1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* NTP adjusted clock multiplier */ 29 u32 mult; 30 /* The shift value of the current clocksource. */ 31 u32 shift; 32 /* Number of clock cycles in one NTP interval. */ 33 cycle_t cycle_interval; 34 /* Number of clock shifted nano seconds in one NTP interval. */ 35 u64 xtime_interval; 36 /* shifted nano seconds left over when rounding cycle_interval */ 37 s64 xtime_remainder; 38 /* Raw nano seconds accumulated per NTP interval. */ 39 u32 raw_interval; 40 41 /* Current CLOCK_REALTIME time in seconds */ 42 u64 xtime_sec; 43 /* Clock shifted nano seconds */ 44 u64 xtime_nsec; 45 46 /* Difference between accumulated time and NTP time in ntp 47 * shifted nano seconds. */ 48 s64 ntp_error; 49 /* Shift conversion between clock shifted nano seconds and 50 * ntp shifted nano seconds. */ 51 u32 ntp_error_shift; 52 53 /* 54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 56 * at zero at system boot time, so wall_to_monotonic will be negative, 57 * however, we will ALWAYS keep the tv_nsec part positive so we can use 58 * the usual normalization. 59 * 60 * wall_to_monotonic is moved after resume from suspend for the 61 * monotonic time not to jump. We need to add total_sleep_time to 62 * wall_to_monotonic to get the real boot based time offset. 63 * 64 * - wall_to_monotonic is no longer the boot time, getboottime must be 65 * used instead. 66 */ 67 struct timespec wall_to_monotonic; 68 /* time spent in suspend */ 69 struct timespec total_sleep_time; 70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ 71 struct timespec raw_time; 72 /* Offset clock monotonic -> clock realtime */ 73 ktime_t offs_real; 74 /* Offset clock monotonic -> clock boottime */ 75 ktime_t offs_boot; 76 /* Seqlock for all timekeeper values */ 77 seqlock_t lock; 78 }; 79 80 static struct timekeeper timekeeper; 81 82 /* 83 * This read-write spinlock protects us from races in SMP while 84 * playing with xtime. 85 */ 86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 87 88 /* flag for if timekeeping is suspended */ 89 int __read_mostly timekeeping_suspended; 90 91 static inline void tk_normalize_xtime(struct timekeeper *tk) 92 { 93 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) { 94 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift; 95 tk->xtime_sec++; 96 } 97 } 98 99 static struct timespec tk_xtime(struct timekeeper *tk) 100 { 101 struct timespec ts; 102 103 ts.tv_sec = tk->xtime_sec; 104 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift); 105 return ts; 106 } 107 108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts) 109 { 110 tk->xtime_sec = ts->tv_sec; 111 tk->xtime_nsec = ts->tv_nsec << tk->shift; 112 } 113 114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts) 115 { 116 tk->xtime_sec += ts->tv_sec; 117 tk->xtime_nsec += ts->tv_nsec << tk->shift; 118 } 119 120 /** 121 * timekeeper_setup_internals - Set up internals to use clocksource clock. 122 * 123 * @clock: Pointer to clocksource. 124 * 125 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 126 * pair and interval request. 127 * 128 * Unless you're the timekeeping code, you should not be using this! 129 */ 130 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 131 { 132 cycle_t interval; 133 u64 tmp, ntpinterval; 134 struct clocksource *old_clock; 135 136 old_clock = tk->clock; 137 tk->clock = clock; 138 clock->cycle_last = clock->read(clock); 139 140 /* Do the ns -> cycle conversion first, using original mult */ 141 tmp = NTP_INTERVAL_LENGTH; 142 tmp <<= clock->shift; 143 ntpinterval = tmp; 144 tmp += clock->mult/2; 145 do_div(tmp, clock->mult); 146 if (tmp == 0) 147 tmp = 1; 148 149 interval = (cycle_t) tmp; 150 tk->cycle_interval = interval; 151 152 /* Go back from cycles -> shifted ns */ 153 tk->xtime_interval = (u64) interval * clock->mult; 154 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 155 tk->raw_interval = 156 ((u64) interval * clock->mult) >> clock->shift; 157 158 /* if changing clocks, convert xtime_nsec shift units */ 159 if (old_clock) { 160 int shift_change = clock->shift - old_clock->shift; 161 if (shift_change < 0) 162 tk->xtime_nsec >>= -shift_change; 163 else 164 tk->xtime_nsec <<= shift_change; 165 } 166 tk->shift = clock->shift; 167 168 tk->ntp_error = 0; 169 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 170 171 /* 172 * The timekeeper keeps its own mult values for the currently 173 * active clocksource. These value will be adjusted via NTP 174 * to counteract clock drifting. 175 */ 176 tk->mult = clock->mult; 177 } 178 179 /* Timekeeper helper functions. */ 180 static inline s64 timekeeping_get_ns(struct timekeeper *tk) 181 { 182 cycle_t cycle_now, cycle_delta; 183 struct clocksource *clock; 184 s64 nsec; 185 186 /* read clocksource: */ 187 clock = tk->clock; 188 cycle_now = clock->read(clock); 189 190 /* calculate the delta since the last update_wall_time: */ 191 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 192 193 nsec = cycle_delta * tk->mult + tk->xtime_nsec; 194 nsec >>= tk->shift; 195 196 /* If arch requires, add in gettimeoffset() */ 197 return nsec + arch_gettimeoffset(); 198 } 199 200 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 201 { 202 cycle_t cycle_now, cycle_delta; 203 struct clocksource *clock; 204 s64 nsec; 205 206 /* read clocksource: */ 207 clock = tk->clock; 208 cycle_now = clock->read(clock); 209 210 /* calculate the delta since the last update_wall_time: */ 211 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 212 213 /* convert delta to nanoseconds. */ 214 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 215 216 /* If arch requires, add in gettimeoffset() */ 217 return nsec + arch_gettimeoffset(); 218 } 219 220 static void update_rt_offset(struct timekeeper *tk) 221 { 222 struct timespec tmp, *wtm = &tk->wall_to_monotonic; 223 224 set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec); 225 tk->offs_real = timespec_to_ktime(tmp); 226 } 227 228 /* must hold write on timekeeper.lock */ 229 static void timekeeping_update(struct timekeeper *tk, bool clearntp) 230 { 231 struct timespec xt; 232 233 if (clearntp) { 234 tk->ntp_error = 0; 235 ntp_clear(); 236 } 237 update_rt_offset(tk); 238 xt = tk_xtime(tk); 239 update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult); 240 } 241 242 243 /** 244 * timekeeping_forward_now - update clock to the current time 245 * 246 * Forward the current clock to update its state since the last call to 247 * update_wall_time(). This is useful before significant clock changes, 248 * as it avoids having to deal with this time offset explicitly. 249 */ 250 static void timekeeping_forward_now(struct timekeeper *tk) 251 { 252 cycle_t cycle_now, cycle_delta; 253 struct clocksource *clock; 254 s64 nsec; 255 256 clock = tk->clock; 257 cycle_now = clock->read(clock); 258 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 259 clock->cycle_last = cycle_now; 260 261 tk->xtime_nsec += cycle_delta * tk->mult; 262 263 /* If arch requires, add in gettimeoffset() */ 264 tk->xtime_nsec += arch_gettimeoffset() << tk->shift; 265 266 tk_normalize_xtime(tk); 267 268 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 269 timespec_add_ns(&tk->raw_time, nsec); 270 } 271 272 /** 273 * getnstimeofday - Returns the time of day in a timespec 274 * @ts: pointer to the timespec to be set 275 * 276 * Returns the time of day in a timespec. 277 */ 278 void getnstimeofday(struct timespec *ts) 279 { 280 unsigned long seq; 281 s64 nsecs = 0; 282 283 WARN_ON(timekeeping_suspended); 284 285 do { 286 seq = read_seqbegin(&timekeeper.lock); 287 288 ts->tv_sec = timekeeper.xtime_sec; 289 ts->tv_nsec = timekeeping_get_ns(&timekeeper); 290 291 } while (read_seqretry(&timekeeper.lock, seq)); 292 293 timespec_add_ns(ts, nsecs); 294 } 295 EXPORT_SYMBOL(getnstimeofday); 296 297 ktime_t ktime_get(void) 298 { 299 unsigned int seq; 300 s64 secs, nsecs; 301 302 WARN_ON(timekeeping_suspended); 303 304 do { 305 seq = read_seqbegin(&timekeeper.lock); 306 secs = timekeeper.xtime_sec + 307 timekeeper.wall_to_monotonic.tv_sec; 308 nsecs = timekeeping_get_ns(&timekeeper) + 309 timekeeper.wall_to_monotonic.tv_nsec; 310 311 } while (read_seqretry(&timekeeper.lock, seq)); 312 /* 313 * Use ktime_set/ktime_add_ns to create a proper ktime on 314 * 32-bit architectures without CONFIG_KTIME_SCALAR. 315 */ 316 return ktime_add_ns(ktime_set(secs, 0), nsecs); 317 } 318 EXPORT_SYMBOL_GPL(ktime_get); 319 320 /** 321 * ktime_get_ts - get the monotonic clock in timespec format 322 * @ts: pointer to timespec variable 323 * 324 * The function calculates the monotonic clock from the realtime 325 * clock and the wall_to_monotonic offset and stores the result 326 * in normalized timespec format in the variable pointed to by @ts. 327 */ 328 void ktime_get_ts(struct timespec *ts) 329 { 330 struct timespec tomono; 331 unsigned int seq; 332 333 WARN_ON(timekeeping_suspended); 334 335 do { 336 seq = read_seqbegin(&timekeeper.lock); 337 ts->tv_sec = timekeeper.xtime_sec; 338 ts->tv_nsec = timekeeping_get_ns(&timekeeper); 339 tomono = timekeeper.wall_to_monotonic; 340 341 } while (read_seqretry(&timekeeper.lock, seq)); 342 343 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 344 ts->tv_nsec + tomono.tv_nsec); 345 } 346 EXPORT_SYMBOL_GPL(ktime_get_ts); 347 348 #ifdef CONFIG_NTP_PPS 349 350 /** 351 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 352 * @ts_raw: pointer to the timespec to be set to raw monotonic time 353 * @ts_real: pointer to the timespec to be set to the time of day 354 * 355 * This function reads both the time of day and raw monotonic time at the 356 * same time atomically and stores the resulting timestamps in timespec 357 * format. 358 */ 359 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 360 { 361 unsigned long seq; 362 s64 nsecs_raw, nsecs_real; 363 364 WARN_ON_ONCE(timekeeping_suspended); 365 366 do { 367 seq = read_seqbegin(&timekeeper.lock); 368 369 *ts_raw = timekeeper.raw_time; 370 ts_real->tv_sec = timekeeper.xtime_sec; 371 ts_real->tv_nsec = 0; 372 373 nsecs_raw = timekeeping_get_ns_raw(&timekeeper); 374 nsecs_real = timekeeping_get_ns(&timekeeper); 375 376 } while (read_seqretry(&timekeeper.lock, seq)); 377 378 timespec_add_ns(ts_raw, nsecs_raw); 379 timespec_add_ns(ts_real, nsecs_real); 380 } 381 EXPORT_SYMBOL(getnstime_raw_and_real); 382 383 #endif /* CONFIG_NTP_PPS */ 384 385 /** 386 * do_gettimeofday - Returns the time of day in a timeval 387 * @tv: pointer to the timeval to be set 388 * 389 * NOTE: Users should be converted to using getnstimeofday() 390 */ 391 void do_gettimeofday(struct timeval *tv) 392 { 393 struct timespec now; 394 395 getnstimeofday(&now); 396 tv->tv_sec = now.tv_sec; 397 tv->tv_usec = now.tv_nsec/1000; 398 } 399 EXPORT_SYMBOL(do_gettimeofday); 400 401 /** 402 * do_settimeofday - Sets the time of day 403 * @tv: pointer to the timespec variable containing the new time 404 * 405 * Sets the time of day to the new time and update NTP and notify hrtimers 406 */ 407 int do_settimeofday(const struct timespec *tv) 408 { 409 struct timespec ts_delta, xt; 410 unsigned long flags; 411 412 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 413 return -EINVAL; 414 415 write_seqlock_irqsave(&timekeeper.lock, flags); 416 417 timekeeping_forward_now(&timekeeper); 418 419 xt = tk_xtime(&timekeeper); 420 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 421 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 422 423 timekeeper.wall_to_monotonic = 424 timespec_sub(timekeeper.wall_to_monotonic, ts_delta); 425 426 tk_set_xtime(&timekeeper, tv); 427 428 timekeeping_update(&timekeeper, true); 429 430 write_sequnlock_irqrestore(&timekeeper.lock, flags); 431 432 /* signal hrtimers about time change */ 433 clock_was_set(); 434 435 return 0; 436 } 437 EXPORT_SYMBOL(do_settimeofday); 438 439 440 /** 441 * timekeeping_inject_offset - Adds or subtracts from the current time. 442 * @tv: pointer to the timespec variable containing the offset 443 * 444 * Adds or subtracts an offset value from the current time. 445 */ 446 int timekeeping_inject_offset(struct timespec *ts) 447 { 448 unsigned long flags; 449 450 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 451 return -EINVAL; 452 453 write_seqlock_irqsave(&timekeeper.lock, flags); 454 455 timekeeping_forward_now(&timekeeper); 456 457 458 tk_xtime_add(&timekeeper, ts); 459 timekeeper.wall_to_monotonic = 460 timespec_sub(timekeeper.wall_to_monotonic, *ts); 461 462 timekeeping_update(&timekeeper, true); 463 464 write_sequnlock_irqrestore(&timekeeper.lock, flags); 465 466 /* signal hrtimers about time change */ 467 clock_was_set(); 468 469 return 0; 470 } 471 EXPORT_SYMBOL(timekeeping_inject_offset); 472 473 /** 474 * change_clocksource - Swaps clocksources if a new one is available 475 * 476 * Accumulates current time interval and initializes new clocksource 477 */ 478 static int change_clocksource(void *data) 479 { 480 struct clocksource *new, *old; 481 unsigned long flags; 482 483 new = (struct clocksource *) data; 484 485 write_seqlock_irqsave(&timekeeper.lock, flags); 486 487 timekeeping_forward_now(&timekeeper); 488 if (!new->enable || new->enable(new) == 0) { 489 old = timekeeper.clock; 490 tk_setup_internals(&timekeeper, new); 491 if (old->disable) 492 old->disable(old); 493 } 494 timekeeping_update(&timekeeper, true); 495 496 write_sequnlock_irqrestore(&timekeeper.lock, flags); 497 498 return 0; 499 } 500 501 /** 502 * timekeeping_notify - Install a new clock source 503 * @clock: pointer to the clock source 504 * 505 * This function is called from clocksource.c after a new, better clock 506 * source has been registered. The caller holds the clocksource_mutex. 507 */ 508 void timekeeping_notify(struct clocksource *clock) 509 { 510 if (timekeeper.clock == clock) 511 return; 512 stop_machine(change_clocksource, clock, NULL); 513 tick_clock_notify(); 514 } 515 516 /** 517 * ktime_get_real - get the real (wall-) time in ktime_t format 518 * 519 * returns the time in ktime_t format 520 */ 521 ktime_t ktime_get_real(void) 522 { 523 struct timespec now; 524 525 getnstimeofday(&now); 526 527 return timespec_to_ktime(now); 528 } 529 EXPORT_SYMBOL_GPL(ktime_get_real); 530 531 /** 532 * getrawmonotonic - Returns the raw monotonic time in a timespec 533 * @ts: pointer to the timespec to be set 534 * 535 * Returns the raw monotonic time (completely un-modified by ntp) 536 */ 537 void getrawmonotonic(struct timespec *ts) 538 { 539 unsigned long seq; 540 s64 nsecs; 541 542 do { 543 seq = read_seqbegin(&timekeeper.lock); 544 nsecs = timekeeping_get_ns_raw(&timekeeper); 545 *ts = timekeeper.raw_time; 546 547 } while (read_seqretry(&timekeeper.lock, seq)); 548 549 timespec_add_ns(ts, nsecs); 550 } 551 EXPORT_SYMBOL(getrawmonotonic); 552 553 554 /** 555 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 556 */ 557 int timekeeping_valid_for_hres(void) 558 { 559 unsigned long seq; 560 int ret; 561 562 do { 563 seq = read_seqbegin(&timekeeper.lock); 564 565 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 566 567 } while (read_seqretry(&timekeeper.lock, seq)); 568 569 return ret; 570 } 571 572 /** 573 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 574 */ 575 u64 timekeeping_max_deferment(void) 576 { 577 unsigned long seq; 578 u64 ret; 579 580 do { 581 seq = read_seqbegin(&timekeeper.lock); 582 583 ret = timekeeper.clock->max_idle_ns; 584 585 } while (read_seqretry(&timekeeper.lock, seq)); 586 587 return ret; 588 } 589 590 /** 591 * read_persistent_clock - Return time from the persistent clock. 592 * 593 * Weak dummy function for arches that do not yet support it. 594 * Reads the time from the battery backed persistent clock. 595 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 596 * 597 * XXX - Do be sure to remove it once all arches implement it. 598 */ 599 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 600 { 601 ts->tv_sec = 0; 602 ts->tv_nsec = 0; 603 } 604 605 /** 606 * read_boot_clock - Return time of the system start. 607 * 608 * Weak dummy function for arches that do not yet support it. 609 * Function to read the exact time the system has been started. 610 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 611 * 612 * XXX - Do be sure to remove it once all arches implement it. 613 */ 614 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 615 { 616 ts->tv_sec = 0; 617 ts->tv_nsec = 0; 618 } 619 620 /* 621 * timekeeping_init - Initializes the clocksource and common timekeeping values 622 */ 623 void __init timekeeping_init(void) 624 { 625 struct clocksource *clock; 626 unsigned long flags; 627 struct timespec now, boot; 628 629 read_persistent_clock(&now); 630 read_boot_clock(&boot); 631 632 seqlock_init(&timekeeper.lock); 633 634 ntp_init(); 635 636 write_seqlock_irqsave(&timekeeper.lock, flags); 637 clock = clocksource_default_clock(); 638 if (clock->enable) 639 clock->enable(clock); 640 tk_setup_internals(&timekeeper, clock); 641 642 tk_set_xtime(&timekeeper, &now); 643 timekeeper.raw_time.tv_sec = 0; 644 timekeeper.raw_time.tv_nsec = 0; 645 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 646 boot = tk_xtime(&timekeeper); 647 648 set_normalized_timespec(&timekeeper.wall_to_monotonic, 649 -boot.tv_sec, -boot.tv_nsec); 650 update_rt_offset(&timekeeper); 651 timekeeper.total_sleep_time.tv_sec = 0; 652 timekeeper.total_sleep_time.tv_nsec = 0; 653 write_sequnlock_irqrestore(&timekeeper.lock, flags); 654 } 655 656 /* time in seconds when suspend began */ 657 static struct timespec timekeeping_suspend_time; 658 659 static void update_sleep_time(struct timespec t) 660 { 661 timekeeper.total_sleep_time = t; 662 timekeeper.offs_boot = timespec_to_ktime(t); 663 } 664 665 /** 666 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 667 * @delta: pointer to a timespec delta value 668 * 669 * Takes a timespec offset measuring a suspend interval and properly 670 * adds the sleep offset to the timekeeping variables. 671 */ 672 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 673 struct timespec *delta) 674 { 675 if (!timespec_valid(delta)) { 676 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 677 "sleep delta value!\n"); 678 return; 679 } 680 681 tk_xtime_add(tk, delta); 682 tk->wall_to_monotonic = timespec_sub(tk->wall_to_monotonic, *delta); 683 update_sleep_time(timespec_add(tk->total_sleep_time, *delta)); 684 } 685 686 687 /** 688 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 689 * @delta: pointer to a timespec delta value 690 * 691 * This hook is for architectures that cannot support read_persistent_clock 692 * because their RTC/persistent clock is only accessible when irqs are enabled. 693 * 694 * This function should only be called by rtc_resume(), and allows 695 * a suspend offset to be injected into the timekeeping values. 696 */ 697 void timekeeping_inject_sleeptime(struct timespec *delta) 698 { 699 unsigned long flags; 700 struct timespec ts; 701 702 /* Make sure we don't set the clock twice */ 703 read_persistent_clock(&ts); 704 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) 705 return; 706 707 write_seqlock_irqsave(&timekeeper.lock, flags); 708 709 timekeeping_forward_now(&timekeeper); 710 711 __timekeeping_inject_sleeptime(&timekeeper, delta); 712 713 timekeeping_update(&timekeeper, true); 714 715 write_sequnlock_irqrestore(&timekeeper.lock, flags); 716 717 /* signal hrtimers about time change */ 718 clock_was_set(); 719 } 720 721 722 /** 723 * timekeeping_resume - Resumes the generic timekeeping subsystem. 724 * 725 * This is for the generic clocksource timekeeping. 726 * xtime/wall_to_monotonic/jiffies/etc are 727 * still managed by arch specific suspend/resume code. 728 */ 729 static void timekeeping_resume(void) 730 { 731 unsigned long flags; 732 struct timespec ts; 733 734 read_persistent_clock(&ts); 735 736 clocksource_resume(); 737 738 write_seqlock_irqsave(&timekeeper.lock, flags); 739 740 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 741 ts = timespec_sub(ts, timekeeping_suspend_time); 742 __timekeeping_inject_sleeptime(&timekeeper, &ts); 743 } 744 /* re-base the last cycle value */ 745 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); 746 timekeeper.ntp_error = 0; 747 timekeeping_suspended = 0; 748 timekeeping_update(&timekeeper, false); 749 write_sequnlock_irqrestore(&timekeeper.lock, flags); 750 751 touch_softlockup_watchdog(); 752 753 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 754 755 /* Resume hrtimers */ 756 hrtimers_resume(); 757 } 758 759 static int timekeeping_suspend(void) 760 { 761 unsigned long flags; 762 struct timespec delta, delta_delta; 763 static struct timespec old_delta; 764 765 read_persistent_clock(&timekeeping_suspend_time); 766 767 write_seqlock_irqsave(&timekeeper.lock, flags); 768 timekeeping_forward_now(&timekeeper); 769 timekeeping_suspended = 1; 770 771 /* 772 * To avoid drift caused by repeated suspend/resumes, 773 * which each can add ~1 second drift error, 774 * try to compensate so the difference in system time 775 * and persistent_clock time stays close to constant. 776 */ 777 delta = timespec_sub(tk_xtime(&timekeeper), timekeeping_suspend_time); 778 delta_delta = timespec_sub(delta, old_delta); 779 if (abs(delta_delta.tv_sec) >= 2) { 780 /* 781 * if delta_delta is too large, assume time correction 782 * has occured and set old_delta to the current delta. 783 */ 784 old_delta = delta; 785 } else { 786 /* Otherwise try to adjust old_system to compensate */ 787 timekeeping_suspend_time = 788 timespec_add(timekeeping_suspend_time, delta_delta); 789 } 790 write_sequnlock_irqrestore(&timekeeper.lock, flags); 791 792 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 793 clocksource_suspend(); 794 795 return 0; 796 } 797 798 /* sysfs resume/suspend bits for timekeeping */ 799 static struct syscore_ops timekeeping_syscore_ops = { 800 .resume = timekeeping_resume, 801 .suspend = timekeeping_suspend, 802 }; 803 804 static int __init timekeeping_init_ops(void) 805 { 806 register_syscore_ops(&timekeeping_syscore_ops); 807 return 0; 808 } 809 810 device_initcall(timekeeping_init_ops); 811 812 /* 813 * If the error is already larger, we look ahead even further 814 * to compensate for late or lost adjustments. 815 */ 816 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk, 817 s64 error, s64 *interval, 818 s64 *offset) 819 { 820 s64 tick_error, i; 821 u32 look_ahead, adj; 822 s32 error2, mult; 823 824 /* 825 * Use the current error value to determine how much to look ahead. 826 * The larger the error the slower we adjust for it to avoid problems 827 * with losing too many ticks, otherwise we would overadjust and 828 * produce an even larger error. The smaller the adjustment the 829 * faster we try to adjust for it, as lost ticks can do less harm 830 * here. This is tuned so that an error of about 1 msec is adjusted 831 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 832 */ 833 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 834 error2 = abs(error2); 835 for (look_ahead = 0; error2 > 0; look_ahead++) 836 error2 >>= 2; 837 838 /* 839 * Now calculate the error in (1 << look_ahead) ticks, but first 840 * remove the single look ahead already included in the error. 841 */ 842 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1); 843 tick_error -= tk->xtime_interval >> 1; 844 error = ((error - tick_error) >> look_ahead) + tick_error; 845 846 /* Finally calculate the adjustment shift value. */ 847 i = *interval; 848 mult = 1; 849 if (error < 0) { 850 error = -error; 851 *interval = -*interval; 852 *offset = -*offset; 853 mult = -1; 854 } 855 for (adj = 0; error > i; adj++) 856 error >>= 1; 857 858 *interval <<= adj; 859 *offset <<= adj; 860 return mult << adj; 861 } 862 863 /* 864 * Adjust the multiplier to reduce the error value, 865 * this is optimized for the most common adjustments of -1,0,1, 866 * for other values we can do a bit more work. 867 */ 868 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 869 { 870 s64 error, interval = tk->cycle_interval; 871 int adj; 872 873 /* 874 * The point of this is to check if the error is greater than half 875 * an interval. 876 * 877 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 878 * 879 * Note we subtract one in the shift, so that error is really error*2. 880 * This "saves" dividing(shifting) interval twice, but keeps the 881 * (error > interval) comparison as still measuring if error is 882 * larger than half an interval. 883 * 884 * Note: It does not "save" on aggravation when reading the code. 885 */ 886 error = tk->ntp_error >> (tk->ntp_error_shift - 1); 887 if (error > interval) { 888 /* 889 * We now divide error by 4(via shift), which checks if 890 * the error is greater than twice the interval. 891 * If it is greater, we need a bigadjust, if its smaller, 892 * we can adjust by 1. 893 */ 894 error >>= 2; 895 /* 896 * XXX - In update_wall_time, we round up to the next 897 * nanosecond, and store the amount rounded up into 898 * the error. This causes the likely below to be unlikely. 899 * 900 * The proper fix is to avoid rounding up by using 901 * the high precision timekeeper.xtime_nsec instead of 902 * xtime.tv_nsec everywhere. Fixing this will take some 903 * time. 904 */ 905 if (likely(error <= interval)) 906 adj = 1; 907 else 908 adj = timekeeping_bigadjust(tk, error, &interval, 909 &offset); 910 } else if (error < -interval) { 911 /* See comment above, this is just switched for the negative */ 912 error >>= 2; 913 if (likely(error >= -interval)) { 914 adj = -1; 915 interval = -interval; 916 offset = -offset; 917 } else 918 adj = timekeeping_bigadjust(tk, error, &interval, 919 &offset); 920 } else 921 return; 922 923 if (unlikely(tk->clock->maxadj && 924 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) { 925 printk_once(KERN_WARNING 926 "Adjusting %s more than 11%% (%ld vs %ld)\n", 927 tk->clock->name, (long)tk->mult + adj, 928 (long)tk->clock->mult + tk->clock->maxadj); 929 } 930 /* 931 * So the following can be confusing. 932 * 933 * To keep things simple, lets assume adj == 1 for now. 934 * 935 * When adj != 1, remember that the interval and offset values 936 * have been appropriately scaled so the math is the same. 937 * 938 * The basic idea here is that we're increasing the multiplier 939 * by one, this causes the xtime_interval to be incremented by 940 * one cycle_interval. This is because: 941 * xtime_interval = cycle_interval * mult 942 * So if mult is being incremented by one: 943 * xtime_interval = cycle_interval * (mult + 1) 944 * Its the same as: 945 * xtime_interval = (cycle_interval * mult) + cycle_interval 946 * Which can be shortened to: 947 * xtime_interval += cycle_interval 948 * 949 * So offset stores the non-accumulated cycles. Thus the current 950 * time (in shifted nanoseconds) is: 951 * now = (offset * adj) + xtime_nsec 952 * Now, even though we're adjusting the clock frequency, we have 953 * to keep time consistent. In other words, we can't jump back 954 * in time, and we also want to avoid jumping forward in time. 955 * 956 * So given the same offset value, we need the time to be the same 957 * both before and after the freq adjustment. 958 * now = (offset * adj_1) + xtime_nsec_1 959 * now = (offset * adj_2) + xtime_nsec_2 960 * So: 961 * (offset * adj_1) + xtime_nsec_1 = 962 * (offset * adj_2) + xtime_nsec_2 963 * And we know: 964 * adj_2 = adj_1 + 1 965 * So: 966 * (offset * adj_1) + xtime_nsec_1 = 967 * (offset * (adj_1+1)) + xtime_nsec_2 968 * (offset * adj_1) + xtime_nsec_1 = 969 * (offset * adj_1) + offset + xtime_nsec_2 970 * Canceling the sides: 971 * xtime_nsec_1 = offset + xtime_nsec_2 972 * Which gives us: 973 * xtime_nsec_2 = xtime_nsec_1 - offset 974 * Which simplfies to: 975 * xtime_nsec -= offset 976 * 977 * XXX - TODO: Doc ntp_error calculation. 978 */ 979 tk->mult += adj; 980 tk->xtime_interval += interval; 981 tk->xtime_nsec -= offset; 982 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 983 984 /* 985 * It may be possible that when we entered this function, xtime_nsec 986 * was very small. Further, if we're slightly speeding the clocksource 987 * in the code above, its possible the required corrective factor to 988 * xtime_nsec could cause it to underflow. 989 * 990 * Now, since we already accumulated the second, cannot simply roll 991 * the accumulated second back, since the NTP subsystem has been 992 * notified via second_overflow. So instead we push xtime_nsec forward 993 * by the amount we underflowed, and add that amount into the error. 994 * 995 * We'll correct this error next time through this function, when 996 * xtime_nsec is not as small. 997 */ 998 if (unlikely((s64)tk->xtime_nsec < 0)) { 999 s64 neg = -(s64)tk->xtime_nsec; 1000 tk->xtime_nsec = 0; 1001 tk->ntp_error += neg << tk->ntp_error_shift; 1002 } 1003 1004 } 1005 1006 1007 /** 1008 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1009 * 1010 * Helper function that accumulates a the nsecs greater then a second 1011 * from the xtime_nsec field to the xtime_secs field. 1012 * It also calls into the NTP code to handle leapsecond processing. 1013 * 1014 */ 1015 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk) 1016 { 1017 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift; 1018 1019 while (tk->xtime_nsec >= nsecps) { 1020 int leap; 1021 1022 tk->xtime_nsec -= nsecps; 1023 tk->xtime_sec++; 1024 1025 /* Figure out if its a leap sec and apply if needed */ 1026 leap = second_overflow(tk->xtime_sec); 1027 tk->xtime_sec += leap; 1028 tk->wall_to_monotonic.tv_sec -= leap; 1029 if (leap) 1030 clock_was_set_delayed(); 1031 1032 } 1033 } 1034 1035 1036 /** 1037 * logarithmic_accumulation - shifted accumulation of cycles 1038 * 1039 * This functions accumulates a shifted interval of cycles into 1040 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1041 * loop. 1042 * 1043 * Returns the unconsumed cycles. 1044 */ 1045 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1046 u32 shift) 1047 { 1048 u64 raw_nsecs; 1049 1050 /* If the offset is smaller then a shifted interval, do nothing */ 1051 if (offset < tk->cycle_interval<<shift) 1052 return offset; 1053 1054 /* Accumulate one shifted interval */ 1055 offset -= tk->cycle_interval << shift; 1056 tk->clock->cycle_last += tk->cycle_interval << shift; 1057 1058 tk->xtime_nsec += tk->xtime_interval << shift; 1059 accumulate_nsecs_to_secs(tk); 1060 1061 /* Accumulate raw time */ 1062 raw_nsecs = tk->raw_interval << shift; 1063 raw_nsecs += tk->raw_time.tv_nsec; 1064 if (raw_nsecs >= NSEC_PER_SEC) { 1065 u64 raw_secs = raw_nsecs; 1066 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1067 tk->raw_time.tv_sec += raw_secs; 1068 } 1069 tk->raw_time.tv_nsec = raw_nsecs; 1070 1071 /* Accumulate error between NTP and clock interval */ 1072 tk->ntp_error += ntp_tick_length() << shift; 1073 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1074 (tk->ntp_error_shift + shift); 1075 1076 return offset; 1077 } 1078 1079 1080 /** 1081 * update_wall_time - Uses the current clocksource to increment the wall time 1082 * 1083 */ 1084 static void update_wall_time(void) 1085 { 1086 struct clocksource *clock; 1087 cycle_t offset; 1088 int shift = 0, maxshift; 1089 unsigned long flags; 1090 s64 remainder; 1091 1092 write_seqlock_irqsave(&timekeeper.lock, flags); 1093 1094 /* Make sure we're fully resumed: */ 1095 if (unlikely(timekeeping_suspended)) 1096 goto out; 1097 1098 clock = timekeeper.clock; 1099 1100 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1101 offset = timekeeper.cycle_interval; 1102 #else 1103 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1104 #endif 1105 1106 /* 1107 * With NO_HZ we may have to accumulate many cycle_intervals 1108 * (think "ticks") worth of time at once. To do this efficiently, 1109 * we calculate the largest doubling multiple of cycle_intervals 1110 * that is smaller than the offset. We then accumulate that 1111 * chunk in one go, and then try to consume the next smaller 1112 * doubled multiple. 1113 */ 1114 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); 1115 shift = max(0, shift); 1116 /* Bound shift to one less than what overflows tick_length */ 1117 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1118 shift = min(shift, maxshift); 1119 while (offset >= timekeeper.cycle_interval) { 1120 offset = logarithmic_accumulation(&timekeeper, offset, shift); 1121 if(offset < timekeeper.cycle_interval<<shift) 1122 shift--; 1123 } 1124 1125 /* correct the clock when NTP error is too big */ 1126 timekeeping_adjust(&timekeeper, offset); 1127 1128 1129 /* 1130 * Store only full nanoseconds into xtime_nsec after rounding 1131 * it up and add the remainder to the error difference. 1132 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 1133 * by truncating the remainder in vsyscalls. However, it causes 1134 * additional work to be done in timekeeping_adjust(). Once 1135 * the vsyscall implementations are converted to use xtime_nsec 1136 * (shifted nanoseconds), this can be killed. 1137 */ 1138 remainder = timekeeper.xtime_nsec & ((1 << timekeeper.shift) - 1); 1139 timekeeper.xtime_nsec -= remainder; 1140 timekeeper.xtime_nsec += 1 << timekeeper.shift; 1141 timekeeper.ntp_error += remainder << timekeeper.ntp_error_shift; 1142 1143 /* 1144 * Finally, make sure that after the rounding 1145 * xtime_nsec isn't larger than NSEC_PER_SEC 1146 */ 1147 accumulate_nsecs_to_secs(&timekeeper); 1148 1149 timekeeping_update(&timekeeper, false); 1150 1151 out: 1152 write_sequnlock_irqrestore(&timekeeper.lock, flags); 1153 1154 } 1155 1156 /** 1157 * getboottime - Return the real time of system boot. 1158 * @ts: pointer to the timespec to be set 1159 * 1160 * Returns the wall-time of boot in a timespec. 1161 * 1162 * This is based on the wall_to_monotonic offset and the total suspend 1163 * time. Calls to settimeofday will affect the value returned (which 1164 * basically means that however wrong your real time clock is at boot time, 1165 * you get the right time here). 1166 */ 1167 void getboottime(struct timespec *ts) 1168 { 1169 struct timespec boottime = { 1170 .tv_sec = timekeeper.wall_to_monotonic.tv_sec + 1171 timekeeper.total_sleep_time.tv_sec, 1172 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec + 1173 timekeeper.total_sleep_time.tv_nsec 1174 }; 1175 1176 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1177 } 1178 EXPORT_SYMBOL_GPL(getboottime); 1179 1180 1181 /** 1182 * get_monotonic_boottime - Returns monotonic time since boot 1183 * @ts: pointer to the timespec to be set 1184 * 1185 * Returns the monotonic time since boot in a timespec. 1186 * 1187 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1188 * includes the time spent in suspend. 1189 */ 1190 void get_monotonic_boottime(struct timespec *ts) 1191 { 1192 struct timespec tomono, sleep; 1193 unsigned int seq; 1194 1195 WARN_ON(timekeeping_suspended); 1196 1197 do { 1198 seq = read_seqbegin(&timekeeper.lock); 1199 ts->tv_sec = timekeeper.xtime_sec; 1200 ts->tv_nsec = timekeeping_get_ns(&timekeeper); 1201 tomono = timekeeper.wall_to_monotonic; 1202 sleep = timekeeper.total_sleep_time; 1203 1204 } while (read_seqretry(&timekeeper.lock, seq)); 1205 1206 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, 1207 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec); 1208 } 1209 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1210 1211 /** 1212 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1213 * 1214 * Returns the monotonic time since boot in a ktime 1215 * 1216 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1217 * includes the time spent in suspend. 1218 */ 1219 ktime_t ktime_get_boottime(void) 1220 { 1221 struct timespec ts; 1222 1223 get_monotonic_boottime(&ts); 1224 return timespec_to_ktime(ts); 1225 } 1226 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1227 1228 /** 1229 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1230 * @ts: pointer to the timespec to be converted 1231 */ 1232 void monotonic_to_bootbased(struct timespec *ts) 1233 { 1234 *ts = timespec_add(*ts, timekeeper.total_sleep_time); 1235 } 1236 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1237 1238 unsigned long get_seconds(void) 1239 { 1240 return timekeeper.xtime_sec; 1241 } 1242 EXPORT_SYMBOL(get_seconds); 1243 1244 struct timespec __current_kernel_time(void) 1245 { 1246 return tk_xtime(&timekeeper); 1247 } 1248 1249 struct timespec current_kernel_time(void) 1250 { 1251 struct timespec now; 1252 unsigned long seq; 1253 1254 do { 1255 seq = read_seqbegin(&timekeeper.lock); 1256 1257 now = tk_xtime(&timekeeper); 1258 } while (read_seqretry(&timekeeper.lock, seq)); 1259 1260 return now; 1261 } 1262 EXPORT_SYMBOL(current_kernel_time); 1263 1264 struct timespec get_monotonic_coarse(void) 1265 { 1266 struct timespec now, mono; 1267 unsigned long seq; 1268 1269 do { 1270 seq = read_seqbegin(&timekeeper.lock); 1271 1272 now = tk_xtime(&timekeeper); 1273 mono = timekeeper.wall_to_monotonic; 1274 } while (read_seqretry(&timekeeper.lock, seq)); 1275 1276 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1277 now.tv_nsec + mono.tv_nsec); 1278 return now; 1279 } 1280 1281 /* 1282 * The 64-bit jiffies value is not atomic - you MUST NOT read it 1283 * without sampling the sequence number in xtime_lock. 1284 * jiffies is defined in the linker script... 1285 */ 1286 void do_timer(unsigned long ticks) 1287 { 1288 jiffies_64 += ticks; 1289 update_wall_time(); 1290 calc_global_load(ticks); 1291 } 1292 1293 /** 1294 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1295 * and sleep offsets. 1296 * @xtim: pointer to timespec to be set with xtime 1297 * @wtom: pointer to timespec to be set with wall_to_monotonic 1298 * @sleep: pointer to timespec to be set with time in suspend 1299 */ 1300 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1301 struct timespec *wtom, struct timespec *sleep) 1302 { 1303 unsigned long seq; 1304 1305 do { 1306 seq = read_seqbegin(&timekeeper.lock); 1307 *xtim = tk_xtime(&timekeeper); 1308 *wtom = timekeeper.wall_to_monotonic; 1309 *sleep = timekeeper.total_sleep_time; 1310 } while (read_seqretry(&timekeeper.lock, seq)); 1311 } 1312 1313 #ifdef CONFIG_HIGH_RES_TIMERS 1314 /** 1315 * ktime_get_update_offsets - hrtimer helper 1316 * @offs_real: pointer to storage for monotonic -> realtime offset 1317 * @offs_boot: pointer to storage for monotonic -> boottime offset 1318 * 1319 * Returns current monotonic time and updates the offsets 1320 * Called from hrtimer_interupt() or retrigger_next_event() 1321 */ 1322 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot) 1323 { 1324 ktime_t now; 1325 unsigned int seq; 1326 u64 secs, nsecs; 1327 1328 do { 1329 seq = read_seqbegin(&timekeeper.lock); 1330 1331 secs = timekeeper.xtime_sec; 1332 nsecs = timekeeping_get_ns(&timekeeper); 1333 1334 *offs_real = timekeeper.offs_real; 1335 *offs_boot = timekeeper.offs_boot; 1336 } while (read_seqretry(&timekeeper.lock, seq)); 1337 1338 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1339 now = ktime_sub(now, *offs_real); 1340 return now; 1341 } 1342 #endif 1343 1344 /** 1345 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1346 */ 1347 ktime_t ktime_get_monotonic_offset(void) 1348 { 1349 unsigned long seq; 1350 struct timespec wtom; 1351 1352 do { 1353 seq = read_seqbegin(&timekeeper.lock); 1354 wtom = timekeeper.wall_to_monotonic; 1355 } while (read_seqretry(&timekeeper.lock, seq)); 1356 1357 return timespec_to_ktime(wtom); 1358 } 1359 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1360 1361 1362 /** 1363 * xtime_update() - advances the timekeeping infrastructure 1364 * @ticks: number of ticks, that have elapsed since the last call. 1365 * 1366 * Must be called with interrupts disabled. 1367 */ 1368 void xtime_update(unsigned long ticks) 1369 { 1370 write_seqlock(&xtime_lock); 1371 do_timer(ticks); 1372 write_sequnlock(&xtime_lock); 1373 } 1374