1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/nmi.h> 18 #include <linux/sched.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/sched/clock.h> 21 #include <linux/syscore_ops.h> 22 #include <linux/clocksource.h> 23 #include <linux/jiffies.h> 24 #include <linux/time.h> 25 #include <linux/tick.h> 26 #include <linux/stop_machine.h> 27 #include <linux/pvclock_gtod.h> 28 #include <linux/compiler.h> 29 30 #include "tick-internal.h" 31 #include "ntp_internal.h" 32 #include "timekeeping_internal.h" 33 34 #define TK_CLEAR_NTP (1 << 0) 35 #define TK_MIRROR (1 << 1) 36 #define TK_CLOCK_WAS_SET (1 << 2) 37 38 enum timekeeping_adv_mode { 39 /* Update timekeeper when a tick has passed */ 40 TK_ADV_TICK, 41 42 /* Update timekeeper on a direct frequency change */ 43 TK_ADV_FREQ 44 }; 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 static struct { 51 seqcount_t seq; 52 struct timekeeper timekeeper; 53 } tk_core ____cacheline_aligned; 54 55 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 56 static struct timekeeper shadow_timekeeper; 57 58 /** 59 * struct tk_fast - NMI safe timekeeper 60 * @seq: Sequence counter for protecting updates. The lowest bit 61 * is the index for the tk_read_base array 62 * @base: tk_read_base array. Access is indexed by the lowest bit of 63 * @seq. 64 * 65 * See @update_fast_timekeeper() below. 66 */ 67 struct tk_fast { 68 seqcount_t seq; 69 struct tk_read_base base[2]; 70 }; 71 72 /* Suspend-time cycles value for halted fast timekeeper. */ 73 static u64 cycles_at_suspend; 74 75 static u64 dummy_clock_read(struct clocksource *cs) 76 { 77 return cycles_at_suspend; 78 } 79 80 static struct clocksource dummy_clock = { 81 .read = dummy_clock_read, 82 }; 83 84 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 85 .base[0] = { .clock = &dummy_clock, }, 86 .base[1] = { .clock = &dummy_clock, }, 87 }; 88 89 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 90 .base[0] = { .clock = &dummy_clock, }, 91 .base[1] = { .clock = &dummy_clock, }, 92 }; 93 94 /* flag for if timekeeping is suspended */ 95 int __read_mostly timekeeping_suspended; 96 97 static inline void tk_normalize_xtime(struct timekeeper *tk) 98 { 99 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 100 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 101 tk->xtime_sec++; 102 } 103 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 104 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 105 tk->raw_sec++; 106 } 107 } 108 109 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 110 { 111 struct timespec64 ts; 112 113 ts.tv_sec = tk->xtime_sec; 114 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 115 return ts; 116 } 117 118 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 119 { 120 tk->xtime_sec = ts->tv_sec; 121 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 122 } 123 124 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 125 { 126 tk->xtime_sec += ts->tv_sec; 127 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 128 tk_normalize_xtime(tk); 129 } 130 131 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 132 { 133 struct timespec64 tmp; 134 135 /* 136 * Verify consistency of: offset_real = -wall_to_monotonic 137 * before modifying anything 138 */ 139 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 140 -tk->wall_to_monotonic.tv_nsec); 141 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 142 tk->wall_to_monotonic = wtm; 143 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 144 tk->offs_real = timespec64_to_ktime(tmp); 145 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 146 } 147 148 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 149 { 150 tk->offs_boot = ktime_add(tk->offs_boot, delta); 151 } 152 153 /* 154 * tk_clock_read - atomic clocksource read() helper 155 * 156 * This helper is necessary to use in the read paths because, while the 157 * seqlock ensures we don't return a bad value while structures are updated, 158 * it doesn't protect from potential crashes. There is the possibility that 159 * the tkr's clocksource may change between the read reference, and the 160 * clock reference passed to the read function. This can cause crashes if 161 * the wrong clocksource is passed to the wrong read function. 162 * This isn't necessary to use when holding the timekeeper_lock or doing 163 * a read of the fast-timekeeper tkrs (which is protected by its own locking 164 * and update logic). 165 */ 166 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 167 { 168 struct clocksource *clock = READ_ONCE(tkr->clock); 169 170 return clock->read(clock); 171 } 172 173 #ifdef CONFIG_DEBUG_TIMEKEEPING 174 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 175 176 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 177 { 178 179 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 180 const char *name = tk->tkr_mono.clock->name; 181 182 if (offset > max_cycles) { 183 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 184 offset, name, max_cycles); 185 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 186 } else { 187 if (offset > (max_cycles >> 1)) { 188 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 189 offset, name, max_cycles >> 1); 190 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 191 } 192 } 193 194 if (tk->underflow_seen) { 195 if (jiffies - tk->last_warning > WARNING_FREQ) { 196 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 197 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 198 printk_deferred(" Your kernel is probably still fine.\n"); 199 tk->last_warning = jiffies; 200 } 201 tk->underflow_seen = 0; 202 } 203 204 if (tk->overflow_seen) { 205 if (jiffies - tk->last_warning > WARNING_FREQ) { 206 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 207 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 208 printk_deferred(" Your kernel is probably still fine.\n"); 209 tk->last_warning = jiffies; 210 } 211 tk->overflow_seen = 0; 212 } 213 } 214 215 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 216 { 217 struct timekeeper *tk = &tk_core.timekeeper; 218 u64 now, last, mask, max, delta; 219 unsigned int seq; 220 221 /* 222 * Since we're called holding a seqlock, the data may shift 223 * under us while we're doing the calculation. This can cause 224 * false positives, since we'd note a problem but throw the 225 * results away. So nest another seqlock here to atomically 226 * grab the points we are checking with. 227 */ 228 do { 229 seq = read_seqcount_begin(&tk_core.seq); 230 now = tk_clock_read(tkr); 231 last = tkr->cycle_last; 232 mask = tkr->mask; 233 max = tkr->clock->max_cycles; 234 } while (read_seqcount_retry(&tk_core.seq, seq)); 235 236 delta = clocksource_delta(now, last, mask); 237 238 /* 239 * Try to catch underflows by checking if we are seeing small 240 * mask-relative negative values. 241 */ 242 if (unlikely((~delta & mask) < (mask >> 3))) { 243 tk->underflow_seen = 1; 244 delta = 0; 245 } 246 247 /* Cap delta value to the max_cycles values to avoid mult overflows */ 248 if (unlikely(delta > max)) { 249 tk->overflow_seen = 1; 250 delta = tkr->clock->max_cycles; 251 } 252 253 return delta; 254 } 255 #else 256 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 257 { 258 } 259 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 260 { 261 u64 cycle_now, delta; 262 263 /* read clocksource */ 264 cycle_now = tk_clock_read(tkr); 265 266 /* calculate the delta since the last update_wall_time */ 267 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 268 269 return delta; 270 } 271 #endif 272 273 /** 274 * tk_setup_internals - Set up internals to use clocksource clock. 275 * 276 * @tk: The target timekeeper to setup. 277 * @clock: Pointer to clocksource. 278 * 279 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 280 * pair and interval request. 281 * 282 * Unless you're the timekeeping code, you should not be using this! 283 */ 284 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 285 { 286 u64 interval; 287 u64 tmp, ntpinterval; 288 struct clocksource *old_clock; 289 290 ++tk->cs_was_changed_seq; 291 old_clock = tk->tkr_mono.clock; 292 tk->tkr_mono.clock = clock; 293 tk->tkr_mono.mask = clock->mask; 294 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 295 296 tk->tkr_raw.clock = clock; 297 tk->tkr_raw.mask = clock->mask; 298 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 299 300 /* Do the ns -> cycle conversion first, using original mult */ 301 tmp = NTP_INTERVAL_LENGTH; 302 tmp <<= clock->shift; 303 ntpinterval = tmp; 304 tmp += clock->mult/2; 305 do_div(tmp, clock->mult); 306 if (tmp == 0) 307 tmp = 1; 308 309 interval = (u64) tmp; 310 tk->cycle_interval = interval; 311 312 /* Go back from cycles -> shifted ns */ 313 tk->xtime_interval = interval * clock->mult; 314 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 315 tk->raw_interval = interval * clock->mult; 316 317 /* if changing clocks, convert xtime_nsec shift units */ 318 if (old_clock) { 319 int shift_change = clock->shift - old_clock->shift; 320 if (shift_change < 0) { 321 tk->tkr_mono.xtime_nsec >>= -shift_change; 322 tk->tkr_raw.xtime_nsec >>= -shift_change; 323 } else { 324 tk->tkr_mono.xtime_nsec <<= shift_change; 325 tk->tkr_raw.xtime_nsec <<= shift_change; 326 } 327 } 328 329 tk->tkr_mono.shift = clock->shift; 330 tk->tkr_raw.shift = clock->shift; 331 332 tk->ntp_error = 0; 333 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 334 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 335 336 /* 337 * The timekeeper keeps its own mult values for the currently 338 * active clocksource. These value will be adjusted via NTP 339 * to counteract clock drifting. 340 */ 341 tk->tkr_mono.mult = clock->mult; 342 tk->tkr_raw.mult = clock->mult; 343 tk->ntp_err_mult = 0; 344 tk->skip_second_overflow = 0; 345 } 346 347 /* Timekeeper helper functions. */ 348 349 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 350 static u32 default_arch_gettimeoffset(void) { return 0; } 351 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 352 #else 353 static inline u32 arch_gettimeoffset(void) { return 0; } 354 #endif 355 356 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 357 { 358 u64 nsec; 359 360 nsec = delta * tkr->mult + tkr->xtime_nsec; 361 nsec >>= tkr->shift; 362 363 /* If arch requires, add in get_arch_timeoffset() */ 364 return nsec + arch_gettimeoffset(); 365 } 366 367 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 368 { 369 u64 delta; 370 371 delta = timekeeping_get_delta(tkr); 372 return timekeeping_delta_to_ns(tkr, delta); 373 } 374 375 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 376 { 377 u64 delta; 378 379 /* calculate the delta since the last update_wall_time */ 380 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 381 return timekeeping_delta_to_ns(tkr, delta); 382 } 383 384 /** 385 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 386 * @tkr: Timekeeping readout base from which we take the update 387 * 388 * We want to use this from any context including NMI and tracing / 389 * instrumenting the timekeeping code itself. 390 * 391 * Employ the latch technique; see @raw_write_seqcount_latch. 392 * 393 * So if a NMI hits the update of base[0] then it will use base[1] 394 * which is still consistent. In the worst case this can result is a 395 * slightly wrong timestamp (a few nanoseconds). See 396 * @ktime_get_mono_fast_ns. 397 */ 398 static void update_fast_timekeeper(const struct tk_read_base *tkr, 399 struct tk_fast *tkf) 400 { 401 struct tk_read_base *base = tkf->base; 402 403 /* Force readers off to base[1] */ 404 raw_write_seqcount_latch(&tkf->seq); 405 406 /* Update base[0] */ 407 memcpy(base, tkr, sizeof(*base)); 408 409 /* Force readers back to base[0] */ 410 raw_write_seqcount_latch(&tkf->seq); 411 412 /* Update base[1] */ 413 memcpy(base + 1, base, sizeof(*base)); 414 } 415 416 /** 417 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 418 * 419 * This timestamp is not guaranteed to be monotonic across an update. 420 * The timestamp is calculated by: 421 * 422 * now = base_mono + clock_delta * slope 423 * 424 * So if the update lowers the slope, readers who are forced to the 425 * not yet updated second array are still using the old steeper slope. 426 * 427 * tmono 428 * ^ 429 * | o n 430 * | o n 431 * | u 432 * | o 433 * |o 434 * |12345678---> reader order 435 * 436 * o = old slope 437 * u = update 438 * n = new slope 439 * 440 * So reader 6 will observe time going backwards versus reader 5. 441 * 442 * While other CPUs are likely to be able observe that, the only way 443 * for a CPU local observation is when an NMI hits in the middle of 444 * the update. Timestamps taken from that NMI context might be ahead 445 * of the following timestamps. Callers need to be aware of that and 446 * deal with it. 447 */ 448 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 449 { 450 struct tk_read_base *tkr; 451 unsigned int seq; 452 u64 now; 453 454 do { 455 seq = raw_read_seqcount_latch(&tkf->seq); 456 tkr = tkf->base + (seq & 0x01); 457 now = ktime_to_ns(tkr->base); 458 459 now += timekeeping_delta_to_ns(tkr, 460 clocksource_delta( 461 tk_clock_read(tkr), 462 tkr->cycle_last, 463 tkr->mask)); 464 } while (read_seqcount_retry(&tkf->seq, seq)); 465 466 return now; 467 } 468 469 u64 ktime_get_mono_fast_ns(void) 470 { 471 return __ktime_get_fast_ns(&tk_fast_mono); 472 } 473 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 474 475 u64 ktime_get_raw_fast_ns(void) 476 { 477 return __ktime_get_fast_ns(&tk_fast_raw); 478 } 479 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 480 481 /** 482 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 483 * 484 * To keep it NMI safe since we're accessing from tracing, we're not using a 485 * separate timekeeper with updates to monotonic clock and boot offset 486 * protected with seqlocks. This has the following minor side effects: 487 * 488 * (1) Its possible that a timestamp be taken after the boot offset is updated 489 * but before the timekeeper is updated. If this happens, the new boot offset 490 * is added to the old timekeeping making the clock appear to update slightly 491 * earlier: 492 * CPU 0 CPU 1 493 * timekeeping_inject_sleeptime64() 494 * __timekeeping_inject_sleeptime(tk, delta); 495 * timestamp(); 496 * timekeeping_update(tk, TK_CLEAR_NTP...); 497 * 498 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 499 * partially updated. Since the tk->offs_boot update is a rare event, this 500 * should be a rare occurrence which postprocessing should be able to handle. 501 */ 502 u64 notrace ktime_get_boot_fast_ns(void) 503 { 504 struct timekeeper *tk = &tk_core.timekeeper; 505 506 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 507 } 508 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 509 510 511 /* 512 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 513 */ 514 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 515 { 516 struct tk_read_base *tkr; 517 unsigned int seq; 518 u64 now; 519 520 do { 521 seq = raw_read_seqcount_latch(&tkf->seq); 522 tkr = tkf->base + (seq & 0x01); 523 now = ktime_to_ns(tkr->base_real); 524 525 now += timekeeping_delta_to_ns(tkr, 526 clocksource_delta( 527 tk_clock_read(tkr), 528 tkr->cycle_last, 529 tkr->mask)); 530 } while (read_seqcount_retry(&tkf->seq, seq)); 531 532 return now; 533 } 534 535 /** 536 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 537 */ 538 u64 ktime_get_real_fast_ns(void) 539 { 540 return __ktime_get_real_fast_ns(&tk_fast_mono); 541 } 542 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 543 544 /** 545 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 546 * @tk: Timekeeper to snapshot. 547 * 548 * It generally is unsafe to access the clocksource after timekeeping has been 549 * suspended, so take a snapshot of the readout base of @tk and use it as the 550 * fast timekeeper's readout base while suspended. It will return the same 551 * number of cycles every time until timekeeping is resumed at which time the 552 * proper readout base for the fast timekeeper will be restored automatically. 553 */ 554 static void halt_fast_timekeeper(const struct timekeeper *tk) 555 { 556 static struct tk_read_base tkr_dummy; 557 const struct tk_read_base *tkr = &tk->tkr_mono; 558 559 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 560 cycles_at_suspend = tk_clock_read(tkr); 561 tkr_dummy.clock = &dummy_clock; 562 tkr_dummy.base_real = tkr->base + tk->offs_real; 563 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 564 565 tkr = &tk->tkr_raw; 566 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 567 tkr_dummy.clock = &dummy_clock; 568 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 569 } 570 571 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 572 573 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 574 { 575 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 576 } 577 578 /** 579 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 580 */ 581 int pvclock_gtod_register_notifier(struct notifier_block *nb) 582 { 583 struct timekeeper *tk = &tk_core.timekeeper; 584 unsigned long flags; 585 int ret; 586 587 raw_spin_lock_irqsave(&timekeeper_lock, flags); 588 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 589 update_pvclock_gtod(tk, true); 590 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 591 592 return ret; 593 } 594 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 595 596 /** 597 * pvclock_gtod_unregister_notifier - unregister a pvclock 598 * timedata update listener 599 */ 600 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 601 { 602 unsigned long flags; 603 int ret; 604 605 raw_spin_lock_irqsave(&timekeeper_lock, flags); 606 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 607 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 608 609 return ret; 610 } 611 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 612 613 /* 614 * tk_update_leap_state - helper to update the next_leap_ktime 615 */ 616 static inline void tk_update_leap_state(struct timekeeper *tk) 617 { 618 tk->next_leap_ktime = ntp_get_next_leap(); 619 if (tk->next_leap_ktime != KTIME_MAX) 620 /* Convert to monotonic time */ 621 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 622 } 623 624 /* 625 * Update the ktime_t based scalar nsec members of the timekeeper 626 */ 627 static inline void tk_update_ktime_data(struct timekeeper *tk) 628 { 629 u64 seconds; 630 u32 nsec; 631 632 /* 633 * The xtime based monotonic readout is: 634 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 635 * The ktime based monotonic readout is: 636 * nsec = base_mono + now(); 637 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 638 */ 639 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 640 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 641 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 642 643 /* 644 * The sum of the nanoseconds portions of xtime and 645 * wall_to_monotonic can be greater/equal one second. Take 646 * this into account before updating tk->ktime_sec. 647 */ 648 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 649 if (nsec >= NSEC_PER_SEC) 650 seconds++; 651 tk->ktime_sec = seconds; 652 653 /* Update the monotonic raw base */ 654 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 655 } 656 657 /* must hold timekeeper_lock */ 658 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 659 { 660 if (action & TK_CLEAR_NTP) { 661 tk->ntp_error = 0; 662 ntp_clear(); 663 } 664 665 tk_update_leap_state(tk); 666 tk_update_ktime_data(tk); 667 668 update_vsyscall(tk); 669 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 670 671 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 672 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 673 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 674 675 if (action & TK_CLOCK_WAS_SET) 676 tk->clock_was_set_seq++; 677 /* 678 * The mirroring of the data to the shadow-timekeeper needs 679 * to happen last here to ensure we don't over-write the 680 * timekeeper structure on the next update with stale data 681 */ 682 if (action & TK_MIRROR) 683 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 684 sizeof(tk_core.timekeeper)); 685 } 686 687 /** 688 * timekeeping_forward_now - update clock to the current time 689 * 690 * Forward the current clock to update its state since the last call to 691 * update_wall_time(). This is useful before significant clock changes, 692 * as it avoids having to deal with this time offset explicitly. 693 */ 694 static void timekeeping_forward_now(struct timekeeper *tk) 695 { 696 u64 cycle_now, delta; 697 698 cycle_now = tk_clock_read(&tk->tkr_mono); 699 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 700 tk->tkr_mono.cycle_last = cycle_now; 701 tk->tkr_raw.cycle_last = cycle_now; 702 703 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 704 705 /* If arch requires, add in get_arch_timeoffset() */ 706 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 707 708 709 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 710 711 /* If arch requires, add in get_arch_timeoffset() */ 712 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 713 714 tk_normalize_xtime(tk); 715 } 716 717 /** 718 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 719 * @ts: pointer to the timespec to be set 720 * 721 * Returns the time of day in a timespec64 (WARN if suspended). 722 */ 723 void ktime_get_real_ts64(struct timespec64 *ts) 724 { 725 struct timekeeper *tk = &tk_core.timekeeper; 726 unsigned long seq; 727 u64 nsecs; 728 729 WARN_ON(timekeeping_suspended); 730 731 do { 732 seq = read_seqcount_begin(&tk_core.seq); 733 734 ts->tv_sec = tk->xtime_sec; 735 nsecs = timekeeping_get_ns(&tk->tkr_mono); 736 737 } while (read_seqcount_retry(&tk_core.seq, seq)); 738 739 ts->tv_nsec = 0; 740 timespec64_add_ns(ts, nsecs); 741 } 742 EXPORT_SYMBOL(ktime_get_real_ts64); 743 744 ktime_t ktime_get(void) 745 { 746 struct timekeeper *tk = &tk_core.timekeeper; 747 unsigned int seq; 748 ktime_t base; 749 u64 nsecs; 750 751 WARN_ON(timekeeping_suspended); 752 753 do { 754 seq = read_seqcount_begin(&tk_core.seq); 755 base = tk->tkr_mono.base; 756 nsecs = timekeeping_get_ns(&tk->tkr_mono); 757 758 } while (read_seqcount_retry(&tk_core.seq, seq)); 759 760 return ktime_add_ns(base, nsecs); 761 } 762 EXPORT_SYMBOL_GPL(ktime_get); 763 764 u32 ktime_get_resolution_ns(void) 765 { 766 struct timekeeper *tk = &tk_core.timekeeper; 767 unsigned int seq; 768 u32 nsecs; 769 770 WARN_ON(timekeeping_suspended); 771 772 do { 773 seq = read_seqcount_begin(&tk_core.seq); 774 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 775 } while (read_seqcount_retry(&tk_core.seq, seq)); 776 777 return nsecs; 778 } 779 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 780 781 static ktime_t *offsets[TK_OFFS_MAX] = { 782 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 783 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 784 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 785 }; 786 787 ktime_t ktime_get_with_offset(enum tk_offsets offs) 788 { 789 struct timekeeper *tk = &tk_core.timekeeper; 790 unsigned int seq; 791 ktime_t base, *offset = offsets[offs]; 792 u64 nsecs; 793 794 WARN_ON(timekeeping_suspended); 795 796 do { 797 seq = read_seqcount_begin(&tk_core.seq); 798 base = ktime_add(tk->tkr_mono.base, *offset); 799 nsecs = timekeeping_get_ns(&tk->tkr_mono); 800 801 } while (read_seqcount_retry(&tk_core.seq, seq)); 802 803 return ktime_add_ns(base, nsecs); 804 805 } 806 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 807 808 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 809 { 810 struct timekeeper *tk = &tk_core.timekeeper; 811 unsigned int seq; 812 ktime_t base, *offset = offsets[offs]; 813 814 WARN_ON(timekeeping_suspended); 815 816 do { 817 seq = read_seqcount_begin(&tk_core.seq); 818 base = ktime_add(tk->tkr_mono.base, *offset); 819 820 } while (read_seqcount_retry(&tk_core.seq, seq)); 821 822 return base; 823 824 } 825 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 826 827 /** 828 * ktime_mono_to_any() - convert mononotic time to any other time 829 * @tmono: time to convert. 830 * @offs: which offset to use 831 */ 832 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 833 { 834 ktime_t *offset = offsets[offs]; 835 unsigned long seq; 836 ktime_t tconv; 837 838 do { 839 seq = read_seqcount_begin(&tk_core.seq); 840 tconv = ktime_add(tmono, *offset); 841 } while (read_seqcount_retry(&tk_core.seq, seq)); 842 843 return tconv; 844 } 845 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 846 847 /** 848 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 849 */ 850 ktime_t ktime_get_raw(void) 851 { 852 struct timekeeper *tk = &tk_core.timekeeper; 853 unsigned int seq; 854 ktime_t base; 855 u64 nsecs; 856 857 do { 858 seq = read_seqcount_begin(&tk_core.seq); 859 base = tk->tkr_raw.base; 860 nsecs = timekeeping_get_ns(&tk->tkr_raw); 861 862 } while (read_seqcount_retry(&tk_core.seq, seq)); 863 864 return ktime_add_ns(base, nsecs); 865 } 866 EXPORT_SYMBOL_GPL(ktime_get_raw); 867 868 /** 869 * ktime_get_ts64 - get the monotonic clock in timespec64 format 870 * @ts: pointer to timespec variable 871 * 872 * The function calculates the monotonic clock from the realtime 873 * clock and the wall_to_monotonic offset and stores the result 874 * in normalized timespec64 format in the variable pointed to by @ts. 875 */ 876 void ktime_get_ts64(struct timespec64 *ts) 877 { 878 struct timekeeper *tk = &tk_core.timekeeper; 879 struct timespec64 tomono; 880 unsigned int seq; 881 u64 nsec; 882 883 WARN_ON(timekeeping_suspended); 884 885 do { 886 seq = read_seqcount_begin(&tk_core.seq); 887 ts->tv_sec = tk->xtime_sec; 888 nsec = timekeeping_get_ns(&tk->tkr_mono); 889 tomono = tk->wall_to_monotonic; 890 891 } while (read_seqcount_retry(&tk_core.seq, seq)); 892 893 ts->tv_sec += tomono.tv_sec; 894 ts->tv_nsec = 0; 895 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 896 } 897 EXPORT_SYMBOL_GPL(ktime_get_ts64); 898 899 /** 900 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 901 * 902 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 903 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 904 * works on both 32 and 64 bit systems. On 32 bit systems the readout 905 * covers ~136 years of uptime which should be enough to prevent 906 * premature wrap arounds. 907 */ 908 time64_t ktime_get_seconds(void) 909 { 910 struct timekeeper *tk = &tk_core.timekeeper; 911 912 WARN_ON(timekeeping_suspended); 913 return tk->ktime_sec; 914 } 915 EXPORT_SYMBOL_GPL(ktime_get_seconds); 916 917 /** 918 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 919 * 920 * Returns the wall clock seconds since 1970. This replaces the 921 * get_seconds() interface which is not y2038 safe on 32bit systems. 922 * 923 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 924 * 32bit systems the access must be protected with the sequence 925 * counter to provide "atomic" access to the 64bit tk->xtime_sec 926 * value. 927 */ 928 time64_t ktime_get_real_seconds(void) 929 { 930 struct timekeeper *tk = &tk_core.timekeeper; 931 time64_t seconds; 932 unsigned int seq; 933 934 if (IS_ENABLED(CONFIG_64BIT)) 935 return tk->xtime_sec; 936 937 do { 938 seq = read_seqcount_begin(&tk_core.seq); 939 seconds = tk->xtime_sec; 940 941 } while (read_seqcount_retry(&tk_core.seq, seq)); 942 943 return seconds; 944 } 945 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 946 947 /** 948 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 949 * but without the sequence counter protect. This internal function 950 * is called just when timekeeping lock is already held. 951 */ 952 time64_t __ktime_get_real_seconds(void) 953 { 954 struct timekeeper *tk = &tk_core.timekeeper; 955 956 return tk->xtime_sec; 957 } 958 959 /** 960 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 961 * @systime_snapshot: pointer to struct receiving the system time snapshot 962 */ 963 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 964 { 965 struct timekeeper *tk = &tk_core.timekeeper; 966 unsigned long seq; 967 ktime_t base_raw; 968 ktime_t base_real; 969 u64 nsec_raw; 970 u64 nsec_real; 971 u64 now; 972 973 WARN_ON_ONCE(timekeeping_suspended); 974 975 do { 976 seq = read_seqcount_begin(&tk_core.seq); 977 now = tk_clock_read(&tk->tkr_mono); 978 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 979 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 980 base_real = ktime_add(tk->tkr_mono.base, 981 tk_core.timekeeper.offs_real); 982 base_raw = tk->tkr_raw.base; 983 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 984 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 985 } while (read_seqcount_retry(&tk_core.seq, seq)); 986 987 systime_snapshot->cycles = now; 988 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 989 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 990 } 991 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 992 993 /* Scale base by mult/div checking for overflow */ 994 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 995 { 996 u64 tmp, rem; 997 998 tmp = div64_u64_rem(*base, div, &rem); 999 1000 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1001 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1002 return -EOVERFLOW; 1003 tmp *= mult; 1004 rem *= mult; 1005 1006 do_div(rem, div); 1007 *base = tmp + rem; 1008 return 0; 1009 } 1010 1011 /** 1012 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1013 * @history: Snapshot representing start of history 1014 * @partial_history_cycles: Cycle offset into history (fractional part) 1015 * @total_history_cycles: Total history length in cycles 1016 * @discontinuity: True indicates clock was set on history period 1017 * @ts: Cross timestamp that should be adjusted using 1018 * partial/total ratio 1019 * 1020 * Helper function used by get_device_system_crosststamp() to correct the 1021 * crosstimestamp corresponding to the start of the current interval to the 1022 * system counter value (timestamp point) provided by the driver. The 1023 * total_history_* quantities are the total history starting at the provided 1024 * reference point and ending at the start of the current interval. The cycle 1025 * count between the driver timestamp point and the start of the current 1026 * interval is partial_history_cycles. 1027 */ 1028 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1029 u64 partial_history_cycles, 1030 u64 total_history_cycles, 1031 bool discontinuity, 1032 struct system_device_crosststamp *ts) 1033 { 1034 struct timekeeper *tk = &tk_core.timekeeper; 1035 u64 corr_raw, corr_real; 1036 bool interp_forward; 1037 int ret; 1038 1039 if (total_history_cycles == 0 || partial_history_cycles == 0) 1040 return 0; 1041 1042 /* Interpolate shortest distance from beginning or end of history */ 1043 interp_forward = partial_history_cycles > total_history_cycles / 2; 1044 partial_history_cycles = interp_forward ? 1045 total_history_cycles - partial_history_cycles : 1046 partial_history_cycles; 1047 1048 /* 1049 * Scale the monotonic raw time delta by: 1050 * partial_history_cycles / total_history_cycles 1051 */ 1052 corr_raw = (u64)ktime_to_ns( 1053 ktime_sub(ts->sys_monoraw, history->raw)); 1054 ret = scale64_check_overflow(partial_history_cycles, 1055 total_history_cycles, &corr_raw); 1056 if (ret) 1057 return ret; 1058 1059 /* 1060 * If there is a discontinuity in the history, scale monotonic raw 1061 * correction by: 1062 * mult(real)/mult(raw) yielding the realtime correction 1063 * Otherwise, calculate the realtime correction similar to monotonic 1064 * raw calculation 1065 */ 1066 if (discontinuity) { 1067 corr_real = mul_u64_u32_div 1068 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1069 } else { 1070 corr_real = (u64)ktime_to_ns( 1071 ktime_sub(ts->sys_realtime, history->real)); 1072 ret = scale64_check_overflow(partial_history_cycles, 1073 total_history_cycles, &corr_real); 1074 if (ret) 1075 return ret; 1076 } 1077 1078 /* Fixup monotonic raw and real time time values */ 1079 if (interp_forward) { 1080 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1081 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1082 } else { 1083 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1084 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1085 } 1086 1087 return 0; 1088 } 1089 1090 /* 1091 * cycle_between - true if test occurs chronologically between before and after 1092 */ 1093 static bool cycle_between(u64 before, u64 test, u64 after) 1094 { 1095 if (test > before && test < after) 1096 return true; 1097 if (test < before && before > after) 1098 return true; 1099 return false; 1100 } 1101 1102 /** 1103 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1104 * @get_time_fn: Callback to get simultaneous device time and 1105 * system counter from the device driver 1106 * @ctx: Context passed to get_time_fn() 1107 * @history_begin: Historical reference point used to interpolate system 1108 * time when counter provided by the driver is before the current interval 1109 * @xtstamp: Receives simultaneously captured system and device time 1110 * 1111 * Reads a timestamp from a device and correlates it to system time 1112 */ 1113 int get_device_system_crosststamp(int (*get_time_fn) 1114 (ktime_t *device_time, 1115 struct system_counterval_t *sys_counterval, 1116 void *ctx), 1117 void *ctx, 1118 struct system_time_snapshot *history_begin, 1119 struct system_device_crosststamp *xtstamp) 1120 { 1121 struct system_counterval_t system_counterval; 1122 struct timekeeper *tk = &tk_core.timekeeper; 1123 u64 cycles, now, interval_start; 1124 unsigned int clock_was_set_seq = 0; 1125 ktime_t base_real, base_raw; 1126 u64 nsec_real, nsec_raw; 1127 u8 cs_was_changed_seq; 1128 unsigned long seq; 1129 bool do_interp; 1130 int ret; 1131 1132 do { 1133 seq = read_seqcount_begin(&tk_core.seq); 1134 /* 1135 * Try to synchronously capture device time and a system 1136 * counter value calling back into the device driver 1137 */ 1138 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1139 if (ret) 1140 return ret; 1141 1142 /* 1143 * Verify that the clocksource associated with the captured 1144 * system counter value is the same as the currently installed 1145 * timekeeper clocksource 1146 */ 1147 if (tk->tkr_mono.clock != system_counterval.cs) 1148 return -ENODEV; 1149 cycles = system_counterval.cycles; 1150 1151 /* 1152 * Check whether the system counter value provided by the 1153 * device driver is on the current timekeeping interval. 1154 */ 1155 now = tk_clock_read(&tk->tkr_mono); 1156 interval_start = tk->tkr_mono.cycle_last; 1157 if (!cycle_between(interval_start, cycles, now)) { 1158 clock_was_set_seq = tk->clock_was_set_seq; 1159 cs_was_changed_seq = tk->cs_was_changed_seq; 1160 cycles = interval_start; 1161 do_interp = true; 1162 } else { 1163 do_interp = false; 1164 } 1165 1166 base_real = ktime_add(tk->tkr_mono.base, 1167 tk_core.timekeeper.offs_real); 1168 base_raw = tk->tkr_raw.base; 1169 1170 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1171 system_counterval.cycles); 1172 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1173 system_counterval.cycles); 1174 } while (read_seqcount_retry(&tk_core.seq, seq)); 1175 1176 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1177 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1178 1179 /* 1180 * Interpolate if necessary, adjusting back from the start of the 1181 * current interval 1182 */ 1183 if (do_interp) { 1184 u64 partial_history_cycles, total_history_cycles; 1185 bool discontinuity; 1186 1187 /* 1188 * Check that the counter value occurs after the provided 1189 * history reference and that the history doesn't cross a 1190 * clocksource change 1191 */ 1192 if (!history_begin || 1193 !cycle_between(history_begin->cycles, 1194 system_counterval.cycles, cycles) || 1195 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1196 return -EINVAL; 1197 partial_history_cycles = cycles - system_counterval.cycles; 1198 total_history_cycles = cycles - history_begin->cycles; 1199 discontinuity = 1200 history_begin->clock_was_set_seq != clock_was_set_seq; 1201 1202 ret = adjust_historical_crosststamp(history_begin, 1203 partial_history_cycles, 1204 total_history_cycles, 1205 discontinuity, xtstamp); 1206 if (ret) 1207 return ret; 1208 } 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1213 1214 /** 1215 * do_gettimeofday - Returns the time of day in a timeval 1216 * @tv: pointer to the timeval to be set 1217 * 1218 * NOTE: Users should be converted to using getnstimeofday() 1219 */ 1220 void do_gettimeofday(struct timeval *tv) 1221 { 1222 struct timespec64 now; 1223 1224 getnstimeofday64(&now); 1225 tv->tv_sec = now.tv_sec; 1226 tv->tv_usec = now.tv_nsec/1000; 1227 } 1228 EXPORT_SYMBOL(do_gettimeofday); 1229 1230 /** 1231 * do_settimeofday64 - Sets the time of day. 1232 * @ts: pointer to the timespec64 variable containing the new time 1233 * 1234 * Sets the time of day to the new time and update NTP and notify hrtimers 1235 */ 1236 int do_settimeofday64(const struct timespec64 *ts) 1237 { 1238 struct timekeeper *tk = &tk_core.timekeeper; 1239 struct timespec64 ts_delta, xt; 1240 unsigned long flags; 1241 int ret = 0; 1242 1243 if (!timespec64_valid_strict(ts)) 1244 return -EINVAL; 1245 1246 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1247 write_seqcount_begin(&tk_core.seq); 1248 1249 timekeeping_forward_now(tk); 1250 1251 xt = tk_xtime(tk); 1252 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1253 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1254 1255 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1256 ret = -EINVAL; 1257 goto out; 1258 } 1259 1260 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1261 1262 tk_set_xtime(tk, ts); 1263 out: 1264 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1265 1266 write_seqcount_end(&tk_core.seq); 1267 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1268 1269 /* signal hrtimers about time change */ 1270 clock_was_set(); 1271 1272 return ret; 1273 } 1274 EXPORT_SYMBOL(do_settimeofday64); 1275 1276 /** 1277 * timekeeping_inject_offset - Adds or subtracts from the current time. 1278 * @tv: pointer to the timespec variable containing the offset 1279 * 1280 * Adds or subtracts an offset value from the current time. 1281 */ 1282 static int timekeeping_inject_offset(const struct timespec64 *ts) 1283 { 1284 struct timekeeper *tk = &tk_core.timekeeper; 1285 unsigned long flags; 1286 struct timespec64 tmp; 1287 int ret = 0; 1288 1289 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1290 return -EINVAL; 1291 1292 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1293 write_seqcount_begin(&tk_core.seq); 1294 1295 timekeeping_forward_now(tk); 1296 1297 /* Make sure the proposed value is valid */ 1298 tmp = timespec64_add(tk_xtime(tk), *ts); 1299 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1300 !timespec64_valid_strict(&tmp)) { 1301 ret = -EINVAL; 1302 goto error; 1303 } 1304 1305 tk_xtime_add(tk, ts); 1306 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1307 1308 error: /* even if we error out, we forwarded the time, so call update */ 1309 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1310 1311 write_seqcount_end(&tk_core.seq); 1312 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1313 1314 /* signal hrtimers about time change */ 1315 clock_was_set(); 1316 1317 return ret; 1318 } 1319 1320 /* 1321 * Indicates if there is an offset between the system clock and the hardware 1322 * clock/persistent clock/rtc. 1323 */ 1324 int persistent_clock_is_local; 1325 1326 /* 1327 * Adjust the time obtained from the CMOS to be UTC time instead of 1328 * local time. 1329 * 1330 * This is ugly, but preferable to the alternatives. Otherwise we 1331 * would either need to write a program to do it in /etc/rc (and risk 1332 * confusion if the program gets run more than once; it would also be 1333 * hard to make the program warp the clock precisely n hours) or 1334 * compile in the timezone information into the kernel. Bad, bad.... 1335 * 1336 * - TYT, 1992-01-01 1337 * 1338 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1339 * as real UNIX machines always do it. This avoids all headaches about 1340 * daylight saving times and warping kernel clocks. 1341 */ 1342 void timekeeping_warp_clock(void) 1343 { 1344 if (sys_tz.tz_minuteswest != 0) { 1345 struct timespec64 adjust; 1346 1347 persistent_clock_is_local = 1; 1348 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1349 adjust.tv_nsec = 0; 1350 timekeeping_inject_offset(&adjust); 1351 } 1352 } 1353 1354 /** 1355 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1356 * 1357 */ 1358 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1359 { 1360 tk->tai_offset = tai_offset; 1361 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1362 } 1363 1364 /** 1365 * change_clocksource - Swaps clocksources if a new one is available 1366 * 1367 * Accumulates current time interval and initializes new clocksource 1368 */ 1369 static int change_clocksource(void *data) 1370 { 1371 struct timekeeper *tk = &tk_core.timekeeper; 1372 struct clocksource *new, *old; 1373 unsigned long flags; 1374 1375 new = (struct clocksource *) data; 1376 1377 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1378 write_seqcount_begin(&tk_core.seq); 1379 1380 timekeeping_forward_now(tk); 1381 /* 1382 * If the cs is in module, get a module reference. Succeeds 1383 * for built-in code (owner == NULL) as well. 1384 */ 1385 if (try_module_get(new->owner)) { 1386 if (!new->enable || new->enable(new) == 0) { 1387 old = tk->tkr_mono.clock; 1388 tk_setup_internals(tk, new); 1389 if (old->disable) 1390 old->disable(old); 1391 module_put(old->owner); 1392 } else { 1393 module_put(new->owner); 1394 } 1395 } 1396 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1397 1398 write_seqcount_end(&tk_core.seq); 1399 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * timekeeping_notify - Install a new clock source 1406 * @clock: pointer to the clock source 1407 * 1408 * This function is called from clocksource.c after a new, better clock 1409 * source has been registered. The caller holds the clocksource_mutex. 1410 */ 1411 int timekeeping_notify(struct clocksource *clock) 1412 { 1413 struct timekeeper *tk = &tk_core.timekeeper; 1414 1415 if (tk->tkr_mono.clock == clock) 1416 return 0; 1417 stop_machine(change_clocksource, clock, NULL); 1418 tick_clock_notify(); 1419 return tk->tkr_mono.clock == clock ? 0 : -1; 1420 } 1421 1422 /** 1423 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1424 * @ts: pointer to the timespec64 to be set 1425 * 1426 * Returns the raw monotonic time (completely un-modified by ntp) 1427 */ 1428 void ktime_get_raw_ts64(struct timespec64 *ts) 1429 { 1430 struct timekeeper *tk = &tk_core.timekeeper; 1431 unsigned long seq; 1432 u64 nsecs; 1433 1434 do { 1435 seq = read_seqcount_begin(&tk_core.seq); 1436 ts->tv_sec = tk->raw_sec; 1437 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1438 1439 } while (read_seqcount_retry(&tk_core.seq, seq)); 1440 1441 ts->tv_nsec = 0; 1442 timespec64_add_ns(ts, nsecs); 1443 } 1444 EXPORT_SYMBOL(ktime_get_raw_ts64); 1445 1446 1447 /** 1448 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1449 */ 1450 int timekeeping_valid_for_hres(void) 1451 { 1452 struct timekeeper *tk = &tk_core.timekeeper; 1453 unsigned long seq; 1454 int ret; 1455 1456 do { 1457 seq = read_seqcount_begin(&tk_core.seq); 1458 1459 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1460 1461 } while (read_seqcount_retry(&tk_core.seq, seq)); 1462 1463 return ret; 1464 } 1465 1466 /** 1467 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1468 */ 1469 u64 timekeeping_max_deferment(void) 1470 { 1471 struct timekeeper *tk = &tk_core.timekeeper; 1472 unsigned long seq; 1473 u64 ret; 1474 1475 do { 1476 seq = read_seqcount_begin(&tk_core.seq); 1477 1478 ret = tk->tkr_mono.clock->max_idle_ns; 1479 1480 } while (read_seqcount_retry(&tk_core.seq, seq)); 1481 1482 return ret; 1483 } 1484 1485 /** 1486 * read_persistent_clock - Return time from the persistent clock. 1487 * 1488 * Weak dummy function for arches that do not yet support it. 1489 * Reads the time from the battery backed persistent clock. 1490 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1491 * 1492 * XXX - Do be sure to remove it once all arches implement it. 1493 */ 1494 void __weak read_persistent_clock(struct timespec *ts) 1495 { 1496 ts->tv_sec = 0; 1497 ts->tv_nsec = 0; 1498 } 1499 1500 void __weak read_persistent_clock64(struct timespec64 *ts64) 1501 { 1502 struct timespec ts; 1503 1504 read_persistent_clock(&ts); 1505 *ts64 = timespec_to_timespec64(ts); 1506 } 1507 1508 /** 1509 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1510 * from the boot. 1511 * 1512 * Weak dummy function for arches that do not yet support it. 1513 * wall_time - current time as returned by persistent clock 1514 * boot_offset - offset that is defined as wall_time - boot_time 1515 * The default function calculates offset based on the current value of 1516 * local_clock(). This way architectures that support sched_clock() but don't 1517 * support dedicated boot time clock will provide the best estimate of the 1518 * boot time. 1519 */ 1520 void __weak __init 1521 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1522 struct timespec64 *boot_offset) 1523 { 1524 read_persistent_clock64(wall_time); 1525 *boot_offset = ns_to_timespec64(local_clock()); 1526 } 1527 1528 /* 1529 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1530 * 1531 * The flag starts of false and is only set when a suspend reaches 1532 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1533 * timekeeper clocksource is not stopping across suspend and has been 1534 * used to update sleep time. If the timekeeper clocksource has stopped 1535 * then the flag stays true and is used by the RTC resume code to decide 1536 * whether sleeptime must be injected and if so the flag gets false then. 1537 * 1538 * If a suspend fails before reaching timekeeping_resume() then the flag 1539 * stays false and prevents erroneous sleeptime injection. 1540 */ 1541 static bool suspend_timing_needed; 1542 1543 /* Flag for if there is a persistent clock on this platform */ 1544 static bool persistent_clock_exists; 1545 1546 /* 1547 * timekeeping_init - Initializes the clocksource and common timekeeping values 1548 */ 1549 void __init timekeeping_init(void) 1550 { 1551 struct timespec64 wall_time, boot_offset, wall_to_mono; 1552 struct timekeeper *tk = &tk_core.timekeeper; 1553 struct clocksource *clock; 1554 unsigned long flags; 1555 1556 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1557 if (timespec64_valid_strict(&wall_time) && 1558 timespec64_to_ns(&wall_time) > 0) { 1559 persistent_clock_exists = true; 1560 } else if (timespec64_to_ns(&wall_time) != 0) { 1561 pr_warn("Persistent clock returned invalid value"); 1562 wall_time = (struct timespec64){0}; 1563 } 1564 1565 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1566 boot_offset = (struct timespec64){0}; 1567 1568 /* 1569 * We want set wall_to_mono, so the following is true: 1570 * wall time + wall_to_mono = boot time 1571 */ 1572 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1573 1574 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1575 write_seqcount_begin(&tk_core.seq); 1576 ntp_init(); 1577 1578 clock = clocksource_default_clock(); 1579 if (clock->enable) 1580 clock->enable(clock); 1581 tk_setup_internals(tk, clock); 1582 1583 tk_set_xtime(tk, &wall_time); 1584 tk->raw_sec = 0; 1585 1586 tk_set_wall_to_mono(tk, wall_to_mono); 1587 1588 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1589 1590 write_seqcount_end(&tk_core.seq); 1591 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1592 } 1593 1594 /* time in seconds when suspend began for persistent clock */ 1595 static struct timespec64 timekeeping_suspend_time; 1596 1597 /** 1598 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1599 * @delta: pointer to a timespec delta value 1600 * 1601 * Takes a timespec offset measuring a suspend interval and properly 1602 * adds the sleep offset to the timekeeping variables. 1603 */ 1604 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1605 const struct timespec64 *delta) 1606 { 1607 if (!timespec64_valid_strict(delta)) { 1608 printk_deferred(KERN_WARNING 1609 "__timekeeping_inject_sleeptime: Invalid " 1610 "sleep delta value!\n"); 1611 return; 1612 } 1613 tk_xtime_add(tk, delta); 1614 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1615 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1616 tk_debug_account_sleep_time(delta); 1617 } 1618 1619 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1620 /** 1621 * We have three kinds of time sources to use for sleep time 1622 * injection, the preference order is: 1623 * 1) non-stop clocksource 1624 * 2) persistent clock (ie: RTC accessible when irqs are off) 1625 * 3) RTC 1626 * 1627 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1628 * If system has neither 1) nor 2), 3) will be used finally. 1629 * 1630 * 1631 * If timekeeping has injected sleeptime via either 1) or 2), 1632 * 3) becomes needless, so in this case we don't need to call 1633 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1634 * means. 1635 */ 1636 bool timekeeping_rtc_skipresume(void) 1637 { 1638 return !suspend_timing_needed; 1639 } 1640 1641 /** 1642 * 1) can be determined whether to use or not only when doing 1643 * timekeeping_resume() which is invoked after rtc_suspend(), 1644 * so we can't skip rtc_suspend() surely if system has 1). 1645 * 1646 * But if system has 2), 2) will definitely be used, so in this 1647 * case we don't need to call rtc_suspend(), and this is what 1648 * timekeeping_rtc_skipsuspend() means. 1649 */ 1650 bool timekeeping_rtc_skipsuspend(void) 1651 { 1652 return persistent_clock_exists; 1653 } 1654 1655 /** 1656 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1657 * @delta: pointer to a timespec64 delta value 1658 * 1659 * This hook is for architectures that cannot support read_persistent_clock64 1660 * because their RTC/persistent clock is only accessible when irqs are enabled. 1661 * and also don't have an effective nonstop clocksource. 1662 * 1663 * This function should only be called by rtc_resume(), and allows 1664 * a suspend offset to be injected into the timekeeping values. 1665 */ 1666 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1667 { 1668 struct timekeeper *tk = &tk_core.timekeeper; 1669 unsigned long flags; 1670 1671 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1672 write_seqcount_begin(&tk_core.seq); 1673 1674 suspend_timing_needed = false; 1675 1676 timekeeping_forward_now(tk); 1677 1678 __timekeeping_inject_sleeptime(tk, delta); 1679 1680 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1681 1682 write_seqcount_end(&tk_core.seq); 1683 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1684 1685 /* signal hrtimers about time change */ 1686 clock_was_set(); 1687 } 1688 #endif 1689 1690 /** 1691 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1692 */ 1693 void timekeeping_resume(void) 1694 { 1695 struct timekeeper *tk = &tk_core.timekeeper; 1696 struct clocksource *clock = tk->tkr_mono.clock; 1697 unsigned long flags; 1698 struct timespec64 ts_new, ts_delta; 1699 u64 cycle_now, nsec; 1700 bool inject_sleeptime = false; 1701 1702 read_persistent_clock64(&ts_new); 1703 1704 clockevents_resume(); 1705 clocksource_resume(); 1706 1707 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1708 write_seqcount_begin(&tk_core.seq); 1709 1710 /* 1711 * After system resumes, we need to calculate the suspended time and 1712 * compensate it for the OS time. There are 3 sources that could be 1713 * used: Nonstop clocksource during suspend, persistent clock and rtc 1714 * device. 1715 * 1716 * One specific platform may have 1 or 2 or all of them, and the 1717 * preference will be: 1718 * suspend-nonstop clocksource -> persistent clock -> rtc 1719 * The less preferred source will only be tried if there is no better 1720 * usable source. The rtc part is handled separately in rtc core code. 1721 */ 1722 cycle_now = tk_clock_read(&tk->tkr_mono); 1723 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1724 if (nsec > 0) { 1725 ts_delta = ns_to_timespec64(nsec); 1726 inject_sleeptime = true; 1727 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1728 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1729 inject_sleeptime = true; 1730 } 1731 1732 if (inject_sleeptime) { 1733 suspend_timing_needed = false; 1734 __timekeeping_inject_sleeptime(tk, &ts_delta); 1735 } 1736 1737 /* Re-base the last cycle value */ 1738 tk->tkr_mono.cycle_last = cycle_now; 1739 tk->tkr_raw.cycle_last = cycle_now; 1740 1741 tk->ntp_error = 0; 1742 timekeeping_suspended = 0; 1743 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1744 write_seqcount_end(&tk_core.seq); 1745 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1746 1747 touch_softlockup_watchdog(); 1748 1749 tick_resume(); 1750 hrtimers_resume(); 1751 } 1752 1753 int timekeeping_suspend(void) 1754 { 1755 struct timekeeper *tk = &tk_core.timekeeper; 1756 unsigned long flags; 1757 struct timespec64 delta, delta_delta; 1758 static struct timespec64 old_delta; 1759 struct clocksource *curr_clock; 1760 u64 cycle_now; 1761 1762 read_persistent_clock64(&timekeeping_suspend_time); 1763 1764 /* 1765 * On some systems the persistent_clock can not be detected at 1766 * timekeeping_init by its return value, so if we see a valid 1767 * value returned, update the persistent_clock_exists flag. 1768 */ 1769 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1770 persistent_clock_exists = true; 1771 1772 suspend_timing_needed = true; 1773 1774 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1775 write_seqcount_begin(&tk_core.seq); 1776 timekeeping_forward_now(tk); 1777 timekeeping_suspended = 1; 1778 1779 /* 1780 * Since we've called forward_now, cycle_last stores the value 1781 * just read from the current clocksource. Save this to potentially 1782 * use in suspend timing. 1783 */ 1784 curr_clock = tk->tkr_mono.clock; 1785 cycle_now = tk->tkr_mono.cycle_last; 1786 clocksource_start_suspend_timing(curr_clock, cycle_now); 1787 1788 if (persistent_clock_exists) { 1789 /* 1790 * To avoid drift caused by repeated suspend/resumes, 1791 * which each can add ~1 second drift error, 1792 * try to compensate so the difference in system time 1793 * and persistent_clock time stays close to constant. 1794 */ 1795 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1796 delta_delta = timespec64_sub(delta, old_delta); 1797 if (abs(delta_delta.tv_sec) >= 2) { 1798 /* 1799 * if delta_delta is too large, assume time correction 1800 * has occurred and set old_delta to the current delta. 1801 */ 1802 old_delta = delta; 1803 } else { 1804 /* Otherwise try to adjust old_system to compensate */ 1805 timekeeping_suspend_time = 1806 timespec64_add(timekeeping_suspend_time, delta_delta); 1807 } 1808 } 1809 1810 timekeeping_update(tk, TK_MIRROR); 1811 halt_fast_timekeeper(tk); 1812 write_seqcount_end(&tk_core.seq); 1813 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1814 1815 tick_suspend(); 1816 clocksource_suspend(); 1817 clockevents_suspend(); 1818 1819 return 0; 1820 } 1821 1822 /* sysfs resume/suspend bits for timekeeping */ 1823 static struct syscore_ops timekeeping_syscore_ops = { 1824 .resume = timekeeping_resume, 1825 .suspend = timekeeping_suspend, 1826 }; 1827 1828 static int __init timekeeping_init_ops(void) 1829 { 1830 register_syscore_ops(&timekeeping_syscore_ops); 1831 return 0; 1832 } 1833 device_initcall(timekeeping_init_ops); 1834 1835 /* 1836 * Apply a multiplier adjustment to the timekeeper 1837 */ 1838 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1839 s64 offset, 1840 s32 mult_adj) 1841 { 1842 s64 interval = tk->cycle_interval; 1843 1844 if (mult_adj == 0) { 1845 return; 1846 } else if (mult_adj == -1) { 1847 interval = -interval; 1848 offset = -offset; 1849 } else if (mult_adj != 1) { 1850 interval *= mult_adj; 1851 offset *= mult_adj; 1852 } 1853 1854 /* 1855 * So the following can be confusing. 1856 * 1857 * To keep things simple, lets assume mult_adj == 1 for now. 1858 * 1859 * When mult_adj != 1, remember that the interval and offset values 1860 * have been appropriately scaled so the math is the same. 1861 * 1862 * The basic idea here is that we're increasing the multiplier 1863 * by one, this causes the xtime_interval to be incremented by 1864 * one cycle_interval. This is because: 1865 * xtime_interval = cycle_interval * mult 1866 * So if mult is being incremented by one: 1867 * xtime_interval = cycle_interval * (mult + 1) 1868 * Its the same as: 1869 * xtime_interval = (cycle_interval * mult) + cycle_interval 1870 * Which can be shortened to: 1871 * xtime_interval += cycle_interval 1872 * 1873 * So offset stores the non-accumulated cycles. Thus the current 1874 * time (in shifted nanoseconds) is: 1875 * now = (offset * adj) + xtime_nsec 1876 * Now, even though we're adjusting the clock frequency, we have 1877 * to keep time consistent. In other words, we can't jump back 1878 * in time, and we also want to avoid jumping forward in time. 1879 * 1880 * So given the same offset value, we need the time to be the same 1881 * both before and after the freq adjustment. 1882 * now = (offset * adj_1) + xtime_nsec_1 1883 * now = (offset * adj_2) + xtime_nsec_2 1884 * So: 1885 * (offset * adj_1) + xtime_nsec_1 = 1886 * (offset * adj_2) + xtime_nsec_2 1887 * And we know: 1888 * adj_2 = adj_1 + 1 1889 * So: 1890 * (offset * adj_1) + xtime_nsec_1 = 1891 * (offset * (adj_1+1)) + xtime_nsec_2 1892 * (offset * adj_1) + xtime_nsec_1 = 1893 * (offset * adj_1) + offset + xtime_nsec_2 1894 * Canceling the sides: 1895 * xtime_nsec_1 = offset + xtime_nsec_2 1896 * Which gives us: 1897 * xtime_nsec_2 = xtime_nsec_1 - offset 1898 * Which simplfies to: 1899 * xtime_nsec -= offset 1900 */ 1901 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1902 /* NTP adjustment caused clocksource mult overflow */ 1903 WARN_ON_ONCE(1); 1904 return; 1905 } 1906 1907 tk->tkr_mono.mult += mult_adj; 1908 tk->xtime_interval += interval; 1909 tk->tkr_mono.xtime_nsec -= offset; 1910 } 1911 1912 /* 1913 * Adjust the timekeeper's multiplier to the correct frequency 1914 * and also to reduce the accumulated error value. 1915 */ 1916 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1917 { 1918 u32 mult; 1919 1920 /* 1921 * Determine the multiplier from the current NTP tick length. 1922 * Avoid expensive division when the tick length doesn't change. 1923 */ 1924 if (likely(tk->ntp_tick == ntp_tick_length())) { 1925 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1926 } else { 1927 tk->ntp_tick = ntp_tick_length(); 1928 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1929 tk->xtime_remainder, tk->cycle_interval); 1930 } 1931 1932 /* 1933 * If the clock is behind the NTP time, increase the multiplier by 1 1934 * to catch up with it. If it's ahead and there was a remainder in the 1935 * tick division, the clock will slow down. Otherwise it will stay 1936 * ahead until the tick length changes to a non-divisible value. 1937 */ 1938 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1939 mult += tk->ntp_err_mult; 1940 1941 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1942 1943 if (unlikely(tk->tkr_mono.clock->maxadj && 1944 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1945 > tk->tkr_mono.clock->maxadj))) { 1946 printk_once(KERN_WARNING 1947 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1948 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1949 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1950 } 1951 1952 /* 1953 * It may be possible that when we entered this function, xtime_nsec 1954 * was very small. Further, if we're slightly speeding the clocksource 1955 * in the code above, its possible the required corrective factor to 1956 * xtime_nsec could cause it to underflow. 1957 * 1958 * Now, since we have already accumulated the second and the NTP 1959 * subsystem has been notified via second_overflow(), we need to skip 1960 * the next update. 1961 */ 1962 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1963 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 1964 tk->tkr_mono.shift; 1965 tk->xtime_sec--; 1966 tk->skip_second_overflow = 1; 1967 } 1968 } 1969 1970 /** 1971 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1972 * 1973 * Helper function that accumulates the nsecs greater than a second 1974 * from the xtime_nsec field to the xtime_secs field. 1975 * It also calls into the NTP code to handle leapsecond processing. 1976 * 1977 */ 1978 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1979 { 1980 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1981 unsigned int clock_set = 0; 1982 1983 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1984 int leap; 1985 1986 tk->tkr_mono.xtime_nsec -= nsecps; 1987 tk->xtime_sec++; 1988 1989 /* 1990 * Skip NTP update if this second was accumulated before, 1991 * i.e. xtime_nsec underflowed in timekeeping_adjust() 1992 */ 1993 if (unlikely(tk->skip_second_overflow)) { 1994 tk->skip_second_overflow = 0; 1995 continue; 1996 } 1997 1998 /* Figure out if its a leap sec and apply if needed */ 1999 leap = second_overflow(tk->xtime_sec); 2000 if (unlikely(leap)) { 2001 struct timespec64 ts; 2002 2003 tk->xtime_sec += leap; 2004 2005 ts.tv_sec = leap; 2006 ts.tv_nsec = 0; 2007 tk_set_wall_to_mono(tk, 2008 timespec64_sub(tk->wall_to_monotonic, ts)); 2009 2010 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2011 2012 clock_set = TK_CLOCK_WAS_SET; 2013 } 2014 } 2015 return clock_set; 2016 } 2017 2018 /** 2019 * logarithmic_accumulation - shifted accumulation of cycles 2020 * 2021 * This functions accumulates a shifted interval of cycles into 2022 * into a shifted interval nanoseconds. Allows for O(log) accumulation 2023 * loop. 2024 * 2025 * Returns the unconsumed cycles. 2026 */ 2027 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2028 u32 shift, unsigned int *clock_set) 2029 { 2030 u64 interval = tk->cycle_interval << shift; 2031 u64 snsec_per_sec; 2032 2033 /* If the offset is smaller than a shifted interval, do nothing */ 2034 if (offset < interval) 2035 return offset; 2036 2037 /* Accumulate one shifted interval */ 2038 offset -= interval; 2039 tk->tkr_mono.cycle_last += interval; 2040 tk->tkr_raw.cycle_last += interval; 2041 2042 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2043 *clock_set |= accumulate_nsecs_to_secs(tk); 2044 2045 /* Accumulate raw time */ 2046 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2047 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2048 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2049 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2050 tk->raw_sec++; 2051 } 2052 2053 /* Accumulate error between NTP and clock interval */ 2054 tk->ntp_error += tk->ntp_tick << shift; 2055 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2056 (tk->ntp_error_shift + shift); 2057 2058 return offset; 2059 } 2060 2061 /* 2062 * timekeeping_advance - Updates the timekeeper to the current time and 2063 * current NTP tick length 2064 */ 2065 static void timekeeping_advance(enum timekeeping_adv_mode mode) 2066 { 2067 struct timekeeper *real_tk = &tk_core.timekeeper; 2068 struct timekeeper *tk = &shadow_timekeeper; 2069 u64 offset; 2070 int shift = 0, maxshift; 2071 unsigned int clock_set = 0; 2072 unsigned long flags; 2073 2074 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2075 2076 /* Make sure we're fully resumed: */ 2077 if (unlikely(timekeeping_suspended)) 2078 goto out; 2079 2080 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2081 offset = real_tk->cycle_interval; 2082 2083 if (mode != TK_ADV_TICK) 2084 goto out; 2085 #else 2086 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2087 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2088 2089 /* Check if there's really nothing to do */ 2090 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2091 goto out; 2092 #endif 2093 2094 /* Do some additional sanity checking */ 2095 timekeeping_check_update(tk, offset); 2096 2097 /* 2098 * With NO_HZ we may have to accumulate many cycle_intervals 2099 * (think "ticks") worth of time at once. To do this efficiently, 2100 * we calculate the largest doubling multiple of cycle_intervals 2101 * that is smaller than the offset. We then accumulate that 2102 * chunk in one go, and then try to consume the next smaller 2103 * doubled multiple. 2104 */ 2105 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2106 shift = max(0, shift); 2107 /* Bound shift to one less than what overflows tick_length */ 2108 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2109 shift = min(shift, maxshift); 2110 while (offset >= tk->cycle_interval) { 2111 offset = logarithmic_accumulation(tk, offset, shift, 2112 &clock_set); 2113 if (offset < tk->cycle_interval<<shift) 2114 shift--; 2115 } 2116 2117 /* Adjust the multiplier to correct NTP error */ 2118 timekeeping_adjust(tk, offset); 2119 2120 /* 2121 * Finally, make sure that after the rounding 2122 * xtime_nsec isn't larger than NSEC_PER_SEC 2123 */ 2124 clock_set |= accumulate_nsecs_to_secs(tk); 2125 2126 write_seqcount_begin(&tk_core.seq); 2127 /* 2128 * Update the real timekeeper. 2129 * 2130 * We could avoid this memcpy by switching pointers, but that 2131 * requires changes to all other timekeeper usage sites as 2132 * well, i.e. move the timekeeper pointer getter into the 2133 * spinlocked/seqcount protected sections. And we trade this 2134 * memcpy under the tk_core.seq against one before we start 2135 * updating. 2136 */ 2137 timekeeping_update(tk, clock_set); 2138 memcpy(real_tk, tk, sizeof(*tk)); 2139 /* The memcpy must come last. Do not put anything here! */ 2140 write_seqcount_end(&tk_core.seq); 2141 out: 2142 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2143 if (clock_set) 2144 /* Have to call _delayed version, since in irq context*/ 2145 clock_was_set_delayed(); 2146 } 2147 2148 /** 2149 * update_wall_time - Uses the current clocksource to increment the wall time 2150 * 2151 */ 2152 void update_wall_time(void) 2153 { 2154 timekeeping_advance(TK_ADV_TICK); 2155 } 2156 2157 /** 2158 * getboottime64 - Return the real time of system boot. 2159 * @ts: pointer to the timespec64 to be set 2160 * 2161 * Returns the wall-time of boot in a timespec64. 2162 * 2163 * This is based on the wall_to_monotonic offset and the total suspend 2164 * time. Calls to settimeofday will affect the value returned (which 2165 * basically means that however wrong your real time clock is at boot time, 2166 * you get the right time here). 2167 */ 2168 void getboottime64(struct timespec64 *ts) 2169 { 2170 struct timekeeper *tk = &tk_core.timekeeper; 2171 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2172 2173 *ts = ktime_to_timespec64(t); 2174 } 2175 EXPORT_SYMBOL_GPL(getboottime64); 2176 2177 unsigned long get_seconds(void) 2178 { 2179 struct timekeeper *tk = &tk_core.timekeeper; 2180 2181 return tk->xtime_sec; 2182 } 2183 EXPORT_SYMBOL(get_seconds); 2184 2185 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2186 { 2187 struct timekeeper *tk = &tk_core.timekeeper; 2188 unsigned long seq; 2189 2190 do { 2191 seq = read_seqcount_begin(&tk_core.seq); 2192 2193 *ts = tk_xtime(tk); 2194 } while (read_seqcount_retry(&tk_core.seq, seq)); 2195 } 2196 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2197 2198 void ktime_get_coarse_ts64(struct timespec64 *ts) 2199 { 2200 struct timekeeper *tk = &tk_core.timekeeper; 2201 struct timespec64 now, mono; 2202 unsigned long seq; 2203 2204 do { 2205 seq = read_seqcount_begin(&tk_core.seq); 2206 2207 now = tk_xtime(tk); 2208 mono = tk->wall_to_monotonic; 2209 } while (read_seqcount_retry(&tk_core.seq, seq)); 2210 2211 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2212 now.tv_nsec + mono.tv_nsec); 2213 } 2214 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2215 2216 /* 2217 * Must hold jiffies_lock 2218 */ 2219 void do_timer(unsigned long ticks) 2220 { 2221 jiffies_64 += ticks; 2222 calc_global_load(ticks); 2223 } 2224 2225 /** 2226 * ktime_get_update_offsets_now - hrtimer helper 2227 * @cwsseq: pointer to check and store the clock was set sequence number 2228 * @offs_real: pointer to storage for monotonic -> realtime offset 2229 * @offs_boot: pointer to storage for monotonic -> boottime offset 2230 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2231 * 2232 * Returns current monotonic time and updates the offsets if the 2233 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2234 * different. 2235 * 2236 * Called from hrtimer_interrupt() or retrigger_next_event() 2237 */ 2238 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2239 ktime_t *offs_boot, ktime_t *offs_tai) 2240 { 2241 struct timekeeper *tk = &tk_core.timekeeper; 2242 unsigned int seq; 2243 ktime_t base; 2244 u64 nsecs; 2245 2246 do { 2247 seq = read_seqcount_begin(&tk_core.seq); 2248 2249 base = tk->tkr_mono.base; 2250 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2251 base = ktime_add_ns(base, nsecs); 2252 2253 if (*cwsseq != tk->clock_was_set_seq) { 2254 *cwsseq = tk->clock_was_set_seq; 2255 *offs_real = tk->offs_real; 2256 *offs_boot = tk->offs_boot; 2257 *offs_tai = tk->offs_tai; 2258 } 2259 2260 /* Handle leapsecond insertion adjustments */ 2261 if (unlikely(base >= tk->next_leap_ktime)) 2262 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2263 2264 } while (read_seqcount_retry(&tk_core.seq, seq)); 2265 2266 return base; 2267 } 2268 2269 /** 2270 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2271 */ 2272 static int timekeeping_validate_timex(const struct timex *txc) 2273 { 2274 if (txc->modes & ADJ_ADJTIME) { 2275 /* singleshot must not be used with any other mode bits */ 2276 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2277 return -EINVAL; 2278 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2279 !capable(CAP_SYS_TIME)) 2280 return -EPERM; 2281 } else { 2282 /* In order to modify anything, you gotta be super-user! */ 2283 if (txc->modes && !capable(CAP_SYS_TIME)) 2284 return -EPERM; 2285 /* 2286 * if the quartz is off by more than 10% then 2287 * something is VERY wrong! 2288 */ 2289 if (txc->modes & ADJ_TICK && 2290 (txc->tick < 900000/USER_HZ || 2291 txc->tick > 1100000/USER_HZ)) 2292 return -EINVAL; 2293 } 2294 2295 if (txc->modes & ADJ_SETOFFSET) { 2296 /* In order to inject time, you gotta be super-user! */ 2297 if (!capable(CAP_SYS_TIME)) 2298 return -EPERM; 2299 2300 /* 2301 * Validate if a timespec/timeval used to inject a time 2302 * offset is valid. Offsets can be postive or negative, so 2303 * we don't check tv_sec. The value of the timeval/timespec 2304 * is the sum of its fields,but *NOTE*: 2305 * The field tv_usec/tv_nsec must always be non-negative and 2306 * we can't have more nanoseconds/microseconds than a second. 2307 */ 2308 if (txc->time.tv_usec < 0) 2309 return -EINVAL; 2310 2311 if (txc->modes & ADJ_NANO) { 2312 if (txc->time.tv_usec >= NSEC_PER_SEC) 2313 return -EINVAL; 2314 } else { 2315 if (txc->time.tv_usec >= USEC_PER_SEC) 2316 return -EINVAL; 2317 } 2318 } 2319 2320 /* 2321 * Check for potential multiplication overflows that can 2322 * only happen on 64-bit systems: 2323 */ 2324 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2325 if (LLONG_MIN / PPM_SCALE > txc->freq) 2326 return -EINVAL; 2327 if (LLONG_MAX / PPM_SCALE < txc->freq) 2328 return -EINVAL; 2329 } 2330 2331 return 0; 2332 } 2333 2334 2335 /** 2336 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2337 */ 2338 int do_adjtimex(struct timex *txc) 2339 { 2340 struct timekeeper *tk = &tk_core.timekeeper; 2341 unsigned long flags; 2342 struct timespec64 ts; 2343 s32 orig_tai, tai; 2344 int ret; 2345 2346 /* Validate the data before disabling interrupts */ 2347 ret = timekeeping_validate_timex(txc); 2348 if (ret) 2349 return ret; 2350 2351 if (txc->modes & ADJ_SETOFFSET) { 2352 struct timespec64 delta; 2353 delta.tv_sec = txc->time.tv_sec; 2354 delta.tv_nsec = txc->time.tv_usec; 2355 if (!(txc->modes & ADJ_NANO)) 2356 delta.tv_nsec *= 1000; 2357 ret = timekeeping_inject_offset(&delta); 2358 if (ret) 2359 return ret; 2360 } 2361 2362 ktime_get_real_ts64(&ts); 2363 2364 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2365 write_seqcount_begin(&tk_core.seq); 2366 2367 orig_tai = tai = tk->tai_offset; 2368 ret = __do_adjtimex(txc, &ts, &tai); 2369 2370 if (tai != orig_tai) { 2371 __timekeeping_set_tai_offset(tk, tai); 2372 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2373 } 2374 tk_update_leap_state(tk); 2375 2376 write_seqcount_end(&tk_core.seq); 2377 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2378 2379 /* Update the multiplier immediately if frequency was set directly */ 2380 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2381 timekeeping_advance(TK_ADV_FREQ); 2382 2383 if (tai != orig_tai) 2384 clock_was_set(); 2385 2386 ntp_notify_cmos_timer(); 2387 2388 return ret; 2389 } 2390 2391 #ifdef CONFIG_NTP_PPS 2392 /** 2393 * hardpps() - Accessor function to NTP __hardpps function 2394 */ 2395 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2396 { 2397 unsigned long flags; 2398 2399 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2400 write_seqcount_begin(&tk_core.seq); 2401 2402 __hardpps(phase_ts, raw_ts); 2403 2404 write_seqcount_end(&tk_core.seq); 2405 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2406 } 2407 EXPORT_SYMBOL(hardpps); 2408 #endif /* CONFIG_NTP_PPS */ 2409 2410 /** 2411 * xtime_update() - advances the timekeeping infrastructure 2412 * @ticks: number of ticks, that have elapsed since the last call. 2413 * 2414 * Must be called with interrupts disabled. 2415 */ 2416 void xtime_update(unsigned long ticks) 2417 { 2418 write_seqlock(&jiffies_lock); 2419 do_timer(ticks); 2420 write_sequnlock(&jiffies_lock); 2421 update_wall_time(); 2422 } 2423