1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* NTP adjusted clock multiplier */ 29 u32 mult; 30 /* The shift value of the current clocksource. */ 31 int shift; 32 33 /* Number of clock cycles in one NTP interval. */ 34 cycle_t cycle_interval; 35 /* Number of clock shifted nano seconds in one NTP interval. */ 36 u64 xtime_interval; 37 /* shifted nano seconds left over when rounding cycle_interval */ 38 s64 xtime_remainder; 39 /* Raw nano seconds accumulated per NTP interval. */ 40 u32 raw_interval; 41 42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ 43 u64 xtime_nsec; 44 /* Difference between accumulated time and NTP time in ntp 45 * shifted nano seconds. */ 46 s64 ntp_error; 47 /* Shift conversion between clock shifted nano seconds and 48 * ntp shifted nano seconds. */ 49 int ntp_error_shift; 50 51 /* The current time */ 52 struct timespec xtime; 53 /* 54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 56 * at zero at system boot time, so wall_to_monotonic will be negative, 57 * however, we will ALWAYS keep the tv_nsec part positive so we can use 58 * the usual normalization. 59 * 60 * wall_to_monotonic is moved after resume from suspend for the 61 * monotonic time not to jump. We need to add total_sleep_time to 62 * wall_to_monotonic to get the real boot based time offset. 63 * 64 * - wall_to_monotonic is no longer the boot time, getboottime must be 65 * used instead. 66 */ 67 struct timespec wall_to_monotonic; 68 /* time spent in suspend */ 69 struct timespec total_sleep_time; 70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ 71 struct timespec raw_time; 72 73 /* Offset clock monotonic -> clock realtime */ 74 ktime_t offs_real; 75 76 /* Offset clock monotonic -> clock boottime */ 77 ktime_t offs_boot; 78 79 /* Seqlock for all timekeeper values */ 80 seqlock_t lock; 81 }; 82 83 static struct timekeeper timekeeper; 84 85 /* 86 * This read-write spinlock protects us from races in SMP while 87 * playing with xtime. 88 */ 89 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 90 91 92 /* flag for if timekeeping is suspended */ 93 int __read_mostly timekeeping_suspended; 94 95 96 97 /** 98 * timekeeper_setup_internals - Set up internals to use clocksource clock. 99 * 100 * @clock: Pointer to clocksource. 101 * 102 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 103 * pair and interval request. 104 * 105 * Unless you're the timekeeping code, you should not be using this! 106 */ 107 static void timekeeper_setup_internals(struct clocksource *clock) 108 { 109 cycle_t interval; 110 u64 tmp, ntpinterval; 111 112 timekeeper.clock = clock; 113 clock->cycle_last = clock->read(clock); 114 115 /* Do the ns -> cycle conversion first, using original mult */ 116 tmp = NTP_INTERVAL_LENGTH; 117 tmp <<= clock->shift; 118 ntpinterval = tmp; 119 tmp += clock->mult/2; 120 do_div(tmp, clock->mult); 121 if (tmp == 0) 122 tmp = 1; 123 124 interval = (cycle_t) tmp; 125 timekeeper.cycle_interval = interval; 126 127 /* Go back from cycles -> shifted ns */ 128 timekeeper.xtime_interval = (u64) interval * clock->mult; 129 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval; 130 timekeeper.raw_interval = 131 ((u64) interval * clock->mult) >> clock->shift; 132 133 timekeeper.xtime_nsec = 0; 134 timekeeper.shift = clock->shift; 135 136 timekeeper.ntp_error = 0; 137 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 138 139 /* 140 * The timekeeper keeps its own mult values for the currently 141 * active clocksource. These value will be adjusted via NTP 142 * to counteract clock drifting. 143 */ 144 timekeeper.mult = clock->mult; 145 } 146 147 /* Timekeeper helper functions. */ 148 static inline s64 timekeeping_get_ns(void) 149 { 150 cycle_t cycle_now, cycle_delta; 151 struct clocksource *clock; 152 153 /* read clocksource: */ 154 clock = timekeeper.clock; 155 cycle_now = clock->read(clock); 156 157 /* calculate the delta since the last update_wall_time: */ 158 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 159 160 /* return delta convert to nanoseconds using ntp adjusted mult. */ 161 return clocksource_cyc2ns(cycle_delta, timekeeper.mult, 162 timekeeper.shift); 163 } 164 165 static inline s64 timekeeping_get_ns_raw(void) 166 { 167 cycle_t cycle_now, cycle_delta; 168 struct clocksource *clock; 169 170 /* read clocksource: */ 171 clock = timekeeper.clock; 172 cycle_now = clock->read(clock); 173 174 /* calculate the delta since the last update_wall_time: */ 175 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 176 177 /* return delta convert to nanoseconds. */ 178 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 179 } 180 181 static void update_rt_offset(void) 182 { 183 struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic; 184 185 set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec); 186 timekeeper.offs_real = timespec_to_ktime(tmp); 187 } 188 189 /* must hold write on timekeeper.lock */ 190 static void timekeeping_update(bool clearntp) 191 { 192 if (clearntp) { 193 timekeeper.ntp_error = 0; 194 ntp_clear(); 195 } 196 update_rt_offset(); 197 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic, 198 timekeeper.clock, timekeeper.mult); 199 } 200 201 202 /** 203 * timekeeping_forward_now - update clock to the current time 204 * 205 * Forward the current clock to update its state since the last call to 206 * update_wall_time(). This is useful before significant clock changes, 207 * as it avoids having to deal with this time offset explicitly. 208 */ 209 static void timekeeping_forward_now(void) 210 { 211 cycle_t cycle_now, cycle_delta; 212 struct clocksource *clock; 213 s64 nsec; 214 215 clock = timekeeper.clock; 216 cycle_now = clock->read(clock); 217 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 218 clock->cycle_last = cycle_now; 219 220 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, 221 timekeeper.shift); 222 223 /* If arch requires, add in gettimeoffset() */ 224 nsec += arch_gettimeoffset(); 225 226 timespec_add_ns(&timekeeper.xtime, nsec); 227 228 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 229 timespec_add_ns(&timekeeper.raw_time, nsec); 230 } 231 232 /** 233 * getnstimeofday - Returns the time of day in a timespec 234 * @ts: pointer to the timespec to be set 235 * 236 * Returns the time of day in a timespec. 237 */ 238 void getnstimeofday(struct timespec *ts) 239 { 240 unsigned long seq; 241 s64 nsecs; 242 243 WARN_ON(timekeeping_suspended); 244 245 do { 246 seq = read_seqbegin(&timekeeper.lock); 247 248 *ts = timekeeper.xtime; 249 nsecs = timekeeping_get_ns(); 250 251 /* If arch requires, add in gettimeoffset() */ 252 nsecs += arch_gettimeoffset(); 253 254 } while (read_seqretry(&timekeeper.lock, seq)); 255 256 timespec_add_ns(ts, nsecs); 257 } 258 EXPORT_SYMBOL(getnstimeofday); 259 260 ktime_t ktime_get(void) 261 { 262 unsigned int seq; 263 s64 secs, nsecs; 264 265 WARN_ON(timekeeping_suspended); 266 267 do { 268 seq = read_seqbegin(&timekeeper.lock); 269 secs = timekeeper.xtime.tv_sec + 270 timekeeper.wall_to_monotonic.tv_sec; 271 nsecs = timekeeper.xtime.tv_nsec + 272 timekeeper.wall_to_monotonic.tv_nsec; 273 nsecs += timekeeping_get_ns(); 274 /* If arch requires, add in gettimeoffset() */ 275 nsecs += arch_gettimeoffset(); 276 277 } while (read_seqretry(&timekeeper.lock, seq)); 278 /* 279 * Use ktime_set/ktime_add_ns to create a proper ktime on 280 * 32-bit architectures without CONFIG_KTIME_SCALAR. 281 */ 282 return ktime_add_ns(ktime_set(secs, 0), nsecs); 283 } 284 EXPORT_SYMBOL_GPL(ktime_get); 285 286 /** 287 * ktime_get_ts - get the monotonic clock in timespec format 288 * @ts: pointer to timespec variable 289 * 290 * The function calculates the monotonic clock from the realtime 291 * clock and the wall_to_monotonic offset and stores the result 292 * in normalized timespec format in the variable pointed to by @ts. 293 */ 294 void ktime_get_ts(struct timespec *ts) 295 { 296 struct timespec tomono; 297 unsigned int seq; 298 s64 nsecs; 299 300 WARN_ON(timekeeping_suspended); 301 302 do { 303 seq = read_seqbegin(&timekeeper.lock); 304 *ts = timekeeper.xtime; 305 tomono = timekeeper.wall_to_monotonic; 306 nsecs = timekeeping_get_ns(); 307 /* If arch requires, add in gettimeoffset() */ 308 nsecs += arch_gettimeoffset(); 309 310 } while (read_seqretry(&timekeeper.lock, seq)); 311 312 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 313 ts->tv_nsec + tomono.tv_nsec + nsecs); 314 } 315 EXPORT_SYMBOL_GPL(ktime_get_ts); 316 317 #ifdef CONFIG_NTP_PPS 318 319 /** 320 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 321 * @ts_raw: pointer to the timespec to be set to raw monotonic time 322 * @ts_real: pointer to the timespec to be set to the time of day 323 * 324 * This function reads both the time of day and raw monotonic time at the 325 * same time atomically and stores the resulting timestamps in timespec 326 * format. 327 */ 328 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 329 { 330 unsigned long seq; 331 s64 nsecs_raw, nsecs_real; 332 333 WARN_ON_ONCE(timekeeping_suspended); 334 335 do { 336 u32 arch_offset; 337 338 seq = read_seqbegin(&timekeeper.lock); 339 340 *ts_raw = timekeeper.raw_time; 341 *ts_real = timekeeper.xtime; 342 343 nsecs_raw = timekeeping_get_ns_raw(); 344 nsecs_real = timekeeping_get_ns(); 345 346 /* If arch requires, add in gettimeoffset() */ 347 arch_offset = arch_gettimeoffset(); 348 nsecs_raw += arch_offset; 349 nsecs_real += arch_offset; 350 351 } while (read_seqretry(&timekeeper.lock, seq)); 352 353 timespec_add_ns(ts_raw, nsecs_raw); 354 timespec_add_ns(ts_real, nsecs_real); 355 } 356 EXPORT_SYMBOL(getnstime_raw_and_real); 357 358 #endif /* CONFIG_NTP_PPS */ 359 360 /** 361 * do_gettimeofday - Returns the time of day in a timeval 362 * @tv: pointer to the timeval to be set 363 * 364 * NOTE: Users should be converted to using getnstimeofday() 365 */ 366 void do_gettimeofday(struct timeval *tv) 367 { 368 struct timespec now; 369 370 getnstimeofday(&now); 371 tv->tv_sec = now.tv_sec; 372 tv->tv_usec = now.tv_nsec/1000; 373 } 374 EXPORT_SYMBOL(do_gettimeofday); 375 376 /** 377 * do_settimeofday - Sets the time of day 378 * @tv: pointer to the timespec variable containing the new time 379 * 380 * Sets the time of day to the new time and update NTP and notify hrtimers 381 */ 382 int do_settimeofday(const struct timespec *tv) 383 { 384 struct timespec ts_delta; 385 unsigned long flags; 386 387 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 388 return -EINVAL; 389 390 write_seqlock_irqsave(&timekeeper.lock, flags); 391 392 timekeeping_forward_now(); 393 394 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec; 395 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec; 396 timekeeper.wall_to_monotonic = 397 timespec_sub(timekeeper.wall_to_monotonic, ts_delta); 398 399 timekeeper.xtime = *tv; 400 timekeeping_update(true); 401 402 write_sequnlock_irqrestore(&timekeeper.lock, flags); 403 404 /* signal hrtimers about time change */ 405 clock_was_set(); 406 407 return 0; 408 } 409 EXPORT_SYMBOL(do_settimeofday); 410 411 412 /** 413 * timekeeping_inject_offset - Adds or subtracts from the current time. 414 * @tv: pointer to the timespec variable containing the offset 415 * 416 * Adds or subtracts an offset value from the current time. 417 */ 418 int timekeeping_inject_offset(struct timespec *ts) 419 { 420 unsigned long flags; 421 422 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 423 return -EINVAL; 424 425 write_seqlock_irqsave(&timekeeper.lock, flags); 426 427 timekeeping_forward_now(); 428 429 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts); 430 timekeeper.wall_to_monotonic = 431 timespec_sub(timekeeper.wall_to_monotonic, *ts); 432 433 timekeeping_update(true); 434 435 write_sequnlock_irqrestore(&timekeeper.lock, flags); 436 437 /* signal hrtimers about time change */ 438 clock_was_set(); 439 440 return 0; 441 } 442 EXPORT_SYMBOL(timekeeping_inject_offset); 443 444 /** 445 * change_clocksource - Swaps clocksources if a new one is available 446 * 447 * Accumulates current time interval and initializes new clocksource 448 */ 449 static int change_clocksource(void *data) 450 { 451 struct clocksource *new, *old; 452 unsigned long flags; 453 454 new = (struct clocksource *) data; 455 456 write_seqlock_irqsave(&timekeeper.lock, flags); 457 458 timekeeping_forward_now(); 459 if (!new->enable || new->enable(new) == 0) { 460 old = timekeeper.clock; 461 timekeeper_setup_internals(new); 462 if (old->disable) 463 old->disable(old); 464 } 465 timekeeping_update(true); 466 467 write_sequnlock_irqrestore(&timekeeper.lock, flags); 468 469 return 0; 470 } 471 472 /** 473 * timekeeping_notify - Install a new clock source 474 * @clock: pointer to the clock source 475 * 476 * This function is called from clocksource.c after a new, better clock 477 * source has been registered. The caller holds the clocksource_mutex. 478 */ 479 void timekeeping_notify(struct clocksource *clock) 480 { 481 if (timekeeper.clock == clock) 482 return; 483 stop_machine(change_clocksource, clock, NULL); 484 tick_clock_notify(); 485 } 486 487 /** 488 * ktime_get_real - get the real (wall-) time in ktime_t format 489 * 490 * returns the time in ktime_t format 491 */ 492 ktime_t ktime_get_real(void) 493 { 494 struct timespec now; 495 496 getnstimeofday(&now); 497 498 return timespec_to_ktime(now); 499 } 500 EXPORT_SYMBOL_GPL(ktime_get_real); 501 502 /** 503 * getrawmonotonic - Returns the raw monotonic time in a timespec 504 * @ts: pointer to the timespec to be set 505 * 506 * Returns the raw monotonic time (completely un-modified by ntp) 507 */ 508 void getrawmonotonic(struct timespec *ts) 509 { 510 unsigned long seq; 511 s64 nsecs; 512 513 do { 514 seq = read_seqbegin(&timekeeper.lock); 515 nsecs = timekeeping_get_ns_raw(); 516 *ts = timekeeper.raw_time; 517 518 } while (read_seqretry(&timekeeper.lock, seq)); 519 520 timespec_add_ns(ts, nsecs); 521 } 522 EXPORT_SYMBOL(getrawmonotonic); 523 524 525 /** 526 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 527 */ 528 int timekeeping_valid_for_hres(void) 529 { 530 unsigned long seq; 531 int ret; 532 533 do { 534 seq = read_seqbegin(&timekeeper.lock); 535 536 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 537 538 } while (read_seqretry(&timekeeper.lock, seq)); 539 540 return ret; 541 } 542 543 /** 544 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 545 */ 546 u64 timekeeping_max_deferment(void) 547 { 548 unsigned long seq; 549 u64 ret; 550 do { 551 seq = read_seqbegin(&timekeeper.lock); 552 553 ret = timekeeper.clock->max_idle_ns; 554 555 } while (read_seqretry(&timekeeper.lock, seq)); 556 557 return ret; 558 } 559 560 /** 561 * read_persistent_clock - Return time from the persistent clock. 562 * 563 * Weak dummy function for arches that do not yet support it. 564 * Reads the time from the battery backed persistent clock. 565 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 566 * 567 * XXX - Do be sure to remove it once all arches implement it. 568 */ 569 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 570 { 571 ts->tv_sec = 0; 572 ts->tv_nsec = 0; 573 } 574 575 /** 576 * read_boot_clock - Return time of the system start. 577 * 578 * Weak dummy function for arches that do not yet support it. 579 * Function to read the exact time the system has been started. 580 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 581 * 582 * XXX - Do be sure to remove it once all arches implement it. 583 */ 584 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 585 { 586 ts->tv_sec = 0; 587 ts->tv_nsec = 0; 588 } 589 590 /* 591 * timekeeping_init - Initializes the clocksource and common timekeeping values 592 */ 593 void __init timekeeping_init(void) 594 { 595 struct clocksource *clock; 596 unsigned long flags; 597 struct timespec now, boot; 598 599 read_persistent_clock(&now); 600 read_boot_clock(&boot); 601 602 seqlock_init(&timekeeper.lock); 603 604 ntp_init(); 605 606 write_seqlock_irqsave(&timekeeper.lock, flags); 607 clock = clocksource_default_clock(); 608 if (clock->enable) 609 clock->enable(clock); 610 timekeeper_setup_internals(clock); 611 612 timekeeper.xtime.tv_sec = now.tv_sec; 613 timekeeper.xtime.tv_nsec = now.tv_nsec; 614 timekeeper.raw_time.tv_sec = 0; 615 timekeeper.raw_time.tv_nsec = 0; 616 if (boot.tv_sec == 0 && boot.tv_nsec == 0) { 617 boot.tv_sec = timekeeper.xtime.tv_sec; 618 boot.tv_nsec = timekeeper.xtime.tv_nsec; 619 } 620 set_normalized_timespec(&timekeeper.wall_to_monotonic, 621 -boot.tv_sec, -boot.tv_nsec); 622 update_rt_offset(); 623 timekeeper.total_sleep_time.tv_sec = 0; 624 timekeeper.total_sleep_time.tv_nsec = 0; 625 write_sequnlock_irqrestore(&timekeeper.lock, flags); 626 } 627 628 /* time in seconds when suspend began */ 629 static struct timespec timekeeping_suspend_time; 630 631 static void update_sleep_time(struct timespec t) 632 { 633 timekeeper.total_sleep_time = t; 634 timekeeper.offs_boot = timespec_to_ktime(t); 635 } 636 637 /** 638 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 639 * @delta: pointer to a timespec delta value 640 * 641 * Takes a timespec offset measuring a suspend interval and properly 642 * adds the sleep offset to the timekeeping variables. 643 */ 644 static void __timekeeping_inject_sleeptime(struct timespec *delta) 645 { 646 if (!timespec_valid(delta)) { 647 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 648 "sleep delta value!\n"); 649 return; 650 } 651 652 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta); 653 timekeeper.wall_to_monotonic = 654 timespec_sub(timekeeper.wall_to_monotonic, *delta); 655 update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta)); 656 } 657 658 659 /** 660 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 661 * @delta: pointer to a timespec delta value 662 * 663 * This hook is for architectures that cannot support read_persistent_clock 664 * because their RTC/persistent clock is only accessible when irqs are enabled. 665 * 666 * This function should only be called by rtc_resume(), and allows 667 * a suspend offset to be injected into the timekeeping values. 668 */ 669 void timekeeping_inject_sleeptime(struct timespec *delta) 670 { 671 unsigned long flags; 672 struct timespec ts; 673 674 /* Make sure we don't set the clock twice */ 675 read_persistent_clock(&ts); 676 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) 677 return; 678 679 write_seqlock_irqsave(&timekeeper.lock, flags); 680 681 timekeeping_forward_now(); 682 683 __timekeeping_inject_sleeptime(delta); 684 685 timekeeping_update(true); 686 687 write_sequnlock_irqrestore(&timekeeper.lock, flags); 688 689 /* signal hrtimers about time change */ 690 clock_was_set(); 691 } 692 693 694 /** 695 * timekeeping_resume - Resumes the generic timekeeping subsystem. 696 * 697 * This is for the generic clocksource timekeeping. 698 * xtime/wall_to_monotonic/jiffies/etc are 699 * still managed by arch specific suspend/resume code. 700 */ 701 static void timekeeping_resume(void) 702 { 703 unsigned long flags; 704 struct timespec ts; 705 706 read_persistent_clock(&ts); 707 708 clocksource_resume(); 709 710 write_seqlock_irqsave(&timekeeper.lock, flags); 711 712 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 713 ts = timespec_sub(ts, timekeeping_suspend_time); 714 __timekeeping_inject_sleeptime(&ts); 715 } 716 /* re-base the last cycle value */ 717 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); 718 timekeeper.ntp_error = 0; 719 timekeeping_suspended = 0; 720 write_sequnlock_irqrestore(&timekeeper.lock, flags); 721 722 touch_softlockup_watchdog(); 723 724 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 725 726 /* Resume hrtimers */ 727 hrtimers_resume(); 728 } 729 730 static int timekeeping_suspend(void) 731 { 732 unsigned long flags; 733 struct timespec delta, delta_delta; 734 static struct timespec old_delta; 735 736 read_persistent_clock(&timekeeping_suspend_time); 737 738 write_seqlock_irqsave(&timekeeper.lock, flags); 739 timekeeping_forward_now(); 740 timekeeping_suspended = 1; 741 742 /* 743 * To avoid drift caused by repeated suspend/resumes, 744 * which each can add ~1 second drift error, 745 * try to compensate so the difference in system time 746 * and persistent_clock time stays close to constant. 747 */ 748 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time); 749 delta_delta = timespec_sub(delta, old_delta); 750 if (abs(delta_delta.tv_sec) >= 2) { 751 /* 752 * if delta_delta is too large, assume time correction 753 * has occured and set old_delta to the current delta. 754 */ 755 old_delta = delta; 756 } else { 757 /* Otherwise try to adjust old_system to compensate */ 758 timekeeping_suspend_time = 759 timespec_add(timekeeping_suspend_time, delta_delta); 760 } 761 write_sequnlock_irqrestore(&timekeeper.lock, flags); 762 763 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 764 clocksource_suspend(); 765 766 return 0; 767 } 768 769 /* sysfs resume/suspend bits for timekeeping */ 770 static struct syscore_ops timekeeping_syscore_ops = { 771 .resume = timekeeping_resume, 772 .suspend = timekeeping_suspend, 773 }; 774 775 static int __init timekeeping_init_ops(void) 776 { 777 register_syscore_ops(&timekeeping_syscore_ops); 778 return 0; 779 } 780 781 device_initcall(timekeeping_init_ops); 782 783 /* 784 * If the error is already larger, we look ahead even further 785 * to compensate for late or lost adjustments. 786 */ 787 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, 788 s64 *offset) 789 { 790 s64 tick_error, i; 791 u32 look_ahead, adj; 792 s32 error2, mult; 793 794 /* 795 * Use the current error value to determine how much to look ahead. 796 * The larger the error the slower we adjust for it to avoid problems 797 * with losing too many ticks, otherwise we would overadjust and 798 * produce an even larger error. The smaller the adjustment the 799 * faster we try to adjust for it, as lost ticks can do less harm 800 * here. This is tuned so that an error of about 1 msec is adjusted 801 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 802 */ 803 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 804 error2 = abs(error2); 805 for (look_ahead = 0; error2 > 0; look_ahead++) 806 error2 >>= 2; 807 808 /* 809 * Now calculate the error in (1 << look_ahead) ticks, but first 810 * remove the single look ahead already included in the error. 811 */ 812 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1); 813 tick_error -= timekeeper.xtime_interval >> 1; 814 error = ((error - tick_error) >> look_ahead) + tick_error; 815 816 /* Finally calculate the adjustment shift value. */ 817 i = *interval; 818 mult = 1; 819 if (error < 0) { 820 error = -error; 821 *interval = -*interval; 822 *offset = -*offset; 823 mult = -1; 824 } 825 for (adj = 0; error > i; adj++) 826 error >>= 1; 827 828 *interval <<= adj; 829 *offset <<= adj; 830 return mult << adj; 831 } 832 833 /* 834 * Adjust the multiplier to reduce the error value, 835 * this is optimized for the most common adjustments of -1,0,1, 836 * for other values we can do a bit more work. 837 */ 838 static void timekeeping_adjust(s64 offset) 839 { 840 s64 error, interval = timekeeper.cycle_interval; 841 int adj; 842 843 /* 844 * The point of this is to check if the error is greater than half 845 * an interval. 846 * 847 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 848 * 849 * Note we subtract one in the shift, so that error is really error*2. 850 * This "saves" dividing(shifting) interval twice, but keeps the 851 * (error > interval) comparison as still measuring if error is 852 * larger than half an interval. 853 * 854 * Note: It does not "save" on aggravation when reading the code. 855 */ 856 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 857 if (error > interval) { 858 /* 859 * We now divide error by 4(via shift), which checks if 860 * the error is greater than twice the interval. 861 * If it is greater, we need a bigadjust, if its smaller, 862 * we can adjust by 1. 863 */ 864 error >>= 2; 865 /* 866 * XXX - In update_wall_time, we round up to the next 867 * nanosecond, and store the amount rounded up into 868 * the error. This causes the likely below to be unlikely. 869 * 870 * The proper fix is to avoid rounding up by using 871 * the high precision timekeeper.xtime_nsec instead of 872 * xtime.tv_nsec everywhere. Fixing this will take some 873 * time. 874 */ 875 if (likely(error <= interval)) 876 adj = 1; 877 else 878 adj = timekeeping_bigadjust(error, &interval, &offset); 879 } else if (error < -interval) { 880 /* See comment above, this is just switched for the negative */ 881 error >>= 2; 882 if (likely(error >= -interval)) { 883 adj = -1; 884 interval = -interval; 885 offset = -offset; 886 } else 887 adj = timekeeping_bigadjust(error, &interval, &offset); 888 } else /* No adjustment needed */ 889 return; 890 891 if (unlikely(timekeeper.clock->maxadj && 892 (timekeeper.mult + adj > 893 timekeeper.clock->mult + timekeeper.clock->maxadj))) { 894 printk_once(KERN_WARNING 895 "Adjusting %s more than 11%% (%ld vs %ld)\n", 896 timekeeper.clock->name, (long)timekeeper.mult + adj, 897 (long)timekeeper.clock->mult + 898 timekeeper.clock->maxadj); 899 } 900 /* 901 * So the following can be confusing. 902 * 903 * To keep things simple, lets assume adj == 1 for now. 904 * 905 * When adj != 1, remember that the interval and offset values 906 * have been appropriately scaled so the math is the same. 907 * 908 * The basic idea here is that we're increasing the multiplier 909 * by one, this causes the xtime_interval to be incremented by 910 * one cycle_interval. This is because: 911 * xtime_interval = cycle_interval * mult 912 * So if mult is being incremented by one: 913 * xtime_interval = cycle_interval * (mult + 1) 914 * Its the same as: 915 * xtime_interval = (cycle_interval * mult) + cycle_interval 916 * Which can be shortened to: 917 * xtime_interval += cycle_interval 918 * 919 * So offset stores the non-accumulated cycles. Thus the current 920 * time (in shifted nanoseconds) is: 921 * now = (offset * adj) + xtime_nsec 922 * Now, even though we're adjusting the clock frequency, we have 923 * to keep time consistent. In other words, we can't jump back 924 * in time, and we also want to avoid jumping forward in time. 925 * 926 * So given the same offset value, we need the time to be the same 927 * both before and after the freq adjustment. 928 * now = (offset * adj_1) + xtime_nsec_1 929 * now = (offset * adj_2) + xtime_nsec_2 930 * So: 931 * (offset * adj_1) + xtime_nsec_1 = 932 * (offset * adj_2) + xtime_nsec_2 933 * And we know: 934 * adj_2 = adj_1 + 1 935 * So: 936 * (offset * adj_1) + xtime_nsec_1 = 937 * (offset * (adj_1+1)) + xtime_nsec_2 938 * (offset * adj_1) + xtime_nsec_1 = 939 * (offset * adj_1) + offset + xtime_nsec_2 940 * Canceling the sides: 941 * xtime_nsec_1 = offset + xtime_nsec_2 942 * Which gives us: 943 * xtime_nsec_2 = xtime_nsec_1 - offset 944 * Which simplfies to: 945 * xtime_nsec -= offset 946 * 947 * XXX - TODO: Doc ntp_error calculation. 948 */ 949 timekeeper.mult += adj; 950 timekeeper.xtime_interval += interval; 951 timekeeper.xtime_nsec -= offset; 952 timekeeper.ntp_error -= (interval - offset) << 953 timekeeper.ntp_error_shift; 954 } 955 956 957 /** 958 * logarithmic_accumulation - shifted accumulation of cycles 959 * 960 * This functions accumulates a shifted interval of cycles into 961 * into a shifted interval nanoseconds. Allows for O(log) accumulation 962 * loop. 963 * 964 * Returns the unconsumed cycles. 965 */ 966 static cycle_t logarithmic_accumulation(cycle_t offset, int shift) 967 { 968 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; 969 u64 raw_nsecs; 970 971 /* If the offset is smaller than a shifted interval, do nothing */ 972 if (offset < timekeeper.cycle_interval<<shift) 973 return offset; 974 975 /* Accumulate one shifted interval */ 976 offset -= timekeeper.cycle_interval << shift; 977 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; 978 979 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; 980 while (timekeeper.xtime_nsec >= nsecps) { 981 int leap; 982 timekeeper.xtime_nsec -= nsecps; 983 timekeeper.xtime.tv_sec++; 984 leap = second_overflow(timekeeper.xtime.tv_sec); 985 timekeeper.xtime.tv_sec += leap; 986 timekeeper.wall_to_monotonic.tv_sec -= leap; 987 if (leap) 988 clock_was_set_delayed(); 989 } 990 991 /* Accumulate raw time */ 992 raw_nsecs = timekeeper.raw_interval << shift; 993 raw_nsecs += timekeeper.raw_time.tv_nsec; 994 if (raw_nsecs >= NSEC_PER_SEC) { 995 u64 raw_secs = raw_nsecs; 996 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 997 timekeeper.raw_time.tv_sec += raw_secs; 998 } 999 timekeeper.raw_time.tv_nsec = raw_nsecs; 1000 1001 /* Accumulate error between NTP and clock interval */ 1002 timekeeper.ntp_error += ntp_tick_length() << shift; 1003 timekeeper.ntp_error -= 1004 (timekeeper.xtime_interval + timekeeper.xtime_remainder) << 1005 (timekeeper.ntp_error_shift + shift); 1006 1007 return offset; 1008 } 1009 1010 1011 /** 1012 * update_wall_time - Uses the current clocksource to increment the wall time 1013 * 1014 */ 1015 static void update_wall_time(void) 1016 { 1017 struct clocksource *clock; 1018 cycle_t offset; 1019 int shift = 0, maxshift; 1020 unsigned long flags; 1021 1022 write_seqlock_irqsave(&timekeeper.lock, flags); 1023 1024 /* Make sure we're fully resumed: */ 1025 if (unlikely(timekeeping_suspended)) 1026 goto out; 1027 1028 clock = timekeeper.clock; 1029 1030 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1031 offset = timekeeper.cycle_interval; 1032 #else 1033 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1034 #endif 1035 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec << 1036 timekeeper.shift; 1037 1038 /* 1039 * With NO_HZ we may have to accumulate many cycle_intervals 1040 * (think "ticks") worth of time at once. To do this efficiently, 1041 * we calculate the largest doubling multiple of cycle_intervals 1042 * that is smaller than the offset. We then accumulate that 1043 * chunk in one go, and then try to consume the next smaller 1044 * doubled multiple. 1045 */ 1046 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); 1047 shift = max(0, shift); 1048 /* Bound shift to one less than what overflows tick_length */ 1049 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1050 shift = min(shift, maxshift); 1051 while (offset >= timekeeper.cycle_interval) { 1052 offset = logarithmic_accumulation(offset, shift); 1053 if(offset < timekeeper.cycle_interval<<shift) 1054 shift--; 1055 } 1056 1057 /* correct the clock when NTP error is too big */ 1058 timekeeping_adjust(offset); 1059 1060 /* 1061 * Since in the loop above, we accumulate any amount of time 1062 * in xtime_nsec over a second into xtime.tv_sec, its possible for 1063 * xtime_nsec to be fairly small after the loop. Further, if we're 1064 * slightly speeding the clocksource up in timekeeping_adjust(), 1065 * its possible the required corrective factor to xtime_nsec could 1066 * cause it to underflow. 1067 * 1068 * Now, we cannot simply roll the accumulated second back, since 1069 * the NTP subsystem has been notified via second_overflow. So 1070 * instead we push xtime_nsec forward by the amount we underflowed, 1071 * and add that amount into the error. 1072 * 1073 * We'll correct this error next time through this function, when 1074 * xtime_nsec is not as small. 1075 */ 1076 if (unlikely((s64)timekeeper.xtime_nsec < 0)) { 1077 s64 neg = -(s64)timekeeper.xtime_nsec; 1078 timekeeper.xtime_nsec = 0; 1079 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; 1080 } 1081 1082 1083 /* 1084 * Store full nanoseconds into xtime after rounding it up and 1085 * add the remainder to the error difference. 1086 */ 1087 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >> 1088 timekeeper.shift) + 1; 1089 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec << 1090 timekeeper.shift; 1091 timekeeper.ntp_error += timekeeper.xtime_nsec << 1092 timekeeper.ntp_error_shift; 1093 1094 /* 1095 * Finally, make sure that after the rounding 1096 * xtime.tv_nsec isn't larger than NSEC_PER_SEC 1097 */ 1098 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) { 1099 int leap; 1100 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC; 1101 timekeeper.xtime.tv_sec++; 1102 leap = second_overflow(timekeeper.xtime.tv_sec); 1103 timekeeper.xtime.tv_sec += leap; 1104 timekeeper.wall_to_monotonic.tv_sec -= leap; 1105 if (leap) 1106 clock_was_set_delayed(); 1107 } 1108 1109 timekeeping_update(false); 1110 1111 out: 1112 write_sequnlock_irqrestore(&timekeeper.lock, flags); 1113 1114 } 1115 1116 /** 1117 * getboottime - Return the real time of system boot. 1118 * @ts: pointer to the timespec to be set 1119 * 1120 * Returns the wall-time of boot in a timespec. 1121 * 1122 * This is based on the wall_to_monotonic offset and the total suspend 1123 * time. Calls to settimeofday will affect the value returned (which 1124 * basically means that however wrong your real time clock is at boot time, 1125 * you get the right time here). 1126 */ 1127 void getboottime(struct timespec *ts) 1128 { 1129 struct timespec boottime = { 1130 .tv_sec = timekeeper.wall_to_monotonic.tv_sec + 1131 timekeeper.total_sleep_time.tv_sec, 1132 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec + 1133 timekeeper.total_sleep_time.tv_nsec 1134 }; 1135 1136 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1137 } 1138 EXPORT_SYMBOL_GPL(getboottime); 1139 1140 1141 /** 1142 * get_monotonic_boottime - Returns monotonic time since boot 1143 * @ts: pointer to the timespec to be set 1144 * 1145 * Returns the monotonic time since boot in a timespec. 1146 * 1147 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1148 * includes the time spent in suspend. 1149 */ 1150 void get_monotonic_boottime(struct timespec *ts) 1151 { 1152 struct timespec tomono, sleep; 1153 unsigned int seq; 1154 s64 nsecs; 1155 1156 WARN_ON(timekeeping_suspended); 1157 1158 do { 1159 seq = read_seqbegin(&timekeeper.lock); 1160 *ts = timekeeper.xtime; 1161 tomono = timekeeper.wall_to_monotonic; 1162 sleep = timekeeper.total_sleep_time; 1163 nsecs = timekeeping_get_ns(); 1164 1165 } while (read_seqretry(&timekeeper.lock, seq)); 1166 1167 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, 1168 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs); 1169 } 1170 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1171 1172 /** 1173 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1174 * 1175 * Returns the monotonic time since boot in a ktime 1176 * 1177 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1178 * includes the time spent in suspend. 1179 */ 1180 ktime_t ktime_get_boottime(void) 1181 { 1182 struct timespec ts; 1183 1184 get_monotonic_boottime(&ts); 1185 return timespec_to_ktime(ts); 1186 } 1187 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1188 1189 /** 1190 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1191 * @ts: pointer to the timespec to be converted 1192 */ 1193 void monotonic_to_bootbased(struct timespec *ts) 1194 { 1195 *ts = timespec_add(*ts, timekeeper.total_sleep_time); 1196 } 1197 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1198 1199 unsigned long get_seconds(void) 1200 { 1201 return timekeeper.xtime.tv_sec; 1202 } 1203 EXPORT_SYMBOL(get_seconds); 1204 1205 struct timespec __current_kernel_time(void) 1206 { 1207 return timekeeper.xtime; 1208 } 1209 1210 struct timespec current_kernel_time(void) 1211 { 1212 struct timespec now; 1213 unsigned long seq; 1214 1215 do { 1216 seq = read_seqbegin(&timekeeper.lock); 1217 1218 now = timekeeper.xtime; 1219 } while (read_seqretry(&timekeeper.lock, seq)); 1220 1221 return now; 1222 } 1223 EXPORT_SYMBOL(current_kernel_time); 1224 1225 struct timespec get_monotonic_coarse(void) 1226 { 1227 struct timespec now, mono; 1228 unsigned long seq; 1229 1230 do { 1231 seq = read_seqbegin(&timekeeper.lock); 1232 1233 now = timekeeper.xtime; 1234 mono = timekeeper.wall_to_monotonic; 1235 } while (read_seqretry(&timekeeper.lock, seq)); 1236 1237 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1238 now.tv_nsec + mono.tv_nsec); 1239 return now; 1240 } 1241 1242 /* 1243 * The 64-bit jiffies value is not atomic - you MUST NOT read it 1244 * without sampling the sequence number in xtime_lock. 1245 * jiffies is defined in the linker script... 1246 */ 1247 void do_timer(unsigned long ticks) 1248 { 1249 jiffies_64 += ticks; 1250 update_wall_time(); 1251 calc_global_load(ticks); 1252 } 1253 1254 /** 1255 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1256 * and sleep offsets. 1257 * @xtim: pointer to timespec to be set with xtime 1258 * @wtom: pointer to timespec to be set with wall_to_monotonic 1259 * @sleep: pointer to timespec to be set with time in suspend 1260 */ 1261 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1262 struct timespec *wtom, struct timespec *sleep) 1263 { 1264 unsigned long seq; 1265 1266 do { 1267 seq = read_seqbegin(&timekeeper.lock); 1268 *xtim = timekeeper.xtime; 1269 *wtom = timekeeper.wall_to_monotonic; 1270 *sleep = timekeeper.total_sleep_time; 1271 } while (read_seqretry(&timekeeper.lock, seq)); 1272 } 1273 1274 #ifdef CONFIG_HIGH_RES_TIMERS 1275 /** 1276 * ktime_get_update_offsets - hrtimer helper 1277 * @offs_real: pointer to storage for monotonic -> realtime offset 1278 * @offs_boot: pointer to storage for monotonic -> boottime offset 1279 * 1280 * Returns current monotonic time and updates the offsets 1281 * Called from hrtimer_interupt() or retrigger_next_event() 1282 */ 1283 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot) 1284 { 1285 ktime_t now; 1286 unsigned int seq; 1287 u64 secs, nsecs; 1288 1289 do { 1290 seq = read_seqbegin(&timekeeper.lock); 1291 1292 secs = timekeeper.xtime.tv_sec; 1293 nsecs = timekeeper.xtime.tv_nsec; 1294 nsecs += timekeeping_get_ns(); 1295 /* If arch requires, add in gettimeoffset() */ 1296 nsecs += arch_gettimeoffset(); 1297 1298 *offs_real = timekeeper.offs_real; 1299 *offs_boot = timekeeper.offs_boot; 1300 } while (read_seqretry(&timekeeper.lock, seq)); 1301 1302 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1303 now = ktime_sub(now, *offs_real); 1304 return now; 1305 } 1306 #endif 1307 1308 /** 1309 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1310 */ 1311 ktime_t ktime_get_monotonic_offset(void) 1312 { 1313 unsigned long seq; 1314 struct timespec wtom; 1315 1316 do { 1317 seq = read_seqbegin(&timekeeper.lock); 1318 wtom = timekeeper.wall_to_monotonic; 1319 } while (read_seqretry(&timekeeper.lock, seq)); 1320 1321 return timespec_to_ktime(wtom); 1322 } 1323 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1324 1325 1326 /** 1327 * xtime_update() - advances the timekeeping infrastructure 1328 * @ticks: number of ticks, that have elapsed since the last call. 1329 * 1330 * Must be called with interrupts disabled. 1331 */ 1332 void xtime_update(unsigned long ticks) 1333 { 1334 write_seqlock(&xtime_lock); 1335 do_timer(ticks); 1336 write_sequnlock(&xtime_lock); 1337 } 1338