1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_CLOCK_WAS_SET (1 << 1) 34 35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 36 37 enum timekeeping_adv_mode { 38 /* Update timekeeper when a tick has passed */ 39 TK_ADV_TICK, 40 41 /* Update timekeeper on a direct frequency change */ 42 TK_ADV_FREQ 43 }; 44 45 /* 46 * The most important data for readout fits into a single 64 byte 47 * cache line. 48 */ 49 struct tk_data { 50 seqcount_raw_spinlock_t seq; 51 struct timekeeper timekeeper; 52 struct timekeeper shadow_timekeeper; 53 raw_spinlock_t lock; 54 } ____cacheline_aligned; 55 56 static struct tk_data tk_core; 57 58 /* flag for if timekeeping is suspended */ 59 int __read_mostly timekeeping_suspended; 60 61 /** 62 * struct tk_fast - NMI safe timekeeper 63 * @seq: Sequence counter for protecting updates. The lowest bit 64 * is the index for the tk_read_base array 65 * @base: tk_read_base array. Access is indexed by the lowest bit of 66 * @seq. 67 * 68 * See @update_fast_timekeeper() below. 69 */ 70 struct tk_fast { 71 seqcount_latch_t seq; 72 struct tk_read_base base[2]; 73 }; 74 75 /* Suspend-time cycles value for halted fast timekeeper. */ 76 static u64 cycles_at_suspend; 77 78 static u64 dummy_clock_read(struct clocksource *cs) 79 { 80 if (timekeeping_suspended) 81 return cycles_at_suspend; 82 return local_clock(); 83 } 84 85 static struct clocksource dummy_clock = { 86 .read = dummy_clock_read, 87 }; 88 89 /* 90 * Boot time initialization which allows local_clock() to be utilized 91 * during early boot when clocksources are not available. local_clock() 92 * returns nanoseconds already so no conversion is required, hence mult=1 93 * and shift=0. When the first proper clocksource is installed then 94 * the fast time keepers are updated with the correct values. 95 */ 96 #define FAST_TK_INIT \ 97 { \ 98 .clock = &dummy_clock, \ 99 .mask = CLOCKSOURCE_MASK(64), \ 100 .mult = 1, \ 101 .shift = 0, \ 102 } 103 104 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 106 .base[0] = FAST_TK_INIT, 107 .base[1] = FAST_TK_INIT, 108 }; 109 110 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 112 .base[0] = FAST_TK_INIT, 113 .base[1] = FAST_TK_INIT, 114 }; 115 116 unsigned long timekeeper_lock_irqsave(void) 117 { 118 unsigned long flags; 119 120 raw_spin_lock_irqsave(&tk_core.lock, flags); 121 return flags; 122 } 123 124 void timekeeper_unlock_irqrestore(unsigned long flags) 125 { 126 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 127 } 128 129 /* 130 * Multigrain timestamps require tracking the latest fine-grained timestamp 131 * that has been issued, and never returning a coarse-grained timestamp that is 132 * earlier than that value. 133 * 134 * mg_floor represents the latest fine-grained time that has been handed out as 135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 136 * converted to a realtime clock value on an as-needed basis. 137 * 138 * Maintaining mg_floor ensures the multigrain interfaces never issue a 139 * timestamp earlier than one that has been previously issued. 140 * 141 * The exception to this rule is when there is a backward realtime clock jump. If 142 * such an event occurs, a timestamp can appear to be earlier than a previous one. 143 */ 144 static __cacheline_aligned_in_smp atomic64_t mg_floor; 145 146 static inline void tk_normalize_xtime(struct timekeeper *tk) 147 { 148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 150 tk->xtime_sec++; 151 } 152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 154 tk->raw_sec++; 155 } 156 } 157 158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 159 { 160 struct timespec64 ts; 161 162 ts.tv_sec = tk->xtime_sec; 163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 164 return ts; 165 } 166 167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 168 { 169 tk->xtime_sec = ts->tv_sec; 170 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 171 } 172 173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 174 { 175 tk->xtime_sec += ts->tv_sec; 176 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 177 tk_normalize_xtime(tk); 178 } 179 180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 181 { 182 struct timespec64 tmp; 183 184 /* 185 * Verify consistency of: offset_real = -wall_to_monotonic 186 * before modifying anything 187 */ 188 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 189 -tk->wall_to_monotonic.tv_nsec); 190 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 191 tk->wall_to_monotonic = wtm; 192 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 193 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 194 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 195 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 196 } 197 198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 199 { 200 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 201 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 202 /* 203 * Timespec representation for VDSO update to avoid 64bit division 204 * on every update. 205 */ 206 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 207 } 208 209 /* 210 * tk_clock_read - atomic clocksource read() helper 211 * 212 * This helper is necessary to use in the read paths because, while the 213 * seqcount ensures we don't return a bad value while structures are updated, 214 * it doesn't protect from potential crashes. There is the possibility that 215 * the tkr's clocksource may change between the read reference, and the 216 * clock reference passed to the read function. This can cause crashes if 217 * the wrong clocksource is passed to the wrong read function. 218 * This isn't necessary to use when holding the tk_core.lock or doing 219 * a read of the fast-timekeeper tkrs (which is protected by its own locking 220 * and update logic). 221 */ 222 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 223 { 224 struct clocksource *clock = READ_ONCE(tkr->clock); 225 226 return clock->read(clock); 227 } 228 229 /** 230 * tk_setup_internals - Set up internals to use clocksource clock. 231 * 232 * @tk: The target timekeeper to setup. 233 * @clock: Pointer to clocksource. 234 * 235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 236 * pair and interval request. 237 * 238 * Unless you're the timekeeping code, you should not be using this! 239 */ 240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 241 { 242 u64 interval; 243 u64 tmp, ntpinterval; 244 struct clocksource *old_clock; 245 246 ++tk->cs_was_changed_seq; 247 old_clock = tk->tkr_mono.clock; 248 tk->tkr_mono.clock = clock; 249 tk->tkr_mono.mask = clock->mask; 250 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 251 252 tk->tkr_raw.clock = clock; 253 tk->tkr_raw.mask = clock->mask; 254 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 255 256 /* Do the ns -> cycle conversion first, using original mult */ 257 tmp = NTP_INTERVAL_LENGTH; 258 tmp <<= clock->shift; 259 ntpinterval = tmp; 260 tmp += clock->mult/2; 261 do_div(tmp, clock->mult); 262 if (tmp == 0) 263 tmp = 1; 264 265 interval = (u64) tmp; 266 tk->cycle_interval = interval; 267 268 /* Go back from cycles -> shifted ns */ 269 tk->xtime_interval = interval * clock->mult; 270 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 271 tk->raw_interval = interval * clock->mult; 272 273 /* if changing clocks, convert xtime_nsec shift units */ 274 if (old_clock) { 275 int shift_change = clock->shift - old_clock->shift; 276 if (shift_change < 0) { 277 tk->tkr_mono.xtime_nsec >>= -shift_change; 278 tk->tkr_raw.xtime_nsec >>= -shift_change; 279 } else { 280 tk->tkr_mono.xtime_nsec <<= shift_change; 281 tk->tkr_raw.xtime_nsec <<= shift_change; 282 } 283 } 284 285 tk->tkr_mono.shift = clock->shift; 286 tk->tkr_raw.shift = clock->shift; 287 288 tk->ntp_error = 0; 289 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 290 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 291 292 /* 293 * The timekeeper keeps its own mult values for the currently 294 * active clocksource. These value will be adjusted via NTP 295 * to counteract clock drifting. 296 */ 297 tk->tkr_mono.mult = clock->mult; 298 tk->tkr_raw.mult = clock->mult; 299 tk->ntp_err_mult = 0; 300 tk->skip_second_overflow = 0; 301 } 302 303 /* Timekeeper helper functions. */ 304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 305 { 306 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 307 } 308 309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 310 { 311 /* Calculate the delta since the last update_wall_time() */ 312 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 313 314 /* 315 * This detects both negative motion and the case where the delta 316 * overflows the multiplication with tkr->mult. 317 */ 318 if (unlikely(delta > tkr->clock->max_cycles)) { 319 /* 320 * Handle clocksource inconsistency between CPUs to prevent 321 * time from going backwards by checking for the MSB of the 322 * mask being set in the delta. 323 */ 324 if (delta & ~(mask >> 1)) 325 return tkr->xtime_nsec >> tkr->shift; 326 327 return delta_to_ns_safe(tkr, delta); 328 } 329 330 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 331 } 332 333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 334 { 335 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 336 } 337 338 /** 339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 340 * @tkr: Timekeeping readout base from which we take the update 341 * @tkf: Pointer to NMI safe timekeeper 342 * 343 * We want to use this from any context including NMI and tracing / 344 * instrumenting the timekeeping code itself. 345 * 346 * Employ the latch technique; see @raw_write_seqcount_latch. 347 * 348 * So if a NMI hits the update of base[0] then it will use base[1] 349 * which is still consistent. In the worst case this can result is a 350 * slightly wrong timestamp (a few nanoseconds). See 351 * @ktime_get_mono_fast_ns. 352 */ 353 static void update_fast_timekeeper(const struct tk_read_base *tkr, 354 struct tk_fast *tkf) 355 { 356 struct tk_read_base *base = tkf->base; 357 358 /* Force readers off to base[1] */ 359 raw_write_seqcount_latch(&tkf->seq); 360 361 /* Update base[0] */ 362 memcpy(base, tkr, sizeof(*base)); 363 364 /* Force readers back to base[0] */ 365 raw_write_seqcount_latch(&tkf->seq); 366 367 /* Update base[1] */ 368 memcpy(base + 1, base, sizeof(*base)); 369 } 370 371 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 372 { 373 struct tk_read_base *tkr; 374 unsigned int seq; 375 u64 now; 376 377 do { 378 seq = raw_read_seqcount_latch(&tkf->seq); 379 tkr = tkf->base + (seq & 0x01); 380 now = ktime_to_ns(tkr->base); 381 now += timekeeping_get_ns(tkr); 382 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 383 384 return now; 385 } 386 387 /** 388 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 389 * 390 * This timestamp is not guaranteed to be monotonic across an update. 391 * The timestamp is calculated by: 392 * 393 * now = base_mono + clock_delta * slope 394 * 395 * So if the update lowers the slope, readers who are forced to the 396 * not yet updated second array are still using the old steeper slope. 397 * 398 * tmono 399 * ^ 400 * | o n 401 * | o n 402 * | u 403 * | o 404 * |o 405 * |12345678---> reader order 406 * 407 * o = old slope 408 * u = update 409 * n = new slope 410 * 411 * So reader 6 will observe time going backwards versus reader 5. 412 * 413 * While other CPUs are likely to be able to observe that, the only way 414 * for a CPU local observation is when an NMI hits in the middle of 415 * the update. Timestamps taken from that NMI context might be ahead 416 * of the following timestamps. Callers need to be aware of that and 417 * deal with it. 418 */ 419 u64 notrace ktime_get_mono_fast_ns(void) 420 { 421 return __ktime_get_fast_ns(&tk_fast_mono); 422 } 423 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 424 425 /** 426 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 427 * 428 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 429 * conversion factor is not affected by NTP/PTP correction. 430 */ 431 u64 notrace ktime_get_raw_fast_ns(void) 432 { 433 return __ktime_get_fast_ns(&tk_fast_raw); 434 } 435 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 436 437 /** 438 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 439 * 440 * To keep it NMI safe since we're accessing from tracing, we're not using a 441 * separate timekeeper with updates to monotonic clock and boot offset 442 * protected with seqcounts. This has the following minor side effects: 443 * 444 * (1) Its possible that a timestamp be taken after the boot offset is updated 445 * but before the timekeeper is updated. If this happens, the new boot offset 446 * is added to the old timekeeping making the clock appear to update slightly 447 * earlier: 448 * CPU 0 CPU 1 449 * timekeeping_inject_sleeptime64() 450 * __timekeeping_inject_sleeptime(tk, delta); 451 * timestamp(); 452 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 453 * 454 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 455 * partially updated. Since the tk->offs_boot update is a rare event, this 456 * should be a rare occurrence which postprocessing should be able to handle. 457 * 458 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 459 * apply as well. 460 */ 461 u64 notrace ktime_get_boot_fast_ns(void) 462 { 463 struct timekeeper *tk = &tk_core.timekeeper; 464 465 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 466 } 467 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 468 469 /** 470 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 471 * 472 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 473 * mono time and the TAI offset are not read atomically which may yield wrong 474 * readouts. However, an update of the TAI offset is an rare event e.g., caused 475 * by settime or adjtimex with an offset. The user of this function has to deal 476 * with the possibility of wrong timestamps in post processing. 477 */ 478 u64 notrace ktime_get_tai_fast_ns(void) 479 { 480 struct timekeeper *tk = &tk_core.timekeeper; 481 482 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 483 } 484 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 485 486 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 487 { 488 struct tk_read_base *tkr; 489 u64 basem, baser, delta; 490 unsigned int seq; 491 492 do { 493 seq = raw_read_seqcount_latch(&tkf->seq); 494 tkr = tkf->base + (seq & 0x01); 495 basem = ktime_to_ns(tkr->base); 496 baser = ktime_to_ns(tkr->base_real); 497 delta = timekeeping_get_ns(tkr); 498 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 499 500 if (mono) 501 *mono = basem + delta; 502 return baser + delta; 503 } 504 505 /** 506 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 507 * 508 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 509 */ 510 u64 ktime_get_real_fast_ns(void) 511 { 512 return __ktime_get_real_fast(&tk_fast_mono, NULL); 513 } 514 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 515 516 /** 517 * ktime_get_fast_timestamps: - NMI safe timestamps 518 * @snapshot: Pointer to timestamp storage 519 * 520 * Stores clock monotonic, boottime and realtime timestamps. 521 * 522 * Boot time is a racy access on 32bit systems if the sleep time injection 523 * happens late during resume and not in timekeeping_resume(). That could 524 * be avoided by expanding struct tk_read_base with boot offset for 32bit 525 * and adding more overhead to the update. As this is a hard to observe 526 * once per resume event which can be filtered with reasonable effort using 527 * the accurate mono/real timestamps, it's probably not worth the trouble. 528 * 529 * Aside of that it might be possible on 32 and 64 bit to observe the 530 * following when the sleep time injection happens late: 531 * 532 * CPU 0 CPU 1 533 * timekeeping_resume() 534 * ktime_get_fast_timestamps() 535 * mono, real = __ktime_get_real_fast() 536 * inject_sleep_time() 537 * update boot offset 538 * boot = mono + bootoffset; 539 * 540 * That means that boot time already has the sleep time adjustment, but 541 * real time does not. On the next readout both are in sync again. 542 * 543 * Preventing this for 64bit is not really feasible without destroying the 544 * careful cache layout of the timekeeper because the sequence count and 545 * struct tk_read_base would then need two cache lines instead of one. 546 * 547 * Access to the time keeper clock source is disabled across the innermost 548 * steps of suspend/resume. The accessors still work, but the timestamps 549 * are frozen until time keeping is resumed which happens very early. 550 * 551 * For regular suspend/resume there is no observable difference vs. sched 552 * clock, but it might affect some of the nasty low level debug printks. 553 * 554 * OTOH, access to sched clock is not guaranteed across suspend/resume on 555 * all systems either so it depends on the hardware in use. 556 * 557 * If that turns out to be a real problem then this could be mitigated by 558 * using sched clock in a similar way as during early boot. But it's not as 559 * trivial as on early boot because it needs some careful protection 560 * against the clock monotonic timestamp jumping backwards on resume. 561 */ 562 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 563 { 564 struct timekeeper *tk = &tk_core.timekeeper; 565 566 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 567 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 568 } 569 570 /** 571 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 572 * @tk: Timekeeper to snapshot. 573 * 574 * It generally is unsafe to access the clocksource after timekeeping has been 575 * suspended, so take a snapshot of the readout base of @tk and use it as the 576 * fast timekeeper's readout base while suspended. It will return the same 577 * number of cycles every time until timekeeping is resumed at which time the 578 * proper readout base for the fast timekeeper will be restored automatically. 579 */ 580 static void halt_fast_timekeeper(const struct timekeeper *tk) 581 { 582 static struct tk_read_base tkr_dummy; 583 const struct tk_read_base *tkr = &tk->tkr_mono; 584 585 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 586 cycles_at_suspend = tk_clock_read(tkr); 587 tkr_dummy.clock = &dummy_clock; 588 tkr_dummy.base_real = tkr->base + tk->offs_real; 589 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 590 591 tkr = &tk->tkr_raw; 592 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 593 tkr_dummy.clock = &dummy_clock; 594 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 595 } 596 597 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 598 599 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 600 { 601 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 602 } 603 604 /** 605 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 606 * @nb: Pointer to the notifier block to register 607 */ 608 int pvclock_gtod_register_notifier(struct notifier_block *nb) 609 { 610 struct timekeeper *tk = &tk_core.timekeeper; 611 int ret; 612 613 guard(raw_spinlock_irqsave)(&tk_core.lock); 614 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 615 update_pvclock_gtod(tk, true); 616 617 return ret; 618 } 619 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 620 621 /** 622 * pvclock_gtod_unregister_notifier - unregister a pvclock 623 * timedata update listener 624 * @nb: Pointer to the notifier block to unregister 625 */ 626 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 627 { 628 guard(raw_spinlock_irqsave)(&tk_core.lock); 629 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 630 } 631 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 632 633 /* 634 * tk_update_leap_state - helper to update the next_leap_ktime 635 */ 636 static inline void tk_update_leap_state(struct timekeeper *tk) 637 { 638 tk->next_leap_ktime = ntp_get_next_leap(); 639 if (tk->next_leap_ktime != KTIME_MAX) 640 /* Convert to monotonic time */ 641 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 642 } 643 644 /* 645 * Leap state update for both shadow and the real timekeeper 646 * Separate to spare a full memcpy() of the timekeeper. 647 */ 648 static void tk_update_leap_state_all(struct tk_data *tkd) 649 { 650 write_seqcount_begin(&tkd->seq); 651 tk_update_leap_state(&tkd->shadow_timekeeper); 652 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 653 write_seqcount_end(&tkd->seq); 654 } 655 656 /* 657 * Update the ktime_t based scalar nsec members of the timekeeper 658 */ 659 static inline void tk_update_ktime_data(struct timekeeper *tk) 660 { 661 u64 seconds; 662 u32 nsec; 663 664 /* 665 * The xtime based monotonic readout is: 666 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 667 * The ktime based monotonic readout is: 668 * nsec = base_mono + now(); 669 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 670 */ 671 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 672 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 673 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 674 675 /* 676 * The sum of the nanoseconds portions of xtime and 677 * wall_to_monotonic can be greater/equal one second. Take 678 * this into account before updating tk->ktime_sec. 679 */ 680 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 681 if (nsec >= NSEC_PER_SEC) 682 seconds++; 683 tk->ktime_sec = seconds; 684 685 /* Update the monotonic raw base */ 686 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 687 } 688 689 /* 690 * Restore the shadow timekeeper from the real timekeeper. 691 */ 692 static void timekeeping_restore_shadow(struct tk_data *tkd) 693 { 694 lockdep_assert_held(&tkd->lock); 695 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 696 } 697 698 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 699 { 700 struct timekeeper *tk = &tk_core.shadow_timekeeper; 701 702 lockdep_assert_held(&tkd->lock); 703 704 /* 705 * Block out readers before running the updates below because that 706 * updates VDSO and other time related infrastructure. Not blocking 707 * the readers might let a reader see time going backwards when 708 * reading from the VDSO after the VDSO update and then reading in 709 * the kernel from the timekeeper before that got updated. 710 */ 711 write_seqcount_begin(&tkd->seq); 712 713 if (action & TK_CLEAR_NTP) { 714 tk->ntp_error = 0; 715 ntp_clear(); 716 } 717 718 tk_update_leap_state(tk); 719 tk_update_ktime_data(tk); 720 721 update_vsyscall(tk); 722 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 723 724 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 725 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 726 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 727 728 if (action & TK_CLOCK_WAS_SET) 729 tk->clock_was_set_seq++; 730 731 /* 732 * Update the real timekeeper. 733 * 734 * We could avoid this memcpy() by switching pointers, but that has 735 * the downside that the reader side does not longer benefit from 736 * the cacheline optimized data layout of the timekeeper and requires 737 * another indirection. 738 */ 739 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 740 write_seqcount_end(&tkd->seq); 741 } 742 743 /** 744 * timekeeping_forward_now - update clock to the current time 745 * @tk: Pointer to the timekeeper to update 746 * 747 * Forward the current clock to update its state since the last call to 748 * update_wall_time(). This is useful before significant clock changes, 749 * as it avoids having to deal with this time offset explicitly. 750 */ 751 static void timekeeping_forward_now(struct timekeeper *tk) 752 { 753 u64 cycle_now, delta; 754 755 cycle_now = tk_clock_read(&tk->tkr_mono); 756 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 757 tk->tkr_mono.cycle_last = cycle_now; 758 tk->tkr_raw.cycle_last = cycle_now; 759 760 while (delta > 0) { 761 u64 max = tk->tkr_mono.clock->max_cycles; 762 u64 incr = delta < max ? delta : max; 763 764 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 765 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 766 tk_normalize_xtime(tk); 767 delta -= incr; 768 } 769 } 770 771 /** 772 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 773 * @ts: pointer to the timespec to be set 774 * 775 * Returns the time of day in a timespec64 (WARN if suspended). 776 */ 777 void ktime_get_real_ts64(struct timespec64 *ts) 778 { 779 struct timekeeper *tk = &tk_core.timekeeper; 780 unsigned int seq; 781 u64 nsecs; 782 783 WARN_ON(timekeeping_suspended); 784 785 do { 786 seq = read_seqcount_begin(&tk_core.seq); 787 788 ts->tv_sec = tk->xtime_sec; 789 nsecs = timekeeping_get_ns(&tk->tkr_mono); 790 791 } while (read_seqcount_retry(&tk_core.seq, seq)); 792 793 ts->tv_nsec = 0; 794 timespec64_add_ns(ts, nsecs); 795 } 796 EXPORT_SYMBOL(ktime_get_real_ts64); 797 798 ktime_t ktime_get(void) 799 { 800 struct timekeeper *tk = &tk_core.timekeeper; 801 unsigned int seq; 802 ktime_t base; 803 u64 nsecs; 804 805 WARN_ON(timekeeping_suspended); 806 807 do { 808 seq = read_seqcount_begin(&tk_core.seq); 809 base = tk->tkr_mono.base; 810 nsecs = timekeeping_get_ns(&tk->tkr_mono); 811 812 } while (read_seqcount_retry(&tk_core.seq, seq)); 813 814 return ktime_add_ns(base, nsecs); 815 } 816 EXPORT_SYMBOL_GPL(ktime_get); 817 818 u32 ktime_get_resolution_ns(void) 819 { 820 struct timekeeper *tk = &tk_core.timekeeper; 821 unsigned int seq; 822 u32 nsecs; 823 824 WARN_ON(timekeeping_suspended); 825 826 do { 827 seq = read_seqcount_begin(&tk_core.seq); 828 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 829 } while (read_seqcount_retry(&tk_core.seq, seq)); 830 831 return nsecs; 832 } 833 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 834 835 static ktime_t *offsets[TK_OFFS_MAX] = { 836 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 837 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 838 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 839 }; 840 841 ktime_t ktime_get_with_offset(enum tk_offsets offs) 842 { 843 struct timekeeper *tk = &tk_core.timekeeper; 844 unsigned int seq; 845 ktime_t base, *offset = offsets[offs]; 846 u64 nsecs; 847 848 WARN_ON(timekeeping_suspended); 849 850 do { 851 seq = read_seqcount_begin(&tk_core.seq); 852 base = ktime_add(tk->tkr_mono.base, *offset); 853 nsecs = timekeeping_get_ns(&tk->tkr_mono); 854 855 } while (read_seqcount_retry(&tk_core.seq, seq)); 856 857 return ktime_add_ns(base, nsecs); 858 859 } 860 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 861 862 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 863 { 864 struct timekeeper *tk = &tk_core.timekeeper; 865 unsigned int seq; 866 ktime_t base, *offset = offsets[offs]; 867 u64 nsecs; 868 869 WARN_ON(timekeeping_suspended); 870 871 do { 872 seq = read_seqcount_begin(&tk_core.seq); 873 base = ktime_add(tk->tkr_mono.base, *offset); 874 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 875 876 } while (read_seqcount_retry(&tk_core.seq, seq)); 877 878 return ktime_add_ns(base, nsecs); 879 } 880 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 881 882 /** 883 * ktime_mono_to_any() - convert monotonic time to any other time 884 * @tmono: time to convert. 885 * @offs: which offset to use 886 */ 887 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 888 { 889 ktime_t *offset = offsets[offs]; 890 unsigned int seq; 891 ktime_t tconv; 892 893 if (IS_ENABLED(CONFIG_64BIT)) { 894 /* 895 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 896 * tk_update_sleep_time(). 897 */ 898 return ktime_add(tmono, READ_ONCE(*offset)); 899 } 900 901 do { 902 seq = read_seqcount_begin(&tk_core.seq); 903 tconv = ktime_add(tmono, *offset); 904 } while (read_seqcount_retry(&tk_core.seq, seq)); 905 906 return tconv; 907 } 908 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 909 910 /** 911 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 912 */ 913 ktime_t ktime_get_raw(void) 914 { 915 struct timekeeper *tk = &tk_core.timekeeper; 916 unsigned int seq; 917 ktime_t base; 918 u64 nsecs; 919 920 do { 921 seq = read_seqcount_begin(&tk_core.seq); 922 base = tk->tkr_raw.base; 923 nsecs = timekeeping_get_ns(&tk->tkr_raw); 924 925 } while (read_seqcount_retry(&tk_core.seq, seq)); 926 927 return ktime_add_ns(base, nsecs); 928 } 929 EXPORT_SYMBOL_GPL(ktime_get_raw); 930 931 /** 932 * ktime_get_ts64 - get the monotonic clock in timespec64 format 933 * @ts: pointer to timespec variable 934 * 935 * The function calculates the monotonic clock from the realtime 936 * clock and the wall_to_monotonic offset and stores the result 937 * in normalized timespec64 format in the variable pointed to by @ts. 938 */ 939 void ktime_get_ts64(struct timespec64 *ts) 940 { 941 struct timekeeper *tk = &tk_core.timekeeper; 942 struct timespec64 tomono; 943 unsigned int seq; 944 u64 nsec; 945 946 WARN_ON(timekeeping_suspended); 947 948 do { 949 seq = read_seqcount_begin(&tk_core.seq); 950 ts->tv_sec = tk->xtime_sec; 951 nsec = timekeeping_get_ns(&tk->tkr_mono); 952 tomono = tk->wall_to_monotonic; 953 954 } while (read_seqcount_retry(&tk_core.seq, seq)); 955 956 ts->tv_sec += tomono.tv_sec; 957 ts->tv_nsec = 0; 958 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 959 } 960 EXPORT_SYMBOL_GPL(ktime_get_ts64); 961 962 /** 963 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 964 * 965 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 966 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 967 * works on both 32 and 64 bit systems. On 32 bit systems the readout 968 * covers ~136 years of uptime which should be enough to prevent 969 * premature wrap arounds. 970 */ 971 time64_t ktime_get_seconds(void) 972 { 973 struct timekeeper *tk = &tk_core.timekeeper; 974 975 WARN_ON(timekeeping_suspended); 976 return tk->ktime_sec; 977 } 978 EXPORT_SYMBOL_GPL(ktime_get_seconds); 979 980 /** 981 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 982 * 983 * Returns the wall clock seconds since 1970. 984 * 985 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 986 * 32bit systems the access must be protected with the sequence 987 * counter to provide "atomic" access to the 64bit tk->xtime_sec 988 * value. 989 */ 990 time64_t ktime_get_real_seconds(void) 991 { 992 struct timekeeper *tk = &tk_core.timekeeper; 993 time64_t seconds; 994 unsigned int seq; 995 996 if (IS_ENABLED(CONFIG_64BIT)) 997 return tk->xtime_sec; 998 999 do { 1000 seq = read_seqcount_begin(&tk_core.seq); 1001 seconds = tk->xtime_sec; 1002 1003 } while (read_seqcount_retry(&tk_core.seq, seq)); 1004 1005 return seconds; 1006 } 1007 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1008 1009 /** 1010 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1011 * but without the sequence counter protect. This internal function 1012 * is called just when timekeeping lock is already held. 1013 */ 1014 noinstr time64_t __ktime_get_real_seconds(void) 1015 { 1016 struct timekeeper *tk = &tk_core.timekeeper; 1017 1018 return tk->xtime_sec; 1019 } 1020 1021 /** 1022 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1023 * @systime_snapshot: pointer to struct receiving the system time snapshot 1024 */ 1025 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1026 { 1027 struct timekeeper *tk = &tk_core.timekeeper; 1028 unsigned int seq; 1029 ktime_t base_raw; 1030 ktime_t base_real; 1031 ktime_t base_boot; 1032 u64 nsec_raw; 1033 u64 nsec_real; 1034 u64 now; 1035 1036 WARN_ON_ONCE(timekeeping_suspended); 1037 1038 do { 1039 seq = read_seqcount_begin(&tk_core.seq); 1040 now = tk_clock_read(&tk->tkr_mono); 1041 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1042 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1043 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1044 base_real = ktime_add(tk->tkr_mono.base, 1045 tk_core.timekeeper.offs_real); 1046 base_boot = ktime_add(tk->tkr_mono.base, 1047 tk_core.timekeeper.offs_boot); 1048 base_raw = tk->tkr_raw.base; 1049 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1050 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1051 } while (read_seqcount_retry(&tk_core.seq, seq)); 1052 1053 systime_snapshot->cycles = now; 1054 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1055 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1056 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1057 } 1058 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1059 1060 /* Scale base by mult/div checking for overflow */ 1061 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1062 { 1063 u64 tmp, rem; 1064 1065 tmp = div64_u64_rem(*base, div, &rem); 1066 1067 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1068 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1069 return -EOVERFLOW; 1070 tmp *= mult; 1071 1072 rem = div64_u64(rem * mult, div); 1073 *base = tmp + rem; 1074 return 0; 1075 } 1076 1077 /** 1078 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1079 * @history: Snapshot representing start of history 1080 * @partial_history_cycles: Cycle offset into history (fractional part) 1081 * @total_history_cycles: Total history length in cycles 1082 * @discontinuity: True indicates clock was set on history period 1083 * @ts: Cross timestamp that should be adjusted using 1084 * partial/total ratio 1085 * 1086 * Helper function used by get_device_system_crosststamp() to correct the 1087 * crosstimestamp corresponding to the start of the current interval to the 1088 * system counter value (timestamp point) provided by the driver. The 1089 * total_history_* quantities are the total history starting at the provided 1090 * reference point and ending at the start of the current interval. The cycle 1091 * count between the driver timestamp point and the start of the current 1092 * interval is partial_history_cycles. 1093 */ 1094 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1095 u64 partial_history_cycles, 1096 u64 total_history_cycles, 1097 bool discontinuity, 1098 struct system_device_crosststamp *ts) 1099 { 1100 struct timekeeper *tk = &tk_core.timekeeper; 1101 u64 corr_raw, corr_real; 1102 bool interp_forward; 1103 int ret; 1104 1105 if (total_history_cycles == 0 || partial_history_cycles == 0) 1106 return 0; 1107 1108 /* Interpolate shortest distance from beginning or end of history */ 1109 interp_forward = partial_history_cycles > total_history_cycles / 2; 1110 partial_history_cycles = interp_forward ? 1111 total_history_cycles - partial_history_cycles : 1112 partial_history_cycles; 1113 1114 /* 1115 * Scale the monotonic raw time delta by: 1116 * partial_history_cycles / total_history_cycles 1117 */ 1118 corr_raw = (u64)ktime_to_ns( 1119 ktime_sub(ts->sys_monoraw, history->raw)); 1120 ret = scale64_check_overflow(partial_history_cycles, 1121 total_history_cycles, &corr_raw); 1122 if (ret) 1123 return ret; 1124 1125 /* 1126 * If there is a discontinuity in the history, scale monotonic raw 1127 * correction by: 1128 * mult(real)/mult(raw) yielding the realtime correction 1129 * Otherwise, calculate the realtime correction similar to monotonic 1130 * raw calculation 1131 */ 1132 if (discontinuity) { 1133 corr_real = mul_u64_u32_div 1134 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1135 } else { 1136 corr_real = (u64)ktime_to_ns( 1137 ktime_sub(ts->sys_realtime, history->real)); 1138 ret = scale64_check_overflow(partial_history_cycles, 1139 total_history_cycles, &corr_real); 1140 if (ret) 1141 return ret; 1142 } 1143 1144 /* Fixup monotonic raw and real time time values */ 1145 if (interp_forward) { 1146 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1147 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1148 } else { 1149 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1150 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1151 } 1152 1153 return 0; 1154 } 1155 1156 /* 1157 * timestamp_in_interval - true if ts is chronologically in [start, end] 1158 * 1159 * True if ts occurs chronologically at or after start, and before or at end. 1160 */ 1161 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1162 { 1163 if (ts >= start && ts <= end) 1164 return true; 1165 if (start > end && (ts >= start || ts <= end)) 1166 return true; 1167 return false; 1168 } 1169 1170 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1171 { 1172 u64 rem, res; 1173 1174 if (!numerator || !denominator) 1175 return false; 1176 1177 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1178 *val = res + div_u64(rem * numerator, denominator); 1179 return true; 1180 } 1181 1182 static bool convert_base_to_cs(struct system_counterval_t *scv) 1183 { 1184 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1185 struct clocksource_base *base; 1186 u32 num, den; 1187 1188 /* The timestamp was taken from the time keeper clock source */ 1189 if (cs->id == scv->cs_id) 1190 return true; 1191 1192 /* 1193 * Check whether cs_id matches the base clock. Prevent the compiler from 1194 * re-evaluating @base as the clocksource might change concurrently. 1195 */ 1196 base = READ_ONCE(cs->base); 1197 if (!base || base->id != scv->cs_id) 1198 return false; 1199 1200 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1201 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1202 1203 if (!convert_clock(&scv->cycles, num, den)) 1204 return false; 1205 1206 scv->cycles += base->offset; 1207 return true; 1208 } 1209 1210 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1211 { 1212 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1213 struct clocksource_base *base; 1214 1215 /* 1216 * Check whether base_id matches the base clock. Prevent the compiler from 1217 * re-evaluating @base as the clocksource might change concurrently. 1218 */ 1219 base = READ_ONCE(cs->base); 1220 if (!base || base->id != base_id) 1221 return false; 1222 1223 *cycles -= base->offset; 1224 if (!convert_clock(cycles, base->denominator, base->numerator)) 1225 return false; 1226 return true; 1227 } 1228 1229 static bool convert_ns_to_cs(u64 *delta) 1230 { 1231 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1232 1233 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1234 return false; 1235 1236 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1237 return true; 1238 } 1239 1240 /** 1241 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1242 * @treal: CLOCK_REALTIME timestamp to convert 1243 * @base_id: base clocksource id 1244 * @cycles: pointer to store the converted base clock timestamp 1245 * 1246 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1247 * 1248 * Return: true if the conversion is successful, false otherwise. 1249 */ 1250 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1251 { 1252 struct timekeeper *tk = &tk_core.timekeeper; 1253 unsigned int seq; 1254 u64 delta; 1255 1256 do { 1257 seq = read_seqcount_begin(&tk_core.seq); 1258 if ((u64)treal < tk->tkr_mono.base_real) 1259 return false; 1260 delta = (u64)treal - tk->tkr_mono.base_real; 1261 if (!convert_ns_to_cs(&delta)) 1262 return false; 1263 *cycles = tk->tkr_mono.cycle_last + delta; 1264 if (!convert_cs_to_base(cycles, base_id)) 1265 return false; 1266 } while (read_seqcount_retry(&tk_core.seq, seq)); 1267 1268 return true; 1269 } 1270 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1271 1272 /** 1273 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1274 * @get_time_fn: Callback to get simultaneous device time and 1275 * system counter from the device driver 1276 * @ctx: Context passed to get_time_fn() 1277 * @history_begin: Historical reference point used to interpolate system 1278 * time when counter provided by the driver is before the current interval 1279 * @xtstamp: Receives simultaneously captured system and device time 1280 * 1281 * Reads a timestamp from a device and correlates it to system time 1282 */ 1283 int get_device_system_crosststamp(int (*get_time_fn) 1284 (ktime_t *device_time, 1285 struct system_counterval_t *sys_counterval, 1286 void *ctx), 1287 void *ctx, 1288 struct system_time_snapshot *history_begin, 1289 struct system_device_crosststamp *xtstamp) 1290 { 1291 struct system_counterval_t system_counterval; 1292 struct timekeeper *tk = &tk_core.timekeeper; 1293 u64 cycles, now, interval_start; 1294 unsigned int clock_was_set_seq = 0; 1295 ktime_t base_real, base_raw; 1296 u64 nsec_real, nsec_raw; 1297 u8 cs_was_changed_seq; 1298 unsigned int seq; 1299 bool do_interp; 1300 int ret; 1301 1302 do { 1303 seq = read_seqcount_begin(&tk_core.seq); 1304 /* 1305 * Try to synchronously capture device time and a system 1306 * counter value calling back into the device driver 1307 */ 1308 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1309 if (ret) 1310 return ret; 1311 1312 /* 1313 * Verify that the clocksource ID associated with the captured 1314 * system counter value is the same as for the currently 1315 * installed timekeeper clocksource 1316 */ 1317 if (system_counterval.cs_id == CSID_GENERIC || 1318 !convert_base_to_cs(&system_counterval)) 1319 return -ENODEV; 1320 cycles = system_counterval.cycles; 1321 1322 /* 1323 * Check whether the system counter value provided by the 1324 * device driver is on the current timekeeping interval. 1325 */ 1326 now = tk_clock_read(&tk->tkr_mono); 1327 interval_start = tk->tkr_mono.cycle_last; 1328 if (!timestamp_in_interval(interval_start, now, cycles)) { 1329 clock_was_set_seq = tk->clock_was_set_seq; 1330 cs_was_changed_seq = tk->cs_was_changed_seq; 1331 cycles = interval_start; 1332 do_interp = true; 1333 } else { 1334 do_interp = false; 1335 } 1336 1337 base_real = ktime_add(tk->tkr_mono.base, 1338 tk_core.timekeeper.offs_real); 1339 base_raw = tk->tkr_raw.base; 1340 1341 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1342 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1343 } while (read_seqcount_retry(&tk_core.seq, seq)); 1344 1345 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1346 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1347 1348 /* 1349 * Interpolate if necessary, adjusting back from the start of the 1350 * current interval 1351 */ 1352 if (do_interp) { 1353 u64 partial_history_cycles, total_history_cycles; 1354 bool discontinuity; 1355 1356 /* 1357 * Check that the counter value is not before the provided 1358 * history reference and that the history doesn't cross a 1359 * clocksource change 1360 */ 1361 if (!history_begin || 1362 !timestamp_in_interval(history_begin->cycles, 1363 cycles, system_counterval.cycles) || 1364 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1365 return -EINVAL; 1366 partial_history_cycles = cycles - system_counterval.cycles; 1367 total_history_cycles = cycles - history_begin->cycles; 1368 discontinuity = 1369 history_begin->clock_was_set_seq != clock_was_set_seq; 1370 1371 ret = adjust_historical_crosststamp(history_begin, 1372 partial_history_cycles, 1373 total_history_cycles, 1374 discontinuity, xtstamp); 1375 if (ret) 1376 return ret; 1377 } 1378 1379 return 0; 1380 } 1381 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1382 1383 /** 1384 * timekeeping_clocksource_has_base - Check whether the current clocksource 1385 * is based on given a base clock 1386 * @id: base clocksource ID 1387 * 1388 * Note: The return value is a snapshot which can become invalid right 1389 * after the function returns. 1390 * 1391 * Return: true if the timekeeper clocksource has a base clock with @id, 1392 * false otherwise 1393 */ 1394 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1395 { 1396 /* 1397 * This is a snapshot, so no point in using the sequence 1398 * count. Just prevent the compiler from re-evaluating @base as the 1399 * clocksource might change concurrently. 1400 */ 1401 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1402 1403 return base ? base->id == id : false; 1404 } 1405 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1406 1407 /** 1408 * do_settimeofday64 - Sets the time of day. 1409 * @ts: pointer to the timespec64 variable containing the new time 1410 * 1411 * Sets the time of day to the new time and update NTP and notify hrtimers 1412 */ 1413 int do_settimeofday64(const struct timespec64 *ts) 1414 { 1415 struct timespec64 ts_delta, xt; 1416 1417 if (!timespec64_valid_settod(ts)) 1418 return -EINVAL; 1419 1420 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1421 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1422 1423 timekeeping_forward_now(tks); 1424 1425 xt = tk_xtime(tks); 1426 ts_delta = timespec64_sub(*ts, xt); 1427 1428 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1429 timekeeping_restore_shadow(&tk_core); 1430 return -EINVAL; 1431 } 1432 1433 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1434 tk_set_xtime(tks, ts); 1435 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1436 } 1437 1438 /* Signal hrtimers about time change */ 1439 clock_was_set(CLOCK_SET_WALL); 1440 1441 audit_tk_injoffset(ts_delta); 1442 add_device_randomness(ts, sizeof(*ts)); 1443 return 0; 1444 } 1445 EXPORT_SYMBOL(do_settimeofday64); 1446 1447 /** 1448 * timekeeping_inject_offset - Adds or subtracts from the current time. 1449 * @ts: Pointer to the timespec variable containing the offset 1450 * 1451 * Adds or subtracts an offset value from the current time. 1452 */ 1453 static int timekeeping_inject_offset(const struct timespec64 *ts) 1454 { 1455 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1456 return -EINVAL; 1457 1458 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1459 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1460 struct timespec64 tmp; 1461 1462 timekeeping_forward_now(tks); 1463 1464 /* Make sure the proposed value is valid */ 1465 tmp = timespec64_add(tk_xtime(tks), *ts); 1466 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1467 !timespec64_valid_settod(&tmp)) { 1468 timekeeping_restore_shadow(&tk_core); 1469 return -EINVAL; 1470 } 1471 1472 tk_xtime_add(tks, ts); 1473 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1474 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1475 } 1476 1477 /* Signal hrtimers about time change */ 1478 clock_was_set(CLOCK_SET_WALL); 1479 return 0; 1480 } 1481 1482 /* 1483 * Indicates if there is an offset between the system clock and the hardware 1484 * clock/persistent clock/rtc. 1485 */ 1486 int persistent_clock_is_local; 1487 1488 /* 1489 * Adjust the time obtained from the CMOS to be UTC time instead of 1490 * local time. 1491 * 1492 * This is ugly, but preferable to the alternatives. Otherwise we 1493 * would either need to write a program to do it in /etc/rc (and risk 1494 * confusion if the program gets run more than once; it would also be 1495 * hard to make the program warp the clock precisely n hours) or 1496 * compile in the timezone information into the kernel. Bad, bad.... 1497 * 1498 * - TYT, 1992-01-01 1499 * 1500 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1501 * as real UNIX machines always do it. This avoids all headaches about 1502 * daylight saving times and warping kernel clocks. 1503 */ 1504 void timekeeping_warp_clock(void) 1505 { 1506 if (sys_tz.tz_minuteswest != 0) { 1507 struct timespec64 adjust; 1508 1509 persistent_clock_is_local = 1; 1510 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1511 adjust.tv_nsec = 0; 1512 timekeeping_inject_offset(&adjust); 1513 } 1514 } 1515 1516 /* 1517 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1518 */ 1519 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1520 { 1521 tk->tai_offset = tai_offset; 1522 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1523 } 1524 1525 /* 1526 * change_clocksource - Swaps clocksources if a new one is available 1527 * 1528 * Accumulates current time interval and initializes new clocksource 1529 */ 1530 static int change_clocksource(void *data) 1531 { 1532 struct clocksource *new = data, *old = NULL; 1533 1534 /* 1535 * If the clocksource is in a module, get a module reference. 1536 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1537 * reference can't be acquired. 1538 */ 1539 if (!try_module_get(new->owner)) 1540 return 0; 1541 1542 /* Abort if the device can't be enabled */ 1543 if (new->enable && new->enable(new) != 0) { 1544 module_put(new->owner); 1545 return 0; 1546 } 1547 1548 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1549 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1550 1551 timekeeping_forward_now(tks); 1552 old = tks->tkr_mono.clock; 1553 tk_setup_internals(tks, new); 1554 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1555 } 1556 1557 if (old) { 1558 if (old->disable) 1559 old->disable(old); 1560 module_put(old->owner); 1561 } 1562 1563 return 0; 1564 } 1565 1566 /** 1567 * timekeeping_notify - Install a new clock source 1568 * @clock: pointer to the clock source 1569 * 1570 * This function is called from clocksource.c after a new, better clock 1571 * source has been registered. The caller holds the clocksource_mutex. 1572 */ 1573 int timekeeping_notify(struct clocksource *clock) 1574 { 1575 struct timekeeper *tk = &tk_core.timekeeper; 1576 1577 if (tk->tkr_mono.clock == clock) 1578 return 0; 1579 stop_machine(change_clocksource, clock, NULL); 1580 tick_clock_notify(); 1581 return tk->tkr_mono.clock == clock ? 0 : -1; 1582 } 1583 1584 /** 1585 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1586 * @ts: pointer to the timespec64 to be set 1587 * 1588 * Returns the raw monotonic time (completely un-modified by ntp) 1589 */ 1590 void ktime_get_raw_ts64(struct timespec64 *ts) 1591 { 1592 struct timekeeper *tk = &tk_core.timekeeper; 1593 unsigned int seq; 1594 u64 nsecs; 1595 1596 do { 1597 seq = read_seqcount_begin(&tk_core.seq); 1598 ts->tv_sec = tk->raw_sec; 1599 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1600 1601 } while (read_seqcount_retry(&tk_core.seq, seq)); 1602 1603 ts->tv_nsec = 0; 1604 timespec64_add_ns(ts, nsecs); 1605 } 1606 EXPORT_SYMBOL(ktime_get_raw_ts64); 1607 1608 1609 /** 1610 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1611 */ 1612 int timekeeping_valid_for_hres(void) 1613 { 1614 struct timekeeper *tk = &tk_core.timekeeper; 1615 unsigned int seq; 1616 int ret; 1617 1618 do { 1619 seq = read_seqcount_begin(&tk_core.seq); 1620 1621 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1622 1623 } while (read_seqcount_retry(&tk_core.seq, seq)); 1624 1625 return ret; 1626 } 1627 1628 /** 1629 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1630 */ 1631 u64 timekeeping_max_deferment(void) 1632 { 1633 struct timekeeper *tk = &tk_core.timekeeper; 1634 unsigned int seq; 1635 u64 ret; 1636 1637 do { 1638 seq = read_seqcount_begin(&tk_core.seq); 1639 1640 ret = tk->tkr_mono.clock->max_idle_ns; 1641 1642 } while (read_seqcount_retry(&tk_core.seq, seq)); 1643 1644 return ret; 1645 } 1646 1647 /** 1648 * read_persistent_clock64 - Return time from the persistent clock. 1649 * @ts: Pointer to the storage for the readout value 1650 * 1651 * Weak dummy function for arches that do not yet support it. 1652 * Reads the time from the battery backed persistent clock. 1653 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1654 * 1655 * XXX - Do be sure to remove it once all arches implement it. 1656 */ 1657 void __weak read_persistent_clock64(struct timespec64 *ts) 1658 { 1659 ts->tv_sec = 0; 1660 ts->tv_nsec = 0; 1661 } 1662 1663 /** 1664 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1665 * from the boot. 1666 * @wall_time: current time as returned by persistent clock 1667 * @boot_offset: offset that is defined as wall_time - boot_time 1668 * 1669 * Weak dummy function for arches that do not yet support it. 1670 * 1671 * The default function calculates offset based on the current value of 1672 * local_clock(). This way architectures that support sched_clock() but don't 1673 * support dedicated boot time clock will provide the best estimate of the 1674 * boot time. 1675 */ 1676 void __weak __init 1677 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1678 struct timespec64 *boot_offset) 1679 { 1680 read_persistent_clock64(wall_time); 1681 *boot_offset = ns_to_timespec64(local_clock()); 1682 } 1683 1684 static __init void tkd_basic_setup(struct tk_data *tkd) 1685 { 1686 raw_spin_lock_init(&tkd->lock); 1687 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1688 } 1689 1690 /* 1691 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1692 * 1693 * The flag starts of false and is only set when a suspend reaches 1694 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1695 * timekeeper clocksource is not stopping across suspend and has been 1696 * used to update sleep time. If the timekeeper clocksource has stopped 1697 * then the flag stays true and is used by the RTC resume code to decide 1698 * whether sleeptime must be injected and if so the flag gets false then. 1699 * 1700 * If a suspend fails before reaching timekeeping_resume() then the flag 1701 * stays false and prevents erroneous sleeptime injection. 1702 */ 1703 static bool suspend_timing_needed; 1704 1705 /* Flag for if there is a persistent clock on this platform */ 1706 static bool persistent_clock_exists; 1707 1708 /* 1709 * timekeeping_init - Initializes the clocksource and common timekeeping values 1710 */ 1711 void __init timekeeping_init(void) 1712 { 1713 struct timespec64 wall_time, boot_offset, wall_to_mono; 1714 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1715 struct clocksource *clock; 1716 1717 tkd_basic_setup(&tk_core); 1718 1719 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1720 if (timespec64_valid_settod(&wall_time) && 1721 timespec64_to_ns(&wall_time) > 0) { 1722 persistent_clock_exists = true; 1723 } else if (timespec64_to_ns(&wall_time) != 0) { 1724 pr_warn("Persistent clock returned invalid value"); 1725 wall_time = (struct timespec64){0}; 1726 } 1727 1728 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1729 boot_offset = (struct timespec64){0}; 1730 1731 /* 1732 * We want set wall_to_mono, so the following is true: 1733 * wall time + wall_to_mono = boot time 1734 */ 1735 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1736 1737 guard(raw_spinlock_irqsave)(&tk_core.lock); 1738 1739 ntp_init(); 1740 1741 clock = clocksource_default_clock(); 1742 if (clock->enable) 1743 clock->enable(clock); 1744 tk_setup_internals(tks, clock); 1745 1746 tk_set_xtime(tks, &wall_time); 1747 tks->raw_sec = 0; 1748 1749 tk_set_wall_to_mono(tks, wall_to_mono); 1750 1751 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1752 } 1753 1754 /* time in seconds when suspend began for persistent clock */ 1755 static struct timespec64 timekeeping_suspend_time; 1756 1757 /** 1758 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1759 * @tk: Pointer to the timekeeper to be updated 1760 * @delta: Pointer to the delta value in timespec64 format 1761 * 1762 * Takes a timespec offset measuring a suspend interval and properly 1763 * adds the sleep offset to the timekeeping variables. 1764 */ 1765 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1766 const struct timespec64 *delta) 1767 { 1768 if (!timespec64_valid_strict(delta)) { 1769 printk_deferred(KERN_WARNING 1770 "__timekeeping_inject_sleeptime: Invalid " 1771 "sleep delta value!\n"); 1772 return; 1773 } 1774 tk_xtime_add(tk, delta); 1775 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1776 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1777 tk_debug_account_sleep_time(delta); 1778 } 1779 1780 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1781 /* 1782 * We have three kinds of time sources to use for sleep time 1783 * injection, the preference order is: 1784 * 1) non-stop clocksource 1785 * 2) persistent clock (ie: RTC accessible when irqs are off) 1786 * 3) RTC 1787 * 1788 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1789 * If system has neither 1) nor 2), 3) will be used finally. 1790 * 1791 * 1792 * If timekeeping has injected sleeptime via either 1) or 2), 1793 * 3) becomes needless, so in this case we don't need to call 1794 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1795 * means. 1796 */ 1797 bool timekeeping_rtc_skipresume(void) 1798 { 1799 return !suspend_timing_needed; 1800 } 1801 1802 /* 1803 * 1) can be determined whether to use or not only when doing 1804 * timekeeping_resume() which is invoked after rtc_suspend(), 1805 * so we can't skip rtc_suspend() surely if system has 1). 1806 * 1807 * But if system has 2), 2) will definitely be used, so in this 1808 * case we don't need to call rtc_suspend(), and this is what 1809 * timekeeping_rtc_skipsuspend() means. 1810 */ 1811 bool timekeeping_rtc_skipsuspend(void) 1812 { 1813 return persistent_clock_exists; 1814 } 1815 1816 /** 1817 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1818 * @delta: pointer to a timespec64 delta value 1819 * 1820 * This hook is for architectures that cannot support read_persistent_clock64 1821 * because their RTC/persistent clock is only accessible when irqs are enabled. 1822 * and also don't have an effective nonstop clocksource. 1823 * 1824 * This function should only be called by rtc_resume(), and allows 1825 * a suspend offset to be injected into the timekeeping values. 1826 */ 1827 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1828 { 1829 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1830 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1831 1832 suspend_timing_needed = false; 1833 timekeeping_forward_now(tks); 1834 __timekeeping_inject_sleeptime(tks, delta); 1835 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1836 } 1837 1838 /* Signal hrtimers about time change */ 1839 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1840 } 1841 #endif 1842 1843 /** 1844 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1845 */ 1846 void timekeeping_resume(void) 1847 { 1848 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1849 struct clocksource *clock = tks->tkr_mono.clock; 1850 struct timespec64 ts_new, ts_delta; 1851 bool inject_sleeptime = false; 1852 u64 cycle_now, nsec; 1853 unsigned long flags; 1854 1855 read_persistent_clock64(&ts_new); 1856 1857 clockevents_resume(); 1858 clocksource_resume(); 1859 1860 raw_spin_lock_irqsave(&tk_core.lock, flags); 1861 1862 /* 1863 * After system resumes, we need to calculate the suspended time and 1864 * compensate it for the OS time. There are 3 sources that could be 1865 * used: Nonstop clocksource during suspend, persistent clock and rtc 1866 * device. 1867 * 1868 * One specific platform may have 1 or 2 or all of them, and the 1869 * preference will be: 1870 * suspend-nonstop clocksource -> persistent clock -> rtc 1871 * The less preferred source will only be tried if there is no better 1872 * usable source. The rtc part is handled separately in rtc core code. 1873 */ 1874 cycle_now = tk_clock_read(&tks->tkr_mono); 1875 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1876 if (nsec > 0) { 1877 ts_delta = ns_to_timespec64(nsec); 1878 inject_sleeptime = true; 1879 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1880 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1881 inject_sleeptime = true; 1882 } 1883 1884 if (inject_sleeptime) { 1885 suspend_timing_needed = false; 1886 __timekeeping_inject_sleeptime(tks, &ts_delta); 1887 } 1888 1889 /* Re-base the last cycle value */ 1890 tks->tkr_mono.cycle_last = cycle_now; 1891 tks->tkr_raw.cycle_last = cycle_now; 1892 1893 tks->ntp_error = 0; 1894 timekeeping_suspended = 0; 1895 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1896 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1897 1898 touch_softlockup_watchdog(); 1899 1900 /* Resume the clockevent device(s) and hrtimers */ 1901 tick_resume(); 1902 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1903 timerfd_resume(); 1904 } 1905 1906 int timekeeping_suspend(void) 1907 { 1908 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1909 struct timespec64 delta, delta_delta; 1910 static struct timespec64 old_delta; 1911 struct clocksource *curr_clock; 1912 unsigned long flags; 1913 u64 cycle_now; 1914 1915 read_persistent_clock64(&timekeeping_suspend_time); 1916 1917 /* 1918 * On some systems the persistent_clock can not be detected at 1919 * timekeeping_init by its return value, so if we see a valid 1920 * value returned, update the persistent_clock_exists flag. 1921 */ 1922 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1923 persistent_clock_exists = true; 1924 1925 suspend_timing_needed = true; 1926 1927 raw_spin_lock_irqsave(&tk_core.lock, flags); 1928 timekeeping_forward_now(tks); 1929 timekeeping_suspended = 1; 1930 1931 /* 1932 * Since we've called forward_now, cycle_last stores the value 1933 * just read from the current clocksource. Save this to potentially 1934 * use in suspend timing. 1935 */ 1936 curr_clock = tks->tkr_mono.clock; 1937 cycle_now = tks->tkr_mono.cycle_last; 1938 clocksource_start_suspend_timing(curr_clock, cycle_now); 1939 1940 if (persistent_clock_exists) { 1941 /* 1942 * To avoid drift caused by repeated suspend/resumes, 1943 * which each can add ~1 second drift error, 1944 * try to compensate so the difference in system time 1945 * and persistent_clock time stays close to constant. 1946 */ 1947 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 1948 delta_delta = timespec64_sub(delta, old_delta); 1949 if (abs(delta_delta.tv_sec) >= 2) { 1950 /* 1951 * if delta_delta is too large, assume time correction 1952 * has occurred and set old_delta to the current delta. 1953 */ 1954 old_delta = delta; 1955 } else { 1956 /* Otherwise try to adjust old_system to compensate */ 1957 timekeeping_suspend_time = 1958 timespec64_add(timekeeping_suspend_time, delta_delta); 1959 } 1960 } 1961 1962 timekeeping_update_from_shadow(&tk_core, 0); 1963 halt_fast_timekeeper(tks); 1964 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1965 1966 tick_suspend(); 1967 clocksource_suspend(); 1968 clockevents_suspend(); 1969 1970 return 0; 1971 } 1972 1973 /* sysfs resume/suspend bits for timekeeping */ 1974 static struct syscore_ops timekeeping_syscore_ops = { 1975 .resume = timekeeping_resume, 1976 .suspend = timekeeping_suspend, 1977 }; 1978 1979 static int __init timekeeping_init_ops(void) 1980 { 1981 register_syscore_ops(&timekeeping_syscore_ops); 1982 return 0; 1983 } 1984 device_initcall(timekeeping_init_ops); 1985 1986 /* 1987 * Apply a multiplier adjustment to the timekeeper 1988 */ 1989 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1990 s64 offset, 1991 s32 mult_adj) 1992 { 1993 s64 interval = tk->cycle_interval; 1994 1995 if (mult_adj == 0) { 1996 return; 1997 } else if (mult_adj == -1) { 1998 interval = -interval; 1999 offset = -offset; 2000 } else if (mult_adj != 1) { 2001 interval *= mult_adj; 2002 offset *= mult_adj; 2003 } 2004 2005 /* 2006 * So the following can be confusing. 2007 * 2008 * To keep things simple, lets assume mult_adj == 1 for now. 2009 * 2010 * When mult_adj != 1, remember that the interval and offset values 2011 * have been appropriately scaled so the math is the same. 2012 * 2013 * The basic idea here is that we're increasing the multiplier 2014 * by one, this causes the xtime_interval to be incremented by 2015 * one cycle_interval. This is because: 2016 * xtime_interval = cycle_interval * mult 2017 * So if mult is being incremented by one: 2018 * xtime_interval = cycle_interval * (mult + 1) 2019 * Its the same as: 2020 * xtime_interval = (cycle_interval * mult) + cycle_interval 2021 * Which can be shortened to: 2022 * xtime_interval += cycle_interval 2023 * 2024 * So offset stores the non-accumulated cycles. Thus the current 2025 * time (in shifted nanoseconds) is: 2026 * now = (offset * adj) + xtime_nsec 2027 * Now, even though we're adjusting the clock frequency, we have 2028 * to keep time consistent. In other words, we can't jump back 2029 * in time, and we also want to avoid jumping forward in time. 2030 * 2031 * So given the same offset value, we need the time to be the same 2032 * both before and after the freq adjustment. 2033 * now = (offset * adj_1) + xtime_nsec_1 2034 * now = (offset * adj_2) + xtime_nsec_2 2035 * So: 2036 * (offset * adj_1) + xtime_nsec_1 = 2037 * (offset * adj_2) + xtime_nsec_2 2038 * And we know: 2039 * adj_2 = adj_1 + 1 2040 * So: 2041 * (offset * adj_1) + xtime_nsec_1 = 2042 * (offset * (adj_1+1)) + xtime_nsec_2 2043 * (offset * adj_1) + xtime_nsec_1 = 2044 * (offset * adj_1) + offset + xtime_nsec_2 2045 * Canceling the sides: 2046 * xtime_nsec_1 = offset + xtime_nsec_2 2047 * Which gives us: 2048 * xtime_nsec_2 = xtime_nsec_1 - offset 2049 * Which simplifies to: 2050 * xtime_nsec -= offset 2051 */ 2052 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2053 /* NTP adjustment caused clocksource mult overflow */ 2054 WARN_ON_ONCE(1); 2055 return; 2056 } 2057 2058 tk->tkr_mono.mult += mult_adj; 2059 tk->xtime_interval += interval; 2060 tk->tkr_mono.xtime_nsec -= offset; 2061 } 2062 2063 /* 2064 * Adjust the timekeeper's multiplier to the correct frequency 2065 * and also to reduce the accumulated error value. 2066 */ 2067 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2068 { 2069 u64 ntp_tl = ntp_tick_length(); 2070 u32 mult; 2071 2072 /* 2073 * Determine the multiplier from the current NTP tick length. 2074 * Avoid expensive division when the tick length doesn't change. 2075 */ 2076 if (likely(tk->ntp_tick == ntp_tl)) { 2077 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2078 } else { 2079 tk->ntp_tick = ntp_tl; 2080 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2081 tk->xtime_remainder, tk->cycle_interval); 2082 } 2083 2084 /* 2085 * If the clock is behind the NTP time, increase the multiplier by 1 2086 * to catch up with it. If it's ahead and there was a remainder in the 2087 * tick division, the clock will slow down. Otherwise it will stay 2088 * ahead until the tick length changes to a non-divisible value. 2089 */ 2090 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2091 mult += tk->ntp_err_mult; 2092 2093 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2094 2095 if (unlikely(tk->tkr_mono.clock->maxadj && 2096 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2097 > tk->tkr_mono.clock->maxadj))) { 2098 printk_once(KERN_WARNING 2099 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2100 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2101 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2102 } 2103 2104 /* 2105 * It may be possible that when we entered this function, xtime_nsec 2106 * was very small. Further, if we're slightly speeding the clocksource 2107 * in the code above, its possible the required corrective factor to 2108 * xtime_nsec could cause it to underflow. 2109 * 2110 * Now, since we have already accumulated the second and the NTP 2111 * subsystem has been notified via second_overflow(), we need to skip 2112 * the next update. 2113 */ 2114 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2115 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2116 tk->tkr_mono.shift; 2117 tk->xtime_sec--; 2118 tk->skip_second_overflow = 1; 2119 } 2120 } 2121 2122 /* 2123 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2124 * 2125 * Helper function that accumulates the nsecs greater than a second 2126 * from the xtime_nsec field to the xtime_secs field. 2127 * It also calls into the NTP code to handle leapsecond processing. 2128 */ 2129 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2130 { 2131 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2132 unsigned int clock_set = 0; 2133 2134 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2135 int leap; 2136 2137 tk->tkr_mono.xtime_nsec -= nsecps; 2138 tk->xtime_sec++; 2139 2140 /* 2141 * Skip NTP update if this second was accumulated before, 2142 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2143 */ 2144 if (unlikely(tk->skip_second_overflow)) { 2145 tk->skip_second_overflow = 0; 2146 continue; 2147 } 2148 2149 /* Figure out if its a leap sec and apply if needed */ 2150 leap = second_overflow(tk->xtime_sec); 2151 if (unlikely(leap)) { 2152 struct timespec64 ts; 2153 2154 tk->xtime_sec += leap; 2155 2156 ts.tv_sec = leap; 2157 ts.tv_nsec = 0; 2158 tk_set_wall_to_mono(tk, 2159 timespec64_sub(tk->wall_to_monotonic, ts)); 2160 2161 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2162 2163 clock_set = TK_CLOCK_WAS_SET; 2164 } 2165 } 2166 return clock_set; 2167 } 2168 2169 /* 2170 * logarithmic_accumulation - shifted accumulation of cycles 2171 * 2172 * This functions accumulates a shifted interval of cycles into 2173 * a shifted interval nanoseconds. Allows for O(log) accumulation 2174 * loop. 2175 * 2176 * Returns the unconsumed cycles. 2177 */ 2178 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2179 u32 shift, unsigned int *clock_set) 2180 { 2181 u64 interval = tk->cycle_interval << shift; 2182 u64 snsec_per_sec; 2183 2184 /* If the offset is smaller than a shifted interval, do nothing */ 2185 if (offset < interval) 2186 return offset; 2187 2188 /* Accumulate one shifted interval */ 2189 offset -= interval; 2190 tk->tkr_mono.cycle_last += interval; 2191 tk->tkr_raw.cycle_last += interval; 2192 2193 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2194 *clock_set |= accumulate_nsecs_to_secs(tk); 2195 2196 /* Accumulate raw time */ 2197 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2198 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2199 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2200 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2201 tk->raw_sec++; 2202 } 2203 2204 /* Accumulate error between NTP and clock interval */ 2205 tk->ntp_error += tk->ntp_tick << shift; 2206 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2207 (tk->ntp_error_shift + shift); 2208 2209 return offset; 2210 } 2211 2212 /* 2213 * timekeeping_advance - Updates the timekeeper to the current time and 2214 * current NTP tick length 2215 */ 2216 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2217 { 2218 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2219 struct timekeeper *real_tk = &tk_core.timekeeper; 2220 unsigned int clock_set = 0; 2221 int shift = 0, maxshift; 2222 u64 offset; 2223 2224 guard(raw_spinlock_irqsave)(&tk_core.lock); 2225 2226 /* Make sure we're fully resumed: */ 2227 if (unlikely(timekeeping_suspended)) 2228 return false; 2229 2230 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2231 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2232 2233 /* Check if there's really nothing to do */ 2234 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2235 return false; 2236 2237 /* 2238 * With NO_HZ we may have to accumulate many cycle_intervals 2239 * (think "ticks") worth of time at once. To do this efficiently, 2240 * we calculate the largest doubling multiple of cycle_intervals 2241 * that is smaller than the offset. We then accumulate that 2242 * chunk in one go, and then try to consume the next smaller 2243 * doubled multiple. 2244 */ 2245 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2246 shift = max(0, shift); 2247 /* Bound shift to one less than what overflows tick_length */ 2248 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2249 shift = min(shift, maxshift); 2250 while (offset >= tk->cycle_interval) { 2251 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2252 if (offset < tk->cycle_interval<<shift) 2253 shift--; 2254 } 2255 2256 /* Adjust the multiplier to correct NTP error */ 2257 timekeeping_adjust(tk, offset); 2258 2259 /* 2260 * Finally, make sure that after the rounding 2261 * xtime_nsec isn't larger than NSEC_PER_SEC 2262 */ 2263 clock_set |= accumulate_nsecs_to_secs(tk); 2264 2265 timekeeping_update_from_shadow(&tk_core, clock_set); 2266 2267 return !!clock_set; 2268 } 2269 2270 /** 2271 * update_wall_time - Uses the current clocksource to increment the wall time 2272 * 2273 */ 2274 void update_wall_time(void) 2275 { 2276 if (timekeeping_advance(TK_ADV_TICK)) 2277 clock_was_set_delayed(); 2278 } 2279 2280 /** 2281 * getboottime64 - Return the real time of system boot. 2282 * @ts: pointer to the timespec64 to be set 2283 * 2284 * Returns the wall-time of boot in a timespec64. 2285 * 2286 * This is based on the wall_to_monotonic offset and the total suspend 2287 * time. Calls to settimeofday will affect the value returned (which 2288 * basically means that however wrong your real time clock is at boot time, 2289 * you get the right time here). 2290 */ 2291 void getboottime64(struct timespec64 *ts) 2292 { 2293 struct timekeeper *tk = &tk_core.timekeeper; 2294 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2295 2296 *ts = ktime_to_timespec64(t); 2297 } 2298 EXPORT_SYMBOL_GPL(getboottime64); 2299 2300 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2301 { 2302 struct timekeeper *tk = &tk_core.timekeeper; 2303 unsigned int seq; 2304 2305 do { 2306 seq = read_seqcount_begin(&tk_core.seq); 2307 2308 *ts = tk_xtime(tk); 2309 } while (read_seqcount_retry(&tk_core.seq, seq)); 2310 } 2311 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2312 2313 /** 2314 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2315 * @ts: timespec64 to be filled 2316 * 2317 * Fetch the global mg_floor value, convert it to realtime and compare it 2318 * to the current coarse-grained time. Fill @ts with whichever is 2319 * latest. Note that this is a filesystem-specific interface and should be 2320 * avoided outside of that context. 2321 */ 2322 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2323 { 2324 struct timekeeper *tk = &tk_core.timekeeper; 2325 u64 floor = atomic64_read(&mg_floor); 2326 ktime_t f_real, offset, coarse; 2327 unsigned int seq; 2328 2329 do { 2330 seq = read_seqcount_begin(&tk_core.seq); 2331 *ts = tk_xtime(tk); 2332 offset = tk_core.timekeeper.offs_real; 2333 } while (read_seqcount_retry(&tk_core.seq, seq)); 2334 2335 coarse = timespec64_to_ktime(*ts); 2336 f_real = ktime_add(floor, offset); 2337 if (ktime_after(f_real, coarse)) 2338 *ts = ktime_to_timespec64(f_real); 2339 } 2340 2341 /** 2342 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2343 * @ts: pointer to the timespec to be set 2344 * 2345 * Get a monotonic fine-grained time value and attempt to swap it into 2346 * mg_floor. If that succeeds then accept the new floor value. If it fails 2347 * then another task raced in during the interim time and updated the 2348 * floor. Since any update to the floor must be later than the previous 2349 * floor, either outcome is acceptable. 2350 * 2351 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2352 * and determining that the resulting coarse-grained timestamp did not effect 2353 * a change in ctime. Any more recent floor value would effect a change to 2354 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2355 * 2356 * @ts will be filled with the latest floor value, regardless of the outcome of 2357 * the cmpxchg. Note that this is a filesystem specific interface and should be 2358 * avoided outside of that context. 2359 */ 2360 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2361 { 2362 struct timekeeper *tk = &tk_core.timekeeper; 2363 ktime_t old = atomic64_read(&mg_floor); 2364 ktime_t offset, mono; 2365 unsigned int seq; 2366 u64 nsecs; 2367 2368 do { 2369 seq = read_seqcount_begin(&tk_core.seq); 2370 2371 ts->tv_sec = tk->xtime_sec; 2372 mono = tk->tkr_mono.base; 2373 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2374 offset = tk_core.timekeeper.offs_real; 2375 } while (read_seqcount_retry(&tk_core.seq, seq)); 2376 2377 mono = ktime_add_ns(mono, nsecs); 2378 2379 /* 2380 * Attempt to update the floor with the new time value. As any 2381 * update must be later then the existing floor, and would effect 2382 * a change to ctime from the perspective of the current task, 2383 * accept the resulting floor value regardless of the outcome of 2384 * the swap. 2385 */ 2386 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2387 ts->tv_nsec = 0; 2388 timespec64_add_ns(ts, nsecs); 2389 timekeeping_inc_mg_floor_swaps(); 2390 } else { 2391 /* 2392 * Another task changed mg_floor since "old" was fetched. 2393 * "old" has been updated with the latest value of "mg_floor". 2394 * That value is newer than the previous floor value, which 2395 * is enough to effect a change to ctime. Accept it. 2396 */ 2397 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2398 } 2399 } 2400 2401 void ktime_get_coarse_ts64(struct timespec64 *ts) 2402 { 2403 struct timekeeper *tk = &tk_core.timekeeper; 2404 struct timespec64 now, mono; 2405 unsigned int seq; 2406 2407 do { 2408 seq = read_seqcount_begin(&tk_core.seq); 2409 2410 now = tk_xtime(tk); 2411 mono = tk->wall_to_monotonic; 2412 } while (read_seqcount_retry(&tk_core.seq, seq)); 2413 2414 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2415 now.tv_nsec + mono.tv_nsec); 2416 } 2417 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2418 2419 /* 2420 * Must hold jiffies_lock 2421 */ 2422 void do_timer(unsigned long ticks) 2423 { 2424 jiffies_64 += ticks; 2425 calc_global_load(); 2426 } 2427 2428 /** 2429 * ktime_get_update_offsets_now - hrtimer helper 2430 * @cwsseq: pointer to check and store the clock was set sequence number 2431 * @offs_real: pointer to storage for monotonic -> realtime offset 2432 * @offs_boot: pointer to storage for monotonic -> boottime offset 2433 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2434 * 2435 * Returns current monotonic time and updates the offsets if the 2436 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2437 * different. 2438 * 2439 * Called from hrtimer_interrupt() or retrigger_next_event() 2440 */ 2441 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2442 ktime_t *offs_boot, ktime_t *offs_tai) 2443 { 2444 struct timekeeper *tk = &tk_core.timekeeper; 2445 unsigned int seq; 2446 ktime_t base; 2447 u64 nsecs; 2448 2449 do { 2450 seq = read_seqcount_begin(&tk_core.seq); 2451 2452 base = tk->tkr_mono.base; 2453 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2454 base = ktime_add_ns(base, nsecs); 2455 2456 if (*cwsseq != tk->clock_was_set_seq) { 2457 *cwsseq = tk->clock_was_set_seq; 2458 *offs_real = tk->offs_real; 2459 *offs_boot = tk->offs_boot; 2460 *offs_tai = tk->offs_tai; 2461 } 2462 2463 /* Handle leapsecond insertion adjustments */ 2464 if (unlikely(base >= tk->next_leap_ktime)) 2465 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2466 2467 } while (read_seqcount_retry(&tk_core.seq, seq)); 2468 2469 return base; 2470 } 2471 2472 /* 2473 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2474 */ 2475 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2476 { 2477 if (txc->modes & ADJ_ADJTIME) { 2478 /* singleshot must not be used with any other mode bits */ 2479 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2480 return -EINVAL; 2481 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2482 !capable(CAP_SYS_TIME)) 2483 return -EPERM; 2484 } else { 2485 /* In order to modify anything, you gotta be super-user! */ 2486 if (txc->modes && !capable(CAP_SYS_TIME)) 2487 return -EPERM; 2488 /* 2489 * if the quartz is off by more than 10% then 2490 * something is VERY wrong! 2491 */ 2492 if (txc->modes & ADJ_TICK && 2493 (txc->tick < 900000/USER_HZ || 2494 txc->tick > 1100000/USER_HZ)) 2495 return -EINVAL; 2496 } 2497 2498 if (txc->modes & ADJ_SETOFFSET) { 2499 /* In order to inject time, you gotta be super-user! */ 2500 if (!capable(CAP_SYS_TIME)) 2501 return -EPERM; 2502 2503 /* 2504 * Validate if a timespec/timeval used to inject a time 2505 * offset is valid. Offsets can be positive or negative, so 2506 * we don't check tv_sec. The value of the timeval/timespec 2507 * is the sum of its fields,but *NOTE*: 2508 * The field tv_usec/tv_nsec must always be non-negative and 2509 * we can't have more nanoseconds/microseconds than a second. 2510 */ 2511 if (txc->time.tv_usec < 0) 2512 return -EINVAL; 2513 2514 if (txc->modes & ADJ_NANO) { 2515 if (txc->time.tv_usec >= NSEC_PER_SEC) 2516 return -EINVAL; 2517 } else { 2518 if (txc->time.tv_usec >= USEC_PER_SEC) 2519 return -EINVAL; 2520 } 2521 } 2522 2523 /* 2524 * Check for potential multiplication overflows that can 2525 * only happen on 64-bit systems: 2526 */ 2527 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2528 if (LLONG_MIN / PPM_SCALE > txc->freq) 2529 return -EINVAL; 2530 if (LLONG_MAX / PPM_SCALE < txc->freq) 2531 return -EINVAL; 2532 } 2533 2534 return 0; 2535 } 2536 2537 /** 2538 * random_get_entropy_fallback - Returns the raw clock source value, 2539 * used by random.c for platforms with no valid random_get_entropy(). 2540 */ 2541 unsigned long random_get_entropy_fallback(void) 2542 { 2543 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2544 struct clocksource *clock = READ_ONCE(tkr->clock); 2545 2546 if (unlikely(timekeeping_suspended || !clock)) 2547 return 0; 2548 return clock->read(clock); 2549 } 2550 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2551 2552 /** 2553 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2554 * @txc: Pointer to kernel_timex structure containing NTP parameters 2555 */ 2556 int do_adjtimex(struct __kernel_timex *txc) 2557 { 2558 struct audit_ntp_data ad; 2559 bool offset_set = false; 2560 bool clock_set = false; 2561 struct timespec64 ts; 2562 int ret; 2563 2564 /* Validate the data before disabling interrupts */ 2565 ret = timekeeping_validate_timex(txc); 2566 if (ret) 2567 return ret; 2568 add_device_randomness(txc, sizeof(*txc)); 2569 2570 if (txc->modes & ADJ_SETOFFSET) { 2571 struct timespec64 delta; 2572 2573 delta.tv_sec = txc->time.tv_sec; 2574 delta.tv_nsec = txc->time.tv_usec; 2575 if (!(txc->modes & ADJ_NANO)) 2576 delta.tv_nsec *= 1000; 2577 ret = timekeeping_inject_offset(&delta); 2578 if (ret) 2579 return ret; 2580 2581 offset_set = delta.tv_sec != 0; 2582 audit_tk_injoffset(delta); 2583 } 2584 2585 audit_ntp_init(&ad); 2586 2587 ktime_get_real_ts64(&ts); 2588 add_device_randomness(&ts, sizeof(ts)); 2589 2590 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 2591 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2592 s32 orig_tai, tai; 2593 2594 orig_tai = tai = tks->tai_offset; 2595 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2596 2597 if (tai != orig_tai) { 2598 __timekeeping_set_tai_offset(tks, tai); 2599 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 2600 clock_set = true; 2601 } else { 2602 tk_update_leap_state_all(&tk_core); 2603 } 2604 } 2605 2606 audit_ntp_log(&ad); 2607 2608 /* Update the multiplier immediately if frequency was set directly */ 2609 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2610 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2611 2612 if (clock_set) 2613 clock_was_set(CLOCK_SET_WALL); 2614 2615 ntp_notify_cmos_timer(offset_set); 2616 2617 return ret; 2618 } 2619 2620 #ifdef CONFIG_NTP_PPS 2621 /** 2622 * hardpps() - Accessor function to NTP __hardpps function 2623 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2624 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2625 */ 2626 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2627 { 2628 guard(raw_spinlock_irqsave)(&tk_core.lock); 2629 __hardpps(phase_ts, raw_ts); 2630 } 2631 EXPORT_SYMBOL(hardpps); 2632 #endif /* CONFIG_NTP_PPS */ 2633