xref: /linux/kernel/time/timekeeping.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* The shift value of the current clocksource. */
29 	int	shift;
30 
31 	/* Number of clock cycles in one NTP interval. */
32 	cycle_t cycle_interval;
33 	/* Number of clock shifted nano seconds in one NTP interval. */
34 	u64	xtime_interval;
35 	/* Raw nano seconds accumulated per NTP interval. */
36 	u32	raw_interval;
37 
38 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
39 	u64	xtime_nsec;
40 	/* Difference between accumulated time and NTP time in ntp
41 	 * shifted nano seconds. */
42 	s64	ntp_error;
43 	/* Shift conversion between clock shifted nano seconds and
44 	 * ntp shifted nano seconds. */
45 	int	ntp_error_shift;
46 	/* NTP adjusted clock multiplier */
47 	u32	mult;
48 };
49 
50 struct timekeeper timekeeper;
51 
52 /**
53  * timekeeper_setup_internals - Set up internals to use clocksource clock.
54  *
55  * @clock:		Pointer to clocksource.
56  *
57  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
58  * pair and interval request.
59  *
60  * Unless you're the timekeeping code, you should not be using this!
61  */
62 static void timekeeper_setup_internals(struct clocksource *clock)
63 {
64 	cycle_t interval;
65 	u64 tmp;
66 
67 	timekeeper.clock = clock;
68 	clock->cycle_last = clock->read(clock);
69 
70 	/* Do the ns -> cycle conversion first, using original mult */
71 	tmp = NTP_INTERVAL_LENGTH;
72 	tmp <<= clock->shift;
73 	tmp += clock->mult/2;
74 	do_div(tmp, clock->mult);
75 	if (tmp == 0)
76 		tmp = 1;
77 
78 	interval = (cycle_t) tmp;
79 	timekeeper.cycle_interval = interval;
80 
81 	/* Go back from cycles -> shifted ns */
82 	timekeeper.xtime_interval = (u64) interval * clock->mult;
83 	timekeeper.raw_interval =
84 		((u64) interval * clock->mult) >> clock->shift;
85 
86 	timekeeper.xtime_nsec = 0;
87 	timekeeper.shift = clock->shift;
88 
89 	timekeeper.ntp_error = 0;
90 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
91 
92 	/*
93 	 * The timekeeper keeps its own mult values for the currently
94 	 * active clocksource. These value will be adjusted via NTP
95 	 * to counteract clock drifting.
96 	 */
97 	timekeeper.mult = clock->mult;
98 }
99 
100 /* Timekeeper helper functions. */
101 static inline s64 timekeeping_get_ns(void)
102 {
103 	cycle_t cycle_now, cycle_delta;
104 	struct clocksource *clock;
105 
106 	/* read clocksource: */
107 	clock = timekeeper.clock;
108 	cycle_now = clock->read(clock);
109 
110 	/* calculate the delta since the last update_wall_time: */
111 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
112 
113 	/* return delta convert to nanoseconds using ntp adjusted mult. */
114 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
115 				  timekeeper.shift);
116 }
117 
118 static inline s64 timekeeping_get_ns_raw(void)
119 {
120 	cycle_t cycle_now, cycle_delta;
121 	struct clocksource *clock;
122 
123 	/* read clocksource: */
124 	clock = timekeeper.clock;
125 	cycle_now = clock->read(clock);
126 
127 	/* calculate the delta since the last update_wall_time: */
128 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
129 
130 	/* return delta convert to nanoseconds using ntp adjusted mult. */
131 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
132 }
133 
134 /*
135  * This read-write spinlock protects us from races in SMP while
136  * playing with xtime.
137  */
138 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
139 
140 
141 /*
142  * The current time
143  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
144  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
145  * at zero at system boot time, so wall_to_monotonic will be negative,
146  * however, we will ALWAYS keep the tv_nsec part positive so we can use
147  * the usual normalization.
148  *
149  * wall_to_monotonic is moved after resume from suspend for the monotonic
150  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
151  * to get the real boot based time offset.
152  *
153  * - wall_to_monotonic is no longer the boot time, getboottime must be
154  * used instead.
155  */
156 static struct timespec xtime __attribute__ ((aligned (16)));
157 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158 static struct timespec total_sleep_time;
159 
160 /*
161  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
162  */
163 struct timespec raw_time;
164 
165 /* flag for if timekeeping is suspended */
166 int __read_mostly timekeeping_suspended;
167 
168 /* must hold xtime_lock */
169 void timekeeping_leap_insert(int leapsecond)
170 {
171 	xtime.tv_sec += leapsecond;
172 	wall_to_monotonic.tv_sec -= leapsecond;
173 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
174 			timekeeper.mult);
175 }
176 
177 /**
178  * timekeeping_forward_now - update clock to the current time
179  *
180  * Forward the current clock to update its state since the last call to
181  * update_wall_time(). This is useful before significant clock changes,
182  * as it avoids having to deal with this time offset explicitly.
183  */
184 static void timekeeping_forward_now(void)
185 {
186 	cycle_t cycle_now, cycle_delta;
187 	struct clocksource *clock;
188 	s64 nsec;
189 
190 	clock = timekeeper.clock;
191 	cycle_now = clock->read(clock);
192 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
193 	clock->cycle_last = cycle_now;
194 
195 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
196 				  timekeeper.shift);
197 
198 	/* If arch requires, add in gettimeoffset() */
199 	nsec += arch_gettimeoffset();
200 
201 	timespec_add_ns(&xtime, nsec);
202 
203 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
204 	timespec_add_ns(&raw_time, nsec);
205 }
206 
207 /**
208  * getnstimeofday - Returns the time of day in a timespec
209  * @ts:		pointer to the timespec to be set
210  *
211  * Returns the time of day in a timespec.
212  */
213 void getnstimeofday(struct timespec *ts)
214 {
215 	unsigned long seq;
216 	s64 nsecs;
217 
218 	WARN_ON(timekeeping_suspended);
219 
220 	do {
221 		seq = read_seqbegin(&xtime_lock);
222 
223 		*ts = xtime;
224 		nsecs = timekeeping_get_ns();
225 
226 		/* If arch requires, add in gettimeoffset() */
227 		nsecs += arch_gettimeoffset();
228 
229 	} while (read_seqretry(&xtime_lock, seq));
230 
231 	timespec_add_ns(ts, nsecs);
232 }
233 
234 EXPORT_SYMBOL(getnstimeofday);
235 
236 ktime_t ktime_get(void)
237 {
238 	unsigned int seq;
239 	s64 secs, nsecs;
240 
241 	WARN_ON(timekeeping_suspended);
242 
243 	do {
244 		seq = read_seqbegin(&xtime_lock);
245 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
246 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
247 		nsecs += timekeeping_get_ns();
248 
249 	} while (read_seqretry(&xtime_lock, seq));
250 	/*
251 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
252 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
253 	 */
254 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
255 }
256 EXPORT_SYMBOL_GPL(ktime_get);
257 
258 /**
259  * ktime_get_ts - get the monotonic clock in timespec format
260  * @ts:		pointer to timespec variable
261  *
262  * The function calculates the monotonic clock from the realtime
263  * clock and the wall_to_monotonic offset and stores the result
264  * in normalized timespec format in the variable pointed to by @ts.
265  */
266 void ktime_get_ts(struct timespec *ts)
267 {
268 	struct timespec tomono;
269 	unsigned int seq;
270 	s64 nsecs;
271 
272 	WARN_ON(timekeeping_suspended);
273 
274 	do {
275 		seq = read_seqbegin(&xtime_lock);
276 		*ts = xtime;
277 		tomono = wall_to_monotonic;
278 		nsecs = timekeeping_get_ns();
279 
280 	} while (read_seqretry(&xtime_lock, seq));
281 
282 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
283 				ts->tv_nsec + tomono.tv_nsec + nsecs);
284 }
285 EXPORT_SYMBOL_GPL(ktime_get_ts);
286 
287 /**
288  * do_gettimeofday - Returns the time of day in a timeval
289  * @tv:		pointer to the timeval to be set
290  *
291  * NOTE: Users should be converted to using getnstimeofday()
292  */
293 void do_gettimeofday(struct timeval *tv)
294 {
295 	struct timespec now;
296 
297 	getnstimeofday(&now);
298 	tv->tv_sec = now.tv_sec;
299 	tv->tv_usec = now.tv_nsec/1000;
300 }
301 
302 EXPORT_SYMBOL(do_gettimeofday);
303 /**
304  * do_settimeofday - Sets the time of day
305  * @tv:		pointer to the timespec variable containing the new time
306  *
307  * Sets the time of day to the new time and update NTP and notify hrtimers
308  */
309 int do_settimeofday(struct timespec *tv)
310 {
311 	struct timespec ts_delta;
312 	unsigned long flags;
313 
314 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
315 		return -EINVAL;
316 
317 	write_seqlock_irqsave(&xtime_lock, flags);
318 
319 	timekeeping_forward_now();
320 
321 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
322 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
323 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
324 
325 	xtime = *tv;
326 
327 	timekeeper.ntp_error = 0;
328 	ntp_clear();
329 
330 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
331 				timekeeper.mult);
332 
333 	write_sequnlock_irqrestore(&xtime_lock, flags);
334 
335 	/* signal hrtimers about time change */
336 	clock_was_set();
337 
338 	return 0;
339 }
340 
341 EXPORT_SYMBOL(do_settimeofday);
342 
343 /**
344  * change_clocksource - Swaps clocksources if a new one is available
345  *
346  * Accumulates current time interval and initializes new clocksource
347  */
348 static int change_clocksource(void *data)
349 {
350 	struct clocksource *new, *old;
351 
352 	new = (struct clocksource *) data;
353 
354 	timekeeping_forward_now();
355 	if (!new->enable || new->enable(new) == 0) {
356 		old = timekeeper.clock;
357 		timekeeper_setup_internals(new);
358 		if (old->disable)
359 			old->disable(old);
360 	}
361 	return 0;
362 }
363 
364 /**
365  * timekeeping_notify - Install a new clock source
366  * @clock:		pointer to the clock source
367  *
368  * This function is called from clocksource.c after a new, better clock
369  * source has been registered. The caller holds the clocksource_mutex.
370  */
371 void timekeeping_notify(struct clocksource *clock)
372 {
373 	if (timekeeper.clock == clock)
374 		return;
375 	stop_machine(change_clocksource, clock, NULL);
376 	tick_clock_notify();
377 }
378 
379 /**
380  * ktime_get_real - get the real (wall-) time in ktime_t format
381  *
382  * returns the time in ktime_t format
383  */
384 ktime_t ktime_get_real(void)
385 {
386 	struct timespec now;
387 
388 	getnstimeofday(&now);
389 
390 	return timespec_to_ktime(now);
391 }
392 EXPORT_SYMBOL_GPL(ktime_get_real);
393 
394 /**
395  * getrawmonotonic - Returns the raw monotonic time in a timespec
396  * @ts:		pointer to the timespec to be set
397  *
398  * Returns the raw monotonic time (completely un-modified by ntp)
399  */
400 void getrawmonotonic(struct timespec *ts)
401 {
402 	unsigned long seq;
403 	s64 nsecs;
404 
405 	do {
406 		seq = read_seqbegin(&xtime_lock);
407 		nsecs = timekeeping_get_ns_raw();
408 		*ts = raw_time;
409 
410 	} while (read_seqretry(&xtime_lock, seq));
411 
412 	timespec_add_ns(ts, nsecs);
413 }
414 EXPORT_SYMBOL(getrawmonotonic);
415 
416 
417 /**
418  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
419  */
420 int timekeeping_valid_for_hres(void)
421 {
422 	unsigned long seq;
423 	int ret;
424 
425 	do {
426 		seq = read_seqbegin(&xtime_lock);
427 
428 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
429 
430 	} while (read_seqretry(&xtime_lock, seq));
431 
432 	return ret;
433 }
434 
435 /**
436  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
437  *
438  * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
439  * ensure that the clocksource does not change!
440  */
441 u64 timekeeping_max_deferment(void)
442 {
443 	return timekeeper.clock->max_idle_ns;
444 }
445 
446 /**
447  * read_persistent_clock -  Return time from the persistent clock.
448  *
449  * Weak dummy function for arches that do not yet support it.
450  * Reads the time from the battery backed persistent clock.
451  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
452  *
453  *  XXX - Do be sure to remove it once all arches implement it.
454  */
455 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
456 {
457 	ts->tv_sec = 0;
458 	ts->tv_nsec = 0;
459 }
460 
461 /**
462  * read_boot_clock -  Return time of the system start.
463  *
464  * Weak dummy function for arches that do not yet support it.
465  * Function to read the exact time the system has been started.
466  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
467  *
468  *  XXX - Do be sure to remove it once all arches implement it.
469  */
470 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
471 {
472 	ts->tv_sec = 0;
473 	ts->tv_nsec = 0;
474 }
475 
476 /*
477  * timekeeping_init - Initializes the clocksource and common timekeeping values
478  */
479 void __init timekeeping_init(void)
480 {
481 	struct clocksource *clock;
482 	unsigned long flags;
483 	struct timespec now, boot;
484 
485 	read_persistent_clock(&now);
486 	read_boot_clock(&boot);
487 
488 	write_seqlock_irqsave(&xtime_lock, flags);
489 
490 	ntp_init();
491 
492 	clock = clocksource_default_clock();
493 	if (clock->enable)
494 		clock->enable(clock);
495 	timekeeper_setup_internals(clock);
496 
497 	xtime.tv_sec = now.tv_sec;
498 	xtime.tv_nsec = now.tv_nsec;
499 	raw_time.tv_sec = 0;
500 	raw_time.tv_nsec = 0;
501 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
502 		boot.tv_sec = xtime.tv_sec;
503 		boot.tv_nsec = xtime.tv_nsec;
504 	}
505 	set_normalized_timespec(&wall_to_monotonic,
506 				-boot.tv_sec, -boot.tv_nsec);
507 	total_sleep_time.tv_sec = 0;
508 	total_sleep_time.tv_nsec = 0;
509 	write_sequnlock_irqrestore(&xtime_lock, flags);
510 }
511 
512 /* time in seconds when suspend began */
513 static struct timespec timekeeping_suspend_time;
514 
515 /**
516  * timekeeping_resume - Resumes the generic timekeeping subsystem.
517  * @dev:	unused
518  *
519  * This is for the generic clocksource timekeeping.
520  * xtime/wall_to_monotonic/jiffies/etc are
521  * still managed by arch specific suspend/resume code.
522  */
523 static int timekeeping_resume(struct sys_device *dev)
524 {
525 	unsigned long flags;
526 	struct timespec ts;
527 
528 	read_persistent_clock(&ts);
529 
530 	clocksource_resume();
531 
532 	write_seqlock_irqsave(&xtime_lock, flags);
533 
534 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
535 		ts = timespec_sub(ts, timekeeping_suspend_time);
536 		xtime = timespec_add(xtime, ts);
537 		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
538 		total_sleep_time = timespec_add(total_sleep_time, ts);
539 	}
540 	/* re-base the last cycle value */
541 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
542 	timekeeper.ntp_error = 0;
543 	timekeeping_suspended = 0;
544 	write_sequnlock_irqrestore(&xtime_lock, flags);
545 
546 	touch_softlockup_watchdog();
547 
548 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
549 
550 	/* Resume hrtimers */
551 	hres_timers_resume();
552 
553 	return 0;
554 }
555 
556 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
557 {
558 	unsigned long flags;
559 
560 	read_persistent_clock(&timekeeping_suspend_time);
561 
562 	write_seqlock_irqsave(&xtime_lock, flags);
563 	timekeeping_forward_now();
564 	timekeeping_suspended = 1;
565 	write_sequnlock_irqrestore(&xtime_lock, flags);
566 
567 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
568 	clocksource_suspend();
569 
570 	return 0;
571 }
572 
573 /* sysfs resume/suspend bits for timekeeping */
574 static struct sysdev_class timekeeping_sysclass = {
575 	.name		= "timekeeping",
576 	.resume		= timekeeping_resume,
577 	.suspend	= timekeeping_suspend,
578 };
579 
580 static struct sys_device device_timer = {
581 	.id		= 0,
582 	.cls		= &timekeeping_sysclass,
583 };
584 
585 static int __init timekeeping_init_device(void)
586 {
587 	int error = sysdev_class_register(&timekeeping_sysclass);
588 	if (!error)
589 		error = sysdev_register(&device_timer);
590 	return error;
591 }
592 
593 device_initcall(timekeeping_init_device);
594 
595 /*
596  * If the error is already larger, we look ahead even further
597  * to compensate for late or lost adjustments.
598  */
599 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
600 						 s64 *offset)
601 {
602 	s64 tick_error, i;
603 	u32 look_ahead, adj;
604 	s32 error2, mult;
605 
606 	/*
607 	 * Use the current error value to determine how much to look ahead.
608 	 * The larger the error the slower we adjust for it to avoid problems
609 	 * with losing too many ticks, otherwise we would overadjust and
610 	 * produce an even larger error.  The smaller the adjustment the
611 	 * faster we try to adjust for it, as lost ticks can do less harm
612 	 * here.  This is tuned so that an error of about 1 msec is adjusted
613 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
614 	 */
615 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
616 	error2 = abs(error2);
617 	for (look_ahead = 0; error2 > 0; look_ahead++)
618 		error2 >>= 2;
619 
620 	/*
621 	 * Now calculate the error in (1 << look_ahead) ticks, but first
622 	 * remove the single look ahead already included in the error.
623 	 */
624 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
625 	tick_error -= timekeeper.xtime_interval >> 1;
626 	error = ((error - tick_error) >> look_ahead) + tick_error;
627 
628 	/* Finally calculate the adjustment shift value.  */
629 	i = *interval;
630 	mult = 1;
631 	if (error < 0) {
632 		error = -error;
633 		*interval = -*interval;
634 		*offset = -*offset;
635 		mult = -1;
636 	}
637 	for (adj = 0; error > i; adj++)
638 		error >>= 1;
639 
640 	*interval <<= adj;
641 	*offset <<= adj;
642 	return mult << adj;
643 }
644 
645 /*
646  * Adjust the multiplier to reduce the error value,
647  * this is optimized for the most common adjustments of -1,0,1,
648  * for other values we can do a bit more work.
649  */
650 static void timekeeping_adjust(s64 offset)
651 {
652 	s64 error, interval = timekeeper.cycle_interval;
653 	int adj;
654 
655 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
656 	if (error > interval) {
657 		error >>= 2;
658 		if (likely(error <= interval))
659 			adj = 1;
660 		else
661 			adj = timekeeping_bigadjust(error, &interval, &offset);
662 	} else if (error < -interval) {
663 		error >>= 2;
664 		if (likely(error >= -interval)) {
665 			adj = -1;
666 			interval = -interval;
667 			offset = -offset;
668 		} else
669 			adj = timekeeping_bigadjust(error, &interval, &offset);
670 	} else
671 		return;
672 
673 	timekeeper.mult += adj;
674 	timekeeper.xtime_interval += interval;
675 	timekeeper.xtime_nsec -= offset;
676 	timekeeper.ntp_error -= (interval - offset) <<
677 				timekeeper.ntp_error_shift;
678 }
679 
680 
681 /**
682  * logarithmic_accumulation - shifted accumulation of cycles
683  *
684  * This functions accumulates a shifted interval of cycles into
685  * into a shifted interval nanoseconds. Allows for O(log) accumulation
686  * loop.
687  *
688  * Returns the unconsumed cycles.
689  */
690 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
691 {
692 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
693 
694 	/* If the offset is smaller then a shifted interval, do nothing */
695 	if (offset < timekeeper.cycle_interval<<shift)
696 		return offset;
697 
698 	/* Accumulate one shifted interval */
699 	offset -= timekeeper.cycle_interval << shift;
700 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
701 
702 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
703 	while (timekeeper.xtime_nsec >= nsecps) {
704 		timekeeper.xtime_nsec -= nsecps;
705 		xtime.tv_sec++;
706 		second_overflow();
707 	}
708 
709 	/* Accumulate into raw time */
710 	raw_time.tv_nsec += timekeeper.raw_interval << shift;;
711 	while (raw_time.tv_nsec >= NSEC_PER_SEC) {
712 		raw_time.tv_nsec -= NSEC_PER_SEC;
713 		raw_time.tv_sec++;
714 	}
715 
716 	/* Accumulate error between NTP and clock interval */
717 	timekeeper.ntp_error += tick_length << shift;
718 	timekeeper.ntp_error -= timekeeper.xtime_interval <<
719 				(timekeeper.ntp_error_shift + shift);
720 
721 	return offset;
722 }
723 
724 
725 /**
726  * update_wall_time - Uses the current clocksource to increment the wall time
727  *
728  * Called from the timer interrupt, must hold a write on xtime_lock.
729  */
730 void update_wall_time(void)
731 {
732 	struct clocksource *clock;
733 	cycle_t offset;
734 	int shift = 0, maxshift;
735 
736 	/* Make sure we're fully resumed: */
737 	if (unlikely(timekeeping_suspended))
738 		return;
739 
740 	clock = timekeeper.clock;
741 
742 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
743 	offset = timekeeper.cycle_interval;
744 #else
745 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
746 #endif
747 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
748 
749 	/*
750 	 * With NO_HZ we may have to accumulate many cycle_intervals
751 	 * (think "ticks") worth of time at once. To do this efficiently,
752 	 * we calculate the largest doubling multiple of cycle_intervals
753 	 * that is smaller then the offset. We then accumulate that
754 	 * chunk in one go, and then try to consume the next smaller
755 	 * doubled multiple.
756 	 */
757 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
758 	shift = max(0, shift);
759 	/* Bound shift to one less then what overflows tick_length */
760 	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
761 	shift = min(shift, maxshift);
762 	while (offset >= timekeeper.cycle_interval) {
763 		offset = logarithmic_accumulation(offset, shift);
764 		if(offset < timekeeper.cycle_interval<<shift)
765 			shift--;
766 	}
767 
768 	/* correct the clock when NTP error is too big */
769 	timekeeping_adjust(offset);
770 
771 	/*
772 	 * Since in the loop above, we accumulate any amount of time
773 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
774 	 * xtime_nsec to be fairly small after the loop. Further, if we're
775 	 * slightly speeding the clocksource up in timekeeping_adjust(),
776 	 * its possible the required corrective factor to xtime_nsec could
777 	 * cause it to underflow.
778 	 *
779 	 * Now, we cannot simply roll the accumulated second back, since
780 	 * the NTP subsystem has been notified via second_overflow. So
781 	 * instead we push xtime_nsec forward by the amount we underflowed,
782 	 * and add that amount into the error.
783 	 *
784 	 * We'll correct this error next time through this function, when
785 	 * xtime_nsec is not as small.
786 	 */
787 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
788 		s64 neg = -(s64)timekeeper.xtime_nsec;
789 		timekeeper.xtime_nsec = 0;
790 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
791 	}
792 
793 
794 	/*
795 	 * Store full nanoseconds into xtime after rounding it up and
796 	 * add the remainder to the error difference.
797 	 */
798 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
799 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
800 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
801 				timekeeper.ntp_error_shift;
802 
803 	/*
804 	 * Finally, make sure that after the rounding
805 	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
806 	 */
807 	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
808 		xtime.tv_nsec -= NSEC_PER_SEC;
809 		xtime.tv_sec++;
810 		second_overflow();
811 	}
812 
813 	/* check to see if there is a new clocksource to use */
814 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
815 				timekeeper.mult);
816 }
817 
818 /**
819  * getboottime - Return the real time of system boot.
820  * @ts:		pointer to the timespec to be set
821  *
822  * Returns the time of day in a timespec.
823  *
824  * This is based on the wall_to_monotonic offset and the total suspend
825  * time. Calls to settimeofday will affect the value returned (which
826  * basically means that however wrong your real time clock is at boot time,
827  * you get the right time here).
828  */
829 void getboottime(struct timespec *ts)
830 {
831 	struct timespec boottime = {
832 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
833 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
834 	};
835 
836 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
837 }
838 EXPORT_SYMBOL_GPL(getboottime);
839 
840 /**
841  * monotonic_to_bootbased - Convert the monotonic time to boot based.
842  * @ts:		pointer to the timespec to be converted
843  */
844 void monotonic_to_bootbased(struct timespec *ts)
845 {
846 	*ts = timespec_add(*ts, total_sleep_time);
847 }
848 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
849 
850 unsigned long get_seconds(void)
851 {
852 	return xtime.tv_sec;
853 }
854 EXPORT_SYMBOL(get_seconds);
855 
856 struct timespec __current_kernel_time(void)
857 {
858 	return xtime;
859 }
860 
861 struct timespec __get_wall_to_monotonic(void)
862 {
863 	return wall_to_monotonic;
864 }
865 
866 struct timespec current_kernel_time(void)
867 {
868 	struct timespec now;
869 	unsigned long seq;
870 
871 	do {
872 		seq = read_seqbegin(&xtime_lock);
873 
874 		now = xtime;
875 	} while (read_seqretry(&xtime_lock, seq));
876 
877 	return now;
878 }
879 EXPORT_SYMBOL(current_kernel_time);
880 
881 struct timespec get_monotonic_coarse(void)
882 {
883 	struct timespec now, mono;
884 	unsigned long seq;
885 
886 	do {
887 		seq = read_seqbegin(&xtime_lock);
888 
889 		now = xtime;
890 		mono = wall_to_monotonic;
891 	} while (read_seqretry(&xtime_lock, seq));
892 
893 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
894 				now.tv_nsec + mono.tv_nsec);
895 	return now;
896 }
897