1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 26 27 static struct timekeeper timekeeper; 28 29 /* flag for if timekeeping is suspended */ 30 int __read_mostly timekeeping_suspended; 31 32 /* Flag for if there is a persistent clock on this platform */ 33 bool __read_mostly persistent_clock_exist = false; 34 35 static inline void tk_normalize_xtime(struct timekeeper *tk) 36 { 37 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) { 38 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift; 39 tk->xtime_sec++; 40 } 41 } 42 43 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts) 44 { 45 tk->xtime_sec = ts->tv_sec; 46 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift; 47 } 48 49 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts) 50 { 51 tk->xtime_sec += ts->tv_sec; 52 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift; 53 tk_normalize_xtime(tk); 54 } 55 56 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm) 57 { 58 struct timespec tmp; 59 60 /* 61 * Verify consistency of: offset_real = -wall_to_monotonic 62 * before modifying anything 63 */ 64 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec, 65 -tk->wall_to_monotonic.tv_nsec); 66 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64); 67 tk->wall_to_monotonic = wtm; 68 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 69 tk->offs_real = timespec_to_ktime(tmp); 70 } 71 72 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t) 73 { 74 /* Verify consistency before modifying */ 75 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64); 76 77 tk->total_sleep_time = t; 78 tk->offs_boot = timespec_to_ktime(t); 79 } 80 81 /** 82 * timekeeper_setup_internals - Set up internals to use clocksource clock. 83 * 84 * @clock: Pointer to clocksource. 85 * 86 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 87 * pair and interval request. 88 * 89 * Unless you're the timekeeping code, you should not be using this! 90 */ 91 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 92 { 93 cycle_t interval; 94 u64 tmp, ntpinterval; 95 struct clocksource *old_clock; 96 97 old_clock = tk->clock; 98 tk->clock = clock; 99 clock->cycle_last = clock->read(clock); 100 101 /* Do the ns -> cycle conversion first, using original mult */ 102 tmp = NTP_INTERVAL_LENGTH; 103 tmp <<= clock->shift; 104 ntpinterval = tmp; 105 tmp += clock->mult/2; 106 do_div(tmp, clock->mult); 107 if (tmp == 0) 108 tmp = 1; 109 110 interval = (cycle_t) tmp; 111 tk->cycle_interval = interval; 112 113 /* Go back from cycles -> shifted ns */ 114 tk->xtime_interval = (u64) interval * clock->mult; 115 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 116 tk->raw_interval = 117 ((u64) interval * clock->mult) >> clock->shift; 118 119 /* if changing clocks, convert xtime_nsec shift units */ 120 if (old_clock) { 121 int shift_change = clock->shift - old_clock->shift; 122 if (shift_change < 0) 123 tk->xtime_nsec >>= -shift_change; 124 else 125 tk->xtime_nsec <<= shift_change; 126 } 127 tk->shift = clock->shift; 128 129 tk->ntp_error = 0; 130 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 131 132 /* 133 * The timekeeper keeps its own mult values for the currently 134 * active clocksource. These value will be adjusted via NTP 135 * to counteract clock drifting. 136 */ 137 tk->mult = clock->mult; 138 } 139 140 /* Timekeeper helper functions. */ 141 142 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 143 u32 (*arch_gettimeoffset)(void); 144 145 u32 get_arch_timeoffset(void) 146 { 147 if (likely(arch_gettimeoffset)) 148 return arch_gettimeoffset(); 149 return 0; 150 } 151 #else 152 static inline u32 get_arch_timeoffset(void) { return 0; } 153 #endif 154 155 static inline s64 timekeeping_get_ns(struct timekeeper *tk) 156 { 157 cycle_t cycle_now, cycle_delta; 158 struct clocksource *clock; 159 s64 nsec; 160 161 /* read clocksource: */ 162 clock = tk->clock; 163 cycle_now = clock->read(clock); 164 165 /* calculate the delta since the last update_wall_time: */ 166 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 167 168 nsec = cycle_delta * tk->mult + tk->xtime_nsec; 169 nsec >>= tk->shift; 170 171 /* If arch requires, add in get_arch_timeoffset() */ 172 return nsec + get_arch_timeoffset(); 173 } 174 175 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 176 { 177 cycle_t cycle_now, cycle_delta; 178 struct clocksource *clock; 179 s64 nsec; 180 181 /* read clocksource: */ 182 clock = tk->clock; 183 cycle_now = clock->read(clock); 184 185 /* calculate the delta since the last update_wall_time: */ 186 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 187 188 /* convert delta to nanoseconds. */ 189 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 190 191 /* If arch requires, add in get_arch_timeoffset() */ 192 return nsec + get_arch_timeoffset(); 193 } 194 195 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 196 197 static void update_pvclock_gtod(struct timekeeper *tk) 198 { 199 raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk); 200 } 201 202 /** 203 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 204 * 205 * Must hold write on timekeeper.lock 206 */ 207 int pvclock_gtod_register_notifier(struct notifier_block *nb) 208 { 209 struct timekeeper *tk = &timekeeper; 210 unsigned long flags; 211 int ret; 212 213 write_seqlock_irqsave(&tk->lock, flags); 214 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 215 /* update timekeeping data */ 216 update_pvclock_gtod(tk); 217 write_sequnlock_irqrestore(&tk->lock, flags); 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 222 223 /** 224 * pvclock_gtod_unregister_notifier - unregister a pvclock 225 * timedata update listener 226 * 227 * Must hold write on timekeeper.lock 228 */ 229 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 230 { 231 struct timekeeper *tk = &timekeeper; 232 unsigned long flags; 233 int ret; 234 235 write_seqlock_irqsave(&tk->lock, flags); 236 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 237 write_sequnlock_irqrestore(&tk->lock, flags); 238 239 return ret; 240 } 241 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 242 243 /* must hold write on timekeeper.lock */ 244 static void timekeeping_update(struct timekeeper *tk, bool clearntp) 245 { 246 if (clearntp) { 247 tk->ntp_error = 0; 248 ntp_clear(); 249 } 250 update_vsyscall(tk); 251 update_pvclock_gtod(tk); 252 } 253 254 /** 255 * timekeeping_forward_now - update clock to the current time 256 * 257 * Forward the current clock to update its state since the last call to 258 * update_wall_time(). This is useful before significant clock changes, 259 * as it avoids having to deal with this time offset explicitly. 260 */ 261 static void timekeeping_forward_now(struct timekeeper *tk) 262 { 263 cycle_t cycle_now, cycle_delta; 264 struct clocksource *clock; 265 s64 nsec; 266 267 clock = tk->clock; 268 cycle_now = clock->read(clock); 269 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 270 clock->cycle_last = cycle_now; 271 272 tk->xtime_nsec += cycle_delta * tk->mult; 273 274 /* If arch requires, add in get_arch_timeoffset() */ 275 tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift; 276 277 tk_normalize_xtime(tk); 278 279 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 280 timespec_add_ns(&tk->raw_time, nsec); 281 } 282 283 /** 284 * __getnstimeofday - Returns the time of day in a timespec. 285 * @ts: pointer to the timespec to be set 286 * 287 * Updates the time of day in the timespec. 288 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 289 */ 290 int __getnstimeofday(struct timespec *ts) 291 { 292 struct timekeeper *tk = &timekeeper; 293 unsigned long seq; 294 s64 nsecs = 0; 295 296 do { 297 seq = read_seqbegin(&tk->lock); 298 299 ts->tv_sec = tk->xtime_sec; 300 nsecs = timekeeping_get_ns(tk); 301 302 } while (read_seqretry(&tk->lock, seq)); 303 304 ts->tv_nsec = 0; 305 timespec_add_ns(ts, nsecs); 306 307 /* 308 * Do not bail out early, in case there were callers still using 309 * the value, even in the face of the WARN_ON. 310 */ 311 if (unlikely(timekeeping_suspended)) 312 return -EAGAIN; 313 return 0; 314 } 315 EXPORT_SYMBOL(__getnstimeofday); 316 317 /** 318 * getnstimeofday - Returns the time of day in a timespec. 319 * @ts: pointer to the timespec to be set 320 * 321 * Returns the time of day in a timespec (WARN if suspended). 322 */ 323 void getnstimeofday(struct timespec *ts) 324 { 325 WARN_ON(__getnstimeofday(ts)); 326 } 327 EXPORT_SYMBOL(getnstimeofday); 328 329 ktime_t ktime_get(void) 330 { 331 struct timekeeper *tk = &timekeeper; 332 unsigned int seq; 333 s64 secs, nsecs; 334 335 WARN_ON(timekeeping_suspended); 336 337 do { 338 seq = read_seqbegin(&tk->lock); 339 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 340 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec; 341 342 } while (read_seqretry(&tk->lock, seq)); 343 /* 344 * Use ktime_set/ktime_add_ns to create a proper ktime on 345 * 32-bit architectures without CONFIG_KTIME_SCALAR. 346 */ 347 return ktime_add_ns(ktime_set(secs, 0), nsecs); 348 } 349 EXPORT_SYMBOL_GPL(ktime_get); 350 351 /** 352 * ktime_get_ts - get the monotonic clock in timespec format 353 * @ts: pointer to timespec variable 354 * 355 * The function calculates the monotonic clock from the realtime 356 * clock and the wall_to_monotonic offset and stores the result 357 * in normalized timespec format in the variable pointed to by @ts. 358 */ 359 void ktime_get_ts(struct timespec *ts) 360 { 361 struct timekeeper *tk = &timekeeper; 362 struct timespec tomono; 363 s64 nsec; 364 unsigned int seq; 365 366 WARN_ON(timekeeping_suspended); 367 368 do { 369 seq = read_seqbegin(&tk->lock); 370 ts->tv_sec = tk->xtime_sec; 371 nsec = timekeeping_get_ns(tk); 372 tomono = tk->wall_to_monotonic; 373 374 } while (read_seqretry(&tk->lock, seq)); 375 376 ts->tv_sec += tomono.tv_sec; 377 ts->tv_nsec = 0; 378 timespec_add_ns(ts, nsec + tomono.tv_nsec); 379 } 380 EXPORT_SYMBOL_GPL(ktime_get_ts); 381 382 #ifdef CONFIG_NTP_PPS 383 384 /** 385 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 386 * @ts_raw: pointer to the timespec to be set to raw monotonic time 387 * @ts_real: pointer to the timespec to be set to the time of day 388 * 389 * This function reads both the time of day and raw monotonic time at the 390 * same time atomically and stores the resulting timestamps in timespec 391 * format. 392 */ 393 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 394 { 395 struct timekeeper *tk = &timekeeper; 396 unsigned long seq; 397 s64 nsecs_raw, nsecs_real; 398 399 WARN_ON_ONCE(timekeeping_suspended); 400 401 do { 402 seq = read_seqbegin(&tk->lock); 403 404 *ts_raw = tk->raw_time; 405 ts_real->tv_sec = tk->xtime_sec; 406 ts_real->tv_nsec = 0; 407 408 nsecs_raw = timekeeping_get_ns_raw(tk); 409 nsecs_real = timekeeping_get_ns(tk); 410 411 } while (read_seqretry(&tk->lock, seq)); 412 413 timespec_add_ns(ts_raw, nsecs_raw); 414 timespec_add_ns(ts_real, nsecs_real); 415 } 416 EXPORT_SYMBOL(getnstime_raw_and_real); 417 418 #endif /* CONFIG_NTP_PPS */ 419 420 /** 421 * do_gettimeofday - Returns the time of day in a timeval 422 * @tv: pointer to the timeval to be set 423 * 424 * NOTE: Users should be converted to using getnstimeofday() 425 */ 426 void do_gettimeofday(struct timeval *tv) 427 { 428 struct timespec now; 429 430 getnstimeofday(&now); 431 tv->tv_sec = now.tv_sec; 432 tv->tv_usec = now.tv_nsec/1000; 433 } 434 EXPORT_SYMBOL(do_gettimeofday); 435 436 /** 437 * do_settimeofday - Sets the time of day 438 * @tv: pointer to the timespec variable containing the new time 439 * 440 * Sets the time of day to the new time and update NTP and notify hrtimers 441 */ 442 int do_settimeofday(const struct timespec *tv) 443 { 444 struct timekeeper *tk = &timekeeper; 445 struct timespec ts_delta, xt; 446 unsigned long flags; 447 448 if (!timespec_valid_strict(tv)) 449 return -EINVAL; 450 451 write_seqlock_irqsave(&tk->lock, flags); 452 453 timekeeping_forward_now(tk); 454 455 xt = tk_xtime(tk); 456 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 457 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 458 459 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta)); 460 461 tk_set_xtime(tk, tv); 462 463 timekeeping_update(tk, true); 464 465 write_sequnlock_irqrestore(&tk->lock, flags); 466 467 /* signal hrtimers about time change */ 468 clock_was_set(); 469 470 return 0; 471 } 472 EXPORT_SYMBOL(do_settimeofday); 473 474 /** 475 * timekeeping_inject_offset - Adds or subtracts from the current time. 476 * @tv: pointer to the timespec variable containing the offset 477 * 478 * Adds or subtracts an offset value from the current time. 479 */ 480 int timekeeping_inject_offset(struct timespec *ts) 481 { 482 struct timekeeper *tk = &timekeeper; 483 unsigned long flags; 484 struct timespec tmp; 485 int ret = 0; 486 487 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 488 return -EINVAL; 489 490 write_seqlock_irqsave(&tk->lock, flags); 491 492 timekeeping_forward_now(tk); 493 494 /* Make sure the proposed value is valid */ 495 tmp = timespec_add(tk_xtime(tk), *ts); 496 if (!timespec_valid_strict(&tmp)) { 497 ret = -EINVAL; 498 goto error; 499 } 500 501 tk_xtime_add(tk, ts); 502 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts)); 503 504 error: /* even if we error out, we forwarded the time, so call update */ 505 timekeeping_update(tk, true); 506 507 write_sequnlock_irqrestore(&tk->lock, flags); 508 509 /* signal hrtimers about time change */ 510 clock_was_set(); 511 512 return ret; 513 } 514 EXPORT_SYMBOL(timekeeping_inject_offset); 515 516 /** 517 * change_clocksource - Swaps clocksources if a new one is available 518 * 519 * Accumulates current time interval and initializes new clocksource 520 */ 521 static int change_clocksource(void *data) 522 { 523 struct timekeeper *tk = &timekeeper; 524 struct clocksource *new, *old; 525 unsigned long flags; 526 527 new = (struct clocksource *) data; 528 529 write_seqlock_irqsave(&tk->lock, flags); 530 531 timekeeping_forward_now(tk); 532 if (!new->enable || new->enable(new) == 0) { 533 old = tk->clock; 534 tk_setup_internals(tk, new); 535 if (old->disable) 536 old->disable(old); 537 } 538 timekeeping_update(tk, true); 539 540 write_sequnlock_irqrestore(&tk->lock, flags); 541 542 return 0; 543 } 544 545 /** 546 * timekeeping_notify - Install a new clock source 547 * @clock: pointer to the clock source 548 * 549 * This function is called from clocksource.c after a new, better clock 550 * source has been registered. The caller holds the clocksource_mutex. 551 */ 552 void timekeeping_notify(struct clocksource *clock) 553 { 554 struct timekeeper *tk = &timekeeper; 555 556 if (tk->clock == clock) 557 return; 558 stop_machine(change_clocksource, clock, NULL); 559 tick_clock_notify(); 560 } 561 562 /** 563 * ktime_get_real - get the real (wall-) time in ktime_t format 564 * 565 * returns the time in ktime_t format 566 */ 567 ktime_t ktime_get_real(void) 568 { 569 struct timespec now; 570 571 getnstimeofday(&now); 572 573 return timespec_to_ktime(now); 574 } 575 EXPORT_SYMBOL_GPL(ktime_get_real); 576 577 /** 578 * getrawmonotonic - Returns the raw monotonic time in a timespec 579 * @ts: pointer to the timespec to be set 580 * 581 * Returns the raw monotonic time (completely un-modified by ntp) 582 */ 583 void getrawmonotonic(struct timespec *ts) 584 { 585 struct timekeeper *tk = &timekeeper; 586 unsigned long seq; 587 s64 nsecs; 588 589 do { 590 seq = read_seqbegin(&tk->lock); 591 nsecs = timekeeping_get_ns_raw(tk); 592 *ts = tk->raw_time; 593 594 } while (read_seqretry(&tk->lock, seq)); 595 596 timespec_add_ns(ts, nsecs); 597 } 598 EXPORT_SYMBOL(getrawmonotonic); 599 600 /** 601 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 602 */ 603 int timekeeping_valid_for_hres(void) 604 { 605 struct timekeeper *tk = &timekeeper; 606 unsigned long seq; 607 int ret; 608 609 do { 610 seq = read_seqbegin(&tk->lock); 611 612 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 613 614 } while (read_seqretry(&tk->lock, seq)); 615 616 return ret; 617 } 618 619 /** 620 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 621 */ 622 u64 timekeeping_max_deferment(void) 623 { 624 struct timekeeper *tk = &timekeeper; 625 unsigned long seq; 626 u64 ret; 627 628 do { 629 seq = read_seqbegin(&tk->lock); 630 631 ret = tk->clock->max_idle_ns; 632 633 } while (read_seqretry(&tk->lock, seq)); 634 635 return ret; 636 } 637 638 /** 639 * read_persistent_clock - Return time from the persistent clock. 640 * 641 * Weak dummy function for arches that do not yet support it. 642 * Reads the time from the battery backed persistent clock. 643 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 644 * 645 * XXX - Do be sure to remove it once all arches implement it. 646 */ 647 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 648 { 649 ts->tv_sec = 0; 650 ts->tv_nsec = 0; 651 } 652 653 /** 654 * read_boot_clock - Return time of the system start. 655 * 656 * Weak dummy function for arches that do not yet support it. 657 * Function to read the exact time the system has been started. 658 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 659 * 660 * XXX - Do be sure to remove it once all arches implement it. 661 */ 662 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 663 { 664 ts->tv_sec = 0; 665 ts->tv_nsec = 0; 666 } 667 668 /* 669 * timekeeping_init - Initializes the clocksource and common timekeeping values 670 */ 671 void __init timekeeping_init(void) 672 { 673 struct timekeeper *tk = &timekeeper; 674 struct clocksource *clock; 675 unsigned long flags; 676 struct timespec now, boot, tmp; 677 678 read_persistent_clock(&now); 679 680 if (!timespec_valid_strict(&now)) { 681 pr_warn("WARNING: Persistent clock returned invalid value!\n" 682 " Check your CMOS/BIOS settings.\n"); 683 now.tv_sec = 0; 684 now.tv_nsec = 0; 685 } else if (now.tv_sec || now.tv_nsec) 686 persistent_clock_exist = true; 687 688 read_boot_clock(&boot); 689 if (!timespec_valid_strict(&boot)) { 690 pr_warn("WARNING: Boot clock returned invalid value!\n" 691 " Check your CMOS/BIOS settings.\n"); 692 boot.tv_sec = 0; 693 boot.tv_nsec = 0; 694 } 695 696 seqlock_init(&tk->lock); 697 698 ntp_init(); 699 700 write_seqlock_irqsave(&tk->lock, flags); 701 clock = clocksource_default_clock(); 702 if (clock->enable) 703 clock->enable(clock); 704 tk_setup_internals(tk, clock); 705 706 tk_set_xtime(tk, &now); 707 tk->raw_time.tv_sec = 0; 708 tk->raw_time.tv_nsec = 0; 709 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 710 boot = tk_xtime(tk); 711 712 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec); 713 tk_set_wall_to_mono(tk, tmp); 714 715 tmp.tv_sec = 0; 716 tmp.tv_nsec = 0; 717 tk_set_sleep_time(tk, tmp); 718 719 write_sequnlock_irqrestore(&tk->lock, flags); 720 } 721 722 /* time in seconds when suspend began */ 723 static struct timespec timekeeping_suspend_time; 724 725 /** 726 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 727 * @delta: pointer to a timespec delta value 728 * 729 * Takes a timespec offset measuring a suspend interval and properly 730 * adds the sleep offset to the timekeeping variables. 731 */ 732 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 733 struct timespec *delta) 734 { 735 if (!timespec_valid_strict(delta)) { 736 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 737 "sleep delta value!\n"); 738 return; 739 } 740 tk_xtime_add(tk, delta); 741 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta)); 742 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta)); 743 } 744 745 /** 746 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 747 * @delta: pointer to a timespec delta value 748 * 749 * This hook is for architectures that cannot support read_persistent_clock 750 * because their RTC/persistent clock is only accessible when irqs are enabled. 751 * 752 * This function should only be called by rtc_resume(), and allows 753 * a suspend offset to be injected into the timekeeping values. 754 */ 755 void timekeeping_inject_sleeptime(struct timespec *delta) 756 { 757 struct timekeeper *tk = &timekeeper; 758 unsigned long flags; 759 760 /* 761 * Make sure we don't set the clock twice, as timekeeping_resume() 762 * already did it 763 */ 764 if (has_persistent_clock()) 765 return; 766 767 write_seqlock_irqsave(&tk->lock, flags); 768 769 timekeeping_forward_now(tk); 770 771 __timekeeping_inject_sleeptime(tk, delta); 772 773 timekeeping_update(tk, true); 774 775 write_sequnlock_irqrestore(&tk->lock, flags); 776 777 /* signal hrtimers about time change */ 778 clock_was_set(); 779 } 780 781 /** 782 * timekeeping_resume - Resumes the generic timekeeping subsystem. 783 * 784 * This is for the generic clocksource timekeeping. 785 * xtime/wall_to_monotonic/jiffies/etc are 786 * still managed by arch specific suspend/resume code. 787 */ 788 static void timekeeping_resume(void) 789 { 790 struct timekeeper *tk = &timekeeper; 791 unsigned long flags; 792 struct timespec ts; 793 794 read_persistent_clock(&ts); 795 796 clockevents_resume(); 797 clocksource_resume(); 798 799 write_seqlock_irqsave(&tk->lock, flags); 800 801 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 802 ts = timespec_sub(ts, timekeeping_suspend_time); 803 __timekeeping_inject_sleeptime(tk, &ts); 804 } 805 /* re-base the last cycle value */ 806 tk->clock->cycle_last = tk->clock->read(tk->clock); 807 tk->ntp_error = 0; 808 timekeeping_suspended = 0; 809 timekeeping_update(tk, false); 810 write_sequnlock_irqrestore(&tk->lock, flags); 811 812 touch_softlockup_watchdog(); 813 814 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 815 816 /* Resume hrtimers */ 817 hrtimers_resume(); 818 } 819 820 static int timekeeping_suspend(void) 821 { 822 struct timekeeper *tk = &timekeeper; 823 unsigned long flags; 824 struct timespec delta, delta_delta; 825 static struct timespec old_delta; 826 827 read_persistent_clock(&timekeeping_suspend_time); 828 829 write_seqlock_irqsave(&tk->lock, flags); 830 timekeeping_forward_now(tk); 831 timekeeping_suspended = 1; 832 833 /* 834 * To avoid drift caused by repeated suspend/resumes, 835 * which each can add ~1 second drift error, 836 * try to compensate so the difference in system time 837 * and persistent_clock time stays close to constant. 838 */ 839 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time); 840 delta_delta = timespec_sub(delta, old_delta); 841 if (abs(delta_delta.tv_sec) >= 2) { 842 /* 843 * if delta_delta is too large, assume time correction 844 * has occured and set old_delta to the current delta. 845 */ 846 old_delta = delta; 847 } else { 848 /* Otherwise try to adjust old_system to compensate */ 849 timekeeping_suspend_time = 850 timespec_add(timekeeping_suspend_time, delta_delta); 851 } 852 write_sequnlock_irqrestore(&tk->lock, flags); 853 854 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 855 clocksource_suspend(); 856 clockevents_suspend(); 857 858 return 0; 859 } 860 861 /* sysfs resume/suspend bits for timekeeping */ 862 static struct syscore_ops timekeeping_syscore_ops = { 863 .resume = timekeeping_resume, 864 .suspend = timekeeping_suspend, 865 }; 866 867 static int __init timekeeping_init_ops(void) 868 { 869 register_syscore_ops(&timekeeping_syscore_ops); 870 return 0; 871 } 872 873 device_initcall(timekeeping_init_ops); 874 875 /* 876 * If the error is already larger, we look ahead even further 877 * to compensate for late or lost adjustments. 878 */ 879 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk, 880 s64 error, s64 *interval, 881 s64 *offset) 882 { 883 s64 tick_error, i; 884 u32 look_ahead, adj; 885 s32 error2, mult; 886 887 /* 888 * Use the current error value to determine how much to look ahead. 889 * The larger the error the slower we adjust for it to avoid problems 890 * with losing too many ticks, otherwise we would overadjust and 891 * produce an even larger error. The smaller the adjustment the 892 * faster we try to adjust for it, as lost ticks can do less harm 893 * here. This is tuned so that an error of about 1 msec is adjusted 894 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 895 */ 896 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 897 error2 = abs(error2); 898 for (look_ahead = 0; error2 > 0; look_ahead++) 899 error2 >>= 2; 900 901 /* 902 * Now calculate the error in (1 << look_ahead) ticks, but first 903 * remove the single look ahead already included in the error. 904 */ 905 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1); 906 tick_error -= tk->xtime_interval >> 1; 907 error = ((error - tick_error) >> look_ahead) + tick_error; 908 909 /* Finally calculate the adjustment shift value. */ 910 i = *interval; 911 mult = 1; 912 if (error < 0) { 913 error = -error; 914 *interval = -*interval; 915 *offset = -*offset; 916 mult = -1; 917 } 918 for (adj = 0; error > i; adj++) 919 error >>= 1; 920 921 *interval <<= adj; 922 *offset <<= adj; 923 return mult << adj; 924 } 925 926 /* 927 * Adjust the multiplier to reduce the error value, 928 * this is optimized for the most common adjustments of -1,0,1, 929 * for other values we can do a bit more work. 930 */ 931 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 932 { 933 s64 error, interval = tk->cycle_interval; 934 int adj; 935 936 /* 937 * The point of this is to check if the error is greater than half 938 * an interval. 939 * 940 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 941 * 942 * Note we subtract one in the shift, so that error is really error*2. 943 * This "saves" dividing(shifting) interval twice, but keeps the 944 * (error > interval) comparison as still measuring if error is 945 * larger than half an interval. 946 * 947 * Note: It does not "save" on aggravation when reading the code. 948 */ 949 error = tk->ntp_error >> (tk->ntp_error_shift - 1); 950 if (error > interval) { 951 /* 952 * We now divide error by 4(via shift), which checks if 953 * the error is greater than twice the interval. 954 * If it is greater, we need a bigadjust, if its smaller, 955 * we can adjust by 1. 956 */ 957 error >>= 2; 958 /* 959 * XXX - In update_wall_time, we round up to the next 960 * nanosecond, and store the amount rounded up into 961 * the error. This causes the likely below to be unlikely. 962 * 963 * The proper fix is to avoid rounding up by using 964 * the high precision tk->xtime_nsec instead of 965 * xtime.tv_nsec everywhere. Fixing this will take some 966 * time. 967 */ 968 if (likely(error <= interval)) 969 adj = 1; 970 else 971 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 972 } else { 973 if (error < -interval) { 974 /* See comment above, this is just switched for the negative */ 975 error >>= 2; 976 if (likely(error >= -interval)) { 977 adj = -1; 978 interval = -interval; 979 offset = -offset; 980 } else { 981 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 982 } 983 } else { 984 goto out_adjust; 985 } 986 } 987 988 if (unlikely(tk->clock->maxadj && 989 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) { 990 printk_once(KERN_WARNING 991 "Adjusting %s more than 11%% (%ld vs %ld)\n", 992 tk->clock->name, (long)tk->mult + adj, 993 (long)tk->clock->mult + tk->clock->maxadj); 994 } 995 /* 996 * So the following can be confusing. 997 * 998 * To keep things simple, lets assume adj == 1 for now. 999 * 1000 * When adj != 1, remember that the interval and offset values 1001 * have been appropriately scaled so the math is the same. 1002 * 1003 * The basic idea here is that we're increasing the multiplier 1004 * by one, this causes the xtime_interval to be incremented by 1005 * one cycle_interval. This is because: 1006 * xtime_interval = cycle_interval * mult 1007 * So if mult is being incremented by one: 1008 * xtime_interval = cycle_interval * (mult + 1) 1009 * Its the same as: 1010 * xtime_interval = (cycle_interval * mult) + cycle_interval 1011 * Which can be shortened to: 1012 * xtime_interval += cycle_interval 1013 * 1014 * So offset stores the non-accumulated cycles. Thus the current 1015 * time (in shifted nanoseconds) is: 1016 * now = (offset * adj) + xtime_nsec 1017 * Now, even though we're adjusting the clock frequency, we have 1018 * to keep time consistent. In other words, we can't jump back 1019 * in time, and we also want to avoid jumping forward in time. 1020 * 1021 * So given the same offset value, we need the time to be the same 1022 * both before and after the freq adjustment. 1023 * now = (offset * adj_1) + xtime_nsec_1 1024 * now = (offset * adj_2) + xtime_nsec_2 1025 * So: 1026 * (offset * adj_1) + xtime_nsec_1 = 1027 * (offset * adj_2) + xtime_nsec_2 1028 * And we know: 1029 * adj_2 = adj_1 + 1 1030 * So: 1031 * (offset * adj_1) + xtime_nsec_1 = 1032 * (offset * (adj_1+1)) + xtime_nsec_2 1033 * (offset * adj_1) + xtime_nsec_1 = 1034 * (offset * adj_1) + offset + xtime_nsec_2 1035 * Canceling the sides: 1036 * xtime_nsec_1 = offset + xtime_nsec_2 1037 * Which gives us: 1038 * xtime_nsec_2 = xtime_nsec_1 - offset 1039 * Which simplfies to: 1040 * xtime_nsec -= offset 1041 * 1042 * XXX - TODO: Doc ntp_error calculation. 1043 */ 1044 tk->mult += adj; 1045 tk->xtime_interval += interval; 1046 tk->xtime_nsec -= offset; 1047 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1048 1049 out_adjust: 1050 /* 1051 * It may be possible that when we entered this function, xtime_nsec 1052 * was very small. Further, if we're slightly speeding the clocksource 1053 * in the code above, its possible the required corrective factor to 1054 * xtime_nsec could cause it to underflow. 1055 * 1056 * Now, since we already accumulated the second, cannot simply roll 1057 * the accumulated second back, since the NTP subsystem has been 1058 * notified via second_overflow. So instead we push xtime_nsec forward 1059 * by the amount we underflowed, and add that amount into the error. 1060 * 1061 * We'll correct this error next time through this function, when 1062 * xtime_nsec is not as small. 1063 */ 1064 if (unlikely((s64)tk->xtime_nsec < 0)) { 1065 s64 neg = -(s64)tk->xtime_nsec; 1066 tk->xtime_nsec = 0; 1067 tk->ntp_error += neg << tk->ntp_error_shift; 1068 } 1069 1070 } 1071 1072 /** 1073 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1074 * 1075 * Helper function that accumulates a the nsecs greater then a second 1076 * from the xtime_nsec field to the xtime_secs field. 1077 * It also calls into the NTP code to handle leapsecond processing. 1078 * 1079 */ 1080 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk) 1081 { 1082 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift; 1083 1084 while (tk->xtime_nsec >= nsecps) { 1085 int leap; 1086 1087 tk->xtime_nsec -= nsecps; 1088 tk->xtime_sec++; 1089 1090 /* Figure out if its a leap sec and apply if needed */ 1091 leap = second_overflow(tk->xtime_sec); 1092 if (unlikely(leap)) { 1093 struct timespec ts; 1094 1095 tk->xtime_sec += leap; 1096 1097 ts.tv_sec = leap; 1098 ts.tv_nsec = 0; 1099 tk_set_wall_to_mono(tk, 1100 timespec_sub(tk->wall_to_monotonic, ts)); 1101 1102 clock_was_set_delayed(); 1103 } 1104 } 1105 } 1106 1107 /** 1108 * logarithmic_accumulation - shifted accumulation of cycles 1109 * 1110 * This functions accumulates a shifted interval of cycles into 1111 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1112 * loop. 1113 * 1114 * Returns the unconsumed cycles. 1115 */ 1116 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1117 u32 shift) 1118 { 1119 u64 raw_nsecs; 1120 1121 /* If the offset is smaller then a shifted interval, do nothing */ 1122 if (offset < tk->cycle_interval<<shift) 1123 return offset; 1124 1125 /* Accumulate one shifted interval */ 1126 offset -= tk->cycle_interval << shift; 1127 tk->clock->cycle_last += tk->cycle_interval << shift; 1128 1129 tk->xtime_nsec += tk->xtime_interval << shift; 1130 accumulate_nsecs_to_secs(tk); 1131 1132 /* Accumulate raw time */ 1133 raw_nsecs = (u64)tk->raw_interval << shift; 1134 raw_nsecs += tk->raw_time.tv_nsec; 1135 if (raw_nsecs >= NSEC_PER_SEC) { 1136 u64 raw_secs = raw_nsecs; 1137 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1138 tk->raw_time.tv_sec += raw_secs; 1139 } 1140 tk->raw_time.tv_nsec = raw_nsecs; 1141 1142 /* Accumulate error between NTP and clock interval */ 1143 tk->ntp_error += ntp_tick_length() << shift; 1144 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1145 (tk->ntp_error_shift + shift); 1146 1147 return offset; 1148 } 1149 1150 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 1151 static inline void old_vsyscall_fixup(struct timekeeper *tk) 1152 { 1153 s64 remainder; 1154 1155 /* 1156 * Store only full nanoseconds into xtime_nsec after rounding 1157 * it up and add the remainder to the error difference. 1158 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 1159 * by truncating the remainder in vsyscalls. However, it causes 1160 * additional work to be done in timekeeping_adjust(). Once 1161 * the vsyscall implementations are converted to use xtime_nsec 1162 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 1163 * users are removed, this can be killed. 1164 */ 1165 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1); 1166 tk->xtime_nsec -= remainder; 1167 tk->xtime_nsec += 1ULL << tk->shift; 1168 tk->ntp_error += remainder << tk->ntp_error_shift; 1169 1170 } 1171 #else 1172 #define old_vsyscall_fixup(tk) 1173 #endif 1174 1175 1176 1177 /** 1178 * update_wall_time - Uses the current clocksource to increment the wall time 1179 * 1180 */ 1181 static void update_wall_time(void) 1182 { 1183 struct clocksource *clock; 1184 struct timekeeper *tk = &timekeeper; 1185 cycle_t offset; 1186 int shift = 0, maxshift; 1187 unsigned long flags; 1188 1189 write_seqlock_irqsave(&tk->lock, flags); 1190 1191 /* Make sure we're fully resumed: */ 1192 if (unlikely(timekeeping_suspended)) 1193 goto out; 1194 1195 clock = tk->clock; 1196 1197 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1198 offset = tk->cycle_interval; 1199 #else 1200 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1201 #endif 1202 1203 /* Check if there's really nothing to do */ 1204 if (offset < tk->cycle_interval) 1205 goto out; 1206 1207 /* 1208 * With NO_HZ we may have to accumulate many cycle_intervals 1209 * (think "ticks") worth of time at once. To do this efficiently, 1210 * we calculate the largest doubling multiple of cycle_intervals 1211 * that is smaller than the offset. We then accumulate that 1212 * chunk in one go, and then try to consume the next smaller 1213 * doubled multiple. 1214 */ 1215 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1216 shift = max(0, shift); 1217 /* Bound shift to one less than what overflows tick_length */ 1218 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1219 shift = min(shift, maxshift); 1220 while (offset >= tk->cycle_interval) { 1221 offset = logarithmic_accumulation(tk, offset, shift); 1222 if (offset < tk->cycle_interval<<shift) 1223 shift--; 1224 } 1225 1226 /* correct the clock when NTP error is too big */ 1227 timekeeping_adjust(tk, offset); 1228 1229 /* 1230 * XXX This can be killed once everyone converts 1231 * to the new update_vsyscall. 1232 */ 1233 old_vsyscall_fixup(tk); 1234 1235 /* 1236 * Finally, make sure that after the rounding 1237 * xtime_nsec isn't larger than NSEC_PER_SEC 1238 */ 1239 accumulate_nsecs_to_secs(tk); 1240 1241 timekeeping_update(tk, false); 1242 1243 out: 1244 write_sequnlock_irqrestore(&tk->lock, flags); 1245 1246 } 1247 1248 /** 1249 * getboottime - Return the real time of system boot. 1250 * @ts: pointer to the timespec to be set 1251 * 1252 * Returns the wall-time of boot in a timespec. 1253 * 1254 * This is based on the wall_to_monotonic offset and the total suspend 1255 * time. Calls to settimeofday will affect the value returned (which 1256 * basically means that however wrong your real time clock is at boot time, 1257 * you get the right time here). 1258 */ 1259 void getboottime(struct timespec *ts) 1260 { 1261 struct timekeeper *tk = &timekeeper; 1262 struct timespec boottime = { 1263 .tv_sec = tk->wall_to_monotonic.tv_sec + 1264 tk->total_sleep_time.tv_sec, 1265 .tv_nsec = tk->wall_to_monotonic.tv_nsec + 1266 tk->total_sleep_time.tv_nsec 1267 }; 1268 1269 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1270 } 1271 EXPORT_SYMBOL_GPL(getboottime); 1272 1273 /** 1274 * get_monotonic_boottime - Returns monotonic time since boot 1275 * @ts: pointer to the timespec to be set 1276 * 1277 * Returns the monotonic time since boot in a timespec. 1278 * 1279 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1280 * includes the time spent in suspend. 1281 */ 1282 void get_monotonic_boottime(struct timespec *ts) 1283 { 1284 struct timekeeper *tk = &timekeeper; 1285 struct timespec tomono, sleep; 1286 s64 nsec; 1287 unsigned int seq; 1288 1289 WARN_ON(timekeeping_suspended); 1290 1291 do { 1292 seq = read_seqbegin(&tk->lock); 1293 ts->tv_sec = tk->xtime_sec; 1294 nsec = timekeeping_get_ns(tk); 1295 tomono = tk->wall_to_monotonic; 1296 sleep = tk->total_sleep_time; 1297 1298 } while (read_seqretry(&tk->lock, seq)); 1299 1300 ts->tv_sec += tomono.tv_sec + sleep.tv_sec; 1301 ts->tv_nsec = 0; 1302 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec); 1303 } 1304 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1305 1306 /** 1307 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1308 * 1309 * Returns the monotonic time since boot in a ktime 1310 * 1311 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1312 * includes the time spent in suspend. 1313 */ 1314 ktime_t ktime_get_boottime(void) 1315 { 1316 struct timespec ts; 1317 1318 get_monotonic_boottime(&ts); 1319 return timespec_to_ktime(ts); 1320 } 1321 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1322 1323 /** 1324 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1325 * @ts: pointer to the timespec to be converted 1326 */ 1327 void monotonic_to_bootbased(struct timespec *ts) 1328 { 1329 struct timekeeper *tk = &timekeeper; 1330 1331 *ts = timespec_add(*ts, tk->total_sleep_time); 1332 } 1333 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1334 1335 unsigned long get_seconds(void) 1336 { 1337 struct timekeeper *tk = &timekeeper; 1338 1339 return tk->xtime_sec; 1340 } 1341 EXPORT_SYMBOL(get_seconds); 1342 1343 struct timespec __current_kernel_time(void) 1344 { 1345 struct timekeeper *tk = &timekeeper; 1346 1347 return tk_xtime(tk); 1348 } 1349 1350 struct timespec current_kernel_time(void) 1351 { 1352 struct timekeeper *tk = &timekeeper; 1353 struct timespec now; 1354 unsigned long seq; 1355 1356 do { 1357 seq = read_seqbegin(&tk->lock); 1358 1359 now = tk_xtime(tk); 1360 } while (read_seqretry(&tk->lock, seq)); 1361 1362 return now; 1363 } 1364 EXPORT_SYMBOL(current_kernel_time); 1365 1366 struct timespec get_monotonic_coarse(void) 1367 { 1368 struct timekeeper *tk = &timekeeper; 1369 struct timespec now, mono; 1370 unsigned long seq; 1371 1372 do { 1373 seq = read_seqbegin(&tk->lock); 1374 1375 now = tk_xtime(tk); 1376 mono = tk->wall_to_monotonic; 1377 } while (read_seqretry(&tk->lock, seq)); 1378 1379 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1380 now.tv_nsec + mono.tv_nsec); 1381 return now; 1382 } 1383 1384 /* 1385 * Must hold jiffies_lock 1386 */ 1387 void do_timer(unsigned long ticks) 1388 { 1389 jiffies_64 += ticks; 1390 update_wall_time(); 1391 calc_global_load(ticks); 1392 } 1393 1394 /** 1395 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1396 * and sleep offsets. 1397 * @xtim: pointer to timespec to be set with xtime 1398 * @wtom: pointer to timespec to be set with wall_to_monotonic 1399 * @sleep: pointer to timespec to be set with time in suspend 1400 */ 1401 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1402 struct timespec *wtom, struct timespec *sleep) 1403 { 1404 struct timekeeper *tk = &timekeeper; 1405 unsigned long seq; 1406 1407 do { 1408 seq = read_seqbegin(&tk->lock); 1409 *xtim = tk_xtime(tk); 1410 *wtom = tk->wall_to_monotonic; 1411 *sleep = tk->total_sleep_time; 1412 } while (read_seqretry(&tk->lock, seq)); 1413 } 1414 1415 #ifdef CONFIG_HIGH_RES_TIMERS 1416 /** 1417 * ktime_get_update_offsets - hrtimer helper 1418 * @offs_real: pointer to storage for monotonic -> realtime offset 1419 * @offs_boot: pointer to storage for monotonic -> boottime offset 1420 * 1421 * Returns current monotonic time and updates the offsets 1422 * Called from hrtimer_interupt() or retrigger_next_event() 1423 */ 1424 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot) 1425 { 1426 struct timekeeper *tk = &timekeeper; 1427 ktime_t now; 1428 unsigned int seq; 1429 u64 secs, nsecs; 1430 1431 do { 1432 seq = read_seqbegin(&tk->lock); 1433 1434 secs = tk->xtime_sec; 1435 nsecs = timekeeping_get_ns(tk); 1436 1437 *offs_real = tk->offs_real; 1438 *offs_boot = tk->offs_boot; 1439 } while (read_seqretry(&tk->lock, seq)); 1440 1441 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1442 now = ktime_sub(now, *offs_real); 1443 return now; 1444 } 1445 #endif 1446 1447 /** 1448 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1449 */ 1450 ktime_t ktime_get_monotonic_offset(void) 1451 { 1452 struct timekeeper *tk = &timekeeper; 1453 unsigned long seq; 1454 struct timespec wtom; 1455 1456 do { 1457 seq = read_seqbegin(&tk->lock); 1458 wtom = tk->wall_to_monotonic; 1459 } while (read_seqretry(&tk->lock, seq)); 1460 1461 return timespec_to_ktime(wtom); 1462 } 1463 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1464 1465 /** 1466 * xtime_update() - advances the timekeeping infrastructure 1467 * @ticks: number of ticks, that have elapsed since the last call. 1468 * 1469 * Must be called with interrupts disabled. 1470 */ 1471 void xtime_update(unsigned long ticks) 1472 { 1473 write_seqlock(&jiffies_lock); 1474 do_timer(ticks); 1475 write_sequnlock(&jiffies_lock); 1476 } 1477