1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 enum timekeeping_adv_mode { 37 /* Update timekeeper when a tick has passed */ 38 TK_ADV_TICK, 39 40 /* Update timekeeper on a direct frequency change */ 41 TK_ADV_FREQ 42 }; 43 44 DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 static struct { 51 seqcount_raw_spinlock_t seq; 52 struct timekeeper timekeeper; 53 } tk_core ____cacheline_aligned = { 54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 55 }; 56 57 static struct timekeeper shadow_timekeeper; 58 59 /* flag for if timekeeping is suspended */ 60 int __read_mostly timekeeping_suspended; 61 62 /** 63 * struct tk_fast - NMI safe timekeeper 64 * @seq: Sequence counter for protecting updates. The lowest bit 65 * is the index for the tk_read_base array 66 * @base: tk_read_base array. Access is indexed by the lowest bit of 67 * @seq. 68 * 69 * See @update_fast_timekeeper() below. 70 */ 71 struct tk_fast { 72 seqcount_latch_t seq; 73 struct tk_read_base base[2]; 74 }; 75 76 /* Suspend-time cycles value for halted fast timekeeper. */ 77 static u64 cycles_at_suspend; 78 79 static u64 dummy_clock_read(struct clocksource *cs) 80 { 81 if (timekeeping_suspended) 82 return cycles_at_suspend; 83 return local_clock(); 84 } 85 86 static struct clocksource dummy_clock = { 87 .read = dummy_clock_read, 88 }; 89 90 /* 91 * Boot time initialization which allows local_clock() to be utilized 92 * during early boot when clocksources are not available. local_clock() 93 * returns nanoseconds already so no conversion is required, hence mult=1 94 * and shift=0. When the first proper clocksource is installed then 95 * the fast time keepers are updated with the correct values. 96 */ 97 #define FAST_TK_INIT \ 98 { \ 99 .clock = &dummy_clock, \ 100 .mask = CLOCKSOURCE_MASK(64), \ 101 .mult = 1, \ 102 .shift = 0, \ 103 } 104 105 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 107 .base[0] = FAST_TK_INIT, 108 .base[1] = FAST_TK_INIT, 109 }; 110 111 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 113 .base[0] = FAST_TK_INIT, 114 .base[1] = FAST_TK_INIT, 115 }; 116 117 static inline void tk_normalize_xtime(struct timekeeper *tk) 118 { 119 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 120 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 121 tk->xtime_sec++; 122 } 123 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 124 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 125 tk->raw_sec++; 126 } 127 } 128 129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 130 { 131 struct timespec64 ts; 132 133 ts.tv_sec = tk->xtime_sec; 134 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 135 return ts; 136 } 137 138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 139 { 140 tk->xtime_sec = ts->tv_sec; 141 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 142 } 143 144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 145 { 146 tk->xtime_sec += ts->tv_sec; 147 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 148 tk_normalize_xtime(tk); 149 } 150 151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 152 { 153 struct timespec64 tmp; 154 155 /* 156 * Verify consistency of: offset_real = -wall_to_monotonic 157 * before modifying anything 158 */ 159 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 160 -tk->wall_to_monotonic.tv_nsec); 161 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 162 tk->wall_to_monotonic = wtm; 163 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 164 tk->offs_real = timespec64_to_ktime(tmp); 165 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 166 } 167 168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 169 { 170 tk->offs_boot = ktime_add(tk->offs_boot, delta); 171 /* 172 * Timespec representation for VDSO update to avoid 64bit division 173 * on every update. 174 */ 175 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 176 } 177 178 /* 179 * tk_clock_read - atomic clocksource read() helper 180 * 181 * This helper is necessary to use in the read paths because, while the 182 * seqcount ensures we don't return a bad value while structures are updated, 183 * it doesn't protect from potential crashes. There is the possibility that 184 * the tkr's clocksource may change between the read reference, and the 185 * clock reference passed to the read function. This can cause crashes if 186 * the wrong clocksource is passed to the wrong read function. 187 * This isn't necessary to use when holding the timekeeper_lock or doing 188 * a read of the fast-timekeeper tkrs (which is protected by its own locking 189 * and update logic). 190 */ 191 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 192 { 193 struct clocksource *clock = READ_ONCE(tkr->clock); 194 195 return clock->read(clock); 196 } 197 198 #ifdef CONFIG_DEBUG_TIMEKEEPING 199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 200 201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 202 { 203 204 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 205 const char *name = tk->tkr_mono.clock->name; 206 207 if (offset > max_cycles) { 208 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 209 offset, name, max_cycles); 210 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 211 } else { 212 if (offset > (max_cycles >> 1)) { 213 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 214 offset, name, max_cycles >> 1); 215 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 216 } 217 } 218 219 if (tk->underflow_seen) { 220 if (jiffies - tk->last_warning > WARNING_FREQ) { 221 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 222 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 223 printk_deferred(" Your kernel is probably still fine.\n"); 224 tk->last_warning = jiffies; 225 } 226 tk->underflow_seen = 0; 227 } 228 229 if (tk->overflow_seen) { 230 if (jiffies - tk->last_warning > WARNING_FREQ) { 231 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 232 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 233 printk_deferred(" Your kernel is probably still fine.\n"); 234 tk->last_warning = jiffies; 235 } 236 tk->overflow_seen = 0; 237 } 238 } 239 240 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles); 241 242 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 243 { 244 struct timekeeper *tk = &tk_core.timekeeper; 245 u64 now, last, mask, max, delta; 246 unsigned int seq; 247 248 /* 249 * Since we're called holding a seqcount, the data may shift 250 * under us while we're doing the calculation. This can cause 251 * false positives, since we'd note a problem but throw the 252 * results away. So nest another seqcount here to atomically 253 * grab the points we are checking with. 254 */ 255 do { 256 seq = read_seqcount_begin(&tk_core.seq); 257 now = tk_clock_read(tkr); 258 last = tkr->cycle_last; 259 mask = tkr->mask; 260 max = tkr->clock->max_cycles; 261 } while (read_seqcount_retry(&tk_core.seq, seq)); 262 263 delta = clocksource_delta(now, last, mask); 264 265 /* 266 * Try to catch underflows by checking if we are seeing small 267 * mask-relative negative values. 268 */ 269 if (unlikely((~delta & mask) < (mask >> 3))) 270 tk->underflow_seen = 1; 271 272 /* Check for multiplication overflows */ 273 if (unlikely(delta > max)) 274 tk->overflow_seen = 1; 275 276 /* timekeeping_cycles_to_ns() handles both under and overflow */ 277 return timekeeping_cycles_to_ns(tkr, now); 278 } 279 #else 280 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 281 { 282 } 283 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 284 { 285 BUG(); 286 } 287 #endif 288 289 /** 290 * tk_setup_internals - Set up internals to use clocksource clock. 291 * 292 * @tk: The target timekeeper to setup. 293 * @clock: Pointer to clocksource. 294 * 295 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 296 * pair and interval request. 297 * 298 * Unless you're the timekeeping code, you should not be using this! 299 */ 300 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 301 { 302 u64 interval; 303 u64 tmp, ntpinterval; 304 struct clocksource *old_clock; 305 306 ++tk->cs_was_changed_seq; 307 old_clock = tk->tkr_mono.clock; 308 tk->tkr_mono.clock = clock; 309 tk->tkr_mono.mask = clock->mask; 310 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 311 312 tk->tkr_raw.clock = clock; 313 tk->tkr_raw.mask = clock->mask; 314 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 315 316 /* Do the ns -> cycle conversion first, using original mult */ 317 tmp = NTP_INTERVAL_LENGTH; 318 tmp <<= clock->shift; 319 ntpinterval = tmp; 320 tmp += clock->mult/2; 321 do_div(tmp, clock->mult); 322 if (tmp == 0) 323 tmp = 1; 324 325 interval = (u64) tmp; 326 tk->cycle_interval = interval; 327 328 /* Go back from cycles -> shifted ns */ 329 tk->xtime_interval = interval * clock->mult; 330 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 331 tk->raw_interval = interval * clock->mult; 332 333 /* if changing clocks, convert xtime_nsec shift units */ 334 if (old_clock) { 335 int shift_change = clock->shift - old_clock->shift; 336 if (shift_change < 0) { 337 tk->tkr_mono.xtime_nsec >>= -shift_change; 338 tk->tkr_raw.xtime_nsec >>= -shift_change; 339 } else { 340 tk->tkr_mono.xtime_nsec <<= shift_change; 341 tk->tkr_raw.xtime_nsec <<= shift_change; 342 } 343 } 344 345 tk->tkr_mono.shift = clock->shift; 346 tk->tkr_raw.shift = clock->shift; 347 348 tk->ntp_error = 0; 349 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 350 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 351 352 /* 353 * The timekeeper keeps its own mult values for the currently 354 * active clocksource. These value will be adjusted via NTP 355 * to counteract clock drifting. 356 */ 357 tk->tkr_mono.mult = clock->mult; 358 tk->tkr_raw.mult = clock->mult; 359 tk->ntp_err_mult = 0; 360 tk->skip_second_overflow = 0; 361 } 362 363 /* Timekeeper helper functions. */ 364 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 365 { 366 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 367 } 368 369 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 370 { 371 /* Calculate the delta since the last update_wall_time() */ 372 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 373 374 /* 375 * This detects both negative motion and the case where the delta 376 * overflows the multiplication with tkr->mult. 377 */ 378 if (unlikely(delta > tkr->clock->max_cycles)) { 379 /* 380 * Handle clocksource inconsistency between CPUs to prevent 381 * time from going backwards by checking for the MSB of the 382 * mask being set in the delta. 383 */ 384 if (delta & ~(mask >> 1)) 385 return tkr->xtime_nsec >> tkr->shift; 386 387 return delta_to_ns_safe(tkr, delta); 388 } 389 390 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 391 } 392 393 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr) 394 { 395 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 396 } 397 398 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 399 { 400 if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING)) 401 return timekeeping_debug_get_ns(tkr); 402 403 return __timekeeping_get_ns(tkr); 404 } 405 406 /** 407 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 408 * @tkr: Timekeeping readout base from which we take the update 409 * @tkf: Pointer to NMI safe timekeeper 410 * 411 * We want to use this from any context including NMI and tracing / 412 * instrumenting the timekeeping code itself. 413 * 414 * Employ the latch technique; see @raw_write_seqcount_latch. 415 * 416 * So if a NMI hits the update of base[0] then it will use base[1] 417 * which is still consistent. In the worst case this can result is a 418 * slightly wrong timestamp (a few nanoseconds). See 419 * @ktime_get_mono_fast_ns. 420 */ 421 static void update_fast_timekeeper(const struct tk_read_base *tkr, 422 struct tk_fast *tkf) 423 { 424 struct tk_read_base *base = tkf->base; 425 426 /* Force readers off to base[1] */ 427 raw_write_seqcount_latch(&tkf->seq); 428 429 /* Update base[0] */ 430 memcpy(base, tkr, sizeof(*base)); 431 432 /* Force readers back to base[0] */ 433 raw_write_seqcount_latch(&tkf->seq); 434 435 /* Update base[1] */ 436 memcpy(base + 1, base, sizeof(*base)); 437 } 438 439 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 440 { 441 struct tk_read_base *tkr; 442 unsigned int seq; 443 u64 now; 444 445 do { 446 seq = raw_read_seqcount_latch(&tkf->seq); 447 tkr = tkf->base + (seq & 0x01); 448 now = ktime_to_ns(tkr->base); 449 now += __timekeeping_get_ns(tkr); 450 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 451 452 return now; 453 } 454 455 /** 456 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 457 * 458 * This timestamp is not guaranteed to be monotonic across an update. 459 * The timestamp is calculated by: 460 * 461 * now = base_mono + clock_delta * slope 462 * 463 * So if the update lowers the slope, readers who are forced to the 464 * not yet updated second array are still using the old steeper slope. 465 * 466 * tmono 467 * ^ 468 * | o n 469 * | o n 470 * | u 471 * | o 472 * |o 473 * |12345678---> reader order 474 * 475 * o = old slope 476 * u = update 477 * n = new slope 478 * 479 * So reader 6 will observe time going backwards versus reader 5. 480 * 481 * While other CPUs are likely to be able to observe that, the only way 482 * for a CPU local observation is when an NMI hits in the middle of 483 * the update. Timestamps taken from that NMI context might be ahead 484 * of the following timestamps. Callers need to be aware of that and 485 * deal with it. 486 */ 487 u64 notrace ktime_get_mono_fast_ns(void) 488 { 489 return __ktime_get_fast_ns(&tk_fast_mono); 490 } 491 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 492 493 /** 494 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 495 * 496 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 497 * conversion factor is not affected by NTP/PTP correction. 498 */ 499 u64 notrace ktime_get_raw_fast_ns(void) 500 { 501 return __ktime_get_fast_ns(&tk_fast_raw); 502 } 503 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 504 505 /** 506 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 507 * 508 * To keep it NMI safe since we're accessing from tracing, we're not using a 509 * separate timekeeper with updates to monotonic clock and boot offset 510 * protected with seqcounts. This has the following minor side effects: 511 * 512 * (1) Its possible that a timestamp be taken after the boot offset is updated 513 * but before the timekeeper is updated. If this happens, the new boot offset 514 * is added to the old timekeeping making the clock appear to update slightly 515 * earlier: 516 * CPU 0 CPU 1 517 * timekeeping_inject_sleeptime64() 518 * __timekeeping_inject_sleeptime(tk, delta); 519 * timestamp(); 520 * timekeeping_update(tk, TK_CLEAR_NTP...); 521 * 522 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 523 * partially updated. Since the tk->offs_boot update is a rare event, this 524 * should be a rare occurrence which postprocessing should be able to handle. 525 * 526 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 527 * apply as well. 528 */ 529 u64 notrace ktime_get_boot_fast_ns(void) 530 { 531 struct timekeeper *tk = &tk_core.timekeeper; 532 533 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 534 } 535 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 536 537 /** 538 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 539 * 540 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 541 * mono time and the TAI offset are not read atomically which may yield wrong 542 * readouts. However, an update of the TAI offset is an rare event e.g., caused 543 * by settime or adjtimex with an offset. The user of this function has to deal 544 * with the possibility of wrong timestamps in post processing. 545 */ 546 u64 notrace ktime_get_tai_fast_ns(void) 547 { 548 struct timekeeper *tk = &tk_core.timekeeper; 549 550 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 551 } 552 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 553 554 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 555 { 556 struct tk_read_base *tkr; 557 u64 basem, baser, delta; 558 unsigned int seq; 559 560 do { 561 seq = raw_read_seqcount_latch(&tkf->seq); 562 tkr = tkf->base + (seq & 0x01); 563 basem = ktime_to_ns(tkr->base); 564 baser = ktime_to_ns(tkr->base_real); 565 delta = __timekeeping_get_ns(tkr); 566 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 567 568 if (mono) 569 *mono = basem + delta; 570 return baser + delta; 571 } 572 573 /** 574 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 575 * 576 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 577 */ 578 u64 ktime_get_real_fast_ns(void) 579 { 580 return __ktime_get_real_fast(&tk_fast_mono, NULL); 581 } 582 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 583 584 /** 585 * ktime_get_fast_timestamps: - NMI safe timestamps 586 * @snapshot: Pointer to timestamp storage 587 * 588 * Stores clock monotonic, boottime and realtime timestamps. 589 * 590 * Boot time is a racy access on 32bit systems if the sleep time injection 591 * happens late during resume and not in timekeeping_resume(). That could 592 * be avoided by expanding struct tk_read_base with boot offset for 32bit 593 * and adding more overhead to the update. As this is a hard to observe 594 * once per resume event which can be filtered with reasonable effort using 595 * the accurate mono/real timestamps, it's probably not worth the trouble. 596 * 597 * Aside of that it might be possible on 32 and 64 bit to observe the 598 * following when the sleep time injection happens late: 599 * 600 * CPU 0 CPU 1 601 * timekeeping_resume() 602 * ktime_get_fast_timestamps() 603 * mono, real = __ktime_get_real_fast() 604 * inject_sleep_time() 605 * update boot offset 606 * boot = mono + bootoffset; 607 * 608 * That means that boot time already has the sleep time adjustment, but 609 * real time does not. On the next readout both are in sync again. 610 * 611 * Preventing this for 64bit is not really feasible without destroying the 612 * careful cache layout of the timekeeper because the sequence count and 613 * struct tk_read_base would then need two cache lines instead of one. 614 * 615 * Access to the time keeper clock source is disabled across the innermost 616 * steps of suspend/resume. The accessors still work, but the timestamps 617 * are frozen until time keeping is resumed which happens very early. 618 * 619 * For regular suspend/resume there is no observable difference vs. sched 620 * clock, but it might affect some of the nasty low level debug printks. 621 * 622 * OTOH, access to sched clock is not guaranteed across suspend/resume on 623 * all systems either so it depends on the hardware in use. 624 * 625 * If that turns out to be a real problem then this could be mitigated by 626 * using sched clock in a similar way as during early boot. But it's not as 627 * trivial as on early boot because it needs some careful protection 628 * against the clock monotonic timestamp jumping backwards on resume. 629 */ 630 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 631 { 632 struct timekeeper *tk = &tk_core.timekeeper; 633 634 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 635 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 636 } 637 638 /** 639 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 640 * @tk: Timekeeper to snapshot. 641 * 642 * It generally is unsafe to access the clocksource after timekeeping has been 643 * suspended, so take a snapshot of the readout base of @tk and use it as the 644 * fast timekeeper's readout base while suspended. It will return the same 645 * number of cycles every time until timekeeping is resumed at which time the 646 * proper readout base for the fast timekeeper will be restored automatically. 647 */ 648 static void halt_fast_timekeeper(const struct timekeeper *tk) 649 { 650 static struct tk_read_base tkr_dummy; 651 const struct tk_read_base *tkr = &tk->tkr_mono; 652 653 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 654 cycles_at_suspend = tk_clock_read(tkr); 655 tkr_dummy.clock = &dummy_clock; 656 tkr_dummy.base_real = tkr->base + tk->offs_real; 657 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 658 659 tkr = &tk->tkr_raw; 660 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 661 tkr_dummy.clock = &dummy_clock; 662 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 663 } 664 665 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 666 667 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 668 { 669 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 670 } 671 672 /** 673 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 674 * @nb: Pointer to the notifier block to register 675 */ 676 int pvclock_gtod_register_notifier(struct notifier_block *nb) 677 { 678 struct timekeeper *tk = &tk_core.timekeeper; 679 unsigned long flags; 680 int ret; 681 682 raw_spin_lock_irqsave(&timekeeper_lock, flags); 683 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 684 update_pvclock_gtod(tk, true); 685 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 686 687 return ret; 688 } 689 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 690 691 /** 692 * pvclock_gtod_unregister_notifier - unregister a pvclock 693 * timedata update listener 694 * @nb: Pointer to the notifier block to unregister 695 */ 696 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 697 { 698 unsigned long flags; 699 int ret; 700 701 raw_spin_lock_irqsave(&timekeeper_lock, flags); 702 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 703 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 704 705 return ret; 706 } 707 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 708 709 /* 710 * tk_update_leap_state - helper to update the next_leap_ktime 711 */ 712 static inline void tk_update_leap_state(struct timekeeper *tk) 713 { 714 tk->next_leap_ktime = ntp_get_next_leap(); 715 if (tk->next_leap_ktime != KTIME_MAX) 716 /* Convert to monotonic time */ 717 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 718 } 719 720 /* 721 * Update the ktime_t based scalar nsec members of the timekeeper 722 */ 723 static inline void tk_update_ktime_data(struct timekeeper *tk) 724 { 725 u64 seconds; 726 u32 nsec; 727 728 /* 729 * The xtime based monotonic readout is: 730 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 731 * The ktime based monotonic readout is: 732 * nsec = base_mono + now(); 733 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 734 */ 735 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 736 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 737 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 738 739 /* 740 * The sum of the nanoseconds portions of xtime and 741 * wall_to_monotonic can be greater/equal one second. Take 742 * this into account before updating tk->ktime_sec. 743 */ 744 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 745 if (nsec >= NSEC_PER_SEC) 746 seconds++; 747 tk->ktime_sec = seconds; 748 749 /* Update the monotonic raw base */ 750 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 751 } 752 753 /* must hold timekeeper_lock */ 754 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 755 { 756 if (action & TK_CLEAR_NTP) { 757 tk->ntp_error = 0; 758 ntp_clear(); 759 } 760 761 tk_update_leap_state(tk); 762 tk_update_ktime_data(tk); 763 764 update_vsyscall(tk); 765 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 766 767 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 768 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 769 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 770 771 if (action & TK_CLOCK_WAS_SET) 772 tk->clock_was_set_seq++; 773 /* 774 * The mirroring of the data to the shadow-timekeeper needs 775 * to happen last here to ensure we don't over-write the 776 * timekeeper structure on the next update with stale data 777 */ 778 if (action & TK_MIRROR) 779 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 780 sizeof(tk_core.timekeeper)); 781 } 782 783 /** 784 * timekeeping_forward_now - update clock to the current time 785 * @tk: Pointer to the timekeeper to update 786 * 787 * Forward the current clock to update its state since the last call to 788 * update_wall_time(). This is useful before significant clock changes, 789 * as it avoids having to deal with this time offset explicitly. 790 */ 791 static void timekeeping_forward_now(struct timekeeper *tk) 792 { 793 u64 cycle_now, delta; 794 795 cycle_now = tk_clock_read(&tk->tkr_mono); 796 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 797 tk->tkr_mono.cycle_last = cycle_now; 798 tk->tkr_raw.cycle_last = cycle_now; 799 800 while (delta > 0) { 801 u64 max = tk->tkr_mono.clock->max_cycles; 802 u64 incr = delta < max ? delta : max; 803 804 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 805 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 806 tk_normalize_xtime(tk); 807 delta -= incr; 808 } 809 } 810 811 /** 812 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 813 * @ts: pointer to the timespec to be set 814 * 815 * Returns the time of day in a timespec64 (WARN if suspended). 816 */ 817 void ktime_get_real_ts64(struct timespec64 *ts) 818 { 819 struct timekeeper *tk = &tk_core.timekeeper; 820 unsigned int seq; 821 u64 nsecs; 822 823 WARN_ON(timekeeping_suspended); 824 825 do { 826 seq = read_seqcount_begin(&tk_core.seq); 827 828 ts->tv_sec = tk->xtime_sec; 829 nsecs = timekeeping_get_ns(&tk->tkr_mono); 830 831 } while (read_seqcount_retry(&tk_core.seq, seq)); 832 833 ts->tv_nsec = 0; 834 timespec64_add_ns(ts, nsecs); 835 } 836 EXPORT_SYMBOL(ktime_get_real_ts64); 837 838 ktime_t ktime_get(void) 839 { 840 struct timekeeper *tk = &tk_core.timekeeper; 841 unsigned int seq; 842 ktime_t base; 843 u64 nsecs; 844 845 WARN_ON(timekeeping_suspended); 846 847 do { 848 seq = read_seqcount_begin(&tk_core.seq); 849 base = tk->tkr_mono.base; 850 nsecs = timekeeping_get_ns(&tk->tkr_mono); 851 852 } while (read_seqcount_retry(&tk_core.seq, seq)); 853 854 return ktime_add_ns(base, nsecs); 855 } 856 EXPORT_SYMBOL_GPL(ktime_get); 857 858 u32 ktime_get_resolution_ns(void) 859 { 860 struct timekeeper *tk = &tk_core.timekeeper; 861 unsigned int seq; 862 u32 nsecs; 863 864 WARN_ON(timekeeping_suspended); 865 866 do { 867 seq = read_seqcount_begin(&tk_core.seq); 868 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 869 } while (read_seqcount_retry(&tk_core.seq, seq)); 870 871 return nsecs; 872 } 873 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 874 875 static ktime_t *offsets[TK_OFFS_MAX] = { 876 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 877 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 878 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 879 }; 880 881 ktime_t ktime_get_with_offset(enum tk_offsets offs) 882 { 883 struct timekeeper *tk = &tk_core.timekeeper; 884 unsigned int seq; 885 ktime_t base, *offset = offsets[offs]; 886 u64 nsecs; 887 888 WARN_ON(timekeeping_suspended); 889 890 do { 891 seq = read_seqcount_begin(&tk_core.seq); 892 base = ktime_add(tk->tkr_mono.base, *offset); 893 nsecs = timekeeping_get_ns(&tk->tkr_mono); 894 895 } while (read_seqcount_retry(&tk_core.seq, seq)); 896 897 return ktime_add_ns(base, nsecs); 898 899 } 900 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 901 902 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 903 { 904 struct timekeeper *tk = &tk_core.timekeeper; 905 unsigned int seq; 906 ktime_t base, *offset = offsets[offs]; 907 u64 nsecs; 908 909 WARN_ON(timekeeping_suspended); 910 911 do { 912 seq = read_seqcount_begin(&tk_core.seq); 913 base = ktime_add(tk->tkr_mono.base, *offset); 914 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 915 916 } while (read_seqcount_retry(&tk_core.seq, seq)); 917 918 return ktime_add_ns(base, nsecs); 919 } 920 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 921 922 /** 923 * ktime_mono_to_any() - convert monotonic time to any other time 924 * @tmono: time to convert. 925 * @offs: which offset to use 926 */ 927 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 928 { 929 ktime_t *offset = offsets[offs]; 930 unsigned int seq; 931 ktime_t tconv; 932 933 do { 934 seq = read_seqcount_begin(&tk_core.seq); 935 tconv = ktime_add(tmono, *offset); 936 } while (read_seqcount_retry(&tk_core.seq, seq)); 937 938 return tconv; 939 } 940 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 941 942 /** 943 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 944 */ 945 ktime_t ktime_get_raw(void) 946 { 947 struct timekeeper *tk = &tk_core.timekeeper; 948 unsigned int seq; 949 ktime_t base; 950 u64 nsecs; 951 952 do { 953 seq = read_seqcount_begin(&tk_core.seq); 954 base = tk->tkr_raw.base; 955 nsecs = timekeeping_get_ns(&tk->tkr_raw); 956 957 } while (read_seqcount_retry(&tk_core.seq, seq)); 958 959 return ktime_add_ns(base, nsecs); 960 } 961 EXPORT_SYMBOL_GPL(ktime_get_raw); 962 963 /** 964 * ktime_get_ts64 - get the monotonic clock in timespec64 format 965 * @ts: pointer to timespec variable 966 * 967 * The function calculates the monotonic clock from the realtime 968 * clock and the wall_to_monotonic offset and stores the result 969 * in normalized timespec64 format in the variable pointed to by @ts. 970 */ 971 void ktime_get_ts64(struct timespec64 *ts) 972 { 973 struct timekeeper *tk = &tk_core.timekeeper; 974 struct timespec64 tomono; 975 unsigned int seq; 976 u64 nsec; 977 978 WARN_ON(timekeeping_suspended); 979 980 do { 981 seq = read_seqcount_begin(&tk_core.seq); 982 ts->tv_sec = tk->xtime_sec; 983 nsec = timekeeping_get_ns(&tk->tkr_mono); 984 tomono = tk->wall_to_monotonic; 985 986 } while (read_seqcount_retry(&tk_core.seq, seq)); 987 988 ts->tv_sec += tomono.tv_sec; 989 ts->tv_nsec = 0; 990 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 991 } 992 EXPORT_SYMBOL_GPL(ktime_get_ts64); 993 994 /** 995 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 996 * 997 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 998 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 999 * works on both 32 and 64 bit systems. On 32 bit systems the readout 1000 * covers ~136 years of uptime which should be enough to prevent 1001 * premature wrap arounds. 1002 */ 1003 time64_t ktime_get_seconds(void) 1004 { 1005 struct timekeeper *tk = &tk_core.timekeeper; 1006 1007 WARN_ON(timekeeping_suspended); 1008 return tk->ktime_sec; 1009 } 1010 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1011 1012 /** 1013 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1014 * 1015 * Returns the wall clock seconds since 1970. 1016 * 1017 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1018 * 32bit systems the access must be protected with the sequence 1019 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1020 * value. 1021 */ 1022 time64_t ktime_get_real_seconds(void) 1023 { 1024 struct timekeeper *tk = &tk_core.timekeeper; 1025 time64_t seconds; 1026 unsigned int seq; 1027 1028 if (IS_ENABLED(CONFIG_64BIT)) 1029 return tk->xtime_sec; 1030 1031 do { 1032 seq = read_seqcount_begin(&tk_core.seq); 1033 seconds = tk->xtime_sec; 1034 1035 } while (read_seqcount_retry(&tk_core.seq, seq)); 1036 1037 return seconds; 1038 } 1039 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1040 1041 /** 1042 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1043 * but without the sequence counter protect. This internal function 1044 * is called just when timekeeping lock is already held. 1045 */ 1046 noinstr time64_t __ktime_get_real_seconds(void) 1047 { 1048 struct timekeeper *tk = &tk_core.timekeeper; 1049 1050 return tk->xtime_sec; 1051 } 1052 1053 /** 1054 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1055 * @systime_snapshot: pointer to struct receiving the system time snapshot 1056 */ 1057 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1058 { 1059 struct timekeeper *tk = &tk_core.timekeeper; 1060 unsigned int seq; 1061 ktime_t base_raw; 1062 ktime_t base_real; 1063 u64 nsec_raw; 1064 u64 nsec_real; 1065 u64 now; 1066 1067 WARN_ON_ONCE(timekeeping_suspended); 1068 1069 do { 1070 seq = read_seqcount_begin(&tk_core.seq); 1071 now = tk_clock_read(&tk->tkr_mono); 1072 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1073 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1074 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1075 base_real = ktime_add(tk->tkr_mono.base, 1076 tk_core.timekeeper.offs_real); 1077 base_raw = tk->tkr_raw.base; 1078 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1079 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1080 } while (read_seqcount_retry(&tk_core.seq, seq)); 1081 1082 systime_snapshot->cycles = now; 1083 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1084 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1085 } 1086 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1087 1088 /* Scale base by mult/div checking for overflow */ 1089 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1090 { 1091 u64 tmp, rem; 1092 1093 tmp = div64_u64_rem(*base, div, &rem); 1094 1095 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1096 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1097 return -EOVERFLOW; 1098 tmp *= mult; 1099 1100 rem = div64_u64(rem * mult, div); 1101 *base = tmp + rem; 1102 return 0; 1103 } 1104 1105 /** 1106 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1107 * @history: Snapshot representing start of history 1108 * @partial_history_cycles: Cycle offset into history (fractional part) 1109 * @total_history_cycles: Total history length in cycles 1110 * @discontinuity: True indicates clock was set on history period 1111 * @ts: Cross timestamp that should be adjusted using 1112 * partial/total ratio 1113 * 1114 * Helper function used by get_device_system_crosststamp() to correct the 1115 * crosstimestamp corresponding to the start of the current interval to the 1116 * system counter value (timestamp point) provided by the driver. The 1117 * total_history_* quantities are the total history starting at the provided 1118 * reference point and ending at the start of the current interval. The cycle 1119 * count between the driver timestamp point and the start of the current 1120 * interval is partial_history_cycles. 1121 */ 1122 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1123 u64 partial_history_cycles, 1124 u64 total_history_cycles, 1125 bool discontinuity, 1126 struct system_device_crosststamp *ts) 1127 { 1128 struct timekeeper *tk = &tk_core.timekeeper; 1129 u64 corr_raw, corr_real; 1130 bool interp_forward; 1131 int ret; 1132 1133 if (total_history_cycles == 0 || partial_history_cycles == 0) 1134 return 0; 1135 1136 /* Interpolate shortest distance from beginning or end of history */ 1137 interp_forward = partial_history_cycles > total_history_cycles / 2; 1138 partial_history_cycles = interp_forward ? 1139 total_history_cycles - partial_history_cycles : 1140 partial_history_cycles; 1141 1142 /* 1143 * Scale the monotonic raw time delta by: 1144 * partial_history_cycles / total_history_cycles 1145 */ 1146 corr_raw = (u64)ktime_to_ns( 1147 ktime_sub(ts->sys_monoraw, history->raw)); 1148 ret = scale64_check_overflow(partial_history_cycles, 1149 total_history_cycles, &corr_raw); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * If there is a discontinuity in the history, scale monotonic raw 1155 * correction by: 1156 * mult(real)/mult(raw) yielding the realtime correction 1157 * Otherwise, calculate the realtime correction similar to monotonic 1158 * raw calculation 1159 */ 1160 if (discontinuity) { 1161 corr_real = mul_u64_u32_div 1162 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1163 } else { 1164 corr_real = (u64)ktime_to_ns( 1165 ktime_sub(ts->sys_realtime, history->real)); 1166 ret = scale64_check_overflow(partial_history_cycles, 1167 total_history_cycles, &corr_real); 1168 if (ret) 1169 return ret; 1170 } 1171 1172 /* Fixup monotonic raw and real time time values */ 1173 if (interp_forward) { 1174 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1175 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1176 } else { 1177 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1178 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1179 } 1180 1181 return 0; 1182 } 1183 1184 /* 1185 * timestamp_in_interval - true if ts is chronologically in [start, end] 1186 * 1187 * True if ts occurs chronologically at or after start, and before or at end. 1188 */ 1189 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1190 { 1191 if (ts >= start && ts <= end) 1192 return true; 1193 if (start > end && (ts >= start || ts <= end)) 1194 return true; 1195 return false; 1196 } 1197 1198 /** 1199 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1200 * @get_time_fn: Callback to get simultaneous device time and 1201 * system counter from the device driver 1202 * @ctx: Context passed to get_time_fn() 1203 * @history_begin: Historical reference point used to interpolate system 1204 * time when counter provided by the driver is before the current interval 1205 * @xtstamp: Receives simultaneously captured system and device time 1206 * 1207 * Reads a timestamp from a device and correlates it to system time 1208 */ 1209 int get_device_system_crosststamp(int (*get_time_fn) 1210 (ktime_t *device_time, 1211 struct system_counterval_t *sys_counterval, 1212 void *ctx), 1213 void *ctx, 1214 struct system_time_snapshot *history_begin, 1215 struct system_device_crosststamp *xtstamp) 1216 { 1217 struct system_counterval_t system_counterval; 1218 struct timekeeper *tk = &tk_core.timekeeper; 1219 u64 cycles, now, interval_start; 1220 unsigned int clock_was_set_seq = 0; 1221 ktime_t base_real, base_raw; 1222 u64 nsec_real, nsec_raw; 1223 u8 cs_was_changed_seq; 1224 unsigned int seq; 1225 bool do_interp; 1226 int ret; 1227 1228 do { 1229 seq = read_seqcount_begin(&tk_core.seq); 1230 /* 1231 * Try to synchronously capture device time and a system 1232 * counter value calling back into the device driver 1233 */ 1234 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1235 if (ret) 1236 return ret; 1237 1238 /* 1239 * Verify that the clocksource ID associated with the captured 1240 * system counter value is the same as for the currently 1241 * installed timekeeper clocksource 1242 */ 1243 if (system_counterval.cs_id == CSID_GENERIC || 1244 tk->tkr_mono.clock->id != system_counterval.cs_id) 1245 return -ENODEV; 1246 cycles = system_counterval.cycles; 1247 1248 /* 1249 * Check whether the system counter value provided by the 1250 * device driver is on the current timekeeping interval. 1251 */ 1252 now = tk_clock_read(&tk->tkr_mono); 1253 interval_start = tk->tkr_mono.cycle_last; 1254 if (!timestamp_in_interval(interval_start, now, cycles)) { 1255 clock_was_set_seq = tk->clock_was_set_seq; 1256 cs_was_changed_seq = tk->cs_was_changed_seq; 1257 cycles = interval_start; 1258 do_interp = true; 1259 } else { 1260 do_interp = false; 1261 } 1262 1263 base_real = ktime_add(tk->tkr_mono.base, 1264 tk_core.timekeeper.offs_real); 1265 base_raw = tk->tkr_raw.base; 1266 1267 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1268 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1269 } while (read_seqcount_retry(&tk_core.seq, seq)); 1270 1271 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1272 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1273 1274 /* 1275 * Interpolate if necessary, adjusting back from the start of the 1276 * current interval 1277 */ 1278 if (do_interp) { 1279 u64 partial_history_cycles, total_history_cycles; 1280 bool discontinuity; 1281 1282 /* 1283 * Check that the counter value is not before the provided 1284 * history reference and that the history doesn't cross a 1285 * clocksource change 1286 */ 1287 if (!history_begin || 1288 !timestamp_in_interval(history_begin->cycles, 1289 cycles, system_counterval.cycles) || 1290 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1291 return -EINVAL; 1292 partial_history_cycles = cycles - system_counterval.cycles; 1293 total_history_cycles = cycles - history_begin->cycles; 1294 discontinuity = 1295 history_begin->clock_was_set_seq != clock_was_set_seq; 1296 1297 ret = adjust_historical_crosststamp(history_begin, 1298 partial_history_cycles, 1299 total_history_cycles, 1300 discontinuity, xtstamp); 1301 if (ret) 1302 return ret; 1303 } 1304 1305 return 0; 1306 } 1307 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1308 1309 /** 1310 * do_settimeofday64 - Sets the time of day. 1311 * @ts: pointer to the timespec64 variable containing the new time 1312 * 1313 * Sets the time of day to the new time and update NTP and notify hrtimers 1314 */ 1315 int do_settimeofday64(const struct timespec64 *ts) 1316 { 1317 struct timekeeper *tk = &tk_core.timekeeper; 1318 struct timespec64 ts_delta, xt; 1319 unsigned long flags; 1320 int ret = 0; 1321 1322 if (!timespec64_valid_settod(ts)) 1323 return -EINVAL; 1324 1325 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1326 write_seqcount_begin(&tk_core.seq); 1327 1328 timekeeping_forward_now(tk); 1329 1330 xt = tk_xtime(tk); 1331 ts_delta = timespec64_sub(*ts, xt); 1332 1333 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1334 ret = -EINVAL; 1335 goto out; 1336 } 1337 1338 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1339 1340 tk_set_xtime(tk, ts); 1341 out: 1342 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1343 1344 write_seqcount_end(&tk_core.seq); 1345 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1346 1347 /* Signal hrtimers about time change */ 1348 clock_was_set(CLOCK_SET_WALL); 1349 1350 if (!ret) { 1351 audit_tk_injoffset(ts_delta); 1352 add_device_randomness(ts, sizeof(*ts)); 1353 } 1354 1355 return ret; 1356 } 1357 EXPORT_SYMBOL(do_settimeofday64); 1358 1359 /** 1360 * timekeeping_inject_offset - Adds or subtracts from the current time. 1361 * @ts: Pointer to the timespec variable containing the offset 1362 * 1363 * Adds or subtracts an offset value from the current time. 1364 */ 1365 static int timekeeping_inject_offset(const struct timespec64 *ts) 1366 { 1367 struct timekeeper *tk = &tk_core.timekeeper; 1368 unsigned long flags; 1369 struct timespec64 tmp; 1370 int ret = 0; 1371 1372 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1373 return -EINVAL; 1374 1375 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1376 write_seqcount_begin(&tk_core.seq); 1377 1378 timekeeping_forward_now(tk); 1379 1380 /* Make sure the proposed value is valid */ 1381 tmp = timespec64_add(tk_xtime(tk), *ts); 1382 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1383 !timespec64_valid_settod(&tmp)) { 1384 ret = -EINVAL; 1385 goto error; 1386 } 1387 1388 tk_xtime_add(tk, ts); 1389 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1390 1391 error: /* even if we error out, we forwarded the time, so call update */ 1392 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1393 1394 write_seqcount_end(&tk_core.seq); 1395 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1396 1397 /* Signal hrtimers about time change */ 1398 clock_was_set(CLOCK_SET_WALL); 1399 1400 return ret; 1401 } 1402 1403 /* 1404 * Indicates if there is an offset between the system clock and the hardware 1405 * clock/persistent clock/rtc. 1406 */ 1407 int persistent_clock_is_local; 1408 1409 /* 1410 * Adjust the time obtained from the CMOS to be UTC time instead of 1411 * local time. 1412 * 1413 * This is ugly, but preferable to the alternatives. Otherwise we 1414 * would either need to write a program to do it in /etc/rc (and risk 1415 * confusion if the program gets run more than once; it would also be 1416 * hard to make the program warp the clock precisely n hours) or 1417 * compile in the timezone information into the kernel. Bad, bad.... 1418 * 1419 * - TYT, 1992-01-01 1420 * 1421 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1422 * as real UNIX machines always do it. This avoids all headaches about 1423 * daylight saving times and warping kernel clocks. 1424 */ 1425 void timekeeping_warp_clock(void) 1426 { 1427 if (sys_tz.tz_minuteswest != 0) { 1428 struct timespec64 adjust; 1429 1430 persistent_clock_is_local = 1; 1431 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1432 adjust.tv_nsec = 0; 1433 timekeeping_inject_offset(&adjust); 1434 } 1435 } 1436 1437 /* 1438 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1439 */ 1440 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1441 { 1442 tk->tai_offset = tai_offset; 1443 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1444 } 1445 1446 /* 1447 * change_clocksource - Swaps clocksources if a new one is available 1448 * 1449 * Accumulates current time interval and initializes new clocksource 1450 */ 1451 static int change_clocksource(void *data) 1452 { 1453 struct timekeeper *tk = &tk_core.timekeeper; 1454 struct clocksource *new, *old = NULL; 1455 unsigned long flags; 1456 bool change = false; 1457 1458 new = (struct clocksource *) data; 1459 1460 /* 1461 * If the cs is in module, get a module reference. Succeeds 1462 * for built-in code (owner == NULL) as well. 1463 */ 1464 if (try_module_get(new->owner)) { 1465 if (!new->enable || new->enable(new) == 0) 1466 change = true; 1467 else 1468 module_put(new->owner); 1469 } 1470 1471 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1472 write_seqcount_begin(&tk_core.seq); 1473 1474 timekeeping_forward_now(tk); 1475 1476 if (change) { 1477 old = tk->tkr_mono.clock; 1478 tk_setup_internals(tk, new); 1479 } 1480 1481 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1482 1483 write_seqcount_end(&tk_core.seq); 1484 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1485 1486 if (old) { 1487 if (old->disable) 1488 old->disable(old); 1489 1490 module_put(old->owner); 1491 } 1492 1493 return 0; 1494 } 1495 1496 /** 1497 * timekeeping_notify - Install a new clock source 1498 * @clock: pointer to the clock source 1499 * 1500 * This function is called from clocksource.c after a new, better clock 1501 * source has been registered. The caller holds the clocksource_mutex. 1502 */ 1503 int timekeeping_notify(struct clocksource *clock) 1504 { 1505 struct timekeeper *tk = &tk_core.timekeeper; 1506 1507 if (tk->tkr_mono.clock == clock) 1508 return 0; 1509 stop_machine(change_clocksource, clock, NULL); 1510 tick_clock_notify(); 1511 return tk->tkr_mono.clock == clock ? 0 : -1; 1512 } 1513 1514 /** 1515 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1516 * @ts: pointer to the timespec64 to be set 1517 * 1518 * Returns the raw monotonic time (completely un-modified by ntp) 1519 */ 1520 void ktime_get_raw_ts64(struct timespec64 *ts) 1521 { 1522 struct timekeeper *tk = &tk_core.timekeeper; 1523 unsigned int seq; 1524 u64 nsecs; 1525 1526 do { 1527 seq = read_seqcount_begin(&tk_core.seq); 1528 ts->tv_sec = tk->raw_sec; 1529 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1530 1531 } while (read_seqcount_retry(&tk_core.seq, seq)); 1532 1533 ts->tv_nsec = 0; 1534 timespec64_add_ns(ts, nsecs); 1535 } 1536 EXPORT_SYMBOL(ktime_get_raw_ts64); 1537 1538 1539 /** 1540 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1541 */ 1542 int timekeeping_valid_for_hres(void) 1543 { 1544 struct timekeeper *tk = &tk_core.timekeeper; 1545 unsigned int seq; 1546 int ret; 1547 1548 do { 1549 seq = read_seqcount_begin(&tk_core.seq); 1550 1551 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1552 1553 } while (read_seqcount_retry(&tk_core.seq, seq)); 1554 1555 return ret; 1556 } 1557 1558 /** 1559 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1560 */ 1561 u64 timekeeping_max_deferment(void) 1562 { 1563 struct timekeeper *tk = &tk_core.timekeeper; 1564 unsigned int seq; 1565 u64 ret; 1566 1567 do { 1568 seq = read_seqcount_begin(&tk_core.seq); 1569 1570 ret = tk->tkr_mono.clock->max_idle_ns; 1571 1572 } while (read_seqcount_retry(&tk_core.seq, seq)); 1573 1574 return ret; 1575 } 1576 1577 /** 1578 * read_persistent_clock64 - Return time from the persistent clock. 1579 * @ts: Pointer to the storage for the readout value 1580 * 1581 * Weak dummy function for arches that do not yet support it. 1582 * Reads the time from the battery backed persistent clock. 1583 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1584 * 1585 * XXX - Do be sure to remove it once all arches implement it. 1586 */ 1587 void __weak read_persistent_clock64(struct timespec64 *ts) 1588 { 1589 ts->tv_sec = 0; 1590 ts->tv_nsec = 0; 1591 } 1592 1593 /** 1594 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1595 * from the boot. 1596 * @wall_time: current time as returned by persistent clock 1597 * @boot_offset: offset that is defined as wall_time - boot_time 1598 * 1599 * Weak dummy function for arches that do not yet support it. 1600 * 1601 * The default function calculates offset based on the current value of 1602 * local_clock(). This way architectures that support sched_clock() but don't 1603 * support dedicated boot time clock will provide the best estimate of the 1604 * boot time. 1605 */ 1606 void __weak __init 1607 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1608 struct timespec64 *boot_offset) 1609 { 1610 read_persistent_clock64(wall_time); 1611 *boot_offset = ns_to_timespec64(local_clock()); 1612 } 1613 1614 /* 1615 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1616 * 1617 * The flag starts of false and is only set when a suspend reaches 1618 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1619 * timekeeper clocksource is not stopping across suspend and has been 1620 * used to update sleep time. If the timekeeper clocksource has stopped 1621 * then the flag stays true and is used by the RTC resume code to decide 1622 * whether sleeptime must be injected and if so the flag gets false then. 1623 * 1624 * If a suspend fails before reaching timekeeping_resume() then the flag 1625 * stays false and prevents erroneous sleeptime injection. 1626 */ 1627 static bool suspend_timing_needed; 1628 1629 /* Flag for if there is a persistent clock on this platform */ 1630 static bool persistent_clock_exists; 1631 1632 /* 1633 * timekeeping_init - Initializes the clocksource and common timekeeping values 1634 */ 1635 void __init timekeeping_init(void) 1636 { 1637 struct timespec64 wall_time, boot_offset, wall_to_mono; 1638 struct timekeeper *tk = &tk_core.timekeeper; 1639 struct clocksource *clock; 1640 unsigned long flags; 1641 1642 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1643 if (timespec64_valid_settod(&wall_time) && 1644 timespec64_to_ns(&wall_time) > 0) { 1645 persistent_clock_exists = true; 1646 } else if (timespec64_to_ns(&wall_time) != 0) { 1647 pr_warn("Persistent clock returned invalid value"); 1648 wall_time = (struct timespec64){0}; 1649 } 1650 1651 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1652 boot_offset = (struct timespec64){0}; 1653 1654 /* 1655 * We want set wall_to_mono, so the following is true: 1656 * wall time + wall_to_mono = boot time 1657 */ 1658 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1659 1660 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1661 write_seqcount_begin(&tk_core.seq); 1662 ntp_init(); 1663 1664 clock = clocksource_default_clock(); 1665 if (clock->enable) 1666 clock->enable(clock); 1667 tk_setup_internals(tk, clock); 1668 1669 tk_set_xtime(tk, &wall_time); 1670 tk->raw_sec = 0; 1671 1672 tk_set_wall_to_mono(tk, wall_to_mono); 1673 1674 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1675 1676 write_seqcount_end(&tk_core.seq); 1677 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1678 } 1679 1680 /* time in seconds when suspend began for persistent clock */ 1681 static struct timespec64 timekeeping_suspend_time; 1682 1683 /** 1684 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1685 * @tk: Pointer to the timekeeper to be updated 1686 * @delta: Pointer to the delta value in timespec64 format 1687 * 1688 * Takes a timespec offset measuring a suspend interval and properly 1689 * adds the sleep offset to the timekeeping variables. 1690 */ 1691 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1692 const struct timespec64 *delta) 1693 { 1694 if (!timespec64_valid_strict(delta)) { 1695 printk_deferred(KERN_WARNING 1696 "__timekeeping_inject_sleeptime: Invalid " 1697 "sleep delta value!\n"); 1698 return; 1699 } 1700 tk_xtime_add(tk, delta); 1701 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1702 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1703 tk_debug_account_sleep_time(delta); 1704 } 1705 1706 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1707 /* 1708 * We have three kinds of time sources to use for sleep time 1709 * injection, the preference order is: 1710 * 1) non-stop clocksource 1711 * 2) persistent clock (ie: RTC accessible when irqs are off) 1712 * 3) RTC 1713 * 1714 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1715 * If system has neither 1) nor 2), 3) will be used finally. 1716 * 1717 * 1718 * If timekeeping has injected sleeptime via either 1) or 2), 1719 * 3) becomes needless, so in this case we don't need to call 1720 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1721 * means. 1722 */ 1723 bool timekeeping_rtc_skipresume(void) 1724 { 1725 return !suspend_timing_needed; 1726 } 1727 1728 /* 1729 * 1) can be determined whether to use or not only when doing 1730 * timekeeping_resume() which is invoked after rtc_suspend(), 1731 * so we can't skip rtc_suspend() surely if system has 1). 1732 * 1733 * But if system has 2), 2) will definitely be used, so in this 1734 * case we don't need to call rtc_suspend(), and this is what 1735 * timekeeping_rtc_skipsuspend() means. 1736 */ 1737 bool timekeeping_rtc_skipsuspend(void) 1738 { 1739 return persistent_clock_exists; 1740 } 1741 1742 /** 1743 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1744 * @delta: pointer to a timespec64 delta value 1745 * 1746 * This hook is for architectures that cannot support read_persistent_clock64 1747 * because their RTC/persistent clock is only accessible when irqs are enabled. 1748 * and also don't have an effective nonstop clocksource. 1749 * 1750 * This function should only be called by rtc_resume(), and allows 1751 * a suspend offset to be injected into the timekeeping values. 1752 */ 1753 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1754 { 1755 struct timekeeper *tk = &tk_core.timekeeper; 1756 unsigned long flags; 1757 1758 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1759 write_seqcount_begin(&tk_core.seq); 1760 1761 suspend_timing_needed = false; 1762 1763 timekeeping_forward_now(tk); 1764 1765 __timekeeping_inject_sleeptime(tk, delta); 1766 1767 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1768 1769 write_seqcount_end(&tk_core.seq); 1770 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1771 1772 /* Signal hrtimers about time change */ 1773 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1774 } 1775 #endif 1776 1777 /** 1778 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1779 */ 1780 void timekeeping_resume(void) 1781 { 1782 struct timekeeper *tk = &tk_core.timekeeper; 1783 struct clocksource *clock = tk->tkr_mono.clock; 1784 unsigned long flags; 1785 struct timespec64 ts_new, ts_delta; 1786 u64 cycle_now, nsec; 1787 bool inject_sleeptime = false; 1788 1789 read_persistent_clock64(&ts_new); 1790 1791 clockevents_resume(); 1792 clocksource_resume(); 1793 1794 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1795 write_seqcount_begin(&tk_core.seq); 1796 1797 /* 1798 * After system resumes, we need to calculate the suspended time and 1799 * compensate it for the OS time. There are 3 sources that could be 1800 * used: Nonstop clocksource during suspend, persistent clock and rtc 1801 * device. 1802 * 1803 * One specific platform may have 1 or 2 or all of them, and the 1804 * preference will be: 1805 * suspend-nonstop clocksource -> persistent clock -> rtc 1806 * The less preferred source will only be tried if there is no better 1807 * usable source. The rtc part is handled separately in rtc core code. 1808 */ 1809 cycle_now = tk_clock_read(&tk->tkr_mono); 1810 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1811 if (nsec > 0) { 1812 ts_delta = ns_to_timespec64(nsec); 1813 inject_sleeptime = true; 1814 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1815 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1816 inject_sleeptime = true; 1817 } 1818 1819 if (inject_sleeptime) { 1820 suspend_timing_needed = false; 1821 __timekeeping_inject_sleeptime(tk, &ts_delta); 1822 } 1823 1824 /* Re-base the last cycle value */ 1825 tk->tkr_mono.cycle_last = cycle_now; 1826 tk->tkr_raw.cycle_last = cycle_now; 1827 1828 tk->ntp_error = 0; 1829 timekeeping_suspended = 0; 1830 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1831 write_seqcount_end(&tk_core.seq); 1832 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1833 1834 touch_softlockup_watchdog(); 1835 1836 /* Resume the clockevent device(s) and hrtimers */ 1837 tick_resume(); 1838 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1839 timerfd_resume(); 1840 } 1841 1842 int timekeeping_suspend(void) 1843 { 1844 struct timekeeper *tk = &tk_core.timekeeper; 1845 unsigned long flags; 1846 struct timespec64 delta, delta_delta; 1847 static struct timespec64 old_delta; 1848 struct clocksource *curr_clock; 1849 u64 cycle_now; 1850 1851 read_persistent_clock64(&timekeeping_suspend_time); 1852 1853 /* 1854 * On some systems the persistent_clock can not be detected at 1855 * timekeeping_init by its return value, so if we see a valid 1856 * value returned, update the persistent_clock_exists flag. 1857 */ 1858 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1859 persistent_clock_exists = true; 1860 1861 suspend_timing_needed = true; 1862 1863 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1864 write_seqcount_begin(&tk_core.seq); 1865 timekeeping_forward_now(tk); 1866 timekeeping_suspended = 1; 1867 1868 /* 1869 * Since we've called forward_now, cycle_last stores the value 1870 * just read from the current clocksource. Save this to potentially 1871 * use in suspend timing. 1872 */ 1873 curr_clock = tk->tkr_mono.clock; 1874 cycle_now = tk->tkr_mono.cycle_last; 1875 clocksource_start_suspend_timing(curr_clock, cycle_now); 1876 1877 if (persistent_clock_exists) { 1878 /* 1879 * To avoid drift caused by repeated suspend/resumes, 1880 * which each can add ~1 second drift error, 1881 * try to compensate so the difference in system time 1882 * and persistent_clock time stays close to constant. 1883 */ 1884 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1885 delta_delta = timespec64_sub(delta, old_delta); 1886 if (abs(delta_delta.tv_sec) >= 2) { 1887 /* 1888 * if delta_delta is too large, assume time correction 1889 * has occurred and set old_delta to the current delta. 1890 */ 1891 old_delta = delta; 1892 } else { 1893 /* Otherwise try to adjust old_system to compensate */ 1894 timekeeping_suspend_time = 1895 timespec64_add(timekeeping_suspend_time, delta_delta); 1896 } 1897 } 1898 1899 timekeeping_update(tk, TK_MIRROR); 1900 halt_fast_timekeeper(tk); 1901 write_seqcount_end(&tk_core.seq); 1902 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1903 1904 tick_suspend(); 1905 clocksource_suspend(); 1906 clockevents_suspend(); 1907 1908 return 0; 1909 } 1910 1911 /* sysfs resume/suspend bits for timekeeping */ 1912 static struct syscore_ops timekeeping_syscore_ops = { 1913 .resume = timekeeping_resume, 1914 .suspend = timekeeping_suspend, 1915 }; 1916 1917 static int __init timekeeping_init_ops(void) 1918 { 1919 register_syscore_ops(&timekeeping_syscore_ops); 1920 return 0; 1921 } 1922 device_initcall(timekeeping_init_ops); 1923 1924 /* 1925 * Apply a multiplier adjustment to the timekeeper 1926 */ 1927 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1928 s64 offset, 1929 s32 mult_adj) 1930 { 1931 s64 interval = tk->cycle_interval; 1932 1933 if (mult_adj == 0) { 1934 return; 1935 } else if (mult_adj == -1) { 1936 interval = -interval; 1937 offset = -offset; 1938 } else if (mult_adj != 1) { 1939 interval *= mult_adj; 1940 offset *= mult_adj; 1941 } 1942 1943 /* 1944 * So the following can be confusing. 1945 * 1946 * To keep things simple, lets assume mult_adj == 1 for now. 1947 * 1948 * When mult_adj != 1, remember that the interval and offset values 1949 * have been appropriately scaled so the math is the same. 1950 * 1951 * The basic idea here is that we're increasing the multiplier 1952 * by one, this causes the xtime_interval to be incremented by 1953 * one cycle_interval. This is because: 1954 * xtime_interval = cycle_interval * mult 1955 * So if mult is being incremented by one: 1956 * xtime_interval = cycle_interval * (mult + 1) 1957 * Its the same as: 1958 * xtime_interval = (cycle_interval * mult) + cycle_interval 1959 * Which can be shortened to: 1960 * xtime_interval += cycle_interval 1961 * 1962 * So offset stores the non-accumulated cycles. Thus the current 1963 * time (in shifted nanoseconds) is: 1964 * now = (offset * adj) + xtime_nsec 1965 * Now, even though we're adjusting the clock frequency, we have 1966 * to keep time consistent. In other words, we can't jump back 1967 * in time, and we also want to avoid jumping forward in time. 1968 * 1969 * So given the same offset value, we need the time to be the same 1970 * both before and after the freq adjustment. 1971 * now = (offset * adj_1) + xtime_nsec_1 1972 * now = (offset * adj_2) + xtime_nsec_2 1973 * So: 1974 * (offset * adj_1) + xtime_nsec_1 = 1975 * (offset * adj_2) + xtime_nsec_2 1976 * And we know: 1977 * adj_2 = adj_1 + 1 1978 * So: 1979 * (offset * adj_1) + xtime_nsec_1 = 1980 * (offset * (adj_1+1)) + xtime_nsec_2 1981 * (offset * adj_1) + xtime_nsec_1 = 1982 * (offset * adj_1) + offset + xtime_nsec_2 1983 * Canceling the sides: 1984 * xtime_nsec_1 = offset + xtime_nsec_2 1985 * Which gives us: 1986 * xtime_nsec_2 = xtime_nsec_1 - offset 1987 * Which simplifies to: 1988 * xtime_nsec -= offset 1989 */ 1990 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1991 /* NTP adjustment caused clocksource mult overflow */ 1992 WARN_ON_ONCE(1); 1993 return; 1994 } 1995 1996 tk->tkr_mono.mult += mult_adj; 1997 tk->xtime_interval += interval; 1998 tk->tkr_mono.xtime_nsec -= offset; 1999 } 2000 2001 /* 2002 * Adjust the timekeeper's multiplier to the correct frequency 2003 * and also to reduce the accumulated error value. 2004 */ 2005 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2006 { 2007 u32 mult; 2008 2009 /* 2010 * Determine the multiplier from the current NTP tick length. 2011 * Avoid expensive division when the tick length doesn't change. 2012 */ 2013 if (likely(tk->ntp_tick == ntp_tick_length())) { 2014 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2015 } else { 2016 tk->ntp_tick = ntp_tick_length(); 2017 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2018 tk->xtime_remainder, tk->cycle_interval); 2019 } 2020 2021 /* 2022 * If the clock is behind the NTP time, increase the multiplier by 1 2023 * to catch up with it. If it's ahead and there was a remainder in the 2024 * tick division, the clock will slow down. Otherwise it will stay 2025 * ahead until the tick length changes to a non-divisible value. 2026 */ 2027 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2028 mult += tk->ntp_err_mult; 2029 2030 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2031 2032 if (unlikely(tk->tkr_mono.clock->maxadj && 2033 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2034 > tk->tkr_mono.clock->maxadj))) { 2035 printk_once(KERN_WARNING 2036 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2037 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2038 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2039 } 2040 2041 /* 2042 * It may be possible that when we entered this function, xtime_nsec 2043 * was very small. Further, if we're slightly speeding the clocksource 2044 * in the code above, its possible the required corrective factor to 2045 * xtime_nsec could cause it to underflow. 2046 * 2047 * Now, since we have already accumulated the second and the NTP 2048 * subsystem has been notified via second_overflow(), we need to skip 2049 * the next update. 2050 */ 2051 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2052 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2053 tk->tkr_mono.shift; 2054 tk->xtime_sec--; 2055 tk->skip_second_overflow = 1; 2056 } 2057 } 2058 2059 /* 2060 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2061 * 2062 * Helper function that accumulates the nsecs greater than a second 2063 * from the xtime_nsec field to the xtime_secs field. 2064 * It also calls into the NTP code to handle leapsecond processing. 2065 */ 2066 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2067 { 2068 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2069 unsigned int clock_set = 0; 2070 2071 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2072 int leap; 2073 2074 tk->tkr_mono.xtime_nsec -= nsecps; 2075 tk->xtime_sec++; 2076 2077 /* 2078 * Skip NTP update if this second was accumulated before, 2079 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2080 */ 2081 if (unlikely(tk->skip_second_overflow)) { 2082 tk->skip_second_overflow = 0; 2083 continue; 2084 } 2085 2086 /* Figure out if its a leap sec and apply if needed */ 2087 leap = second_overflow(tk->xtime_sec); 2088 if (unlikely(leap)) { 2089 struct timespec64 ts; 2090 2091 tk->xtime_sec += leap; 2092 2093 ts.tv_sec = leap; 2094 ts.tv_nsec = 0; 2095 tk_set_wall_to_mono(tk, 2096 timespec64_sub(tk->wall_to_monotonic, ts)); 2097 2098 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2099 2100 clock_set = TK_CLOCK_WAS_SET; 2101 } 2102 } 2103 return clock_set; 2104 } 2105 2106 /* 2107 * logarithmic_accumulation - shifted accumulation of cycles 2108 * 2109 * This functions accumulates a shifted interval of cycles into 2110 * a shifted interval nanoseconds. Allows for O(log) accumulation 2111 * loop. 2112 * 2113 * Returns the unconsumed cycles. 2114 */ 2115 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2116 u32 shift, unsigned int *clock_set) 2117 { 2118 u64 interval = tk->cycle_interval << shift; 2119 u64 snsec_per_sec; 2120 2121 /* If the offset is smaller than a shifted interval, do nothing */ 2122 if (offset < interval) 2123 return offset; 2124 2125 /* Accumulate one shifted interval */ 2126 offset -= interval; 2127 tk->tkr_mono.cycle_last += interval; 2128 tk->tkr_raw.cycle_last += interval; 2129 2130 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2131 *clock_set |= accumulate_nsecs_to_secs(tk); 2132 2133 /* Accumulate raw time */ 2134 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2135 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2136 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2137 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2138 tk->raw_sec++; 2139 } 2140 2141 /* Accumulate error between NTP and clock interval */ 2142 tk->ntp_error += tk->ntp_tick << shift; 2143 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2144 (tk->ntp_error_shift + shift); 2145 2146 return offset; 2147 } 2148 2149 /* 2150 * timekeeping_advance - Updates the timekeeper to the current time and 2151 * current NTP tick length 2152 */ 2153 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2154 { 2155 struct timekeeper *real_tk = &tk_core.timekeeper; 2156 struct timekeeper *tk = &shadow_timekeeper; 2157 u64 offset; 2158 int shift = 0, maxshift; 2159 unsigned int clock_set = 0; 2160 unsigned long flags; 2161 2162 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2163 2164 /* Make sure we're fully resumed: */ 2165 if (unlikely(timekeeping_suspended)) 2166 goto out; 2167 2168 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2169 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2170 2171 /* Check if there's really nothing to do */ 2172 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2173 goto out; 2174 2175 /* Do some additional sanity checking */ 2176 timekeeping_check_update(tk, offset); 2177 2178 /* 2179 * With NO_HZ we may have to accumulate many cycle_intervals 2180 * (think "ticks") worth of time at once. To do this efficiently, 2181 * we calculate the largest doubling multiple of cycle_intervals 2182 * that is smaller than the offset. We then accumulate that 2183 * chunk in one go, and then try to consume the next smaller 2184 * doubled multiple. 2185 */ 2186 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2187 shift = max(0, shift); 2188 /* Bound shift to one less than what overflows tick_length */ 2189 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2190 shift = min(shift, maxshift); 2191 while (offset >= tk->cycle_interval) { 2192 offset = logarithmic_accumulation(tk, offset, shift, 2193 &clock_set); 2194 if (offset < tk->cycle_interval<<shift) 2195 shift--; 2196 } 2197 2198 /* Adjust the multiplier to correct NTP error */ 2199 timekeeping_adjust(tk, offset); 2200 2201 /* 2202 * Finally, make sure that after the rounding 2203 * xtime_nsec isn't larger than NSEC_PER_SEC 2204 */ 2205 clock_set |= accumulate_nsecs_to_secs(tk); 2206 2207 write_seqcount_begin(&tk_core.seq); 2208 /* 2209 * Update the real timekeeper. 2210 * 2211 * We could avoid this memcpy by switching pointers, but that 2212 * requires changes to all other timekeeper usage sites as 2213 * well, i.e. move the timekeeper pointer getter into the 2214 * spinlocked/seqcount protected sections. And we trade this 2215 * memcpy under the tk_core.seq against one before we start 2216 * updating. 2217 */ 2218 timekeeping_update(tk, clock_set); 2219 memcpy(real_tk, tk, sizeof(*tk)); 2220 /* The memcpy must come last. Do not put anything here! */ 2221 write_seqcount_end(&tk_core.seq); 2222 out: 2223 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2224 2225 return !!clock_set; 2226 } 2227 2228 /** 2229 * update_wall_time - Uses the current clocksource to increment the wall time 2230 * 2231 */ 2232 void update_wall_time(void) 2233 { 2234 if (timekeeping_advance(TK_ADV_TICK)) 2235 clock_was_set_delayed(); 2236 } 2237 2238 /** 2239 * getboottime64 - Return the real time of system boot. 2240 * @ts: pointer to the timespec64 to be set 2241 * 2242 * Returns the wall-time of boot in a timespec64. 2243 * 2244 * This is based on the wall_to_monotonic offset and the total suspend 2245 * time. Calls to settimeofday will affect the value returned (which 2246 * basically means that however wrong your real time clock is at boot time, 2247 * you get the right time here). 2248 */ 2249 void getboottime64(struct timespec64 *ts) 2250 { 2251 struct timekeeper *tk = &tk_core.timekeeper; 2252 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2253 2254 *ts = ktime_to_timespec64(t); 2255 } 2256 EXPORT_SYMBOL_GPL(getboottime64); 2257 2258 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2259 { 2260 struct timekeeper *tk = &tk_core.timekeeper; 2261 unsigned int seq; 2262 2263 do { 2264 seq = read_seqcount_begin(&tk_core.seq); 2265 2266 *ts = tk_xtime(tk); 2267 } while (read_seqcount_retry(&tk_core.seq, seq)); 2268 } 2269 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2270 2271 void ktime_get_coarse_ts64(struct timespec64 *ts) 2272 { 2273 struct timekeeper *tk = &tk_core.timekeeper; 2274 struct timespec64 now, mono; 2275 unsigned int seq; 2276 2277 do { 2278 seq = read_seqcount_begin(&tk_core.seq); 2279 2280 now = tk_xtime(tk); 2281 mono = tk->wall_to_monotonic; 2282 } while (read_seqcount_retry(&tk_core.seq, seq)); 2283 2284 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2285 now.tv_nsec + mono.tv_nsec); 2286 } 2287 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2288 2289 /* 2290 * Must hold jiffies_lock 2291 */ 2292 void do_timer(unsigned long ticks) 2293 { 2294 jiffies_64 += ticks; 2295 calc_global_load(); 2296 } 2297 2298 /** 2299 * ktime_get_update_offsets_now - hrtimer helper 2300 * @cwsseq: pointer to check and store the clock was set sequence number 2301 * @offs_real: pointer to storage for monotonic -> realtime offset 2302 * @offs_boot: pointer to storage for monotonic -> boottime offset 2303 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2304 * 2305 * Returns current monotonic time and updates the offsets if the 2306 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2307 * different. 2308 * 2309 * Called from hrtimer_interrupt() or retrigger_next_event() 2310 */ 2311 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2312 ktime_t *offs_boot, ktime_t *offs_tai) 2313 { 2314 struct timekeeper *tk = &tk_core.timekeeper; 2315 unsigned int seq; 2316 ktime_t base; 2317 u64 nsecs; 2318 2319 do { 2320 seq = read_seqcount_begin(&tk_core.seq); 2321 2322 base = tk->tkr_mono.base; 2323 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2324 base = ktime_add_ns(base, nsecs); 2325 2326 if (*cwsseq != tk->clock_was_set_seq) { 2327 *cwsseq = tk->clock_was_set_seq; 2328 *offs_real = tk->offs_real; 2329 *offs_boot = tk->offs_boot; 2330 *offs_tai = tk->offs_tai; 2331 } 2332 2333 /* Handle leapsecond insertion adjustments */ 2334 if (unlikely(base >= tk->next_leap_ktime)) 2335 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2336 2337 } while (read_seqcount_retry(&tk_core.seq, seq)); 2338 2339 return base; 2340 } 2341 2342 /* 2343 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2344 */ 2345 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2346 { 2347 if (txc->modes & ADJ_ADJTIME) { 2348 /* singleshot must not be used with any other mode bits */ 2349 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2350 return -EINVAL; 2351 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2352 !capable(CAP_SYS_TIME)) 2353 return -EPERM; 2354 } else { 2355 /* In order to modify anything, you gotta be super-user! */ 2356 if (txc->modes && !capable(CAP_SYS_TIME)) 2357 return -EPERM; 2358 /* 2359 * if the quartz is off by more than 10% then 2360 * something is VERY wrong! 2361 */ 2362 if (txc->modes & ADJ_TICK && 2363 (txc->tick < 900000/USER_HZ || 2364 txc->tick > 1100000/USER_HZ)) 2365 return -EINVAL; 2366 } 2367 2368 if (txc->modes & ADJ_SETOFFSET) { 2369 /* In order to inject time, you gotta be super-user! */ 2370 if (!capable(CAP_SYS_TIME)) 2371 return -EPERM; 2372 2373 /* 2374 * Validate if a timespec/timeval used to inject a time 2375 * offset is valid. Offsets can be positive or negative, so 2376 * we don't check tv_sec. The value of the timeval/timespec 2377 * is the sum of its fields,but *NOTE*: 2378 * The field tv_usec/tv_nsec must always be non-negative and 2379 * we can't have more nanoseconds/microseconds than a second. 2380 */ 2381 if (txc->time.tv_usec < 0) 2382 return -EINVAL; 2383 2384 if (txc->modes & ADJ_NANO) { 2385 if (txc->time.tv_usec >= NSEC_PER_SEC) 2386 return -EINVAL; 2387 } else { 2388 if (txc->time.tv_usec >= USEC_PER_SEC) 2389 return -EINVAL; 2390 } 2391 } 2392 2393 /* 2394 * Check for potential multiplication overflows that can 2395 * only happen on 64-bit systems: 2396 */ 2397 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2398 if (LLONG_MIN / PPM_SCALE > txc->freq) 2399 return -EINVAL; 2400 if (LLONG_MAX / PPM_SCALE < txc->freq) 2401 return -EINVAL; 2402 } 2403 2404 return 0; 2405 } 2406 2407 /** 2408 * random_get_entropy_fallback - Returns the raw clock source value, 2409 * used by random.c for platforms with no valid random_get_entropy(). 2410 */ 2411 unsigned long random_get_entropy_fallback(void) 2412 { 2413 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2414 struct clocksource *clock = READ_ONCE(tkr->clock); 2415 2416 if (unlikely(timekeeping_suspended || !clock)) 2417 return 0; 2418 return clock->read(clock); 2419 } 2420 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2421 2422 /** 2423 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2424 */ 2425 int do_adjtimex(struct __kernel_timex *txc) 2426 { 2427 struct timekeeper *tk = &tk_core.timekeeper; 2428 struct audit_ntp_data ad; 2429 bool clock_set = false; 2430 struct timespec64 ts; 2431 unsigned long flags; 2432 s32 orig_tai, tai; 2433 int ret; 2434 2435 /* Validate the data before disabling interrupts */ 2436 ret = timekeeping_validate_timex(txc); 2437 if (ret) 2438 return ret; 2439 add_device_randomness(txc, sizeof(*txc)); 2440 2441 if (txc->modes & ADJ_SETOFFSET) { 2442 struct timespec64 delta; 2443 delta.tv_sec = txc->time.tv_sec; 2444 delta.tv_nsec = txc->time.tv_usec; 2445 if (!(txc->modes & ADJ_NANO)) 2446 delta.tv_nsec *= 1000; 2447 ret = timekeeping_inject_offset(&delta); 2448 if (ret) 2449 return ret; 2450 2451 audit_tk_injoffset(delta); 2452 } 2453 2454 audit_ntp_init(&ad); 2455 2456 ktime_get_real_ts64(&ts); 2457 add_device_randomness(&ts, sizeof(ts)); 2458 2459 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2460 write_seqcount_begin(&tk_core.seq); 2461 2462 orig_tai = tai = tk->tai_offset; 2463 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2464 2465 if (tai != orig_tai) { 2466 __timekeeping_set_tai_offset(tk, tai); 2467 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2468 clock_set = true; 2469 } 2470 tk_update_leap_state(tk); 2471 2472 write_seqcount_end(&tk_core.seq); 2473 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2474 2475 audit_ntp_log(&ad); 2476 2477 /* Update the multiplier immediately if frequency was set directly */ 2478 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2479 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2480 2481 if (clock_set) 2482 clock_was_set(CLOCK_REALTIME); 2483 2484 ntp_notify_cmos_timer(); 2485 2486 return ret; 2487 } 2488 2489 #ifdef CONFIG_NTP_PPS 2490 /** 2491 * hardpps() - Accessor function to NTP __hardpps function 2492 */ 2493 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2494 { 2495 unsigned long flags; 2496 2497 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2498 write_seqcount_begin(&tk_core.seq); 2499 2500 __hardpps(phase_ts, raw_ts); 2501 2502 write_seqcount_end(&tk_core.seq); 2503 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2504 } 2505 EXPORT_SYMBOL(hardpps); 2506 #endif /* CONFIG_NTP_PPS */ 2507