1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 enum timekeeping_adv_mode { 36 /* Update timekeeper when a tick has passed */ 37 TK_ADV_TICK, 38 39 /* Update timekeeper on a direct frequency change */ 40 TK_ADV_FREQ 41 }; 42 43 DEFINE_RAW_SPINLOCK(timekeeper_lock); 44 45 /* 46 * The most important data for readout fits into a single 64 byte 47 * cache line. 48 */ 49 static struct { 50 seqcount_raw_spinlock_t seq; 51 struct timekeeper timekeeper; 52 } tk_core ____cacheline_aligned = { 53 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 54 }; 55 56 static struct timekeeper shadow_timekeeper; 57 58 /* flag for if timekeeping is suspended */ 59 int __read_mostly timekeeping_suspended; 60 61 /** 62 * struct tk_fast - NMI safe timekeeper 63 * @seq: Sequence counter for protecting updates. The lowest bit 64 * is the index for the tk_read_base array 65 * @base: tk_read_base array. Access is indexed by the lowest bit of 66 * @seq. 67 * 68 * See @update_fast_timekeeper() below. 69 */ 70 struct tk_fast { 71 seqcount_latch_t seq; 72 struct tk_read_base base[2]; 73 }; 74 75 /* Suspend-time cycles value for halted fast timekeeper. */ 76 static u64 cycles_at_suspend; 77 78 static u64 dummy_clock_read(struct clocksource *cs) 79 { 80 if (timekeeping_suspended) 81 return cycles_at_suspend; 82 return local_clock(); 83 } 84 85 static struct clocksource dummy_clock = { 86 .read = dummy_clock_read, 87 }; 88 89 /* 90 * Boot time initialization which allows local_clock() to be utilized 91 * during early boot when clocksources are not available. local_clock() 92 * returns nanoseconds already so no conversion is required, hence mult=1 93 * and shift=0. When the first proper clocksource is installed then 94 * the fast time keepers are updated with the correct values. 95 */ 96 #define FAST_TK_INIT \ 97 { \ 98 .clock = &dummy_clock, \ 99 .mask = CLOCKSOURCE_MASK(64), \ 100 .mult = 1, \ 101 .shift = 0, \ 102 } 103 104 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 106 .base[0] = FAST_TK_INIT, 107 .base[1] = FAST_TK_INIT, 108 }; 109 110 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 112 .base[0] = FAST_TK_INIT, 113 .base[1] = FAST_TK_INIT, 114 }; 115 116 static inline void tk_normalize_xtime(struct timekeeper *tk) 117 { 118 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 119 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 120 tk->xtime_sec++; 121 } 122 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 123 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 124 tk->raw_sec++; 125 } 126 } 127 128 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 129 { 130 struct timespec64 ts; 131 132 ts.tv_sec = tk->xtime_sec; 133 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 134 return ts; 135 } 136 137 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 138 { 139 tk->xtime_sec = ts->tv_sec; 140 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 141 } 142 143 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 144 { 145 tk->xtime_sec += ts->tv_sec; 146 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 147 tk_normalize_xtime(tk); 148 } 149 150 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 151 { 152 struct timespec64 tmp; 153 154 /* 155 * Verify consistency of: offset_real = -wall_to_monotonic 156 * before modifying anything 157 */ 158 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 159 -tk->wall_to_monotonic.tv_nsec); 160 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 161 tk->wall_to_monotonic = wtm; 162 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 163 tk->offs_real = timespec64_to_ktime(tmp); 164 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 165 } 166 167 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 168 { 169 tk->offs_boot = ktime_add(tk->offs_boot, delta); 170 /* 171 * Timespec representation for VDSO update to avoid 64bit division 172 * on every update. 173 */ 174 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 175 } 176 177 /* 178 * tk_clock_read - atomic clocksource read() helper 179 * 180 * This helper is necessary to use in the read paths because, while the 181 * seqcount ensures we don't return a bad value while structures are updated, 182 * it doesn't protect from potential crashes. There is the possibility that 183 * the tkr's clocksource may change between the read reference, and the 184 * clock reference passed to the read function. This can cause crashes if 185 * the wrong clocksource is passed to the wrong read function. 186 * This isn't necessary to use when holding the timekeeper_lock or doing 187 * a read of the fast-timekeeper tkrs (which is protected by its own locking 188 * and update logic). 189 */ 190 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 191 { 192 struct clocksource *clock = READ_ONCE(tkr->clock); 193 194 return clock->read(clock); 195 } 196 197 #ifdef CONFIG_DEBUG_TIMEKEEPING 198 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 199 200 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 201 { 202 203 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 204 const char *name = tk->tkr_mono.clock->name; 205 206 if (offset > max_cycles) { 207 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 208 offset, name, max_cycles); 209 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 210 } else { 211 if (offset > (max_cycles >> 1)) { 212 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 213 offset, name, max_cycles >> 1); 214 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 215 } 216 } 217 218 if (tk->underflow_seen) { 219 if (jiffies - tk->last_warning > WARNING_FREQ) { 220 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 221 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 222 printk_deferred(" Your kernel is probably still fine.\n"); 223 tk->last_warning = jiffies; 224 } 225 tk->underflow_seen = 0; 226 } 227 228 if (tk->overflow_seen) { 229 if (jiffies - tk->last_warning > WARNING_FREQ) { 230 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 231 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 232 printk_deferred(" Your kernel is probably still fine.\n"); 233 tk->last_warning = jiffies; 234 } 235 tk->overflow_seen = 0; 236 } 237 } 238 239 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 240 { 241 struct timekeeper *tk = &tk_core.timekeeper; 242 u64 now, last, mask, max, delta; 243 unsigned int seq; 244 245 /* 246 * Since we're called holding a seqcount, the data may shift 247 * under us while we're doing the calculation. This can cause 248 * false positives, since we'd note a problem but throw the 249 * results away. So nest another seqcount here to atomically 250 * grab the points we are checking with. 251 */ 252 do { 253 seq = read_seqcount_begin(&tk_core.seq); 254 now = tk_clock_read(tkr); 255 last = tkr->cycle_last; 256 mask = tkr->mask; 257 max = tkr->clock->max_cycles; 258 } while (read_seqcount_retry(&tk_core.seq, seq)); 259 260 delta = clocksource_delta(now, last, mask); 261 262 /* 263 * Try to catch underflows by checking if we are seeing small 264 * mask-relative negative values. 265 */ 266 if (unlikely((~delta & mask) < (mask >> 3))) { 267 tk->underflow_seen = 1; 268 delta = 0; 269 } 270 271 /* Cap delta value to the max_cycles values to avoid mult overflows */ 272 if (unlikely(delta > max)) { 273 tk->overflow_seen = 1; 274 delta = tkr->clock->max_cycles; 275 } 276 277 return delta; 278 } 279 #else 280 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 281 { 282 } 283 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 284 { 285 u64 cycle_now, delta; 286 287 /* read clocksource */ 288 cycle_now = tk_clock_read(tkr); 289 290 /* calculate the delta since the last update_wall_time */ 291 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 292 293 return delta; 294 } 295 #endif 296 297 /** 298 * tk_setup_internals - Set up internals to use clocksource clock. 299 * 300 * @tk: The target timekeeper to setup. 301 * @clock: Pointer to clocksource. 302 * 303 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 304 * pair and interval request. 305 * 306 * Unless you're the timekeeping code, you should not be using this! 307 */ 308 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 309 { 310 u64 interval; 311 u64 tmp, ntpinterval; 312 struct clocksource *old_clock; 313 314 ++tk->cs_was_changed_seq; 315 old_clock = tk->tkr_mono.clock; 316 tk->tkr_mono.clock = clock; 317 tk->tkr_mono.mask = clock->mask; 318 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 319 320 tk->tkr_raw.clock = clock; 321 tk->tkr_raw.mask = clock->mask; 322 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 323 324 /* Do the ns -> cycle conversion first, using original mult */ 325 tmp = NTP_INTERVAL_LENGTH; 326 tmp <<= clock->shift; 327 ntpinterval = tmp; 328 tmp += clock->mult/2; 329 do_div(tmp, clock->mult); 330 if (tmp == 0) 331 tmp = 1; 332 333 interval = (u64) tmp; 334 tk->cycle_interval = interval; 335 336 /* Go back from cycles -> shifted ns */ 337 tk->xtime_interval = interval * clock->mult; 338 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 339 tk->raw_interval = interval * clock->mult; 340 341 /* if changing clocks, convert xtime_nsec shift units */ 342 if (old_clock) { 343 int shift_change = clock->shift - old_clock->shift; 344 if (shift_change < 0) { 345 tk->tkr_mono.xtime_nsec >>= -shift_change; 346 tk->tkr_raw.xtime_nsec >>= -shift_change; 347 } else { 348 tk->tkr_mono.xtime_nsec <<= shift_change; 349 tk->tkr_raw.xtime_nsec <<= shift_change; 350 } 351 } 352 353 tk->tkr_mono.shift = clock->shift; 354 tk->tkr_raw.shift = clock->shift; 355 356 tk->ntp_error = 0; 357 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 358 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 359 360 /* 361 * The timekeeper keeps its own mult values for the currently 362 * active clocksource. These value will be adjusted via NTP 363 * to counteract clock drifting. 364 */ 365 tk->tkr_mono.mult = clock->mult; 366 tk->tkr_raw.mult = clock->mult; 367 tk->ntp_err_mult = 0; 368 tk->skip_second_overflow = 0; 369 } 370 371 /* Timekeeper helper functions. */ 372 373 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 374 { 375 u64 nsec; 376 377 nsec = delta * tkr->mult + tkr->xtime_nsec; 378 nsec >>= tkr->shift; 379 380 return nsec; 381 } 382 383 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 384 { 385 u64 delta; 386 387 delta = timekeeping_get_delta(tkr); 388 return timekeeping_delta_to_ns(tkr, delta); 389 } 390 391 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 392 { 393 u64 delta; 394 395 /* calculate the delta since the last update_wall_time */ 396 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 397 return timekeeping_delta_to_ns(tkr, delta); 398 } 399 400 /** 401 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 402 * @tkr: Timekeeping readout base from which we take the update 403 * @tkf: Pointer to NMI safe timekeeper 404 * 405 * We want to use this from any context including NMI and tracing / 406 * instrumenting the timekeeping code itself. 407 * 408 * Employ the latch technique; see @raw_write_seqcount_latch. 409 * 410 * So if a NMI hits the update of base[0] then it will use base[1] 411 * which is still consistent. In the worst case this can result is a 412 * slightly wrong timestamp (a few nanoseconds). See 413 * @ktime_get_mono_fast_ns. 414 */ 415 static void update_fast_timekeeper(const struct tk_read_base *tkr, 416 struct tk_fast *tkf) 417 { 418 struct tk_read_base *base = tkf->base; 419 420 /* Force readers off to base[1] */ 421 raw_write_seqcount_latch(&tkf->seq); 422 423 /* Update base[0] */ 424 memcpy(base, tkr, sizeof(*base)); 425 426 /* Force readers back to base[0] */ 427 raw_write_seqcount_latch(&tkf->seq); 428 429 /* Update base[1] */ 430 memcpy(base + 1, base, sizeof(*base)); 431 } 432 433 static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr) 434 { 435 u64 delta, cycles = tk_clock_read(tkr); 436 437 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 438 return timekeeping_delta_to_ns(tkr, delta); 439 } 440 441 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 442 { 443 struct tk_read_base *tkr; 444 unsigned int seq; 445 u64 now; 446 447 do { 448 seq = raw_read_seqcount_latch(&tkf->seq); 449 tkr = tkf->base + (seq & 0x01); 450 now = ktime_to_ns(tkr->base); 451 now += fast_tk_get_delta_ns(tkr); 452 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 453 454 return now; 455 } 456 457 /** 458 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 459 * 460 * This timestamp is not guaranteed to be monotonic across an update. 461 * The timestamp is calculated by: 462 * 463 * now = base_mono + clock_delta * slope 464 * 465 * So if the update lowers the slope, readers who are forced to the 466 * not yet updated second array are still using the old steeper slope. 467 * 468 * tmono 469 * ^ 470 * | o n 471 * | o n 472 * | u 473 * | o 474 * |o 475 * |12345678---> reader order 476 * 477 * o = old slope 478 * u = update 479 * n = new slope 480 * 481 * So reader 6 will observe time going backwards versus reader 5. 482 * 483 * While other CPUs are likely to be able to observe that, the only way 484 * for a CPU local observation is when an NMI hits in the middle of 485 * the update. Timestamps taken from that NMI context might be ahead 486 * of the following timestamps. Callers need to be aware of that and 487 * deal with it. 488 */ 489 u64 notrace ktime_get_mono_fast_ns(void) 490 { 491 return __ktime_get_fast_ns(&tk_fast_mono); 492 } 493 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 494 495 /** 496 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 497 * 498 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 499 * conversion factor is not affected by NTP/PTP correction. 500 */ 501 u64 notrace ktime_get_raw_fast_ns(void) 502 { 503 return __ktime_get_fast_ns(&tk_fast_raw); 504 } 505 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 506 507 /** 508 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 509 * 510 * To keep it NMI safe since we're accessing from tracing, we're not using a 511 * separate timekeeper with updates to monotonic clock and boot offset 512 * protected with seqcounts. This has the following minor side effects: 513 * 514 * (1) Its possible that a timestamp be taken after the boot offset is updated 515 * but before the timekeeper is updated. If this happens, the new boot offset 516 * is added to the old timekeeping making the clock appear to update slightly 517 * earlier: 518 * CPU 0 CPU 1 519 * timekeeping_inject_sleeptime64() 520 * __timekeeping_inject_sleeptime(tk, delta); 521 * timestamp(); 522 * timekeeping_update(tk, TK_CLEAR_NTP...); 523 * 524 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 525 * partially updated. Since the tk->offs_boot update is a rare event, this 526 * should be a rare occurrence which postprocessing should be able to handle. 527 * 528 * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns() 529 * apply as well. 530 */ 531 u64 notrace ktime_get_boot_fast_ns(void) 532 { 533 struct timekeeper *tk = &tk_core.timekeeper; 534 535 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 536 } 537 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 538 539 /** 540 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 541 * 542 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 543 * mono time and the TAI offset are not read atomically which may yield wrong 544 * readouts. However, an update of the TAI offset is an rare event e.g., caused 545 * by settime or adjtimex with an offset. The user of this function has to deal 546 * with the possibility of wrong timestamps in post processing. 547 */ 548 u64 notrace ktime_get_tai_fast_ns(void) 549 { 550 struct timekeeper *tk = &tk_core.timekeeper; 551 552 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 553 } 554 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 555 556 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 557 { 558 struct tk_read_base *tkr; 559 u64 basem, baser, delta; 560 unsigned int seq; 561 562 do { 563 seq = raw_read_seqcount_latch(&tkf->seq); 564 tkr = tkf->base + (seq & 0x01); 565 basem = ktime_to_ns(tkr->base); 566 baser = ktime_to_ns(tkr->base_real); 567 delta = fast_tk_get_delta_ns(tkr); 568 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 569 570 if (mono) 571 *mono = basem + delta; 572 return baser + delta; 573 } 574 575 /** 576 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 577 * 578 * See ktime_get_fast_ns() for documentation of the time stamp ordering. 579 */ 580 u64 ktime_get_real_fast_ns(void) 581 { 582 return __ktime_get_real_fast(&tk_fast_mono, NULL); 583 } 584 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 585 586 /** 587 * ktime_get_fast_timestamps: - NMI safe timestamps 588 * @snapshot: Pointer to timestamp storage 589 * 590 * Stores clock monotonic, boottime and realtime timestamps. 591 * 592 * Boot time is a racy access on 32bit systems if the sleep time injection 593 * happens late during resume and not in timekeeping_resume(). That could 594 * be avoided by expanding struct tk_read_base with boot offset for 32bit 595 * and adding more overhead to the update. As this is a hard to observe 596 * once per resume event which can be filtered with reasonable effort using 597 * the accurate mono/real timestamps, it's probably not worth the trouble. 598 * 599 * Aside of that it might be possible on 32 and 64 bit to observe the 600 * following when the sleep time injection happens late: 601 * 602 * CPU 0 CPU 1 603 * timekeeping_resume() 604 * ktime_get_fast_timestamps() 605 * mono, real = __ktime_get_real_fast() 606 * inject_sleep_time() 607 * update boot offset 608 * boot = mono + bootoffset; 609 * 610 * That means that boot time already has the sleep time adjustment, but 611 * real time does not. On the next readout both are in sync again. 612 * 613 * Preventing this for 64bit is not really feasible without destroying the 614 * careful cache layout of the timekeeper because the sequence count and 615 * struct tk_read_base would then need two cache lines instead of one. 616 * 617 * Access to the time keeper clock source is disabled across the innermost 618 * steps of suspend/resume. The accessors still work, but the timestamps 619 * are frozen until time keeping is resumed which happens very early. 620 * 621 * For regular suspend/resume there is no observable difference vs. sched 622 * clock, but it might affect some of the nasty low level debug printks. 623 * 624 * OTOH, access to sched clock is not guaranteed across suspend/resume on 625 * all systems either so it depends on the hardware in use. 626 * 627 * If that turns out to be a real problem then this could be mitigated by 628 * using sched clock in a similar way as during early boot. But it's not as 629 * trivial as on early boot because it needs some careful protection 630 * against the clock monotonic timestamp jumping backwards on resume. 631 */ 632 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 633 { 634 struct timekeeper *tk = &tk_core.timekeeper; 635 636 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 637 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 638 } 639 640 /** 641 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 642 * @tk: Timekeeper to snapshot. 643 * 644 * It generally is unsafe to access the clocksource after timekeeping has been 645 * suspended, so take a snapshot of the readout base of @tk and use it as the 646 * fast timekeeper's readout base while suspended. It will return the same 647 * number of cycles every time until timekeeping is resumed at which time the 648 * proper readout base for the fast timekeeper will be restored automatically. 649 */ 650 static void halt_fast_timekeeper(const struct timekeeper *tk) 651 { 652 static struct tk_read_base tkr_dummy; 653 const struct tk_read_base *tkr = &tk->tkr_mono; 654 655 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 656 cycles_at_suspend = tk_clock_read(tkr); 657 tkr_dummy.clock = &dummy_clock; 658 tkr_dummy.base_real = tkr->base + tk->offs_real; 659 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 660 661 tkr = &tk->tkr_raw; 662 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 663 tkr_dummy.clock = &dummy_clock; 664 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 665 } 666 667 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 668 669 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 670 { 671 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 672 } 673 674 /** 675 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 676 * @nb: Pointer to the notifier block to register 677 */ 678 int pvclock_gtod_register_notifier(struct notifier_block *nb) 679 { 680 struct timekeeper *tk = &tk_core.timekeeper; 681 unsigned long flags; 682 int ret; 683 684 raw_spin_lock_irqsave(&timekeeper_lock, flags); 685 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 686 update_pvclock_gtod(tk, true); 687 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 688 689 return ret; 690 } 691 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 692 693 /** 694 * pvclock_gtod_unregister_notifier - unregister a pvclock 695 * timedata update listener 696 * @nb: Pointer to the notifier block to unregister 697 */ 698 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 699 { 700 unsigned long flags; 701 int ret; 702 703 raw_spin_lock_irqsave(&timekeeper_lock, flags); 704 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 705 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 706 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 710 711 /* 712 * tk_update_leap_state - helper to update the next_leap_ktime 713 */ 714 static inline void tk_update_leap_state(struct timekeeper *tk) 715 { 716 tk->next_leap_ktime = ntp_get_next_leap(); 717 if (tk->next_leap_ktime != KTIME_MAX) 718 /* Convert to monotonic time */ 719 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 720 } 721 722 /* 723 * Update the ktime_t based scalar nsec members of the timekeeper 724 */ 725 static inline void tk_update_ktime_data(struct timekeeper *tk) 726 { 727 u64 seconds; 728 u32 nsec; 729 730 /* 731 * The xtime based monotonic readout is: 732 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 733 * The ktime based monotonic readout is: 734 * nsec = base_mono + now(); 735 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 736 */ 737 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 738 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 739 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 740 741 /* 742 * The sum of the nanoseconds portions of xtime and 743 * wall_to_monotonic can be greater/equal one second. Take 744 * this into account before updating tk->ktime_sec. 745 */ 746 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 747 if (nsec >= NSEC_PER_SEC) 748 seconds++; 749 tk->ktime_sec = seconds; 750 751 /* Update the monotonic raw base */ 752 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 753 } 754 755 /* must hold timekeeper_lock */ 756 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 757 { 758 if (action & TK_CLEAR_NTP) { 759 tk->ntp_error = 0; 760 ntp_clear(); 761 } 762 763 tk_update_leap_state(tk); 764 tk_update_ktime_data(tk); 765 766 update_vsyscall(tk); 767 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 768 769 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 770 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 771 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 772 773 if (action & TK_CLOCK_WAS_SET) 774 tk->clock_was_set_seq++; 775 /* 776 * The mirroring of the data to the shadow-timekeeper needs 777 * to happen last here to ensure we don't over-write the 778 * timekeeper structure on the next update with stale data 779 */ 780 if (action & TK_MIRROR) 781 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 782 sizeof(tk_core.timekeeper)); 783 } 784 785 /** 786 * timekeeping_forward_now - update clock to the current time 787 * @tk: Pointer to the timekeeper to update 788 * 789 * Forward the current clock to update its state since the last call to 790 * update_wall_time(). This is useful before significant clock changes, 791 * as it avoids having to deal with this time offset explicitly. 792 */ 793 static void timekeeping_forward_now(struct timekeeper *tk) 794 { 795 u64 cycle_now, delta; 796 797 cycle_now = tk_clock_read(&tk->tkr_mono); 798 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 799 tk->tkr_mono.cycle_last = cycle_now; 800 tk->tkr_raw.cycle_last = cycle_now; 801 802 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 803 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 804 805 tk_normalize_xtime(tk); 806 } 807 808 /** 809 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 810 * @ts: pointer to the timespec to be set 811 * 812 * Returns the time of day in a timespec64 (WARN if suspended). 813 */ 814 void ktime_get_real_ts64(struct timespec64 *ts) 815 { 816 struct timekeeper *tk = &tk_core.timekeeper; 817 unsigned int seq; 818 u64 nsecs; 819 820 WARN_ON(timekeeping_suspended); 821 822 do { 823 seq = read_seqcount_begin(&tk_core.seq); 824 825 ts->tv_sec = tk->xtime_sec; 826 nsecs = timekeeping_get_ns(&tk->tkr_mono); 827 828 } while (read_seqcount_retry(&tk_core.seq, seq)); 829 830 ts->tv_nsec = 0; 831 timespec64_add_ns(ts, nsecs); 832 } 833 EXPORT_SYMBOL(ktime_get_real_ts64); 834 835 ktime_t ktime_get(void) 836 { 837 struct timekeeper *tk = &tk_core.timekeeper; 838 unsigned int seq; 839 ktime_t base; 840 u64 nsecs; 841 842 WARN_ON(timekeeping_suspended); 843 844 do { 845 seq = read_seqcount_begin(&tk_core.seq); 846 base = tk->tkr_mono.base; 847 nsecs = timekeeping_get_ns(&tk->tkr_mono); 848 849 } while (read_seqcount_retry(&tk_core.seq, seq)); 850 851 return ktime_add_ns(base, nsecs); 852 } 853 EXPORT_SYMBOL_GPL(ktime_get); 854 855 u32 ktime_get_resolution_ns(void) 856 { 857 struct timekeeper *tk = &tk_core.timekeeper; 858 unsigned int seq; 859 u32 nsecs; 860 861 WARN_ON(timekeeping_suspended); 862 863 do { 864 seq = read_seqcount_begin(&tk_core.seq); 865 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 866 } while (read_seqcount_retry(&tk_core.seq, seq)); 867 868 return nsecs; 869 } 870 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 871 872 static ktime_t *offsets[TK_OFFS_MAX] = { 873 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 874 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 875 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 876 }; 877 878 ktime_t ktime_get_with_offset(enum tk_offsets offs) 879 { 880 struct timekeeper *tk = &tk_core.timekeeper; 881 unsigned int seq; 882 ktime_t base, *offset = offsets[offs]; 883 u64 nsecs; 884 885 WARN_ON(timekeeping_suspended); 886 887 do { 888 seq = read_seqcount_begin(&tk_core.seq); 889 base = ktime_add(tk->tkr_mono.base, *offset); 890 nsecs = timekeeping_get_ns(&tk->tkr_mono); 891 892 } while (read_seqcount_retry(&tk_core.seq, seq)); 893 894 return ktime_add_ns(base, nsecs); 895 896 } 897 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 898 899 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 900 { 901 struct timekeeper *tk = &tk_core.timekeeper; 902 unsigned int seq; 903 ktime_t base, *offset = offsets[offs]; 904 u64 nsecs; 905 906 WARN_ON(timekeeping_suspended); 907 908 do { 909 seq = read_seqcount_begin(&tk_core.seq); 910 base = ktime_add(tk->tkr_mono.base, *offset); 911 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 912 913 } while (read_seqcount_retry(&tk_core.seq, seq)); 914 915 return ktime_add_ns(base, nsecs); 916 } 917 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 918 919 /** 920 * ktime_mono_to_any() - convert monotonic time to any other time 921 * @tmono: time to convert. 922 * @offs: which offset to use 923 */ 924 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 925 { 926 ktime_t *offset = offsets[offs]; 927 unsigned int seq; 928 ktime_t tconv; 929 930 do { 931 seq = read_seqcount_begin(&tk_core.seq); 932 tconv = ktime_add(tmono, *offset); 933 } while (read_seqcount_retry(&tk_core.seq, seq)); 934 935 return tconv; 936 } 937 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 938 939 /** 940 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 941 */ 942 ktime_t ktime_get_raw(void) 943 { 944 struct timekeeper *tk = &tk_core.timekeeper; 945 unsigned int seq; 946 ktime_t base; 947 u64 nsecs; 948 949 do { 950 seq = read_seqcount_begin(&tk_core.seq); 951 base = tk->tkr_raw.base; 952 nsecs = timekeeping_get_ns(&tk->tkr_raw); 953 954 } while (read_seqcount_retry(&tk_core.seq, seq)); 955 956 return ktime_add_ns(base, nsecs); 957 } 958 EXPORT_SYMBOL_GPL(ktime_get_raw); 959 960 /** 961 * ktime_get_ts64 - get the monotonic clock in timespec64 format 962 * @ts: pointer to timespec variable 963 * 964 * The function calculates the monotonic clock from the realtime 965 * clock and the wall_to_monotonic offset and stores the result 966 * in normalized timespec64 format in the variable pointed to by @ts. 967 */ 968 void ktime_get_ts64(struct timespec64 *ts) 969 { 970 struct timekeeper *tk = &tk_core.timekeeper; 971 struct timespec64 tomono; 972 unsigned int seq; 973 u64 nsec; 974 975 WARN_ON(timekeeping_suspended); 976 977 do { 978 seq = read_seqcount_begin(&tk_core.seq); 979 ts->tv_sec = tk->xtime_sec; 980 nsec = timekeeping_get_ns(&tk->tkr_mono); 981 tomono = tk->wall_to_monotonic; 982 983 } while (read_seqcount_retry(&tk_core.seq, seq)); 984 985 ts->tv_sec += tomono.tv_sec; 986 ts->tv_nsec = 0; 987 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 988 } 989 EXPORT_SYMBOL_GPL(ktime_get_ts64); 990 991 /** 992 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 993 * 994 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 995 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 996 * works on both 32 and 64 bit systems. On 32 bit systems the readout 997 * covers ~136 years of uptime which should be enough to prevent 998 * premature wrap arounds. 999 */ 1000 time64_t ktime_get_seconds(void) 1001 { 1002 struct timekeeper *tk = &tk_core.timekeeper; 1003 1004 WARN_ON(timekeeping_suspended); 1005 return tk->ktime_sec; 1006 } 1007 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1008 1009 /** 1010 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1011 * 1012 * Returns the wall clock seconds since 1970. 1013 * 1014 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1015 * 32bit systems the access must be protected with the sequence 1016 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1017 * value. 1018 */ 1019 time64_t ktime_get_real_seconds(void) 1020 { 1021 struct timekeeper *tk = &tk_core.timekeeper; 1022 time64_t seconds; 1023 unsigned int seq; 1024 1025 if (IS_ENABLED(CONFIG_64BIT)) 1026 return tk->xtime_sec; 1027 1028 do { 1029 seq = read_seqcount_begin(&tk_core.seq); 1030 seconds = tk->xtime_sec; 1031 1032 } while (read_seqcount_retry(&tk_core.seq, seq)); 1033 1034 return seconds; 1035 } 1036 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1037 1038 /** 1039 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1040 * but without the sequence counter protect. This internal function 1041 * is called just when timekeeping lock is already held. 1042 */ 1043 noinstr time64_t __ktime_get_real_seconds(void) 1044 { 1045 struct timekeeper *tk = &tk_core.timekeeper; 1046 1047 return tk->xtime_sec; 1048 } 1049 1050 /** 1051 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1052 * @systime_snapshot: pointer to struct receiving the system time snapshot 1053 */ 1054 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1055 { 1056 struct timekeeper *tk = &tk_core.timekeeper; 1057 unsigned int seq; 1058 ktime_t base_raw; 1059 ktime_t base_real; 1060 u64 nsec_raw; 1061 u64 nsec_real; 1062 u64 now; 1063 1064 WARN_ON_ONCE(timekeeping_suspended); 1065 1066 do { 1067 seq = read_seqcount_begin(&tk_core.seq); 1068 now = tk_clock_read(&tk->tkr_mono); 1069 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1070 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1071 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1072 base_real = ktime_add(tk->tkr_mono.base, 1073 tk_core.timekeeper.offs_real); 1074 base_raw = tk->tkr_raw.base; 1075 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1076 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1077 } while (read_seqcount_retry(&tk_core.seq, seq)); 1078 1079 systime_snapshot->cycles = now; 1080 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1081 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1082 } 1083 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1084 1085 /* Scale base by mult/div checking for overflow */ 1086 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1087 { 1088 u64 tmp, rem; 1089 1090 tmp = div64_u64_rem(*base, div, &rem); 1091 1092 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1093 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1094 return -EOVERFLOW; 1095 tmp *= mult; 1096 1097 rem = div64_u64(rem * mult, div); 1098 *base = tmp + rem; 1099 return 0; 1100 } 1101 1102 /** 1103 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1104 * @history: Snapshot representing start of history 1105 * @partial_history_cycles: Cycle offset into history (fractional part) 1106 * @total_history_cycles: Total history length in cycles 1107 * @discontinuity: True indicates clock was set on history period 1108 * @ts: Cross timestamp that should be adjusted using 1109 * partial/total ratio 1110 * 1111 * Helper function used by get_device_system_crosststamp() to correct the 1112 * crosstimestamp corresponding to the start of the current interval to the 1113 * system counter value (timestamp point) provided by the driver. The 1114 * total_history_* quantities are the total history starting at the provided 1115 * reference point and ending at the start of the current interval. The cycle 1116 * count between the driver timestamp point and the start of the current 1117 * interval is partial_history_cycles. 1118 */ 1119 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1120 u64 partial_history_cycles, 1121 u64 total_history_cycles, 1122 bool discontinuity, 1123 struct system_device_crosststamp *ts) 1124 { 1125 struct timekeeper *tk = &tk_core.timekeeper; 1126 u64 corr_raw, corr_real; 1127 bool interp_forward; 1128 int ret; 1129 1130 if (total_history_cycles == 0 || partial_history_cycles == 0) 1131 return 0; 1132 1133 /* Interpolate shortest distance from beginning or end of history */ 1134 interp_forward = partial_history_cycles > total_history_cycles / 2; 1135 partial_history_cycles = interp_forward ? 1136 total_history_cycles - partial_history_cycles : 1137 partial_history_cycles; 1138 1139 /* 1140 * Scale the monotonic raw time delta by: 1141 * partial_history_cycles / total_history_cycles 1142 */ 1143 corr_raw = (u64)ktime_to_ns( 1144 ktime_sub(ts->sys_monoraw, history->raw)); 1145 ret = scale64_check_overflow(partial_history_cycles, 1146 total_history_cycles, &corr_raw); 1147 if (ret) 1148 return ret; 1149 1150 /* 1151 * If there is a discontinuity in the history, scale monotonic raw 1152 * correction by: 1153 * mult(real)/mult(raw) yielding the realtime correction 1154 * Otherwise, calculate the realtime correction similar to monotonic 1155 * raw calculation 1156 */ 1157 if (discontinuity) { 1158 corr_real = mul_u64_u32_div 1159 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1160 } else { 1161 corr_real = (u64)ktime_to_ns( 1162 ktime_sub(ts->sys_realtime, history->real)); 1163 ret = scale64_check_overflow(partial_history_cycles, 1164 total_history_cycles, &corr_real); 1165 if (ret) 1166 return ret; 1167 } 1168 1169 /* Fixup monotonic raw and real time time values */ 1170 if (interp_forward) { 1171 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1172 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1173 } else { 1174 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1175 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1176 } 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * cycle_between - true if test occurs chronologically between before and after 1183 */ 1184 static bool cycle_between(u64 before, u64 test, u64 after) 1185 { 1186 if (test > before && test < after) 1187 return true; 1188 if (test < before && before > after) 1189 return true; 1190 return false; 1191 } 1192 1193 /** 1194 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1195 * @get_time_fn: Callback to get simultaneous device time and 1196 * system counter from the device driver 1197 * @ctx: Context passed to get_time_fn() 1198 * @history_begin: Historical reference point used to interpolate system 1199 * time when counter provided by the driver is before the current interval 1200 * @xtstamp: Receives simultaneously captured system and device time 1201 * 1202 * Reads a timestamp from a device and correlates it to system time 1203 */ 1204 int get_device_system_crosststamp(int (*get_time_fn) 1205 (ktime_t *device_time, 1206 struct system_counterval_t *sys_counterval, 1207 void *ctx), 1208 void *ctx, 1209 struct system_time_snapshot *history_begin, 1210 struct system_device_crosststamp *xtstamp) 1211 { 1212 struct system_counterval_t system_counterval; 1213 struct timekeeper *tk = &tk_core.timekeeper; 1214 u64 cycles, now, interval_start; 1215 unsigned int clock_was_set_seq = 0; 1216 ktime_t base_real, base_raw; 1217 u64 nsec_real, nsec_raw; 1218 u8 cs_was_changed_seq; 1219 unsigned int seq; 1220 bool do_interp; 1221 int ret; 1222 1223 do { 1224 seq = read_seqcount_begin(&tk_core.seq); 1225 /* 1226 * Try to synchronously capture device time and a system 1227 * counter value calling back into the device driver 1228 */ 1229 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1230 if (ret) 1231 return ret; 1232 1233 /* 1234 * Verify that the clocksource associated with the captured 1235 * system counter value is the same as the currently installed 1236 * timekeeper clocksource 1237 */ 1238 if (tk->tkr_mono.clock != system_counterval.cs) 1239 return -ENODEV; 1240 cycles = system_counterval.cycles; 1241 1242 /* 1243 * Check whether the system counter value provided by the 1244 * device driver is on the current timekeeping interval. 1245 */ 1246 now = tk_clock_read(&tk->tkr_mono); 1247 interval_start = tk->tkr_mono.cycle_last; 1248 if (!cycle_between(interval_start, cycles, now)) { 1249 clock_was_set_seq = tk->clock_was_set_seq; 1250 cs_was_changed_seq = tk->cs_was_changed_seq; 1251 cycles = interval_start; 1252 do_interp = true; 1253 } else { 1254 do_interp = false; 1255 } 1256 1257 base_real = ktime_add(tk->tkr_mono.base, 1258 tk_core.timekeeper.offs_real); 1259 base_raw = tk->tkr_raw.base; 1260 1261 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1262 system_counterval.cycles); 1263 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1264 system_counterval.cycles); 1265 } while (read_seqcount_retry(&tk_core.seq, seq)); 1266 1267 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1268 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1269 1270 /* 1271 * Interpolate if necessary, adjusting back from the start of the 1272 * current interval 1273 */ 1274 if (do_interp) { 1275 u64 partial_history_cycles, total_history_cycles; 1276 bool discontinuity; 1277 1278 /* 1279 * Check that the counter value occurs after the provided 1280 * history reference and that the history doesn't cross a 1281 * clocksource change 1282 */ 1283 if (!history_begin || 1284 !cycle_between(history_begin->cycles, 1285 system_counterval.cycles, cycles) || 1286 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1287 return -EINVAL; 1288 partial_history_cycles = cycles - system_counterval.cycles; 1289 total_history_cycles = cycles - history_begin->cycles; 1290 discontinuity = 1291 history_begin->clock_was_set_seq != clock_was_set_seq; 1292 1293 ret = adjust_historical_crosststamp(history_begin, 1294 partial_history_cycles, 1295 total_history_cycles, 1296 discontinuity, xtstamp); 1297 if (ret) 1298 return ret; 1299 } 1300 1301 return 0; 1302 } 1303 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1304 1305 /** 1306 * do_settimeofday64 - Sets the time of day. 1307 * @ts: pointer to the timespec64 variable containing the new time 1308 * 1309 * Sets the time of day to the new time and update NTP and notify hrtimers 1310 */ 1311 int do_settimeofday64(const struct timespec64 *ts) 1312 { 1313 struct timekeeper *tk = &tk_core.timekeeper; 1314 struct timespec64 ts_delta, xt; 1315 unsigned long flags; 1316 int ret = 0; 1317 1318 if (!timespec64_valid_settod(ts)) 1319 return -EINVAL; 1320 1321 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1322 write_seqcount_begin(&tk_core.seq); 1323 1324 timekeeping_forward_now(tk); 1325 1326 xt = tk_xtime(tk); 1327 ts_delta = timespec64_sub(*ts, xt); 1328 1329 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1330 ret = -EINVAL; 1331 goto out; 1332 } 1333 1334 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1335 1336 tk_set_xtime(tk, ts); 1337 out: 1338 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1339 1340 write_seqcount_end(&tk_core.seq); 1341 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1342 1343 /* Signal hrtimers about time change */ 1344 clock_was_set(CLOCK_SET_WALL); 1345 1346 if (!ret) 1347 audit_tk_injoffset(ts_delta); 1348 1349 return ret; 1350 } 1351 EXPORT_SYMBOL(do_settimeofday64); 1352 1353 /** 1354 * timekeeping_inject_offset - Adds or subtracts from the current time. 1355 * @ts: Pointer to the timespec variable containing the offset 1356 * 1357 * Adds or subtracts an offset value from the current time. 1358 */ 1359 static int timekeeping_inject_offset(const struct timespec64 *ts) 1360 { 1361 struct timekeeper *tk = &tk_core.timekeeper; 1362 unsigned long flags; 1363 struct timespec64 tmp; 1364 int ret = 0; 1365 1366 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1367 return -EINVAL; 1368 1369 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1370 write_seqcount_begin(&tk_core.seq); 1371 1372 timekeeping_forward_now(tk); 1373 1374 /* Make sure the proposed value is valid */ 1375 tmp = timespec64_add(tk_xtime(tk), *ts); 1376 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1377 !timespec64_valid_settod(&tmp)) { 1378 ret = -EINVAL; 1379 goto error; 1380 } 1381 1382 tk_xtime_add(tk, ts); 1383 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1384 1385 error: /* even if we error out, we forwarded the time, so call update */ 1386 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1387 1388 write_seqcount_end(&tk_core.seq); 1389 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1390 1391 /* Signal hrtimers about time change */ 1392 clock_was_set(CLOCK_SET_WALL); 1393 1394 return ret; 1395 } 1396 1397 /* 1398 * Indicates if there is an offset between the system clock and the hardware 1399 * clock/persistent clock/rtc. 1400 */ 1401 int persistent_clock_is_local; 1402 1403 /* 1404 * Adjust the time obtained from the CMOS to be UTC time instead of 1405 * local time. 1406 * 1407 * This is ugly, but preferable to the alternatives. Otherwise we 1408 * would either need to write a program to do it in /etc/rc (and risk 1409 * confusion if the program gets run more than once; it would also be 1410 * hard to make the program warp the clock precisely n hours) or 1411 * compile in the timezone information into the kernel. Bad, bad.... 1412 * 1413 * - TYT, 1992-01-01 1414 * 1415 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1416 * as real UNIX machines always do it. This avoids all headaches about 1417 * daylight saving times and warping kernel clocks. 1418 */ 1419 void timekeeping_warp_clock(void) 1420 { 1421 if (sys_tz.tz_minuteswest != 0) { 1422 struct timespec64 adjust; 1423 1424 persistent_clock_is_local = 1; 1425 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1426 adjust.tv_nsec = 0; 1427 timekeeping_inject_offset(&adjust); 1428 } 1429 } 1430 1431 /* 1432 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1433 */ 1434 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1435 { 1436 tk->tai_offset = tai_offset; 1437 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1438 } 1439 1440 /* 1441 * change_clocksource - Swaps clocksources if a new one is available 1442 * 1443 * Accumulates current time interval and initializes new clocksource 1444 */ 1445 static int change_clocksource(void *data) 1446 { 1447 struct timekeeper *tk = &tk_core.timekeeper; 1448 struct clocksource *new, *old = NULL; 1449 unsigned long flags; 1450 bool change = false; 1451 1452 new = (struct clocksource *) data; 1453 1454 /* 1455 * If the cs is in module, get a module reference. Succeeds 1456 * for built-in code (owner == NULL) as well. 1457 */ 1458 if (try_module_get(new->owner)) { 1459 if (!new->enable || new->enable(new) == 0) 1460 change = true; 1461 else 1462 module_put(new->owner); 1463 } 1464 1465 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1466 write_seqcount_begin(&tk_core.seq); 1467 1468 timekeeping_forward_now(tk); 1469 1470 if (change) { 1471 old = tk->tkr_mono.clock; 1472 tk_setup_internals(tk, new); 1473 } 1474 1475 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1476 1477 write_seqcount_end(&tk_core.seq); 1478 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1479 1480 if (old) { 1481 if (old->disable) 1482 old->disable(old); 1483 1484 module_put(old->owner); 1485 } 1486 1487 return 0; 1488 } 1489 1490 /** 1491 * timekeeping_notify - Install a new clock source 1492 * @clock: pointer to the clock source 1493 * 1494 * This function is called from clocksource.c after a new, better clock 1495 * source has been registered. The caller holds the clocksource_mutex. 1496 */ 1497 int timekeeping_notify(struct clocksource *clock) 1498 { 1499 struct timekeeper *tk = &tk_core.timekeeper; 1500 1501 if (tk->tkr_mono.clock == clock) 1502 return 0; 1503 stop_machine(change_clocksource, clock, NULL); 1504 tick_clock_notify(); 1505 return tk->tkr_mono.clock == clock ? 0 : -1; 1506 } 1507 1508 /** 1509 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1510 * @ts: pointer to the timespec64 to be set 1511 * 1512 * Returns the raw monotonic time (completely un-modified by ntp) 1513 */ 1514 void ktime_get_raw_ts64(struct timespec64 *ts) 1515 { 1516 struct timekeeper *tk = &tk_core.timekeeper; 1517 unsigned int seq; 1518 u64 nsecs; 1519 1520 do { 1521 seq = read_seqcount_begin(&tk_core.seq); 1522 ts->tv_sec = tk->raw_sec; 1523 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1524 1525 } while (read_seqcount_retry(&tk_core.seq, seq)); 1526 1527 ts->tv_nsec = 0; 1528 timespec64_add_ns(ts, nsecs); 1529 } 1530 EXPORT_SYMBOL(ktime_get_raw_ts64); 1531 1532 1533 /** 1534 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1535 */ 1536 int timekeeping_valid_for_hres(void) 1537 { 1538 struct timekeeper *tk = &tk_core.timekeeper; 1539 unsigned int seq; 1540 int ret; 1541 1542 do { 1543 seq = read_seqcount_begin(&tk_core.seq); 1544 1545 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1546 1547 } while (read_seqcount_retry(&tk_core.seq, seq)); 1548 1549 return ret; 1550 } 1551 1552 /** 1553 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1554 */ 1555 u64 timekeeping_max_deferment(void) 1556 { 1557 struct timekeeper *tk = &tk_core.timekeeper; 1558 unsigned int seq; 1559 u64 ret; 1560 1561 do { 1562 seq = read_seqcount_begin(&tk_core.seq); 1563 1564 ret = tk->tkr_mono.clock->max_idle_ns; 1565 1566 } while (read_seqcount_retry(&tk_core.seq, seq)); 1567 1568 return ret; 1569 } 1570 1571 /** 1572 * read_persistent_clock64 - Return time from the persistent clock. 1573 * @ts: Pointer to the storage for the readout value 1574 * 1575 * Weak dummy function for arches that do not yet support it. 1576 * Reads the time from the battery backed persistent clock. 1577 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1578 * 1579 * XXX - Do be sure to remove it once all arches implement it. 1580 */ 1581 void __weak read_persistent_clock64(struct timespec64 *ts) 1582 { 1583 ts->tv_sec = 0; 1584 ts->tv_nsec = 0; 1585 } 1586 1587 /** 1588 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1589 * from the boot. 1590 * 1591 * Weak dummy function for arches that do not yet support it. 1592 * @wall_time: - current time as returned by persistent clock 1593 * @boot_offset: - offset that is defined as wall_time - boot_time 1594 * 1595 * The default function calculates offset based on the current value of 1596 * local_clock(). This way architectures that support sched_clock() but don't 1597 * support dedicated boot time clock will provide the best estimate of the 1598 * boot time. 1599 */ 1600 void __weak __init 1601 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1602 struct timespec64 *boot_offset) 1603 { 1604 read_persistent_clock64(wall_time); 1605 *boot_offset = ns_to_timespec64(local_clock()); 1606 } 1607 1608 /* 1609 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1610 * 1611 * The flag starts of false and is only set when a suspend reaches 1612 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1613 * timekeeper clocksource is not stopping across suspend and has been 1614 * used to update sleep time. If the timekeeper clocksource has stopped 1615 * then the flag stays true and is used by the RTC resume code to decide 1616 * whether sleeptime must be injected and if so the flag gets false then. 1617 * 1618 * If a suspend fails before reaching timekeeping_resume() then the flag 1619 * stays false and prevents erroneous sleeptime injection. 1620 */ 1621 static bool suspend_timing_needed; 1622 1623 /* Flag for if there is a persistent clock on this platform */ 1624 static bool persistent_clock_exists; 1625 1626 /* 1627 * timekeeping_init - Initializes the clocksource and common timekeeping values 1628 */ 1629 void __init timekeeping_init(void) 1630 { 1631 struct timespec64 wall_time, boot_offset, wall_to_mono; 1632 struct timekeeper *tk = &tk_core.timekeeper; 1633 struct clocksource *clock; 1634 unsigned long flags; 1635 1636 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1637 if (timespec64_valid_settod(&wall_time) && 1638 timespec64_to_ns(&wall_time) > 0) { 1639 persistent_clock_exists = true; 1640 } else if (timespec64_to_ns(&wall_time) != 0) { 1641 pr_warn("Persistent clock returned invalid value"); 1642 wall_time = (struct timespec64){0}; 1643 } 1644 1645 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1646 boot_offset = (struct timespec64){0}; 1647 1648 /* 1649 * We want set wall_to_mono, so the following is true: 1650 * wall time + wall_to_mono = boot time 1651 */ 1652 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1653 1654 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1655 write_seqcount_begin(&tk_core.seq); 1656 ntp_init(); 1657 1658 clock = clocksource_default_clock(); 1659 if (clock->enable) 1660 clock->enable(clock); 1661 tk_setup_internals(tk, clock); 1662 1663 tk_set_xtime(tk, &wall_time); 1664 tk->raw_sec = 0; 1665 1666 tk_set_wall_to_mono(tk, wall_to_mono); 1667 1668 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1669 1670 write_seqcount_end(&tk_core.seq); 1671 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1672 } 1673 1674 /* time in seconds when suspend began for persistent clock */ 1675 static struct timespec64 timekeeping_suspend_time; 1676 1677 /** 1678 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1679 * @tk: Pointer to the timekeeper to be updated 1680 * @delta: Pointer to the delta value in timespec64 format 1681 * 1682 * Takes a timespec offset measuring a suspend interval and properly 1683 * adds the sleep offset to the timekeeping variables. 1684 */ 1685 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1686 const struct timespec64 *delta) 1687 { 1688 if (!timespec64_valid_strict(delta)) { 1689 printk_deferred(KERN_WARNING 1690 "__timekeeping_inject_sleeptime: Invalid " 1691 "sleep delta value!\n"); 1692 return; 1693 } 1694 tk_xtime_add(tk, delta); 1695 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1696 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1697 tk_debug_account_sleep_time(delta); 1698 } 1699 1700 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1701 /** 1702 * We have three kinds of time sources to use for sleep time 1703 * injection, the preference order is: 1704 * 1) non-stop clocksource 1705 * 2) persistent clock (ie: RTC accessible when irqs are off) 1706 * 3) RTC 1707 * 1708 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1709 * If system has neither 1) nor 2), 3) will be used finally. 1710 * 1711 * 1712 * If timekeeping has injected sleeptime via either 1) or 2), 1713 * 3) becomes needless, so in this case we don't need to call 1714 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1715 * means. 1716 */ 1717 bool timekeeping_rtc_skipresume(void) 1718 { 1719 return !suspend_timing_needed; 1720 } 1721 1722 /** 1723 * 1) can be determined whether to use or not only when doing 1724 * timekeeping_resume() which is invoked after rtc_suspend(), 1725 * so we can't skip rtc_suspend() surely if system has 1). 1726 * 1727 * But if system has 2), 2) will definitely be used, so in this 1728 * case we don't need to call rtc_suspend(), and this is what 1729 * timekeeping_rtc_skipsuspend() means. 1730 */ 1731 bool timekeeping_rtc_skipsuspend(void) 1732 { 1733 return persistent_clock_exists; 1734 } 1735 1736 /** 1737 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1738 * @delta: pointer to a timespec64 delta value 1739 * 1740 * This hook is for architectures that cannot support read_persistent_clock64 1741 * because their RTC/persistent clock is only accessible when irqs are enabled. 1742 * and also don't have an effective nonstop clocksource. 1743 * 1744 * This function should only be called by rtc_resume(), and allows 1745 * a suspend offset to be injected into the timekeeping values. 1746 */ 1747 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1748 { 1749 struct timekeeper *tk = &tk_core.timekeeper; 1750 unsigned long flags; 1751 1752 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1753 write_seqcount_begin(&tk_core.seq); 1754 1755 suspend_timing_needed = false; 1756 1757 timekeeping_forward_now(tk); 1758 1759 __timekeeping_inject_sleeptime(tk, delta); 1760 1761 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1762 1763 write_seqcount_end(&tk_core.seq); 1764 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1765 1766 /* Signal hrtimers about time change */ 1767 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1768 } 1769 #endif 1770 1771 /** 1772 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1773 */ 1774 void timekeeping_resume(void) 1775 { 1776 struct timekeeper *tk = &tk_core.timekeeper; 1777 struct clocksource *clock = tk->tkr_mono.clock; 1778 unsigned long flags; 1779 struct timespec64 ts_new, ts_delta; 1780 u64 cycle_now, nsec; 1781 bool inject_sleeptime = false; 1782 1783 read_persistent_clock64(&ts_new); 1784 1785 clockevents_resume(); 1786 clocksource_resume(); 1787 1788 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1789 write_seqcount_begin(&tk_core.seq); 1790 1791 /* 1792 * After system resumes, we need to calculate the suspended time and 1793 * compensate it for the OS time. There are 3 sources that could be 1794 * used: Nonstop clocksource during suspend, persistent clock and rtc 1795 * device. 1796 * 1797 * One specific platform may have 1 or 2 or all of them, and the 1798 * preference will be: 1799 * suspend-nonstop clocksource -> persistent clock -> rtc 1800 * The less preferred source will only be tried if there is no better 1801 * usable source. The rtc part is handled separately in rtc core code. 1802 */ 1803 cycle_now = tk_clock_read(&tk->tkr_mono); 1804 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1805 if (nsec > 0) { 1806 ts_delta = ns_to_timespec64(nsec); 1807 inject_sleeptime = true; 1808 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1809 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1810 inject_sleeptime = true; 1811 } 1812 1813 if (inject_sleeptime) { 1814 suspend_timing_needed = false; 1815 __timekeeping_inject_sleeptime(tk, &ts_delta); 1816 } 1817 1818 /* Re-base the last cycle value */ 1819 tk->tkr_mono.cycle_last = cycle_now; 1820 tk->tkr_raw.cycle_last = cycle_now; 1821 1822 tk->ntp_error = 0; 1823 timekeeping_suspended = 0; 1824 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1825 write_seqcount_end(&tk_core.seq); 1826 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1827 1828 touch_softlockup_watchdog(); 1829 1830 /* Resume the clockevent device(s) and hrtimers */ 1831 tick_resume(); 1832 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1833 timerfd_resume(); 1834 } 1835 1836 int timekeeping_suspend(void) 1837 { 1838 struct timekeeper *tk = &tk_core.timekeeper; 1839 unsigned long flags; 1840 struct timespec64 delta, delta_delta; 1841 static struct timespec64 old_delta; 1842 struct clocksource *curr_clock; 1843 u64 cycle_now; 1844 1845 read_persistent_clock64(&timekeeping_suspend_time); 1846 1847 /* 1848 * On some systems the persistent_clock can not be detected at 1849 * timekeeping_init by its return value, so if we see a valid 1850 * value returned, update the persistent_clock_exists flag. 1851 */ 1852 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1853 persistent_clock_exists = true; 1854 1855 suspend_timing_needed = true; 1856 1857 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1858 write_seqcount_begin(&tk_core.seq); 1859 timekeeping_forward_now(tk); 1860 timekeeping_suspended = 1; 1861 1862 /* 1863 * Since we've called forward_now, cycle_last stores the value 1864 * just read from the current clocksource. Save this to potentially 1865 * use in suspend timing. 1866 */ 1867 curr_clock = tk->tkr_mono.clock; 1868 cycle_now = tk->tkr_mono.cycle_last; 1869 clocksource_start_suspend_timing(curr_clock, cycle_now); 1870 1871 if (persistent_clock_exists) { 1872 /* 1873 * To avoid drift caused by repeated suspend/resumes, 1874 * which each can add ~1 second drift error, 1875 * try to compensate so the difference in system time 1876 * and persistent_clock time stays close to constant. 1877 */ 1878 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1879 delta_delta = timespec64_sub(delta, old_delta); 1880 if (abs(delta_delta.tv_sec) >= 2) { 1881 /* 1882 * if delta_delta is too large, assume time correction 1883 * has occurred and set old_delta to the current delta. 1884 */ 1885 old_delta = delta; 1886 } else { 1887 /* Otherwise try to adjust old_system to compensate */ 1888 timekeeping_suspend_time = 1889 timespec64_add(timekeeping_suspend_time, delta_delta); 1890 } 1891 } 1892 1893 timekeeping_update(tk, TK_MIRROR); 1894 halt_fast_timekeeper(tk); 1895 write_seqcount_end(&tk_core.seq); 1896 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1897 1898 tick_suspend(); 1899 clocksource_suspend(); 1900 clockevents_suspend(); 1901 1902 return 0; 1903 } 1904 1905 /* sysfs resume/suspend bits for timekeeping */ 1906 static struct syscore_ops timekeeping_syscore_ops = { 1907 .resume = timekeeping_resume, 1908 .suspend = timekeeping_suspend, 1909 }; 1910 1911 static int __init timekeeping_init_ops(void) 1912 { 1913 register_syscore_ops(&timekeeping_syscore_ops); 1914 return 0; 1915 } 1916 device_initcall(timekeeping_init_ops); 1917 1918 /* 1919 * Apply a multiplier adjustment to the timekeeper 1920 */ 1921 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1922 s64 offset, 1923 s32 mult_adj) 1924 { 1925 s64 interval = tk->cycle_interval; 1926 1927 if (mult_adj == 0) { 1928 return; 1929 } else if (mult_adj == -1) { 1930 interval = -interval; 1931 offset = -offset; 1932 } else if (mult_adj != 1) { 1933 interval *= mult_adj; 1934 offset *= mult_adj; 1935 } 1936 1937 /* 1938 * So the following can be confusing. 1939 * 1940 * To keep things simple, lets assume mult_adj == 1 for now. 1941 * 1942 * When mult_adj != 1, remember that the interval and offset values 1943 * have been appropriately scaled so the math is the same. 1944 * 1945 * The basic idea here is that we're increasing the multiplier 1946 * by one, this causes the xtime_interval to be incremented by 1947 * one cycle_interval. This is because: 1948 * xtime_interval = cycle_interval * mult 1949 * So if mult is being incremented by one: 1950 * xtime_interval = cycle_interval * (mult + 1) 1951 * Its the same as: 1952 * xtime_interval = (cycle_interval * mult) + cycle_interval 1953 * Which can be shortened to: 1954 * xtime_interval += cycle_interval 1955 * 1956 * So offset stores the non-accumulated cycles. Thus the current 1957 * time (in shifted nanoseconds) is: 1958 * now = (offset * adj) + xtime_nsec 1959 * Now, even though we're adjusting the clock frequency, we have 1960 * to keep time consistent. In other words, we can't jump back 1961 * in time, and we also want to avoid jumping forward in time. 1962 * 1963 * So given the same offset value, we need the time to be the same 1964 * both before and after the freq adjustment. 1965 * now = (offset * adj_1) + xtime_nsec_1 1966 * now = (offset * adj_2) + xtime_nsec_2 1967 * So: 1968 * (offset * adj_1) + xtime_nsec_1 = 1969 * (offset * adj_2) + xtime_nsec_2 1970 * And we know: 1971 * adj_2 = adj_1 + 1 1972 * So: 1973 * (offset * adj_1) + xtime_nsec_1 = 1974 * (offset * (adj_1+1)) + xtime_nsec_2 1975 * (offset * adj_1) + xtime_nsec_1 = 1976 * (offset * adj_1) + offset + xtime_nsec_2 1977 * Canceling the sides: 1978 * xtime_nsec_1 = offset + xtime_nsec_2 1979 * Which gives us: 1980 * xtime_nsec_2 = xtime_nsec_1 - offset 1981 * Which simplifies to: 1982 * xtime_nsec -= offset 1983 */ 1984 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1985 /* NTP adjustment caused clocksource mult overflow */ 1986 WARN_ON_ONCE(1); 1987 return; 1988 } 1989 1990 tk->tkr_mono.mult += mult_adj; 1991 tk->xtime_interval += interval; 1992 tk->tkr_mono.xtime_nsec -= offset; 1993 } 1994 1995 /* 1996 * Adjust the timekeeper's multiplier to the correct frequency 1997 * and also to reduce the accumulated error value. 1998 */ 1999 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2000 { 2001 u32 mult; 2002 2003 /* 2004 * Determine the multiplier from the current NTP tick length. 2005 * Avoid expensive division when the tick length doesn't change. 2006 */ 2007 if (likely(tk->ntp_tick == ntp_tick_length())) { 2008 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2009 } else { 2010 tk->ntp_tick = ntp_tick_length(); 2011 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2012 tk->xtime_remainder, tk->cycle_interval); 2013 } 2014 2015 /* 2016 * If the clock is behind the NTP time, increase the multiplier by 1 2017 * to catch up with it. If it's ahead and there was a remainder in the 2018 * tick division, the clock will slow down. Otherwise it will stay 2019 * ahead until the tick length changes to a non-divisible value. 2020 */ 2021 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2022 mult += tk->ntp_err_mult; 2023 2024 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2025 2026 if (unlikely(tk->tkr_mono.clock->maxadj && 2027 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2028 > tk->tkr_mono.clock->maxadj))) { 2029 printk_once(KERN_WARNING 2030 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2031 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2032 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2033 } 2034 2035 /* 2036 * It may be possible that when we entered this function, xtime_nsec 2037 * was very small. Further, if we're slightly speeding the clocksource 2038 * in the code above, its possible the required corrective factor to 2039 * xtime_nsec could cause it to underflow. 2040 * 2041 * Now, since we have already accumulated the second and the NTP 2042 * subsystem has been notified via second_overflow(), we need to skip 2043 * the next update. 2044 */ 2045 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2046 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2047 tk->tkr_mono.shift; 2048 tk->xtime_sec--; 2049 tk->skip_second_overflow = 1; 2050 } 2051 } 2052 2053 /* 2054 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2055 * 2056 * Helper function that accumulates the nsecs greater than a second 2057 * from the xtime_nsec field to the xtime_secs field. 2058 * It also calls into the NTP code to handle leapsecond processing. 2059 */ 2060 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2061 { 2062 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2063 unsigned int clock_set = 0; 2064 2065 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2066 int leap; 2067 2068 tk->tkr_mono.xtime_nsec -= nsecps; 2069 tk->xtime_sec++; 2070 2071 /* 2072 * Skip NTP update if this second was accumulated before, 2073 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2074 */ 2075 if (unlikely(tk->skip_second_overflow)) { 2076 tk->skip_second_overflow = 0; 2077 continue; 2078 } 2079 2080 /* Figure out if its a leap sec and apply if needed */ 2081 leap = second_overflow(tk->xtime_sec); 2082 if (unlikely(leap)) { 2083 struct timespec64 ts; 2084 2085 tk->xtime_sec += leap; 2086 2087 ts.tv_sec = leap; 2088 ts.tv_nsec = 0; 2089 tk_set_wall_to_mono(tk, 2090 timespec64_sub(tk->wall_to_monotonic, ts)); 2091 2092 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2093 2094 clock_set = TK_CLOCK_WAS_SET; 2095 } 2096 } 2097 return clock_set; 2098 } 2099 2100 /* 2101 * logarithmic_accumulation - shifted accumulation of cycles 2102 * 2103 * This functions accumulates a shifted interval of cycles into 2104 * a shifted interval nanoseconds. Allows for O(log) accumulation 2105 * loop. 2106 * 2107 * Returns the unconsumed cycles. 2108 */ 2109 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2110 u32 shift, unsigned int *clock_set) 2111 { 2112 u64 interval = tk->cycle_interval << shift; 2113 u64 snsec_per_sec; 2114 2115 /* If the offset is smaller than a shifted interval, do nothing */ 2116 if (offset < interval) 2117 return offset; 2118 2119 /* Accumulate one shifted interval */ 2120 offset -= interval; 2121 tk->tkr_mono.cycle_last += interval; 2122 tk->tkr_raw.cycle_last += interval; 2123 2124 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2125 *clock_set |= accumulate_nsecs_to_secs(tk); 2126 2127 /* Accumulate raw time */ 2128 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2129 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2130 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2131 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2132 tk->raw_sec++; 2133 } 2134 2135 /* Accumulate error between NTP and clock interval */ 2136 tk->ntp_error += tk->ntp_tick << shift; 2137 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2138 (tk->ntp_error_shift + shift); 2139 2140 return offset; 2141 } 2142 2143 /* 2144 * timekeeping_advance - Updates the timekeeper to the current time and 2145 * current NTP tick length 2146 */ 2147 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2148 { 2149 struct timekeeper *real_tk = &tk_core.timekeeper; 2150 struct timekeeper *tk = &shadow_timekeeper; 2151 u64 offset; 2152 int shift = 0, maxshift; 2153 unsigned int clock_set = 0; 2154 unsigned long flags; 2155 2156 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2157 2158 /* Make sure we're fully resumed: */ 2159 if (unlikely(timekeeping_suspended)) 2160 goto out; 2161 2162 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2163 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2164 2165 /* Check if there's really nothing to do */ 2166 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2167 goto out; 2168 2169 /* Do some additional sanity checking */ 2170 timekeeping_check_update(tk, offset); 2171 2172 /* 2173 * With NO_HZ we may have to accumulate many cycle_intervals 2174 * (think "ticks") worth of time at once. To do this efficiently, 2175 * we calculate the largest doubling multiple of cycle_intervals 2176 * that is smaller than the offset. We then accumulate that 2177 * chunk in one go, and then try to consume the next smaller 2178 * doubled multiple. 2179 */ 2180 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2181 shift = max(0, shift); 2182 /* Bound shift to one less than what overflows tick_length */ 2183 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2184 shift = min(shift, maxshift); 2185 while (offset >= tk->cycle_interval) { 2186 offset = logarithmic_accumulation(tk, offset, shift, 2187 &clock_set); 2188 if (offset < tk->cycle_interval<<shift) 2189 shift--; 2190 } 2191 2192 /* Adjust the multiplier to correct NTP error */ 2193 timekeeping_adjust(tk, offset); 2194 2195 /* 2196 * Finally, make sure that after the rounding 2197 * xtime_nsec isn't larger than NSEC_PER_SEC 2198 */ 2199 clock_set |= accumulate_nsecs_to_secs(tk); 2200 2201 write_seqcount_begin(&tk_core.seq); 2202 /* 2203 * Update the real timekeeper. 2204 * 2205 * We could avoid this memcpy by switching pointers, but that 2206 * requires changes to all other timekeeper usage sites as 2207 * well, i.e. move the timekeeper pointer getter into the 2208 * spinlocked/seqcount protected sections. And we trade this 2209 * memcpy under the tk_core.seq against one before we start 2210 * updating. 2211 */ 2212 timekeeping_update(tk, clock_set); 2213 memcpy(real_tk, tk, sizeof(*tk)); 2214 /* The memcpy must come last. Do not put anything here! */ 2215 write_seqcount_end(&tk_core.seq); 2216 out: 2217 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2218 2219 return !!clock_set; 2220 } 2221 2222 /** 2223 * update_wall_time - Uses the current clocksource to increment the wall time 2224 * 2225 */ 2226 void update_wall_time(void) 2227 { 2228 if (timekeeping_advance(TK_ADV_TICK)) 2229 clock_was_set_delayed(); 2230 } 2231 2232 /** 2233 * getboottime64 - Return the real time of system boot. 2234 * @ts: pointer to the timespec64 to be set 2235 * 2236 * Returns the wall-time of boot in a timespec64. 2237 * 2238 * This is based on the wall_to_monotonic offset and the total suspend 2239 * time. Calls to settimeofday will affect the value returned (which 2240 * basically means that however wrong your real time clock is at boot time, 2241 * you get the right time here). 2242 */ 2243 void getboottime64(struct timespec64 *ts) 2244 { 2245 struct timekeeper *tk = &tk_core.timekeeper; 2246 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2247 2248 *ts = ktime_to_timespec64(t); 2249 } 2250 EXPORT_SYMBOL_GPL(getboottime64); 2251 2252 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2253 { 2254 struct timekeeper *tk = &tk_core.timekeeper; 2255 unsigned int seq; 2256 2257 do { 2258 seq = read_seqcount_begin(&tk_core.seq); 2259 2260 *ts = tk_xtime(tk); 2261 } while (read_seqcount_retry(&tk_core.seq, seq)); 2262 } 2263 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2264 2265 void ktime_get_coarse_ts64(struct timespec64 *ts) 2266 { 2267 struct timekeeper *tk = &tk_core.timekeeper; 2268 struct timespec64 now, mono; 2269 unsigned int seq; 2270 2271 do { 2272 seq = read_seqcount_begin(&tk_core.seq); 2273 2274 now = tk_xtime(tk); 2275 mono = tk->wall_to_monotonic; 2276 } while (read_seqcount_retry(&tk_core.seq, seq)); 2277 2278 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2279 now.tv_nsec + mono.tv_nsec); 2280 } 2281 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2282 2283 /* 2284 * Must hold jiffies_lock 2285 */ 2286 void do_timer(unsigned long ticks) 2287 { 2288 jiffies_64 += ticks; 2289 calc_global_load(); 2290 } 2291 2292 /** 2293 * ktime_get_update_offsets_now - hrtimer helper 2294 * @cwsseq: pointer to check and store the clock was set sequence number 2295 * @offs_real: pointer to storage for monotonic -> realtime offset 2296 * @offs_boot: pointer to storage for monotonic -> boottime offset 2297 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2298 * 2299 * Returns current monotonic time and updates the offsets if the 2300 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2301 * different. 2302 * 2303 * Called from hrtimer_interrupt() or retrigger_next_event() 2304 */ 2305 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2306 ktime_t *offs_boot, ktime_t *offs_tai) 2307 { 2308 struct timekeeper *tk = &tk_core.timekeeper; 2309 unsigned int seq; 2310 ktime_t base; 2311 u64 nsecs; 2312 2313 do { 2314 seq = read_seqcount_begin(&tk_core.seq); 2315 2316 base = tk->tkr_mono.base; 2317 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2318 base = ktime_add_ns(base, nsecs); 2319 2320 if (*cwsseq != tk->clock_was_set_seq) { 2321 *cwsseq = tk->clock_was_set_seq; 2322 *offs_real = tk->offs_real; 2323 *offs_boot = tk->offs_boot; 2324 *offs_tai = tk->offs_tai; 2325 } 2326 2327 /* Handle leapsecond insertion adjustments */ 2328 if (unlikely(base >= tk->next_leap_ktime)) 2329 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2330 2331 } while (read_seqcount_retry(&tk_core.seq, seq)); 2332 2333 return base; 2334 } 2335 2336 /* 2337 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2338 */ 2339 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2340 { 2341 if (txc->modes & ADJ_ADJTIME) { 2342 /* singleshot must not be used with any other mode bits */ 2343 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2344 return -EINVAL; 2345 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2346 !capable(CAP_SYS_TIME)) 2347 return -EPERM; 2348 } else { 2349 /* In order to modify anything, you gotta be super-user! */ 2350 if (txc->modes && !capable(CAP_SYS_TIME)) 2351 return -EPERM; 2352 /* 2353 * if the quartz is off by more than 10% then 2354 * something is VERY wrong! 2355 */ 2356 if (txc->modes & ADJ_TICK && 2357 (txc->tick < 900000/USER_HZ || 2358 txc->tick > 1100000/USER_HZ)) 2359 return -EINVAL; 2360 } 2361 2362 if (txc->modes & ADJ_SETOFFSET) { 2363 /* In order to inject time, you gotta be super-user! */ 2364 if (!capable(CAP_SYS_TIME)) 2365 return -EPERM; 2366 2367 /* 2368 * Validate if a timespec/timeval used to inject a time 2369 * offset is valid. Offsets can be positive or negative, so 2370 * we don't check tv_sec. The value of the timeval/timespec 2371 * is the sum of its fields,but *NOTE*: 2372 * The field tv_usec/tv_nsec must always be non-negative and 2373 * we can't have more nanoseconds/microseconds than a second. 2374 */ 2375 if (txc->time.tv_usec < 0) 2376 return -EINVAL; 2377 2378 if (txc->modes & ADJ_NANO) { 2379 if (txc->time.tv_usec >= NSEC_PER_SEC) 2380 return -EINVAL; 2381 } else { 2382 if (txc->time.tv_usec >= USEC_PER_SEC) 2383 return -EINVAL; 2384 } 2385 } 2386 2387 /* 2388 * Check for potential multiplication overflows that can 2389 * only happen on 64-bit systems: 2390 */ 2391 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2392 if (LLONG_MIN / PPM_SCALE > txc->freq) 2393 return -EINVAL; 2394 if (LLONG_MAX / PPM_SCALE < txc->freq) 2395 return -EINVAL; 2396 } 2397 2398 return 0; 2399 } 2400 2401 /** 2402 * random_get_entropy_fallback - Returns the raw clock source value, 2403 * used by random.c for platforms with no valid random_get_entropy(). 2404 */ 2405 unsigned long random_get_entropy_fallback(void) 2406 { 2407 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2408 struct clocksource *clock = READ_ONCE(tkr->clock); 2409 2410 if (unlikely(timekeeping_suspended || !clock)) 2411 return 0; 2412 return clock->read(clock); 2413 } 2414 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2415 2416 /** 2417 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2418 */ 2419 int do_adjtimex(struct __kernel_timex *txc) 2420 { 2421 struct timekeeper *tk = &tk_core.timekeeper; 2422 struct audit_ntp_data ad; 2423 bool clock_set = false; 2424 struct timespec64 ts; 2425 unsigned long flags; 2426 s32 orig_tai, tai; 2427 int ret; 2428 2429 /* Validate the data before disabling interrupts */ 2430 ret = timekeeping_validate_timex(txc); 2431 if (ret) 2432 return ret; 2433 2434 if (txc->modes & ADJ_SETOFFSET) { 2435 struct timespec64 delta; 2436 delta.tv_sec = txc->time.tv_sec; 2437 delta.tv_nsec = txc->time.tv_usec; 2438 if (!(txc->modes & ADJ_NANO)) 2439 delta.tv_nsec *= 1000; 2440 ret = timekeeping_inject_offset(&delta); 2441 if (ret) 2442 return ret; 2443 2444 audit_tk_injoffset(delta); 2445 } 2446 2447 audit_ntp_init(&ad); 2448 2449 ktime_get_real_ts64(&ts); 2450 2451 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2452 write_seqcount_begin(&tk_core.seq); 2453 2454 orig_tai = tai = tk->tai_offset; 2455 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2456 2457 if (tai != orig_tai) { 2458 __timekeeping_set_tai_offset(tk, tai); 2459 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2460 clock_set = true; 2461 } 2462 tk_update_leap_state(tk); 2463 2464 write_seqcount_end(&tk_core.seq); 2465 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2466 2467 audit_ntp_log(&ad); 2468 2469 /* Update the multiplier immediately if frequency was set directly */ 2470 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2471 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2472 2473 if (clock_set) 2474 clock_was_set(CLOCK_REALTIME); 2475 2476 ntp_notify_cmos_timer(); 2477 2478 return ret; 2479 } 2480 2481 #ifdef CONFIG_NTP_PPS 2482 /** 2483 * hardpps() - Accessor function to NTP __hardpps function 2484 */ 2485 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2486 { 2487 unsigned long flags; 2488 2489 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2490 write_seqcount_begin(&tk_core.seq); 2491 2492 __hardpps(phase_ts, raw_ts); 2493 2494 write_seqcount_end(&tk_core.seq); 2495 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2496 } 2497 EXPORT_SYMBOL(hardpps); 2498 #endif /* CONFIG_NTP_PPS */ 2499