xref: /linux/kernel/time/timekeeping.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* NTP adjusted clock multiplier */
29 	u32	mult;
30 	/* The shift value of the current clocksource. */
31 	int	shift;
32 
33 	/* Number of clock cycles in one NTP interval. */
34 	cycle_t cycle_interval;
35 	/* Number of clock shifted nano seconds in one NTP interval. */
36 	u64	xtime_interval;
37 	/* shifted nano seconds left over when rounding cycle_interval */
38 	s64	xtime_remainder;
39 	/* Raw nano seconds accumulated per NTP interval. */
40 	u32	raw_interval;
41 
42 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 	u64	xtime_nsec;
44 	/* Difference between accumulated time and NTP time in ntp
45 	 * shifted nano seconds. */
46 	s64	ntp_error;
47 	/* Shift conversion between clock shifted nano seconds and
48 	 * ntp shifted nano seconds. */
49 	int	ntp_error_shift;
50 
51 	/* The current time */
52 	struct timespec xtime;
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec wall_to_monotonic;
68 	/* time spent in suspend */
69 	struct timespec total_sleep_time;
70 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 	struct timespec raw_time;
72 
73 	/* Offset clock monotonic -> clock realtime */
74 	ktime_t offs_real;
75 
76 	/* Offset clock monotonic -> clock boottime */
77 	ktime_t offs_boot;
78 
79 	/* Seqlock for all timekeeper values */
80 	seqlock_t lock;
81 };
82 
83 static struct timekeeper timekeeper;
84 
85 /*
86  * This read-write spinlock protects us from races in SMP while
87  * playing with xtime.
88  */
89 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
90 
91 
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94 
95 
96 
97 /**
98  * timekeeper_setup_internals - Set up internals to use clocksource clock.
99  *
100  * @clock:		Pointer to clocksource.
101  *
102  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
103  * pair and interval request.
104  *
105  * Unless you're the timekeeping code, you should not be using this!
106  */
107 static void timekeeper_setup_internals(struct clocksource *clock)
108 {
109 	cycle_t interval;
110 	u64 tmp, ntpinterval;
111 
112 	timekeeper.clock = clock;
113 	clock->cycle_last = clock->read(clock);
114 
115 	/* Do the ns -> cycle conversion first, using original mult */
116 	tmp = NTP_INTERVAL_LENGTH;
117 	tmp <<= clock->shift;
118 	ntpinterval = tmp;
119 	tmp += clock->mult/2;
120 	do_div(tmp, clock->mult);
121 	if (tmp == 0)
122 		tmp = 1;
123 
124 	interval = (cycle_t) tmp;
125 	timekeeper.cycle_interval = interval;
126 
127 	/* Go back from cycles -> shifted ns */
128 	timekeeper.xtime_interval = (u64) interval * clock->mult;
129 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
130 	timekeeper.raw_interval =
131 		((u64) interval * clock->mult) >> clock->shift;
132 
133 	timekeeper.xtime_nsec = 0;
134 	timekeeper.shift = clock->shift;
135 
136 	timekeeper.ntp_error = 0;
137 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
138 
139 	/*
140 	 * The timekeeper keeps its own mult values for the currently
141 	 * active clocksource. These value will be adjusted via NTP
142 	 * to counteract clock drifting.
143 	 */
144 	timekeeper.mult = clock->mult;
145 }
146 
147 /* Timekeeper helper functions. */
148 static inline s64 timekeeping_get_ns(void)
149 {
150 	cycle_t cycle_now, cycle_delta;
151 	struct clocksource *clock;
152 
153 	/* read clocksource: */
154 	clock = timekeeper.clock;
155 	cycle_now = clock->read(clock);
156 
157 	/* calculate the delta since the last update_wall_time: */
158 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
159 
160 	/* return delta convert to nanoseconds using ntp adjusted mult. */
161 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
162 				  timekeeper.shift);
163 }
164 
165 static inline s64 timekeeping_get_ns_raw(void)
166 {
167 	cycle_t cycle_now, cycle_delta;
168 	struct clocksource *clock;
169 
170 	/* read clocksource: */
171 	clock = timekeeper.clock;
172 	cycle_now = clock->read(clock);
173 
174 	/* calculate the delta since the last update_wall_time: */
175 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
176 
177 	/* return delta convert to nanoseconds. */
178 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
179 }
180 
181 static void update_rt_offset(void)
182 {
183 	struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;
184 
185 	set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
186 	timekeeper.offs_real = timespec_to_ktime(tmp);
187 }
188 
189 /* must hold write on timekeeper.lock */
190 static void timekeeping_update(bool clearntp)
191 {
192 	if (clearntp) {
193 		timekeeper.ntp_error = 0;
194 		ntp_clear();
195 	}
196 	update_rt_offset();
197 	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
198 			 timekeeper.clock, timekeeper.mult);
199 }
200 
201 
202 /**
203  * timekeeping_forward_now - update clock to the current time
204  *
205  * Forward the current clock to update its state since the last call to
206  * update_wall_time(). This is useful before significant clock changes,
207  * as it avoids having to deal with this time offset explicitly.
208  */
209 static void timekeeping_forward_now(void)
210 {
211 	cycle_t cycle_now, cycle_delta;
212 	struct clocksource *clock;
213 	s64 nsec;
214 
215 	clock = timekeeper.clock;
216 	cycle_now = clock->read(clock);
217 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
218 	clock->cycle_last = cycle_now;
219 
220 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
221 				  timekeeper.shift);
222 
223 	/* If arch requires, add in gettimeoffset() */
224 	nsec += arch_gettimeoffset();
225 
226 	timespec_add_ns(&timekeeper.xtime, nsec);
227 
228 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
229 	timespec_add_ns(&timekeeper.raw_time, nsec);
230 }
231 
232 /**
233  * getnstimeofday - Returns the time of day in a timespec
234  * @ts:		pointer to the timespec to be set
235  *
236  * Returns the time of day in a timespec.
237  */
238 void getnstimeofday(struct timespec *ts)
239 {
240 	unsigned long seq;
241 	s64 nsecs;
242 
243 	WARN_ON(timekeeping_suspended);
244 
245 	do {
246 		seq = read_seqbegin(&timekeeper.lock);
247 
248 		*ts = timekeeper.xtime;
249 		nsecs = timekeeping_get_ns();
250 
251 		/* If arch requires, add in gettimeoffset() */
252 		nsecs += arch_gettimeoffset();
253 
254 	} while (read_seqretry(&timekeeper.lock, seq));
255 
256 	timespec_add_ns(ts, nsecs);
257 }
258 EXPORT_SYMBOL(getnstimeofday);
259 
260 ktime_t ktime_get(void)
261 {
262 	unsigned int seq;
263 	s64 secs, nsecs;
264 
265 	WARN_ON(timekeeping_suspended);
266 
267 	do {
268 		seq = read_seqbegin(&timekeeper.lock);
269 		secs = timekeeper.xtime.tv_sec +
270 				timekeeper.wall_to_monotonic.tv_sec;
271 		nsecs = timekeeper.xtime.tv_nsec +
272 				timekeeper.wall_to_monotonic.tv_nsec;
273 		nsecs += timekeeping_get_ns();
274 		/* If arch requires, add in gettimeoffset() */
275 		nsecs += arch_gettimeoffset();
276 
277 	} while (read_seqretry(&timekeeper.lock, seq));
278 	/*
279 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
280 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
281 	 */
282 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
283 }
284 EXPORT_SYMBOL_GPL(ktime_get);
285 
286 /**
287  * ktime_get_ts - get the monotonic clock in timespec format
288  * @ts:		pointer to timespec variable
289  *
290  * The function calculates the monotonic clock from the realtime
291  * clock and the wall_to_monotonic offset and stores the result
292  * in normalized timespec format in the variable pointed to by @ts.
293  */
294 void ktime_get_ts(struct timespec *ts)
295 {
296 	struct timespec tomono;
297 	unsigned int seq;
298 	s64 nsecs;
299 
300 	WARN_ON(timekeeping_suspended);
301 
302 	do {
303 		seq = read_seqbegin(&timekeeper.lock);
304 		*ts = timekeeper.xtime;
305 		tomono = timekeeper.wall_to_monotonic;
306 		nsecs = timekeeping_get_ns();
307 		/* If arch requires, add in gettimeoffset() */
308 		nsecs += arch_gettimeoffset();
309 
310 	} while (read_seqretry(&timekeeper.lock, seq));
311 
312 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
313 				ts->tv_nsec + tomono.tv_nsec + nsecs);
314 }
315 EXPORT_SYMBOL_GPL(ktime_get_ts);
316 
317 #ifdef CONFIG_NTP_PPS
318 
319 /**
320  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
321  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
322  * @ts_real:	pointer to the timespec to be set to the time of day
323  *
324  * This function reads both the time of day and raw monotonic time at the
325  * same time atomically and stores the resulting timestamps in timespec
326  * format.
327  */
328 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
329 {
330 	unsigned long seq;
331 	s64 nsecs_raw, nsecs_real;
332 
333 	WARN_ON_ONCE(timekeeping_suspended);
334 
335 	do {
336 		u32 arch_offset;
337 
338 		seq = read_seqbegin(&timekeeper.lock);
339 
340 		*ts_raw = timekeeper.raw_time;
341 		*ts_real = timekeeper.xtime;
342 
343 		nsecs_raw = timekeeping_get_ns_raw();
344 		nsecs_real = timekeeping_get_ns();
345 
346 		/* If arch requires, add in gettimeoffset() */
347 		arch_offset = arch_gettimeoffset();
348 		nsecs_raw += arch_offset;
349 		nsecs_real += arch_offset;
350 
351 	} while (read_seqretry(&timekeeper.lock, seq));
352 
353 	timespec_add_ns(ts_raw, nsecs_raw);
354 	timespec_add_ns(ts_real, nsecs_real);
355 }
356 EXPORT_SYMBOL(getnstime_raw_and_real);
357 
358 #endif /* CONFIG_NTP_PPS */
359 
360 /**
361  * do_gettimeofday - Returns the time of day in a timeval
362  * @tv:		pointer to the timeval to be set
363  *
364  * NOTE: Users should be converted to using getnstimeofday()
365  */
366 void do_gettimeofday(struct timeval *tv)
367 {
368 	struct timespec now;
369 
370 	getnstimeofday(&now);
371 	tv->tv_sec = now.tv_sec;
372 	tv->tv_usec = now.tv_nsec/1000;
373 }
374 EXPORT_SYMBOL(do_gettimeofday);
375 
376 /**
377  * do_settimeofday - Sets the time of day
378  * @tv:		pointer to the timespec variable containing the new time
379  *
380  * Sets the time of day to the new time and update NTP and notify hrtimers
381  */
382 int do_settimeofday(const struct timespec *tv)
383 {
384 	struct timespec ts_delta;
385 	unsigned long flags;
386 
387 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
388 		return -EINVAL;
389 
390 	write_seqlock_irqsave(&timekeeper.lock, flags);
391 
392 	timekeeping_forward_now();
393 
394 	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
395 	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
396 	timekeeper.wall_to_monotonic =
397 			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
398 
399 	timekeeper.xtime = *tv;
400 	timekeeping_update(true);
401 
402 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
403 
404 	/* signal hrtimers about time change */
405 	clock_was_set();
406 
407 	return 0;
408 }
409 EXPORT_SYMBOL(do_settimeofday);
410 
411 
412 /**
413  * timekeeping_inject_offset - Adds or subtracts from the current time.
414  * @tv:		pointer to the timespec variable containing the offset
415  *
416  * Adds or subtracts an offset value from the current time.
417  */
418 int timekeeping_inject_offset(struct timespec *ts)
419 {
420 	unsigned long flags;
421 
422 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
423 		return -EINVAL;
424 
425 	write_seqlock_irqsave(&timekeeper.lock, flags);
426 
427 	timekeeping_forward_now();
428 
429 	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
430 	timekeeper.wall_to_monotonic =
431 				timespec_sub(timekeeper.wall_to_monotonic, *ts);
432 
433 	timekeeping_update(true);
434 
435 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
436 
437 	/* signal hrtimers about time change */
438 	clock_was_set();
439 
440 	return 0;
441 }
442 EXPORT_SYMBOL(timekeeping_inject_offset);
443 
444 /**
445  * change_clocksource - Swaps clocksources if a new one is available
446  *
447  * Accumulates current time interval and initializes new clocksource
448  */
449 static int change_clocksource(void *data)
450 {
451 	struct clocksource *new, *old;
452 	unsigned long flags;
453 
454 	new = (struct clocksource *) data;
455 
456 	write_seqlock_irqsave(&timekeeper.lock, flags);
457 
458 	timekeeping_forward_now();
459 	if (!new->enable || new->enable(new) == 0) {
460 		old = timekeeper.clock;
461 		timekeeper_setup_internals(new);
462 		if (old->disable)
463 			old->disable(old);
464 	}
465 	timekeeping_update(true);
466 
467 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
468 
469 	return 0;
470 }
471 
472 /**
473  * timekeeping_notify - Install a new clock source
474  * @clock:		pointer to the clock source
475  *
476  * This function is called from clocksource.c after a new, better clock
477  * source has been registered. The caller holds the clocksource_mutex.
478  */
479 void timekeeping_notify(struct clocksource *clock)
480 {
481 	if (timekeeper.clock == clock)
482 		return;
483 	stop_machine(change_clocksource, clock, NULL);
484 	tick_clock_notify();
485 }
486 
487 /**
488  * ktime_get_real - get the real (wall-) time in ktime_t format
489  *
490  * returns the time in ktime_t format
491  */
492 ktime_t ktime_get_real(void)
493 {
494 	struct timespec now;
495 
496 	getnstimeofday(&now);
497 
498 	return timespec_to_ktime(now);
499 }
500 EXPORT_SYMBOL_GPL(ktime_get_real);
501 
502 /**
503  * getrawmonotonic - Returns the raw monotonic time in a timespec
504  * @ts:		pointer to the timespec to be set
505  *
506  * Returns the raw monotonic time (completely un-modified by ntp)
507  */
508 void getrawmonotonic(struct timespec *ts)
509 {
510 	unsigned long seq;
511 	s64 nsecs;
512 
513 	do {
514 		seq = read_seqbegin(&timekeeper.lock);
515 		nsecs = timekeeping_get_ns_raw();
516 		*ts = timekeeper.raw_time;
517 
518 	} while (read_seqretry(&timekeeper.lock, seq));
519 
520 	timespec_add_ns(ts, nsecs);
521 }
522 EXPORT_SYMBOL(getrawmonotonic);
523 
524 
525 /**
526  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
527  */
528 int timekeeping_valid_for_hres(void)
529 {
530 	unsigned long seq;
531 	int ret;
532 
533 	do {
534 		seq = read_seqbegin(&timekeeper.lock);
535 
536 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
537 
538 	} while (read_seqretry(&timekeeper.lock, seq));
539 
540 	return ret;
541 }
542 
543 /**
544  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
545  */
546 u64 timekeeping_max_deferment(void)
547 {
548 	unsigned long seq;
549 	u64 ret;
550 	do {
551 		seq = read_seqbegin(&timekeeper.lock);
552 
553 		ret = timekeeper.clock->max_idle_ns;
554 
555 	} while (read_seqretry(&timekeeper.lock, seq));
556 
557 	return ret;
558 }
559 
560 /**
561  * read_persistent_clock -  Return time from the persistent clock.
562  *
563  * Weak dummy function for arches that do not yet support it.
564  * Reads the time from the battery backed persistent clock.
565  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
566  *
567  *  XXX - Do be sure to remove it once all arches implement it.
568  */
569 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
570 {
571 	ts->tv_sec = 0;
572 	ts->tv_nsec = 0;
573 }
574 
575 /**
576  * read_boot_clock -  Return time of the system start.
577  *
578  * Weak dummy function for arches that do not yet support it.
579  * Function to read the exact time the system has been started.
580  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
581  *
582  *  XXX - Do be sure to remove it once all arches implement it.
583  */
584 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
585 {
586 	ts->tv_sec = 0;
587 	ts->tv_nsec = 0;
588 }
589 
590 /*
591  * timekeeping_init - Initializes the clocksource and common timekeeping values
592  */
593 void __init timekeeping_init(void)
594 {
595 	struct clocksource *clock;
596 	unsigned long flags;
597 	struct timespec now, boot;
598 
599 	read_persistent_clock(&now);
600 	read_boot_clock(&boot);
601 
602 	seqlock_init(&timekeeper.lock);
603 
604 	ntp_init();
605 
606 	write_seqlock_irqsave(&timekeeper.lock, flags);
607 	clock = clocksource_default_clock();
608 	if (clock->enable)
609 		clock->enable(clock);
610 	timekeeper_setup_internals(clock);
611 
612 	timekeeper.xtime.tv_sec = now.tv_sec;
613 	timekeeper.xtime.tv_nsec = now.tv_nsec;
614 	timekeeper.raw_time.tv_sec = 0;
615 	timekeeper.raw_time.tv_nsec = 0;
616 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
617 		boot.tv_sec = timekeeper.xtime.tv_sec;
618 		boot.tv_nsec = timekeeper.xtime.tv_nsec;
619 	}
620 	set_normalized_timespec(&timekeeper.wall_to_monotonic,
621 				-boot.tv_sec, -boot.tv_nsec);
622 	update_rt_offset();
623 	timekeeper.total_sleep_time.tv_sec = 0;
624 	timekeeper.total_sleep_time.tv_nsec = 0;
625 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
626 }
627 
628 /* time in seconds when suspend began */
629 static struct timespec timekeeping_suspend_time;
630 
631 static void update_sleep_time(struct timespec t)
632 {
633 	timekeeper.total_sleep_time = t;
634 	timekeeper.offs_boot = timespec_to_ktime(t);
635 }
636 
637 /**
638  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
639  * @delta: pointer to a timespec delta value
640  *
641  * Takes a timespec offset measuring a suspend interval and properly
642  * adds the sleep offset to the timekeeping variables.
643  */
644 static void __timekeeping_inject_sleeptime(struct timespec *delta)
645 {
646 	if (!timespec_valid(delta)) {
647 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
648 					"sleep delta value!\n");
649 		return;
650 	}
651 
652 	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
653 	timekeeper.wall_to_monotonic =
654 			timespec_sub(timekeeper.wall_to_monotonic, *delta);
655 	update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
656 }
657 
658 
659 /**
660  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
661  * @delta: pointer to a timespec delta value
662  *
663  * This hook is for architectures that cannot support read_persistent_clock
664  * because their RTC/persistent clock is only accessible when irqs are enabled.
665  *
666  * This function should only be called by rtc_resume(), and allows
667  * a suspend offset to be injected into the timekeeping values.
668  */
669 void timekeeping_inject_sleeptime(struct timespec *delta)
670 {
671 	unsigned long flags;
672 	struct timespec ts;
673 
674 	/* Make sure we don't set the clock twice */
675 	read_persistent_clock(&ts);
676 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
677 		return;
678 
679 	write_seqlock_irqsave(&timekeeper.lock, flags);
680 
681 	timekeeping_forward_now();
682 
683 	__timekeeping_inject_sleeptime(delta);
684 
685 	timekeeping_update(true);
686 
687 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
688 
689 	/* signal hrtimers about time change */
690 	clock_was_set();
691 }
692 
693 
694 /**
695  * timekeeping_resume - Resumes the generic timekeeping subsystem.
696  *
697  * This is for the generic clocksource timekeeping.
698  * xtime/wall_to_monotonic/jiffies/etc are
699  * still managed by arch specific suspend/resume code.
700  */
701 static void timekeeping_resume(void)
702 {
703 	unsigned long flags;
704 	struct timespec ts;
705 
706 	read_persistent_clock(&ts);
707 
708 	clocksource_resume();
709 
710 	write_seqlock_irqsave(&timekeeper.lock, flags);
711 
712 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
713 		ts = timespec_sub(ts, timekeeping_suspend_time);
714 		__timekeeping_inject_sleeptime(&ts);
715 	}
716 	/* re-base the last cycle value */
717 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
718 	timekeeper.ntp_error = 0;
719 	timekeeping_suspended = 0;
720 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
721 
722 	touch_softlockup_watchdog();
723 
724 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
725 
726 	/* Resume hrtimers */
727 	hrtimers_resume();
728 }
729 
730 static int timekeeping_suspend(void)
731 {
732 	unsigned long flags;
733 	struct timespec		delta, delta_delta;
734 	static struct timespec	old_delta;
735 
736 	read_persistent_clock(&timekeeping_suspend_time);
737 
738 	write_seqlock_irqsave(&timekeeper.lock, flags);
739 	timekeeping_forward_now();
740 	timekeeping_suspended = 1;
741 
742 	/*
743 	 * To avoid drift caused by repeated suspend/resumes,
744 	 * which each can add ~1 second drift error,
745 	 * try to compensate so the difference in system time
746 	 * and persistent_clock time stays close to constant.
747 	 */
748 	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
749 	delta_delta = timespec_sub(delta, old_delta);
750 	if (abs(delta_delta.tv_sec)  >= 2) {
751 		/*
752 		 * if delta_delta is too large, assume time correction
753 		 * has occured and set old_delta to the current delta.
754 		 */
755 		old_delta = delta;
756 	} else {
757 		/* Otherwise try to adjust old_system to compensate */
758 		timekeeping_suspend_time =
759 			timespec_add(timekeeping_suspend_time, delta_delta);
760 	}
761 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
762 
763 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
764 	clocksource_suspend();
765 
766 	return 0;
767 }
768 
769 /* sysfs resume/suspend bits for timekeeping */
770 static struct syscore_ops timekeeping_syscore_ops = {
771 	.resume		= timekeeping_resume,
772 	.suspend	= timekeeping_suspend,
773 };
774 
775 static int __init timekeeping_init_ops(void)
776 {
777 	register_syscore_ops(&timekeeping_syscore_ops);
778 	return 0;
779 }
780 
781 device_initcall(timekeeping_init_ops);
782 
783 /*
784  * If the error is already larger, we look ahead even further
785  * to compensate for late or lost adjustments.
786  */
787 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
788 						 s64 *offset)
789 {
790 	s64 tick_error, i;
791 	u32 look_ahead, adj;
792 	s32 error2, mult;
793 
794 	/*
795 	 * Use the current error value to determine how much to look ahead.
796 	 * The larger the error the slower we adjust for it to avoid problems
797 	 * with losing too many ticks, otherwise we would overadjust and
798 	 * produce an even larger error.  The smaller the adjustment the
799 	 * faster we try to adjust for it, as lost ticks can do less harm
800 	 * here.  This is tuned so that an error of about 1 msec is adjusted
801 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
802 	 */
803 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
804 	error2 = abs(error2);
805 	for (look_ahead = 0; error2 > 0; look_ahead++)
806 		error2 >>= 2;
807 
808 	/*
809 	 * Now calculate the error in (1 << look_ahead) ticks, but first
810 	 * remove the single look ahead already included in the error.
811 	 */
812 	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
813 	tick_error -= timekeeper.xtime_interval >> 1;
814 	error = ((error - tick_error) >> look_ahead) + tick_error;
815 
816 	/* Finally calculate the adjustment shift value.  */
817 	i = *interval;
818 	mult = 1;
819 	if (error < 0) {
820 		error = -error;
821 		*interval = -*interval;
822 		*offset = -*offset;
823 		mult = -1;
824 	}
825 	for (adj = 0; error > i; adj++)
826 		error >>= 1;
827 
828 	*interval <<= adj;
829 	*offset <<= adj;
830 	return mult << adj;
831 }
832 
833 /*
834  * Adjust the multiplier to reduce the error value,
835  * this is optimized for the most common adjustments of -1,0,1,
836  * for other values we can do a bit more work.
837  */
838 static void timekeeping_adjust(s64 offset)
839 {
840 	s64 error, interval = timekeeper.cycle_interval;
841 	int adj;
842 
843 	/*
844 	 * The point of this is to check if the error is greater than half
845 	 * an interval.
846 	 *
847 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
848 	 *
849 	 * Note we subtract one in the shift, so that error is really error*2.
850 	 * This "saves" dividing(shifting) interval twice, but keeps the
851 	 * (error > interval) comparison as still measuring if error is
852 	 * larger than half an interval.
853 	 *
854 	 * Note: It does not "save" on aggravation when reading the code.
855 	 */
856 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
857 	if (error > interval) {
858 		/*
859 		 * We now divide error by 4(via shift), which checks if
860 		 * the error is greater than twice the interval.
861 		 * If it is greater, we need a bigadjust, if its smaller,
862 		 * we can adjust by 1.
863 		 */
864 		error >>= 2;
865 		/*
866 		 * XXX - In update_wall_time, we round up to the next
867 		 * nanosecond, and store the amount rounded up into
868 		 * the error. This causes the likely below to be unlikely.
869 		 *
870 		 * The proper fix is to avoid rounding up by using
871 		 * the high precision timekeeper.xtime_nsec instead of
872 		 * xtime.tv_nsec everywhere. Fixing this will take some
873 		 * time.
874 		 */
875 		if (likely(error <= interval))
876 			adj = 1;
877 		else
878 			adj = timekeeping_bigadjust(error, &interval, &offset);
879 	} else if (error < -interval) {
880 		/* See comment above, this is just switched for the negative */
881 		error >>= 2;
882 		if (likely(error >= -interval)) {
883 			adj = -1;
884 			interval = -interval;
885 			offset = -offset;
886 		} else
887 			adj = timekeeping_bigadjust(error, &interval, &offset);
888 	} else /* No adjustment needed */
889 		return;
890 
891 	if (unlikely(timekeeper.clock->maxadj &&
892 			(timekeeper.mult + adj >
893 			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
894 		printk_once(KERN_WARNING
895 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
896 			timekeeper.clock->name, (long)timekeeper.mult + adj,
897 			(long)timekeeper.clock->mult +
898 				timekeeper.clock->maxadj);
899 	}
900 	/*
901 	 * So the following can be confusing.
902 	 *
903 	 * To keep things simple, lets assume adj == 1 for now.
904 	 *
905 	 * When adj != 1, remember that the interval and offset values
906 	 * have been appropriately scaled so the math is the same.
907 	 *
908 	 * The basic idea here is that we're increasing the multiplier
909 	 * by one, this causes the xtime_interval to be incremented by
910 	 * one cycle_interval. This is because:
911 	 *	xtime_interval = cycle_interval * mult
912 	 * So if mult is being incremented by one:
913 	 *	xtime_interval = cycle_interval * (mult + 1)
914 	 * Its the same as:
915 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
916 	 * Which can be shortened to:
917 	 *	xtime_interval += cycle_interval
918 	 *
919 	 * So offset stores the non-accumulated cycles. Thus the current
920 	 * time (in shifted nanoseconds) is:
921 	 *	now = (offset * adj) + xtime_nsec
922 	 * Now, even though we're adjusting the clock frequency, we have
923 	 * to keep time consistent. In other words, we can't jump back
924 	 * in time, and we also want to avoid jumping forward in time.
925 	 *
926 	 * So given the same offset value, we need the time to be the same
927 	 * both before and after the freq adjustment.
928 	 *	now = (offset * adj_1) + xtime_nsec_1
929 	 *	now = (offset * adj_2) + xtime_nsec_2
930 	 * So:
931 	 *	(offset * adj_1) + xtime_nsec_1 =
932 	 *		(offset * adj_2) + xtime_nsec_2
933 	 * And we know:
934 	 *	adj_2 = adj_1 + 1
935 	 * So:
936 	 *	(offset * adj_1) + xtime_nsec_1 =
937 	 *		(offset * (adj_1+1)) + xtime_nsec_2
938 	 *	(offset * adj_1) + xtime_nsec_1 =
939 	 *		(offset * adj_1) + offset + xtime_nsec_2
940 	 * Canceling the sides:
941 	 *	xtime_nsec_1 = offset + xtime_nsec_2
942 	 * Which gives us:
943 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
944 	 * Which simplfies to:
945 	 *	xtime_nsec -= offset
946 	 *
947 	 * XXX - TODO: Doc ntp_error calculation.
948 	 */
949 	timekeeper.mult += adj;
950 	timekeeper.xtime_interval += interval;
951 	timekeeper.xtime_nsec -= offset;
952 	timekeeper.ntp_error -= (interval - offset) <<
953 				timekeeper.ntp_error_shift;
954 }
955 
956 
957 /**
958  * logarithmic_accumulation - shifted accumulation of cycles
959  *
960  * This functions accumulates a shifted interval of cycles into
961  * into a shifted interval nanoseconds. Allows for O(log) accumulation
962  * loop.
963  *
964  * Returns the unconsumed cycles.
965  */
966 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
967 {
968 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
969 	u64 raw_nsecs;
970 
971 	/* If the offset is smaller than a shifted interval, do nothing */
972 	if (offset < timekeeper.cycle_interval<<shift)
973 		return offset;
974 
975 	/* Accumulate one shifted interval */
976 	offset -= timekeeper.cycle_interval << shift;
977 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
978 
979 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
980 	while (timekeeper.xtime_nsec >= nsecps) {
981 		int leap;
982 		timekeeper.xtime_nsec -= nsecps;
983 		timekeeper.xtime.tv_sec++;
984 		leap = second_overflow(timekeeper.xtime.tv_sec);
985 		timekeeper.xtime.tv_sec += leap;
986 		timekeeper.wall_to_monotonic.tv_sec -= leap;
987 		if (leap)
988 			clock_was_set_delayed();
989 	}
990 
991 	/* Accumulate raw time */
992 	raw_nsecs = timekeeper.raw_interval << shift;
993 	raw_nsecs += timekeeper.raw_time.tv_nsec;
994 	if (raw_nsecs >= NSEC_PER_SEC) {
995 		u64 raw_secs = raw_nsecs;
996 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
997 		timekeeper.raw_time.tv_sec += raw_secs;
998 	}
999 	timekeeper.raw_time.tv_nsec = raw_nsecs;
1000 
1001 	/* Accumulate error between NTP and clock interval */
1002 	timekeeper.ntp_error += ntp_tick_length() << shift;
1003 	timekeeper.ntp_error -=
1004 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1005 				(timekeeper.ntp_error_shift + shift);
1006 
1007 	return offset;
1008 }
1009 
1010 
1011 /**
1012  * update_wall_time - Uses the current clocksource to increment the wall time
1013  *
1014  */
1015 static void update_wall_time(void)
1016 {
1017 	struct clocksource *clock;
1018 	cycle_t offset;
1019 	int shift = 0, maxshift;
1020 	unsigned long flags;
1021 
1022 	write_seqlock_irqsave(&timekeeper.lock, flags);
1023 
1024 	/* Make sure we're fully resumed: */
1025 	if (unlikely(timekeeping_suspended))
1026 		goto out;
1027 
1028 	clock = timekeeper.clock;
1029 
1030 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1031 	offset = timekeeper.cycle_interval;
1032 #else
1033 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1034 #endif
1035 	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1036 						timekeeper.shift;
1037 
1038 	/*
1039 	 * With NO_HZ we may have to accumulate many cycle_intervals
1040 	 * (think "ticks") worth of time at once. To do this efficiently,
1041 	 * we calculate the largest doubling multiple of cycle_intervals
1042 	 * that is smaller than the offset.  We then accumulate that
1043 	 * chunk in one go, and then try to consume the next smaller
1044 	 * doubled multiple.
1045 	 */
1046 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1047 	shift = max(0, shift);
1048 	/* Bound shift to one less than what overflows tick_length */
1049 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1050 	shift = min(shift, maxshift);
1051 	while (offset >= timekeeper.cycle_interval) {
1052 		offset = logarithmic_accumulation(offset, shift);
1053 		if(offset < timekeeper.cycle_interval<<shift)
1054 			shift--;
1055 	}
1056 
1057 	/* correct the clock when NTP error is too big */
1058 	timekeeping_adjust(offset);
1059 
1060 	/*
1061 	 * Since in the loop above, we accumulate any amount of time
1062 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1063 	 * xtime_nsec to be fairly small after the loop. Further, if we're
1064 	 * slightly speeding the clocksource up in timekeeping_adjust(),
1065 	 * its possible the required corrective factor to xtime_nsec could
1066 	 * cause it to underflow.
1067 	 *
1068 	 * Now, we cannot simply roll the accumulated second back, since
1069 	 * the NTP subsystem has been notified via second_overflow. So
1070 	 * instead we push xtime_nsec forward by the amount we underflowed,
1071 	 * and add that amount into the error.
1072 	 *
1073 	 * We'll correct this error next time through this function, when
1074 	 * xtime_nsec is not as small.
1075 	 */
1076 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1077 		s64 neg = -(s64)timekeeper.xtime_nsec;
1078 		timekeeper.xtime_nsec = 0;
1079 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1080 	}
1081 
1082 
1083 	/*
1084 	 * Store full nanoseconds into xtime after rounding it up and
1085 	 * add the remainder to the error difference.
1086 	 */
1087 	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1088 						timekeeper.shift) + 1;
1089 	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1090 						timekeeper.shift;
1091 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
1092 				timekeeper.ntp_error_shift;
1093 
1094 	/*
1095 	 * Finally, make sure that after the rounding
1096 	 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1097 	 */
1098 	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1099 		int leap;
1100 		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1101 		timekeeper.xtime.tv_sec++;
1102 		leap = second_overflow(timekeeper.xtime.tv_sec);
1103 		timekeeper.xtime.tv_sec += leap;
1104 		timekeeper.wall_to_monotonic.tv_sec -= leap;
1105 		if (leap)
1106 			clock_was_set_delayed();
1107 	}
1108 
1109 	timekeeping_update(false);
1110 
1111 out:
1112 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
1113 
1114 }
1115 
1116 /**
1117  * getboottime - Return the real time of system boot.
1118  * @ts:		pointer to the timespec to be set
1119  *
1120  * Returns the wall-time of boot in a timespec.
1121  *
1122  * This is based on the wall_to_monotonic offset and the total suspend
1123  * time. Calls to settimeofday will affect the value returned (which
1124  * basically means that however wrong your real time clock is at boot time,
1125  * you get the right time here).
1126  */
1127 void getboottime(struct timespec *ts)
1128 {
1129 	struct timespec boottime = {
1130 		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1131 				timekeeper.total_sleep_time.tv_sec,
1132 		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1133 				timekeeper.total_sleep_time.tv_nsec
1134 	};
1135 
1136 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1137 }
1138 EXPORT_SYMBOL_GPL(getboottime);
1139 
1140 
1141 /**
1142  * get_monotonic_boottime - Returns monotonic time since boot
1143  * @ts:		pointer to the timespec to be set
1144  *
1145  * Returns the monotonic time since boot in a timespec.
1146  *
1147  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1148  * includes the time spent in suspend.
1149  */
1150 void get_monotonic_boottime(struct timespec *ts)
1151 {
1152 	struct timespec tomono, sleep;
1153 	unsigned int seq;
1154 	s64 nsecs;
1155 
1156 	WARN_ON(timekeeping_suspended);
1157 
1158 	do {
1159 		seq = read_seqbegin(&timekeeper.lock);
1160 		*ts = timekeeper.xtime;
1161 		tomono = timekeeper.wall_to_monotonic;
1162 		sleep = timekeeper.total_sleep_time;
1163 		nsecs = timekeeping_get_ns();
1164 
1165 	} while (read_seqretry(&timekeeper.lock, seq));
1166 
1167 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1168 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1169 }
1170 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1171 
1172 /**
1173  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1174  *
1175  * Returns the monotonic time since boot in a ktime
1176  *
1177  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1178  * includes the time spent in suspend.
1179  */
1180 ktime_t ktime_get_boottime(void)
1181 {
1182 	struct timespec ts;
1183 
1184 	get_monotonic_boottime(&ts);
1185 	return timespec_to_ktime(ts);
1186 }
1187 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1188 
1189 /**
1190  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1191  * @ts:		pointer to the timespec to be converted
1192  */
1193 void monotonic_to_bootbased(struct timespec *ts)
1194 {
1195 	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
1196 }
1197 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1198 
1199 unsigned long get_seconds(void)
1200 {
1201 	return timekeeper.xtime.tv_sec;
1202 }
1203 EXPORT_SYMBOL(get_seconds);
1204 
1205 struct timespec __current_kernel_time(void)
1206 {
1207 	return timekeeper.xtime;
1208 }
1209 
1210 struct timespec current_kernel_time(void)
1211 {
1212 	struct timespec now;
1213 	unsigned long seq;
1214 
1215 	do {
1216 		seq = read_seqbegin(&timekeeper.lock);
1217 
1218 		now = timekeeper.xtime;
1219 	} while (read_seqretry(&timekeeper.lock, seq));
1220 
1221 	return now;
1222 }
1223 EXPORT_SYMBOL(current_kernel_time);
1224 
1225 struct timespec get_monotonic_coarse(void)
1226 {
1227 	struct timespec now, mono;
1228 	unsigned long seq;
1229 
1230 	do {
1231 		seq = read_seqbegin(&timekeeper.lock);
1232 
1233 		now = timekeeper.xtime;
1234 		mono = timekeeper.wall_to_monotonic;
1235 	} while (read_seqretry(&timekeeper.lock, seq));
1236 
1237 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1238 				now.tv_nsec + mono.tv_nsec);
1239 	return now;
1240 }
1241 
1242 /*
1243  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1244  * without sampling the sequence number in xtime_lock.
1245  * jiffies is defined in the linker script...
1246  */
1247 void do_timer(unsigned long ticks)
1248 {
1249 	jiffies_64 += ticks;
1250 	update_wall_time();
1251 	calc_global_load(ticks);
1252 }
1253 
1254 /**
1255  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1256  *    and sleep offsets.
1257  * @xtim:	pointer to timespec to be set with xtime
1258  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1259  * @sleep:	pointer to timespec to be set with time in suspend
1260  */
1261 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1262 				struct timespec *wtom, struct timespec *sleep)
1263 {
1264 	unsigned long seq;
1265 
1266 	do {
1267 		seq = read_seqbegin(&timekeeper.lock);
1268 		*xtim = timekeeper.xtime;
1269 		*wtom = timekeeper.wall_to_monotonic;
1270 		*sleep = timekeeper.total_sleep_time;
1271 	} while (read_seqretry(&timekeeper.lock, seq));
1272 }
1273 
1274 #ifdef CONFIG_HIGH_RES_TIMERS
1275 /**
1276  * ktime_get_update_offsets - hrtimer helper
1277  * @offs_real:	pointer to storage for monotonic -> realtime offset
1278  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1279  *
1280  * Returns current monotonic time and updates the offsets
1281  * Called from hrtimer_interupt() or retrigger_next_event()
1282  */
1283 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1284 {
1285 	ktime_t now;
1286 	unsigned int seq;
1287 	u64 secs, nsecs;
1288 
1289 	do {
1290 		seq = read_seqbegin(&timekeeper.lock);
1291 
1292 		secs = timekeeper.xtime.tv_sec;
1293 		nsecs = timekeeper.xtime.tv_nsec;
1294 		nsecs += timekeeping_get_ns();
1295 		/* If arch requires, add in gettimeoffset() */
1296 		nsecs += arch_gettimeoffset();
1297 
1298 		*offs_real = timekeeper.offs_real;
1299 		*offs_boot = timekeeper.offs_boot;
1300 	} while (read_seqretry(&timekeeper.lock, seq));
1301 
1302 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1303 	now = ktime_sub(now, *offs_real);
1304 	return now;
1305 }
1306 #endif
1307 
1308 /**
1309  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1310  */
1311 ktime_t ktime_get_monotonic_offset(void)
1312 {
1313 	unsigned long seq;
1314 	struct timespec wtom;
1315 
1316 	do {
1317 		seq = read_seqbegin(&timekeeper.lock);
1318 		wtom = timekeeper.wall_to_monotonic;
1319 	} while (read_seqretry(&timekeeper.lock, seq));
1320 
1321 	return timespec_to_ktime(wtom);
1322 }
1323 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1324 
1325 
1326 /**
1327  * xtime_update() - advances the timekeeping infrastructure
1328  * @ticks:	number of ticks, that have elapsed since the last call.
1329  *
1330  * Must be called with interrupts disabled.
1331  */
1332 void xtime_update(unsigned long ticks)
1333 {
1334 	write_seqlock(&xtime_lock);
1335 	do_timer(ticks);
1336 	write_sequnlock(&xtime_lock);
1337 }
1338