 * So given the same offset value, we need the time to be the same
1022 	 * both before and after the freq adjustment.
1023 	 *	now = (offset * adj_1) + xtime_nsec_1
1024 	 *	now = (offset * adj_2) + xtime_nsec_2
1025 	 * So:
1026 	 *	(offset * adj_1) + xtime_nsec_1 =
1027 	 *		(offset * adj_2) + xtime_nsec_2
1028 	 * And we know:
1029 	 *	adj_2 = adj_1 + 1
1030 	 * So:
1031 	 *	(offset * adj_1) + xtime_nsec_1 =
1032 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1033 	 *	(offset * adj_1) + xtime_nsec_1 =
1034 	 *		(offset * adj_1) + offset + xtime_nsec_2
1035 	 * Canceling the sides:
1036 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1037 	 * Which gives us:
1038 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1039 	 * Which simplfies to:
1040 	 *	xtime_nsec -= offset
1041 	 *
1042 	 * XXX - TODO: Doc ntp_error calculation.
1043 	 */
1044 	tk->mult += adj;
1045 	tk->xtime_interval += interval;
1046 	tk->xtime_nsec -= offset;
1047 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1048 
1049 out_adjust:
1050 	/*
1051 	 * It may be possible that when we entered this function, xtime_nsec
1052 	 * was very small.  Further, if we're slightly speeding the clocksource
1053 	 * in the code above, its possible the required corrective factor to
1054 	 * xtime_nsec could cause it to underflow.
1055 	 *
1056 	 * Now, since we already accumulated the second, cannot simply roll
1057 	 * the accumulated second back, since the NTP subsystem has been
1058 	 * notified via second_overflow. So instead we push xtime_nsec forward
1059 	 * by the amount we underflowed, and add that amount into the error.
1060 	 *
1061 	 * We'll correct this error next time through this function, when
1062 	 * xtime_nsec is not as small.
1063 	 */
1064 	if (unlikely((s64)tk->xtime_nsec < 0)) {
1065 		s64 neg = -(s64)tk->xtime_nsec;
1066 		tk->xtime_nsec = 0;
1067 		tk->ntp_error += neg << tk->ntp_error_shift;
1068 	}
1069 
1070 }
1071 
1072 /**
1073  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1074  *
1075  * Helper function that accumulates a the nsecs greater then a second
1076  * from the xtime_nsec field to the xtime_secs field.
1077  * It also calls into the NTP code to handle leapsecond processing.
1078  *
1079  */
1080 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1081 {
1082 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1083 
1084 	while (tk->xtime_nsec >= nsecps) {
1085 		int leap;
1086 
1087 		tk->xtime_nsec -= nsecps;
1088 		tk->xtime_sec++;
1089 
1090 		/* Figure out if its a leap sec and apply if needed */
1091 		leap = second_overflow(tk->xtime_sec);
1092 		if (unlikely(leap)) {
1093 			struct timespec ts;
1094 
1095 			tk->xtime_sec += leap;
1096 
1097 			ts.tv_sec = leap;
1098 			ts.tv_nsec = 0;
1099 			tk_set_wall_to_mono(tk,
1100 				timespec_sub(tk->wall_to_monotonic, ts));
1101 
1102 			clock_was_set_delayed();
1103 		}
1104 	}
1105 }
1106 
1107 /**
1108  * logarithmic_accumulation - shifted accumulation of cycles
1109  *
1110  * This functions accumulates a shifted interval of cycles into
1111  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1112  * loop.
1113  *
1114  * Returns the unconsumed cycles.
1115  */
1116 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1117 						u32 shift)
1118 {
1119 	u64 raw_nsecs;
1120 
1121 	/* If the offset is smaller then a shifted interval, do nothing */
1122 	if (offset < tk->cycle_interval<<shift)
1123 		return offset;
1124 
1125 	/* Accumulate one shifted interval */
1126 	offset -= tk->cycle_interval << shift;
1127 	tk->clock->cycle_last += tk->cycle_interval << shift;
1128 
1129 	tk->xtime_nsec += tk->xtime_interval << shift;
1130 	accumulate_nsecs_to_secs(tk);
1131 
1132 	/* Accumulate raw time */
1133 	raw_nsecs = (u64)tk->raw_interval << shift;
1134 	raw_nsecs += tk->raw_time.tv_nsec;
1135 	if (raw_nsecs >= NSEC_PER_SEC) {
1136 		u64 raw_secs = raw_nsecs;
1137 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1138 		tk->raw_time.tv_sec += raw_secs;
1139 	}
1140 	tk->raw_time.tv_nsec = raw_nsecs;
1141 
1142 	/* Accumulate error between NTP and clock interval */
1143 	tk->ntp_error += ntp_tick_length() << shift;
1144 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1145 						(tk->ntp_error_shift + shift);
1146 
1147 	return offset;
1148 }
1149 
1150 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1151 static inline void old_vsyscall_fixup(struct timekeeper *tk)
1152 {
1153 	s64 remainder;
1154 
1155 	/*
1156 	* Store only full nanoseconds into xtime_nsec after rounding
1157 	* it up and add the remainder to the error difference.
1158 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1159 	* by truncating the remainder in vsyscalls. However, it causes
1160 	* additional work to be done in timekeeping_adjust(). Once
1161 	* the vsyscall implementations are converted to use xtime_nsec
1162 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1163 	* users are removed, this can be killed.
1164 	*/
1165 	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1166 	tk->xtime_nsec -= remainder;
1167 	tk->xtime_nsec += 1ULL << tk->shift;
1168 	tk->ntp_error += remainder << tk->ntp_error_shift;
1169 
1170 }
1171 #else
1172 #define old_vsyscall_fixup(tk)
1173 #endif
1174 
1175 
1176 
1177 /**
1178  * update_wall_time - Uses the current clocksource to increment the wall time
1179  *
1180  */
1181 static void update_wall_time(void)
1182 {
1183 	struct clocksource *clock;
1184 	struct timekeeper *tk = &timekeeper;
1185 	cycle_t offset;
1186 	int shift = 0, maxshift;
1187 	unsigned long flags;
1188 
1189 	write_seqlock_irqsave(&tk->lock, flags);
1190 
1191 	/* Make sure we're fully resumed: */
1192 	if (unlikely(timekeeping_suspended))
1193 		goto out;
1194 
1195 	clock = tk->clock;
1196 
1197 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1198 	offset = tk->cycle_interval;
1199 #else
1200 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1201 #endif
1202 
1203 	/* Check if there's really nothing to do */
1204 	if (offset < tk->cycle_interval)
1205 		goto out;
1206 
1207 	/*
1208 	 * With NO_HZ we may have to accumulate many cycle_intervals
1209 	 * (think "ticks") worth of time at once. To do this efficiently,
1210 	 * we calculate the largest doubling multiple of cycle_intervals
1211 	 * that is smaller than the offset.  We then accumulate that
1212 	 * chunk in one go, and then try to consume the next smaller
1213 	 * doubled multiple.
1214 	 */
1215 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1216 	shift = max(0, shift);
1217 	/* Bound shift to one less than what overflows tick_length */
1218 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1219 	shift = min(shift, maxshift);
1220 	while (offset >= tk->cycle_interval) {
1221 		offset = logarithmic_accumulation(tk, offset, shift);
1222 		if (offset < tk->cycle_interval<<shift)
1223 			shift--;
1224 	}
1225 
1226 	/* correct the clock when NTP error is too big */
1227 	timekeeping_adjust(tk, offset);
1228 
1229 	/*
1230 	 * XXX This can be killed once everyone converts
1231 	 * to the new update_vsyscall.
1232 	 */
1233 	old_vsyscall_fixup(tk);
1234 
1235 	/*
1236 	 * Finally, make sure that after the rounding
1237 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1238 	 */
1239 	accumulate_nsecs_to_secs(tk);
1240 
1241 	timekeeping_update(tk, false);
1242 
1243 out:
1244 	write_sequnlock_irqrestore(&tk->lock, flags);
1245 
1246 }
1247 
1248 /**
1249  * getboottime - Return the real time of system boot.
1250  * @ts:		pointer to the timespec to be set
1251  *
1252  * Returns the wall-time of boot in a timespec.
1253  *
1254  * This is based on the wall_to_monotonic offset and the total suspend
1255  * time. Calls to settimeofday will affect the value returned (which
1256  * basically means that however wrong your real time clock is at boot time,
1257  * you get the right time here).
1258  */
1259 void getboottime(struct timespec *ts)
1260 {
1261 	struct timekeeper *tk = &timekeeper;
1262 	struct timespec boottime = {
1263 		.tv_sec = tk->wall_to_monotonic.tv_sec +
1264 				tk->total_sleep_time.tv_sec,
1265 		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
1266 				tk->total_sleep_time.tv_nsec
1267 	};
1268 
1269 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1270 }
1271 EXPORT_SYMBOL_GPL(getboottime);
1272 
1273 /**
1274  * get_monotonic_boottime - Returns monotonic time since boot
1275  * @ts:		pointer to the timespec to be set
1276  *
1277  * Returns the monotonic time since boot in a timespec.
1278  *
1279  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1280  * includes the time spent in suspend.
1281  */
1282 void get_monotonic_boottime(struct timespec *ts)
1283 {
1284 	struct timekeeper *tk = &timekeeper;
1285 	struct timespec tomono, sleep;
1286 	s64 nsec;
1287 	unsigned int seq;
1288 
1289 	WARN_ON(timekeeping_suspended);
1290 
1291 	do {
1292 		seq = read_seqbegin(&tk->lock);
1293 		ts->tv_sec = tk->xtime_sec;
1294 		nsec = timekeeping_get_ns(tk);
1295 		tomono = tk->wall_to_monotonic;
1296 		sleep = tk->total_sleep_time;
1297 
1298 	} while (read_seqretry(&tk->lock, seq));
1299 
1300 	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1301 	ts->tv_nsec = 0;
1302 	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1303 }
1304 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1305 
1306 /**
1307  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1308  *
1309  * Returns the monotonic time since boot in a ktime
1310  *
1311  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1312  * includes the time spent in suspend.
1313  */
1314 ktime_t ktime_get_boottime(void)
1315 {
1316 	struct timespec ts;
1317 
1318 	get_monotonic_boottime(&ts);
1319 	return timespec_to_ktime(ts);
1320 }
1321 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1322 
1323 /**
1324  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1325  * @ts:		pointer to the timespec to be converted
1326  */
1327 void monotonic_to_bootbased(struct timespec *ts)
1328 {
1329 	struct timekeeper *tk = &timekeeper;
1330 
1331 	*ts = timespec_add(*ts, tk->total_sleep_time);
1332 }
1333 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1334 
1335 unsigned long get_seconds(void)
1336 {
1337 	struct timekeeper *tk = &timekeeper;
1338 
1339 	return tk->xtime_sec;
1340 }
1341 EXPORT_SYMBOL(get_seconds);
1342 
1343 struct timespec __current_kernel_time(void)
1344 {
1345 	struct timekeeper *tk = &timekeeper;
1346 
1347 	return tk_xtime(tk);
1348 }
1349 
1350 struct timespec current_kernel_time(void)
1351 {
1352 	struct timekeeper *tk = &timekeeper;
1353 	struct timespec now;
1354 	unsigned long seq;
1355 
1356 	do {
1357 		seq = read_seqbegin(&tk->lock);
1358 
1359 		now = tk_xtime(tk);
1360 	} while (read_seqretry(&tk->lock, seq));
1361 
1362 	return now;
1363 }
1364 EXPORT_SYMBOL(current_kernel_time);
1365 
1366 struct timespec get_monotonic_coarse(void)
1367 {
1368 	struct timekeeper *tk = &timekeeper;
1369 	struct timespec now, mono;
1370 	unsigned long seq;
1371 
1372 	do {
1373 		seq = read_seqbegin(&tk->lock);
1374 
1375 		now = tk_xtime(tk);
1376 		mono = tk->wall_to_monotonic;
1377 	} while (read_seqretry(&tk->lock, seq));
1378 
1379 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1380 				now.tv_nsec + mono.tv_nsec);
1381 	return now;
1382 }
1383 
1384 /*
1385  * Must hold jiffies_lock
1386  */
1387 void do_timer(unsigned long ticks)
1388 {
1389 	jiffies_64 += ticks;
1390 	update_wall_time();
1391 	calc_global_load(ticks);
1392 }
1393 
1394 /**
1395  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1396  *    and sleep offsets.
1397  * @xtim:	pointer to timespec to be set with xtime
1398  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1399  * @sleep:	pointer to timespec to be set with time in suspend
1400  */
1401 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1402 				struct timespec *wtom, struct timespec *sleep)
1403 {
1404 	struct timekeeper *tk = &timekeeper;
1405 	unsigned long seq;
1406 
1407 	do {
1408 		seq = read_seqbegin(&tk->lock);
1409 		*xtim = tk_xtime(tk);
1410 		*wtom = tk->wall_to_monotonic;
1411 		*sleep = tk->total_sleep_time;
1412 	} while (read_seqretry(&tk->lock, seq));
1413 }
1414 
1415 #ifdef CONFIG_HIGH_RES_TIMERS
1416 /**
1417  * ktime_get_update_offsets - hrtimer helper
1418  * @offs_real:	pointer to storage for monotonic -> realtime offset
1419  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1420  *
1421  * Returns current monotonic time and updates the offsets
1422  * Called from hrtimer_interupt() or retrigger_next_event()
1423  */
1424 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1425 {
1426 	struct timekeeper *tk = &timekeeper;
1427 	ktime_t now;
1428 	unsigned int seq;
1429 	u64 secs, nsecs;
1430 
1431 	do {
1432 		seq = read_seqbegin(&tk->lock);
1433 
1434 		secs = tk->xtime_sec;
1435 		nsecs = timekeeping_get_ns(tk);
1436 
1437 		*offs_real = tk->offs_real;
1438 		*offs_boot = tk->offs_boot;
1439 	} while (read_seqretry(&tk->lock, seq));
1440 
1441 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1442 	now = ktime_sub(now, *offs_real);
1443 	return now;
1444 }
1445 #endif
1446 
1447 /**
1448  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1449  */
1450 ktime_t ktime_get_monotonic_offset(void)
1451 {
1452 	struct timekeeper *tk = &timekeeper;
1453 	unsigned long seq;
1454 	struct timespec wtom;
1455 
1456 	do {
1457 		seq = read_seqbegin(&tk->lock);
1458 		wtom = tk->wall_to_monotonic;
1459 	} while (read_seqretry(&tk->lock, seq));
1460 
1461 	return timespec_to_ktime(wtom);
1462 }
1463 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1464 
1465 /**
1466  * xtime_update() - advances the timekeeping infrastructure
1467  * @ticks:	number of ticks, that have elapsed since the last call.
1468  *
1469  * Must be called with interrupts disabled.
1470  */
1471 void xtime_update(unsigned long ticks)
1472 {
1473 	write_seqlock(&jiffies_lock);
1474 	do_timer(ticks);
1475 	write_sequnlock(&jiffies_lock);
1476 }
1477