xref: /linux/kernel/time/timekeeping.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource	*clock;
28 	/* NTP adjusted clock multiplier */
29 	u32			mult;
30 	/* The shift value of the current clocksource. */
31 	u32			shift;
32 	/* Number of clock cycles in one NTP interval. */
33 	cycle_t			cycle_interval;
34 	/* Number of clock shifted nano seconds in one NTP interval. */
35 	u64			xtime_interval;
36 	/* shifted nano seconds left over when rounding cycle_interval */
37 	s64			xtime_remainder;
38 	/* Raw nano seconds accumulated per NTP interval. */
39 	u32			raw_interval;
40 
41 	/* Current CLOCK_REALTIME time in seconds */
42 	u64			xtime_sec;
43 	/* Clock shifted nano seconds */
44 	u64			xtime_nsec;
45 
46 	/* Difference between accumulated time and NTP time in ntp
47 	 * shifted nano seconds. */
48 	s64			ntp_error;
49 	/* Shift conversion between clock shifted nano seconds and
50 	 * ntp shifted nano seconds. */
51 	u32			ntp_error_shift;
52 
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec		wall_to_monotonic;
68 	/* time spent in suspend */
69 	struct timespec		total_sleep_time;
70 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 	struct timespec		raw_time;
72 	/* Offset clock monotonic -> clock realtime */
73 	ktime_t			offs_real;
74 	/* Offset clock monotonic -> clock boottime */
75 	ktime_t			offs_boot;
76 	/* Seqlock for all timekeeper values */
77 	seqlock_t		lock;
78 };
79 
80 static struct timekeeper timekeeper;
81 
82 /*
83  * This read-write spinlock protects us from races in SMP while
84  * playing with xtime.
85  */
86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
87 
88 /* flag for if timekeeping is suspended */
89 int __read_mostly timekeeping_suspended;
90 
91 static inline void tk_normalize_xtime(struct timekeeper *tk)
92 {
93 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
94 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
95 		tk->xtime_sec++;
96 	}
97 }
98 
99 static struct timespec tk_xtime(struct timekeeper *tk)
100 {
101 	struct timespec ts;
102 
103 	ts.tv_sec = tk->xtime_sec;
104 	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
105 	return ts;
106 }
107 
108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
109 {
110 	tk->xtime_sec = ts->tv_sec;
111 	tk->xtime_nsec = ts->tv_nsec << tk->shift;
112 }
113 
114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
115 {
116 	tk->xtime_sec += ts->tv_sec;
117 	tk->xtime_nsec += ts->tv_nsec << tk->shift;
118 }
119 
120 /**
121  * timekeeper_setup_internals - Set up internals to use clocksource clock.
122  *
123  * @clock:		Pointer to clocksource.
124  *
125  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
126  * pair and interval request.
127  *
128  * Unless you're the timekeeping code, you should not be using this!
129  */
130 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
131 {
132 	cycle_t interval;
133 	u64 tmp, ntpinterval;
134 	struct clocksource *old_clock;
135 
136 	old_clock = tk->clock;
137 	tk->clock = clock;
138 	clock->cycle_last = clock->read(clock);
139 
140 	/* Do the ns -> cycle conversion first, using original mult */
141 	tmp = NTP_INTERVAL_LENGTH;
142 	tmp <<= clock->shift;
143 	ntpinterval = tmp;
144 	tmp += clock->mult/2;
145 	do_div(tmp, clock->mult);
146 	if (tmp == 0)
147 		tmp = 1;
148 
149 	interval = (cycle_t) tmp;
150 	tk->cycle_interval = interval;
151 
152 	/* Go back from cycles -> shifted ns */
153 	tk->xtime_interval = (u64) interval * clock->mult;
154 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
155 	tk->raw_interval =
156 		((u64) interval * clock->mult) >> clock->shift;
157 
158 	 /* if changing clocks, convert xtime_nsec shift units */
159 	if (old_clock) {
160 		int shift_change = clock->shift - old_clock->shift;
161 		if (shift_change < 0)
162 			tk->xtime_nsec >>= -shift_change;
163 		else
164 			tk->xtime_nsec <<= shift_change;
165 	}
166 	tk->shift = clock->shift;
167 
168 	tk->ntp_error = 0;
169 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
170 
171 	/*
172 	 * The timekeeper keeps its own mult values for the currently
173 	 * active clocksource. These value will be adjusted via NTP
174 	 * to counteract clock drifting.
175 	 */
176 	tk->mult = clock->mult;
177 }
178 
179 /* Timekeeper helper functions. */
180 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
181 {
182 	cycle_t cycle_now, cycle_delta;
183 	struct clocksource *clock;
184 	s64 nsec;
185 
186 	/* read clocksource: */
187 	clock = tk->clock;
188 	cycle_now = clock->read(clock);
189 
190 	/* calculate the delta since the last update_wall_time: */
191 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
192 
193 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
194 	nsec >>= tk->shift;
195 
196 	/* If arch requires, add in gettimeoffset() */
197 	return nsec + arch_gettimeoffset();
198 }
199 
200 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
201 {
202 	cycle_t cycle_now, cycle_delta;
203 	struct clocksource *clock;
204 	s64 nsec;
205 
206 	/* read clocksource: */
207 	clock = tk->clock;
208 	cycle_now = clock->read(clock);
209 
210 	/* calculate the delta since the last update_wall_time: */
211 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
212 
213 	/* convert delta to nanoseconds. */
214 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
215 
216 	/* If arch requires, add in gettimeoffset() */
217 	return nsec + arch_gettimeoffset();
218 }
219 
220 static void update_rt_offset(struct timekeeper *tk)
221 {
222 	struct timespec tmp, *wtm = &tk->wall_to_monotonic;
223 
224 	set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
225 	tk->offs_real = timespec_to_ktime(tmp);
226 }
227 
228 /* must hold write on timekeeper.lock */
229 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
230 {
231 	struct timespec xt;
232 
233 	if (clearntp) {
234 		tk->ntp_error = 0;
235 		ntp_clear();
236 	}
237 	update_rt_offset(tk);
238 	xt = tk_xtime(tk);
239 	update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
240 }
241 
242 
243 /**
244  * timekeeping_forward_now - update clock to the current time
245  *
246  * Forward the current clock to update its state since the last call to
247  * update_wall_time(). This is useful before significant clock changes,
248  * as it avoids having to deal with this time offset explicitly.
249  */
250 static void timekeeping_forward_now(struct timekeeper *tk)
251 {
252 	cycle_t cycle_now, cycle_delta;
253 	struct clocksource *clock;
254 	s64 nsec;
255 
256 	clock = tk->clock;
257 	cycle_now = clock->read(clock);
258 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
259 	clock->cycle_last = cycle_now;
260 
261 	tk->xtime_nsec += cycle_delta * tk->mult;
262 
263 	/* If arch requires, add in gettimeoffset() */
264 	tk->xtime_nsec += arch_gettimeoffset() << tk->shift;
265 
266 	tk_normalize_xtime(tk);
267 
268 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
269 	timespec_add_ns(&tk->raw_time, nsec);
270 }
271 
272 /**
273  * getnstimeofday - Returns the time of day in a timespec
274  * @ts:		pointer to the timespec to be set
275  *
276  * Returns the time of day in a timespec.
277  */
278 void getnstimeofday(struct timespec *ts)
279 {
280 	unsigned long seq;
281 	s64 nsecs = 0;
282 
283 	WARN_ON(timekeeping_suspended);
284 
285 	do {
286 		seq = read_seqbegin(&timekeeper.lock);
287 
288 		ts->tv_sec = timekeeper.xtime_sec;
289 		ts->tv_nsec = timekeeping_get_ns(&timekeeper);
290 
291 	} while (read_seqretry(&timekeeper.lock, seq));
292 
293 	timespec_add_ns(ts, nsecs);
294 }
295 EXPORT_SYMBOL(getnstimeofday);
296 
297 ktime_t ktime_get(void)
298 {
299 	unsigned int seq;
300 	s64 secs, nsecs;
301 
302 	WARN_ON(timekeeping_suspended);
303 
304 	do {
305 		seq = read_seqbegin(&timekeeper.lock);
306 		secs = timekeeper.xtime_sec +
307 				timekeeper.wall_to_monotonic.tv_sec;
308 		nsecs = timekeeping_get_ns(&timekeeper) +
309 				timekeeper.wall_to_monotonic.tv_nsec;
310 
311 	} while (read_seqretry(&timekeeper.lock, seq));
312 	/*
313 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
314 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
315 	 */
316 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
317 }
318 EXPORT_SYMBOL_GPL(ktime_get);
319 
320 /**
321  * ktime_get_ts - get the monotonic clock in timespec format
322  * @ts:		pointer to timespec variable
323  *
324  * The function calculates the monotonic clock from the realtime
325  * clock and the wall_to_monotonic offset and stores the result
326  * in normalized timespec format in the variable pointed to by @ts.
327  */
328 void ktime_get_ts(struct timespec *ts)
329 {
330 	struct timespec tomono;
331 	unsigned int seq;
332 
333 	WARN_ON(timekeeping_suspended);
334 
335 	do {
336 		seq = read_seqbegin(&timekeeper.lock);
337 		ts->tv_sec = timekeeper.xtime_sec;
338 		ts->tv_nsec = timekeeping_get_ns(&timekeeper);
339 		tomono = timekeeper.wall_to_monotonic;
340 
341 	} while (read_seqretry(&timekeeper.lock, seq));
342 
343 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
344 				ts->tv_nsec + tomono.tv_nsec);
345 }
346 EXPORT_SYMBOL_GPL(ktime_get_ts);
347 
348 #ifdef CONFIG_NTP_PPS
349 
350 /**
351  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
352  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
353  * @ts_real:	pointer to the timespec to be set to the time of day
354  *
355  * This function reads both the time of day and raw monotonic time at the
356  * same time atomically and stores the resulting timestamps in timespec
357  * format.
358  */
359 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
360 {
361 	unsigned long seq;
362 	s64 nsecs_raw, nsecs_real;
363 
364 	WARN_ON_ONCE(timekeeping_suspended);
365 
366 	do {
367 		seq = read_seqbegin(&timekeeper.lock);
368 
369 		*ts_raw = timekeeper.raw_time;
370 		ts_real->tv_sec = timekeeper.xtime_sec;
371 		ts_real->tv_nsec = 0;
372 
373 		nsecs_raw = timekeeping_get_ns_raw(&timekeeper);
374 		nsecs_real = timekeeping_get_ns(&timekeeper);
375 
376 	} while (read_seqretry(&timekeeper.lock, seq));
377 
378 	timespec_add_ns(ts_raw, nsecs_raw);
379 	timespec_add_ns(ts_real, nsecs_real);
380 }
381 EXPORT_SYMBOL(getnstime_raw_and_real);
382 
383 #endif /* CONFIG_NTP_PPS */
384 
385 /**
386  * do_gettimeofday - Returns the time of day in a timeval
387  * @tv:		pointer to the timeval to be set
388  *
389  * NOTE: Users should be converted to using getnstimeofday()
390  */
391 void do_gettimeofday(struct timeval *tv)
392 {
393 	struct timespec now;
394 
395 	getnstimeofday(&now);
396 	tv->tv_sec = now.tv_sec;
397 	tv->tv_usec = now.tv_nsec/1000;
398 }
399 EXPORT_SYMBOL(do_gettimeofday);
400 
401 /**
402  * do_settimeofday - Sets the time of day
403  * @tv:		pointer to the timespec variable containing the new time
404  *
405  * Sets the time of day to the new time and update NTP and notify hrtimers
406  */
407 int do_settimeofday(const struct timespec *tv)
408 {
409 	struct timespec ts_delta, xt;
410 	unsigned long flags;
411 
412 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
413 		return -EINVAL;
414 
415 	write_seqlock_irqsave(&timekeeper.lock, flags);
416 
417 	timekeeping_forward_now(&timekeeper);
418 
419 	xt = tk_xtime(&timekeeper);
420 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
421 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
422 
423 	timekeeper.wall_to_monotonic =
424 			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
425 
426 	tk_set_xtime(&timekeeper, tv);
427 
428 	timekeeping_update(&timekeeper, true);
429 
430 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
431 
432 	/* signal hrtimers about time change */
433 	clock_was_set();
434 
435 	return 0;
436 }
437 EXPORT_SYMBOL(do_settimeofday);
438 
439 
440 /**
441  * timekeeping_inject_offset - Adds or subtracts from the current time.
442  * @tv:		pointer to the timespec variable containing the offset
443  *
444  * Adds or subtracts an offset value from the current time.
445  */
446 int timekeeping_inject_offset(struct timespec *ts)
447 {
448 	unsigned long flags;
449 
450 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
451 		return -EINVAL;
452 
453 	write_seqlock_irqsave(&timekeeper.lock, flags);
454 
455 	timekeeping_forward_now(&timekeeper);
456 
457 
458 	tk_xtime_add(&timekeeper, ts);
459 	timekeeper.wall_to_monotonic =
460 				timespec_sub(timekeeper.wall_to_monotonic, *ts);
461 
462 	timekeeping_update(&timekeeper, true);
463 
464 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
465 
466 	/* signal hrtimers about time change */
467 	clock_was_set();
468 
469 	return 0;
470 }
471 EXPORT_SYMBOL(timekeeping_inject_offset);
472 
473 /**
474  * change_clocksource - Swaps clocksources if a new one is available
475  *
476  * Accumulates current time interval and initializes new clocksource
477  */
478 static int change_clocksource(void *data)
479 {
480 	struct clocksource *new, *old;
481 	unsigned long flags;
482 
483 	new = (struct clocksource *) data;
484 
485 	write_seqlock_irqsave(&timekeeper.lock, flags);
486 
487 	timekeeping_forward_now(&timekeeper);
488 	if (!new->enable || new->enable(new) == 0) {
489 		old = timekeeper.clock;
490 		tk_setup_internals(&timekeeper, new);
491 		if (old->disable)
492 			old->disable(old);
493 	}
494 	timekeeping_update(&timekeeper, true);
495 
496 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
497 
498 	return 0;
499 }
500 
501 /**
502  * timekeeping_notify - Install a new clock source
503  * @clock:		pointer to the clock source
504  *
505  * This function is called from clocksource.c after a new, better clock
506  * source has been registered. The caller holds the clocksource_mutex.
507  */
508 void timekeeping_notify(struct clocksource *clock)
509 {
510 	if (timekeeper.clock == clock)
511 		return;
512 	stop_machine(change_clocksource, clock, NULL);
513 	tick_clock_notify();
514 }
515 
516 /**
517  * ktime_get_real - get the real (wall-) time in ktime_t format
518  *
519  * returns the time in ktime_t format
520  */
521 ktime_t ktime_get_real(void)
522 {
523 	struct timespec now;
524 
525 	getnstimeofday(&now);
526 
527 	return timespec_to_ktime(now);
528 }
529 EXPORT_SYMBOL_GPL(ktime_get_real);
530 
531 /**
532  * getrawmonotonic - Returns the raw monotonic time in a timespec
533  * @ts:		pointer to the timespec to be set
534  *
535  * Returns the raw monotonic time (completely un-modified by ntp)
536  */
537 void getrawmonotonic(struct timespec *ts)
538 {
539 	unsigned long seq;
540 	s64 nsecs;
541 
542 	do {
543 		seq = read_seqbegin(&timekeeper.lock);
544 		nsecs = timekeeping_get_ns_raw(&timekeeper);
545 		*ts = timekeeper.raw_time;
546 
547 	} while (read_seqretry(&timekeeper.lock, seq));
548 
549 	timespec_add_ns(ts, nsecs);
550 }
551 EXPORT_SYMBOL(getrawmonotonic);
552 
553 
554 /**
555  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
556  */
557 int timekeeping_valid_for_hres(void)
558 {
559 	unsigned long seq;
560 	int ret;
561 
562 	do {
563 		seq = read_seqbegin(&timekeeper.lock);
564 
565 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
566 
567 	} while (read_seqretry(&timekeeper.lock, seq));
568 
569 	return ret;
570 }
571 
572 /**
573  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
574  */
575 u64 timekeeping_max_deferment(void)
576 {
577 	unsigned long seq;
578 	u64 ret;
579 
580 	do {
581 		seq = read_seqbegin(&timekeeper.lock);
582 
583 		ret = timekeeper.clock->max_idle_ns;
584 
585 	} while (read_seqretry(&timekeeper.lock, seq));
586 
587 	return ret;
588 }
589 
590 /**
591  * read_persistent_clock -  Return time from the persistent clock.
592  *
593  * Weak dummy function for arches that do not yet support it.
594  * Reads the time from the battery backed persistent clock.
595  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
596  *
597  *  XXX - Do be sure to remove it once all arches implement it.
598  */
599 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
600 {
601 	ts->tv_sec = 0;
602 	ts->tv_nsec = 0;
603 }
604 
605 /**
606  * read_boot_clock -  Return time of the system start.
607  *
608  * Weak dummy function for arches that do not yet support it.
609  * Function to read the exact time the system has been started.
610  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
611  *
612  *  XXX - Do be sure to remove it once all arches implement it.
613  */
614 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
615 {
616 	ts->tv_sec = 0;
617 	ts->tv_nsec = 0;
618 }
619 
620 /*
621  * timekeeping_init - Initializes the clocksource and common timekeeping values
622  */
623 void __init timekeeping_init(void)
624 {
625 	struct clocksource *clock;
626 	unsigned long flags;
627 	struct timespec now, boot;
628 
629 	read_persistent_clock(&now);
630 	read_boot_clock(&boot);
631 
632 	seqlock_init(&timekeeper.lock);
633 
634 	ntp_init();
635 
636 	write_seqlock_irqsave(&timekeeper.lock, flags);
637 	clock = clocksource_default_clock();
638 	if (clock->enable)
639 		clock->enable(clock);
640 	tk_setup_internals(&timekeeper, clock);
641 
642 	tk_set_xtime(&timekeeper, &now);
643 	timekeeper.raw_time.tv_sec = 0;
644 	timekeeper.raw_time.tv_nsec = 0;
645 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
646 		boot = tk_xtime(&timekeeper);
647 
648 	set_normalized_timespec(&timekeeper.wall_to_monotonic,
649 				-boot.tv_sec, -boot.tv_nsec);
650 	update_rt_offset(&timekeeper);
651 	timekeeper.total_sleep_time.tv_sec = 0;
652 	timekeeper.total_sleep_time.tv_nsec = 0;
653 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
654 }
655 
656 /* time in seconds when suspend began */
657 static struct timespec timekeeping_suspend_time;
658 
659 static void update_sleep_time(struct timespec t)
660 {
661 	timekeeper.total_sleep_time = t;
662 	timekeeper.offs_boot = timespec_to_ktime(t);
663 }
664 
665 /**
666  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
667  * @delta: pointer to a timespec delta value
668  *
669  * Takes a timespec offset measuring a suspend interval and properly
670  * adds the sleep offset to the timekeeping variables.
671  */
672 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
673 							struct timespec *delta)
674 {
675 	if (!timespec_valid(delta)) {
676 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
677 					"sleep delta value!\n");
678 		return;
679 	}
680 
681 	tk_xtime_add(tk, delta);
682 	tk->wall_to_monotonic = timespec_sub(tk->wall_to_monotonic, *delta);
683 	update_sleep_time(timespec_add(tk->total_sleep_time, *delta));
684 }
685 
686 
687 /**
688  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
689  * @delta: pointer to a timespec delta value
690  *
691  * This hook is for architectures that cannot support read_persistent_clock
692  * because their RTC/persistent clock is only accessible when irqs are enabled.
693  *
694  * This function should only be called by rtc_resume(), and allows
695  * a suspend offset to be injected into the timekeeping values.
696  */
697 void timekeeping_inject_sleeptime(struct timespec *delta)
698 {
699 	unsigned long flags;
700 	struct timespec ts;
701 
702 	/* Make sure we don't set the clock twice */
703 	read_persistent_clock(&ts);
704 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
705 		return;
706 
707 	write_seqlock_irqsave(&timekeeper.lock, flags);
708 
709 	timekeeping_forward_now(&timekeeper);
710 
711 	__timekeeping_inject_sleeptime(&timekeeper, delta);
712 
713 	timekeeping_update(&timekeeper, true);
714 
715 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
716 
717 	/* signal hrtimers about time change */
718 	clock_was_set();
719 }
720 
721 
722 /**
723  * timekeeping_resume - Resumes the generic timekeeping subsystem.
724  *
725  * This is for the generic clocksource timekeeping.
726  * xtime/wall_to_monotonic/jiffies/etc are
727  * still managed by arch specific suspend/resume code.
728  */
729 static void timekeeping_resume(void)
730 {
731 	unsigned long flags;
732 	struct timespec ts;
733 
734 	read_persistent_clock(&ts);
735 
736 	clocksource_resume();
737 
738 	write_seqlock_irqsave(&timekeeper.lock, flags);
739 
740 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
741 		ts = timespec_sub(ts, timekeeping_suspend_time);
742 		__timekeeping_inject_sleeptime(&timekeeper, &ts);
743 	}
744 	/* re-base the last cycle value */
745 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
746 	timekeeper.ntp_error = 0;
747 	timekeeping_suspended = 0;
748 	timekeeping_update(&timekeeper, false);
749 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
750 
751 	touch_softlockup_watchdog();
752 
753 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
754 
755 	/* Resume hrtimers */
756 	hrtimers_resume();
757 }
758 
759 static int timekeeping_suspend(void)
760 {
761 	unsigned long flags;
762 	struct timespec		delta, delta_delta;
763 	static struct timespec	old_delta;
764 
765 	read_persistent_clock(&timekeeping_suspend_time);
766 
767 	write_seqlock_irqsave(&timekeeper.lock, flags);
768 	timekeeping_forward_now(&timekeeper);
769 	timekeeping_suspended = 1;
770 
771 	/*
772 	 * To avoid drift caused by repeated suspend/resumes,
773 	 * which each can add ~1 second drift error,
774 	 * try to compensate so the difference in system time
775 	 * and persistent_clock time stays close to constant.
776 	 */
777 	delta = timespec_sub(tk_xtime(&timekeeper), timekeeping_suspend_time);
778 	delta_delta = timespec_sub(delta, old_delta);
779 	if (abs(delta_delta.tv_sec)  >= 2) {
780 		/*
781 		 * if delta_delta is too large, assume time correction
782 		 * has occured and set old_delta to the current delta.
783 		 */
784 		old_delta = delta;
785 	} else {
786 		/* Otherwise try to adjust old_system to compensate */
787 		timekeeping_suspend_time =
788 			timespec_add(timekeeping_suspend_time, delta_delta);
789 	}
790 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
791 
792 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
793 	clocksource_suspend();
794 
795 	return 0;
796 }
797 
798 /* sysfs resume/suspend bits for timekeeping */
799 static struct syscore_ops timekeeping_syscore_ops = {
800 	.resume		= timekeeping_resume,
801 	.suspend	= timekeeping_suspend,
802 };
803 
804 static int __init timekeeping_init_ops(void)
805 {
806 	register_syscore_ops(&timekeeping_syscore_ops);
807 	return 0;
808 }
809 
810 device_initcall(timekeeping_init_ops);
811 
812 /*
813  * If the error is already larger, we look ahead even further
814  * to compensate for late or lost adjustments.
815  */
816 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
817 						 s64 error, s64 *interval,
818 						 s64 *offset)
819 {
820 	s64 tick_error, i;
821 	u32 look_ahead, adj;
822 	s32 error2, mult;
823 
824 	/*
825 	 * Use the current error value to determine how much to look ahead.
826 	 * The larger the error the slower we adjust for it to avoid problems
827 	 * with losing too many ticks, otherwise we would overadjust and
828 	 * produce an even larger error.  The smaller the adjustment the
829 	 * faster we try to adjust for it, as lost ticks can do less harm
830 	 * here.  This is tuned so that an error of about 1 msec is adjusted
831 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
832 	 */
833 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
834 	error2 = abs(error2);
835 	for (look_ahead = 0; error2 > 0; look_ahead++)
836 		error2 >>= 2;
837 
838 	/*
839 	 * Now calculate the error in (1 << look_ahead) ticks, but first
840 	 * remove the single look ahead already included in the error.
841 	 */
842 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
843 	tick_error -= tk->xtime_interval >> 1;
844 	error = ((error - tick_error) >> look_ahead) + tick_error;
845 
846 	/* Finally calculate the adjustment shift value.  */
847 	i = *interval;
848 	mult = 1;
849 	if (error < 0) {
850 		error = -error;
851 		*interval = -*interval;
852 		*offset = -*offset;
853 		mult = -1;
854 	}
855 	for (adj = 0; error > i; adj++)
856 		error >>= 1;
857 
858 	*interval <<= adj;
859 	*offset <<= adj;
860 	return mult << adj;
861 }
862 
863 /*
864  * Adjust the multiplier to reduce the error value,
865  * this is optimized for the most common adjustments of -1,0,1,
866  * for other values we can do a bit more work.
867  */
868 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
869 {
870 	s64 error, interval = tk->cycle_interval;
871 	int adj;
872 
873 	/*
874 	 * The point of this is to check if the error is greater than half
875 	 * an interval.
876 	 *
877 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
878 	 *
879 	 * Note we subtract one in the shift, so that error is really error*2.
880 	 * This "saves" dividing(shifting) interval twice, but keeps the
881 	 * (error > interval) comparison as still measuring if error is
882 	 * larger than half an interval.
883 	 *
884 	 * Note: It does not "save" on aggravation when reading the code.
885 	 */
886 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
887 	if (error > interval) {
888 		/*
889 		 * We now divide error by 4(via shift), which checks if
890 		 * the error is greater than twice the interval.
891 		 * If it is greater, we need a bigadjust, if its smaller,
892 		 * we can adjust by 1.
893 		 */
894 		error >>= 2;
895 		/*
896 		 * XXX - In update_wall_time, we round up to the next
897 		 * nanosecond, and store the amount rounded up into
898 		 * the error. This causes the likely below to be unlikely.
899 		 *
900 		 * The proper fix is to avoid rounding up by using
901 		 * the high precision timekeeper.xtime_nsec instead of
902 		 * xtime.tv_nsec everywhere. Fixing this will take some
903 		 * time.
904 		 */
905 		if (likely(error <= interval))
906 			adj = 1;
907 		else
908 			adj = timekeeping_bigadjust(tk, error, &interval,
909 							&offset);
910 	} else if (error < -interval) {
911 		/* See comment above, this is just switched for the negative */
912 		error >>= 2;
913 		if (likely(error >= -interval)) {
914 			adj = -1;
915 			interval = -interval;
916 			offset = -offset;
917 		} else
918 			adj = timekeeping_bigadjust(tk, error, &interval,
919 							&offset);
920 	} else
921 		return;
922 
923 	if (unlikely(tk->clock->maxadj &&
924 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
925 		printk_once(KERN_WARNING
926 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
927 			tk->clock->name, (long)tk->mult + adj,
928 			(long)tk->clock->mult + tk->clock->maxadj);
929 	}
930 	/*
931 	 * So the following can be confusing.
932 	 *
933 	 * To keep things simple, lets assume adj == 1 for now.
934 	 *
935 	 * When adj != 1, remember that the interval and offset values
936 	 * have been appropriately scaled so the math is the same.
937 	 *
938 	 * The basic idea here is that we're increasing the multiplier
939 	 * by one, this causes the xtime_interval to be incremented by
940 	 * one cycle_interval. This is because:
941 	 *	xtime_interval = cycle_interval * mult
942 	 * So if mult is being incremented by one:
943 	 *	xtime_interval = cycle_interval * (mult + 1)
944 	 * Its the same as:
945 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
946 	 * Which can be shortened to:
947 	 *	xtime_interval += cycle_interval
948 	 *
949 	 * So offset stores the non-accumulated cycles. Thus the current
950 	 * time (in shifted nanoseconds) is:
951 	 *	now = (offset * adj) + xtime_nsec
952 	 * Now, even though we're adjusting the clock frequency, we have
953 	 * to keep time consistent. In other words, we can't jump back
954 	 * in time, and we also want to avoid jumping forward in time.
955 	 *
956 	 * So given the same offset value, we need the time to be the same
957 	 * both before and after the freq adjustment.
958 	 *	now = (offset * adj_1) + xtime_nsec_1
959 	 *	now = (offset * adj_2) + xtime_nsec_2
960 	 * So:
961 	 *	(offset * adj_1) + xtime_nsec_1 =
962 	 *		(offset * adj_2) + xtime_nsec_2
963 	 * And we know:
964 	 *	adj_2 = adj_1 + 1
965 	 * So:
966 	 *	(offset * adj_1) + xtime_nsec_1 =
967 	 *		(offset * (adj_1+1)) + xtime_nsec_2
968 	 *	(offset * adj_1) + xtime_nsec_1 =
969 	 *		(offset * adj_1) + offset + xtime_nsec_2
970 	 * Canceling the sides:
971 	 *	xtime_nsec_1 = offset + xtime_nsec_2
972 	 * Which gives us:
973 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
974 	 * Which simplfies to:
975 	 *	xtime_nsec -= offset
976 	 *
977 	 * XXX - TODO: Doc ntp_error calculation.
978 	 */
979 	tk->mult += adj;
980 	tk->xtime_interval += interval;
981 	tk->xtime_nsec -= offset;
982 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
983 
984 	/*
985 	 * It may be possible that when we entered this function, xtime_nsec
986 	 * was very small.  Further, if we're slightly speeding the clocksource
987 	 * in the code above, its possible the required corrective factor to
988 	 * xtime_nsec could cause it to underflow.
989 	 *
990 	 * Now, since we already accumulated the second, cannot simply roll
991 	 * the accumulated second back, since the NTP subsystem has been
992 	 * notified via second_overflow. So instead we push xtime_nsec forward
993 	 * by the amount we underflowed, and add that amount into the error.
994 	 *
995 	 * We'll correct this error next time through this function, when
996 	 * xtime_nsec is not as small.
997 	 */
998 	if (unlikely((s64)tk->xtime_nsec < 0)) {
999 		s64 neg = -(s64)tk->xtime_nsec;
1000 		tk->xtime_nsec = 0;
1001 		tk->ntp_error += neg << tk->ntp_error_shift;
1002 	}
1003 
1004 }
1005 
1006 
1007 /**
1008  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1009  *
1010  * Helper function that accumulates a the nsecs greater then a second
1011  * from the xtime_nsec field to the xtime_secs field.
1012  * It also calls into the NTP code to handle leapsecond processing.
1013  *
1014  */
1015 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1016 {
1017 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1018 
1019 	while (tk->xtime_nsec >= nsecps) {
1020 		int leap;
1021 
1022 		tk->xtime_nsec -= nsecps;
1023 		tk->xtime_sec++;
1024 
1025 		/* Figure out if its a leap sec and apply if needed */
1026 		leap = second_overflow(tk->xtime_sec);
1027 		tk->xtime_sec += leap;
1028 		tk->wall_to_monotonic.tv_sec -= leap;
1029 		if (leap)
1030 			clock_was_set_delayed();
1031 
1032 	}
1033 }
1034 
1035 
1036 /**
1037  * logarithmic_accumulation - shifted accumulation of cycles
1038  *
1039  * This functions accumulates a shifted interval of cycles into
1040  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1041  * loop.
1042  *
1043  * Returns the unconsumed cycles.
1044  */
1045 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1046 						u32 shift)
1047 {
1048 	u64 raw_nsecs;
1049 
1050 	/* If the offset is smaller then a shifted interval, do nothing */
1051 	if (offset < tk->cycle_interval<<shift)
1052 		return offset;
1053 
1054 	/* Accumulate one shifted interval */
1055 	offset -= tk->cycle_interval << shift;
1056 	tk->clock->cycle_last += tk->cycle_interval << shift;
1057 
1058 	tk->xtime_nsec += tk->xtime_interval << shift;
1059 	accumulate_nsecs_to_secs(tk);
1060 
1061 	/* Accumulate raw time */
1062 	raw_nsecs = tk->raw_interval << shift;
1063 	raw_nsecs += tk->raw_time.tv_nsec;
1064 	if (raw_nsecs >= NSEC_PER_SEC) {
1065 		u64 raw_secs = raw_nsecs;
1066 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1067 		tk->raw_time.tv_sec += raw_secs;
1068 	}
1069 	tk->raw_time.tv_nsec = raw_nsecs;
1070 
1071 	/* Accumulate error between NTP and clock interval */
1072 	tk->ntp_error += ntp_tick_length() << shift;
1073 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1074 						(tk->ntp_error_shift + shift);
1075 
1076 	return offset;
1077 }
1078 
1079 
1080 /**
1081  * update_wall_time - Uses the current clocksource to increment the wall time
1082  *
1083  */
1084 static void update_wall_time(void)
1085 {
1086 	struct clocksource *clock;
1087 	cycle_t offset;
1088 	int shift = 0, maxshift;
1089 	unsigned long flags;
1090 	s64 remainder;
1091 
1092 	write_seqlock_irqsave(&timekeeper.lock, flags);
1093 
1094 	/* Make sure we're fully resumed: */
1095 	if (unlikely(timekeeping_suspended))
1096 		goto out;
1097 
1098 	clock = timekeeper.clock;
1099 
1100 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1101 	offset = timekeeper.cycle_interval;
1102 #else
1103 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1104 #endif
1105 
1106 	/*
1107 	 * With NO_HZ we may have to accumulate many cycle_intervals
1108 	 * (think "ticks") worth of time at once. To do this efficiently,
1109 	 * we calculate the largest doubling multiple of cycle_intervals
1110 	 * that is smaller than the offset.  We then accumulate that
1111 	 * chunk in one go, and then try to consume the next smaller
1112 	 * doubled multiple.
1113 	 */
1114 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1115 	shift = max(0, shift);
1116 	/* Bound shift to one less than what overflows tick_length */
1117 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1118 	shift = min(shift, maxshift);
1119 	while (offset >= timekeeper.cycle_interval) {
1120 		offset = logarithmic_accumulation(&timekeeper, offset, shift);
1121 		if(offset < timekeeper.cycle_interval<<shift)
1122 			shift--;
1123 	}
1124 
1125 	/* correct the clock when NTP error is too big */
1126 	timekeeping_adjust(&timekeeper, offset);
1127 
1128 
1129 	/*
1130 	* Store only full nanoseconds into xtime_nsec after rounding
1131 	* it up and add the remainder to the error difference.
1132 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1133 	* by truncating the remainder in vsyscalls. However, it causes
1134 	* additional work to be done in timekeeping_adjust(). Once
1135 	* the vsyscall implementations are converted to use xtime_nsec
1136 	* (shifted nanoseconds), this can be killed.
1137 	*/
1138 	remainder = timekeeper.xtime_nsec & ((1 << timekeeper.shift) - 1);
1139 	timekeeper.xtime_nsec -= remainder;
1140 	timekeeper.xtime_nsec += 1 << timekeeper.shift;
1141 	timekeeper.ntp_error += remainder << timekeeper.ntp_error_shift;
1142 
1143 	/*
1144 	 * Finally, make sure that after the rounding
1145 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1146 	 */
1147 	accumulate_nsecs_to_secs(&timekeeper);
1148 
1149 	timekeeping_update(&timekeeper, false);
1150 
1151 out:
1152 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
1153 
1154 }
1155 
1156 /**
1157  * getboottime - Return the real time of system boot.
1158  * @ts:		pointer to the timespec to be set
1159  *
1160  * Returns the wall-time of boot in a timespec.
1161  *
1162  * This is based on the wall_to_monotonic offset and the total suspend
1163  * time. Calls to settimeofday will affect the value returned (which
1164  * basically means that however wrong your real time clock is at boot time,
1165  * you get the right time here).
1166  */
1167 void getboottime(struct timespec *ts)
1168 {
1169 	struct timespec boottime = {
1170 		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1171 				timekeeper.total_sleep_time.tv_sec,
1172 		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1173 				timekeeper.total_sleep_time.tv_nsec
1174 	};
1175 
1176 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1177 }
1178 EXPORT_SYMBOL_GPL(getboottime);
1179 
1180 
1181 /**
1182  * get_monotonic_boottime - Returns monotonic time since boot
1183  * @ts:		pointer to the timespec to be set
1184  *
1185  * Returns the monotonic time since boot in a timespec.
1186  *
1187  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1188  * includes the time spent in suspend.
1189  */
1190 void get_monotonic_boottime(struct timespec *ts)
1191 {
1192 	struct timespec tomono, sleep;
1193 	unsigned int seq;
1194 
1195 	WARN_ON(timekeeping_suspended);
1196 
1197 	do {
1198 		seq = read_seqbegin(&timekeeper.lock);
1199 		ts->tv_sec = timekeeper.xtime_sec;
1200 		ts->tv_nsec = timekeeping_get_ns(&timekeeper);
1201 		tomono = timekeeper.wall_to_monotonic;
1202 		sleep = timekeeper.total_sleep_time;
1203 
1204 	} while (read_seqretry(&timekeeper.lock, seq));
1205 
1206 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1207 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1208 }
1209 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1210 
1211 /**
1212  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1213  *
1214  * Returns the monotonic time since boot in a ktime
1215  *
1216  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1217  * includes the time spent in suspend.
1218  */
1219 ktime_t ktime_get_boottime(void)
1220 {
1221 	struct timespec ts;
1222 
1223 	get_monotonic_boottime(&ts);
1224 	return timespec_to_ktime(ts);
1225 }
1226 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1227 
1228 /**
1229  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1230  * @ts:		pointer to the timespec to be converted
1231  */
1232 void monotonic_to_bootbased(struct timespec *ts)
1233 {
1234 	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
1235 }
1236 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1237 
1238 unsigned long get_seconds(void)
1239 {
1240 	return timekeeper.xtime_sec;
1241 }
1242 EXPORT_SYMBOL(get_seconds);
1243 
1244 struct timespec __current_kernel_time(void)
1245 {
1246 	return tk_xtime(&timekeeper);
1247 }
1248 
1249 struct timespec current_kernel_time(void)
1250 {
1251 	struct timespec now;
1252 	unsigned long seq;
1253 
1254 	do {
1255 		seq = read_seqbegin(&timekeeper.lock);
1256 
1257 		now = tk_xtime(&timekeeper);
1258 	} while (read_seqretry(&timekeeper.lock, seq));
1259 
1260 	return now;
1261 }
1262 EXPORT_SYMBOL(current_kernel_time);
1263 
1264 struct timespec get_monotonic_coarse(void)
1265 {
1266 	struct timespec now, mono;
1267 	unsigned long seq;
1268 
1269 	do {
1270 		seq = read_seqbegin(&timekeeper.lock);
1271 
1272 		now = tk_xtime(&timekeeper);
1273 		mono = timekeeper.wall_to_monotonic;
1274 	} while (read_seqretry(&timekeeper.lock, seq));
1275 
1276 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1277 				now.tv_nsec + mono.tv_nsec);
1278 	return now;
1279 }
1280 
1281 /*
1282  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1283  * without sampling the sequence number in xtime_lock.
1284  * jiffies is defined in the linker script...
1285  */
1286 void do_timer(unsigned long ticks)
1287 {
1288 	jiffies_64 += ticks;
1289 	update_wall_time();
1290 	calc_global_load(ticks);
1291 }
1292 
1293 /**
1294  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1295  *    and sleep offsets.
1296  * @xtim:	pointer to timespec to be set with xtime
1297  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1298  * @sleep:	pointer to timespec to be set with time in suspend
1299  */
1300 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1301 				struct timespec *wtom, struct timespec *sleep)
1302 {
1303 	unsigned long seq;
1304 
1305 	do {
1306 		seq = read_seqbegin(&timekeeper.lock);
1307 		*xtim = tk_xtime(&timekeeper);
1308 		*wtom = timekeeper.wall_to_monotonic;
1309 		*sleep = timekeeper.total_sleep_time;
1310 	} while (read_seqretry(&timekeeper.lock, seq));
1311 }
1312 
1313 #ifdef CONFIG_HIGH_RES_TIMERS
1314 /**
1315  * ktime_get_update_offsets - hrtimer helper
1316  * @offs_real:	pointer to storage for monotonic -> realtime offset
1317  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1318  *
1319  * Returns current monotonic time and updates the offsets
1320  * Called from hrtimer_interupt() or retrigger_next_event()
1321  */
1322 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1323 {
1324 	ktime_t now;
1325 	unsigned int seq;
1326 	u64 secs, nsecs;
1327 
1328 	do {
1329 		seq = read_seqbegin(&timekeeper.lock);
1330 
1331 		secs = timekeeper.xtime_sec;
1332 		nsecs = timekeeping_get_ns(&timekeeper);
1333 
1334 		*offs_real = timekeeper.offs_real;
1335 		*offs_boot = timekeeper.offs_boot;
1336 	} while (read_seqretry(&timekeeper.lock, seq));
1337 
1338 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1339 	now = ktime_sub(now, *offs_real);
1340 	return now;
1341 }
1342 #endif
1343 
1344 /**
1345  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1346  */
1347 ktime_t ktime_get_monotonic_offset(void)
1348 {
1349 	unsigned long seq;
1350 	struct timespec wtom;
1351 
1352 	do {
1353 		seq = read_seqbegin(&timekeeper.lock);
1354 		wtom = timekeeper.wall_to_monotonic;
1355 	} while (read_seqretry(&timekeeper.lock, seq));
1356 
1357 	return timespec_to_ktime(wtom);
1358 }
1359 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1360 
1361 
1362 /**
1363  * xtime_update() - advances the timekeeping infrastructure
1364  * @ticks:	number of ticks, that have elapsed since the last call.
1365  *
1366  * Must be called with interrupts disabled.
1367  */
1368 void xtime_update(unsigned long ticks)
1369 {
1370 	write_seqlock(&xtime_lock);
1371 	do_timer(ticks);
1372 	write_sequnlock(&xtime_lock);
1373 }
1374