1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/kobject.h> 10 #include <linux/percpu.h> 11 #include <linux/init.h> 12 #include <linux/mm.h> 13 #include <linux/nmi.h> 14 #include <linux/sched.h> 15 #include <linux/sched/loadavg.h> 16 #include <linux/sched/clock.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/timex.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 #include <linux/audit.h> 27 #include <linux/random.h> 28 29 #include <vdso/auxclock.h> 30 31 #include "tick-internal.h" 32 #include "ntp_internal.h" 33 #include "timekeeping_internal.h" 34 35 #define TK_CLEAR_NTP (1 << 0) 36 #define TK_CLOCK_WAS_SET (1 << 1) 37 38 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 39 40 enum timekeeping_adv_mode { 41 /* Update timekeeper when a tick has passed */ 42 TK_ADV_TICK, 43 44 /* Update timekeeper on a direct frequency change */ 45 TK_ADV_FREQ 46 }; 47 48 /* 49 * The most important data for readout fits into a single 64 byte 50 * cache line. 51 */ 52 struct tk_data { 53 seqcount_raw_spinlock_t seq; 54 struct timekeeper timekeeper; 55 struct timekeeper shadow_timekeeper; 56 raw_spinlock_t lock; 57 } ____cacheline_aligned; 58 59 static struct tk_data timekeeper_data[TIMEKEEPERS_MAX]; 60 61 /* The core timekeeper */ 62 #define tk_core (timekeeper_data[TIMEKEEPER_CORE]) 63 64 #ifdef CONFIG_POSIX_AUX_CLOCKS 65 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts) 66 { 67 return ktime_get_aux_ts64(CLOCK_AUX + tkid - TIMEKEEPER_AUX_FIRST, ts); 68 } 69 70 static inline bool tk_is_aux(const struct timekeeper *tk) 71 { 72 return tk->id >= TIMEKEEPER_AUX_FIRST && tk->id <= TIMEKEEPER_AUX_LAST; 73 } 74 #else 75 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts) 76 { 77 return false; 78 } 79 80 static inline bool tk_is_aux(const struct timekeeper *tk) 81 { 82 return false; 83 } 84 #endif 85 86 static inline void tk_update_aux_offs(struct timekeeper *tk, ktime_t offs) 87 { 88 tk->offs_aux = offs; 89 tk->monotonic_to_aux = ktime_to_timespec64(offs); 90 } 91 92 /* flag for if timekeeping is suspended */ 93 int __read_mostly timekeeping_suspended; 94 95 /** 96 * struct tk_fast - NMI safe timekeeper 97 * @seq: Sequence counter for protecting updates. The lowest bit 98 * is the index for the tk_read_base array 99 * @base: tk_read_base array. Access is indexed by the lowest bit of 100 * @seq. 101 * 102 * See @update_fast_timekeeper() below. 103 */ 104 struct tk_fast { 105 seqcount_latch_t seq; 106 struct tk_read_base base[2]; 107 }; 108 109 /* Suspend-time cycles value for halted fast timekeeper. */ 110 static u64 cycles_at_suspend; 111 112 static u64 dummy_clock_read(struct clocksource *cs) 113 { 114 if (timekeeping_suspended) 115 return cycles_at_suspend; 116 return local_clock(); 117 } 118 119 static struct clocksource dummy_clock = { 120 .read = dummy_clock_read, 121 }; 122 123 /* 124 * Boot time initialization which allows local_clock() to be utilized 125 * during early boot when clocksources are not available. local_clock() 126 * returns nanoseconds already so no conversion is required, hence mult=1 127 * and shift=0. When the first proper clocksource is installed then 128 * the fast time keepers are updated with the correct values. 129 */ 130 #define FAST_TK_INIT \ 131 { \ 132 .clock = &dummy_clock, \ 133 .mask = CLOCKSOURCE_MASK(64), \ 134 .mult = 1, \ 135 .shift = 0, \ 136 } 137 138 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 139 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 140 .base[0] = FAST_TK_INIT, 141 .base[1] = FAST_TK_INIT, 142 }; 143 144 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 145 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 146 .base[0] = FAST_TK_INIT, 147 .base[1] = FAST_TK_INIT, 148 }; 149 150 #ifdef CONFIG_POSIX_AUX_CLOCKS 151 static __init void tk_aux_setup(void); 152 static void tk_aux_update_clocksource(void); 153 static void tk_aux_advance(void); 154 #else 155 static inline void tk_aux_setup(void) { } 156 static inline void tk_aux_update_clocksource(void) { } 157 static inline void tk_aux_advance(void) { } 158 #endif 159 160 unsigned long timekeeper_lock_irqsave(void) 161 { 162 unsigned long flags; 163 164 raw_spin_lock_irqsave(&tk_core.lock, flags); 165 return flags; 166 } 167 168 void timekeeper_unlock_irqrestore(unsigned long flags) 169 { 170 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 171 } 172 173 /* 174 * Multigrain timestamps require tracking the latest fine-grained timestamp 175 * that has been issued, and never returning a coarse-grained timestamp that is 176 * earlier than that value. 177 * 178 * mg_floor represents the latest fine-grained time that has been handed out as 179 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 180 * converted to a realtime clock value on an as-needed basis. 181 * 182 * Maintaining mg_floor ensures the multigrain interfaces never issue a 183 * timestamp earlier than one that has been previously issued. 184 * 185 * The exception to this rule is when there is a backward realtime clock jump. If 186 * such an event occurs, a timestamp can appear to be earlier than a previous one. 187 */ 188 static __cacheline_aligned_in_smp atomic64_t mg_floor; 189 190 static inline void tk_normalize_xtime(struct timekeeper *tk) 191 { 192 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 193 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 194 tk->xtime_sec++; 195 } 196 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 197 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 198 tk->raw_sec++; 199 } 200 } 201 202 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 203 { 204 struct timespec64 ts; 205 206 ts.tv_sec = tk->xtime_sec; 207 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 208 return ts; 209 } 210 211 static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk) 212 { 213 struct timespec64 ts; 214 215 ts.tv_sec = tk->xtime_sec; 216 ts.tv_nsec = tk->coarse_nsec; 217 return ts; 218 } 219 220 /* 221 * Update the nanoseconds part for the coarse time keepers. They can't rely 222 * on xtime_nsec because xtime_nsec could be adjusted by a small negative 223 * amount when the multiplication factor of the clock is adjusted, which 224 * could cause the coarse clocks to go slightly backwards. See 225 * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse 226 * clockids which only is updated when the clock has been set or we have 227 * accumulated time. 228 */ 229 static inline void tk_update_coarse_nsecs(struct timekeeper *tk) 230 { 231 tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 232 } 233 234 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 235 { 236 tk->xtime_sec = ts->tv_sec; 237 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 238 tk_update_coarse_nsecs(tk); 239 } 240 241 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 242 { 243 tk->xtime_sec += ts->tv_sec; 244 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 245 tk_normalize_xtime(tk); 246 tk_update_coarse_nsecs(tk); 247 } 248 249 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 250 { 251 struct timespec64 tmp; 252 253 /* 254 * Verify consistency of: offset_real = -wall_to_monotonic 255 * before modifying anything 256 */ 257 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 258 -tk->wall_to_monotonic.tv_nsec); 259 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 260 tk->wall_to_monotonic = wtm; 261 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 262 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 263 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 264 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 265 } 266 267 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 268 { 269 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 270 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 271 /* 272 * Timespec representation for VDSO update to avoid 64bit division 273 * on every update. 274 */ 275 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 276 } 277 278 /* 279 * tk_clock_read - atomic clocksource read() helper 280 * 281 * This helper is necessary to use in the read paths because, while the 282 * seqcount ensures we don't return a bad value while structures are updated, 283 * it doesn't protect from potential crashes. There is the possibility that 284 * the tkr's clocksource may change between the read reference, and the 285 * clock reference passed to the read function. This can cause crashes if 286 * the wrong clocksource is passed to the wrong read function. 287 * This isn't necessary to use when holding the tk_core.lock or doing 288 * a read of the fast-timekeeper tkrs (which is protected by its own locking 289 * and update logic). 290 */ 291 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 292 { 293 struct clocksource *clock = READ_ONCE(tkr->clock); 294 295 return clock->read(clock); 296 } 297 298 /** 299 * tk_setup_internals - Set up internals to use clocksource clock. 300 * 301 * @tk: The target timekeeper to setup. 302 * @clock: Pointer to clocksource. 303 * 304 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 305 * pair and interval request. 306 * 307 * Unless you're the timekeeping code, you should not be using this! 308 */ 309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 310 { 311 u64 interval; 312 u64 tmp, ntpinterval; 313 struct clocksource *old_clock; 314 315 ++tk->cs_was_changed_seq; 316 old_clock = tk->tkr_mono.clock; 317 tk->tkr_mono.clock = clock; 318 tk->tkr_mono.mask = clock->mask; 319 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 320 321 tk->tkr_raw.clock = clock; 322 tk->tkr_raw.mask = clock->mask; 323 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 324 325 /* Do the ns -> cycle conversion first, using original mult */ 326 tmp = NTP_INTERVAL_LENGTH; 327 tmp <<= clock->shift; 328 ntpinterval = tmp; 329 tmp += clock->mult/2; 330 do_div(tmp, clock->mult); 331 if (tmp == 0) 332 tmp = 1; 333 334 interval = (u64) tmp; 335 tk->cycle_interval = interval; 336 337 /* Go back from cycles -> shifted ns */ 338 tk->xtime_interval = interval * clock->mult; 339 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 340 tk->raw_interval = interval * clock->mult; 341 342 /* if changing clocks, convert xtime_nsec shift units */ 343 if (old_clock) { 344 int shift_change = clock->shift - old_clock->shift; 345 if (shift_change < 0) { 346 tk->tkr_mono.xtime_nsec >>= -shift_change; 347 tk->tkr_raw.xtime_nsec >>= -shift_change; 348 } else { 349 tk->tkr_mono.xtime_nsec <<= shift_change; 350 tk->tkr_raw.xtime_nsec <<= shift_change; 351 } 352 } 353 354 tk->tkr_mono.shift = clock->shift; 355 tk->tkr_raw.shift = clock->shift; 356 357 tk->ntp_error = 0; 358 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 359 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 360 361 /* 362 * The timekeeper keeps its own mult values for the currently 363 * active clocksource. These value will be adjusted via NTP 364 * to counteract clock drifting. 365 */ 366 tk->tkr_mono.mult = clock->mult; 367 tk->tkr_raw.mult = clock->mult; 368 tk->ntp_err_mult = 0; 369 tk->skip_second_overflow = 0; 370 } 371 372 /* Timekeeper helper functions. */ 373 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 374 { 375 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 376 } 377 378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 379 { 380 /* Calculate the delta since the last update_wall_time() */ 381 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 382 383 /* 384 * This detects both negative motion and the case where the delta 385 * overflows the multiplication with tkr->mult. 386 */ 387 if (unlikely(delta > tkr->clock->max_cycles)) { 388 /* 389 * Handle clocksource inconsistency between CPUs to prevent 390 * time from going backwards by checking for the MSB of the 391 * mask being set in the delta. 392 */ 393 if (delta & ~(mask >> 1)) 394 return tkr->xtime_nsec >> tkr->shift; 395 396 return delta_to_ns_safe(tkr, delta); 397 } 398 399 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 400 } 401 402 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 403 { 404 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 405 } 406 407 /** 408 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 409 * @tkr: Timekeeping readout base from which we take the update 410 * @tkf: Pointer to NMI safe timekeeper 411 * 412 * We want to use this from any context including NMI and tracing / 413 * instrumenting the timekeeping code itself. 414 * 415 * Employ the latch technique; see @write_seqcount_latch. 416 * 417 * So if a NMI hits the update of base[0] then it will use base[1] 418 * which is still consistent. In the worst case this can result is a 419 * slightly wrong timestamp (a few nanoseconds). See 420 * @ktime_get_mono_fast_ns. 421 */ 422 static void update_fast_timekeeper(const struct tk_read_base *tkr, 423 struct tk_fast *tkf) 424 { 425 struct tk_read_base *base = tkf->base; 426 427 /* Force readers off to base[1] */ 428 write_seqcount_latch_begin(&tkf->seq); 429 430 /* Update base[0] */ 431 memcpy(base, tkr, sizeof(*base)); 432 433 /* Force readers back to base[0] */ 434 write_seqcount_latch(&tkf->seq); 435 436 /* Update base[1] */ 437 memcpy(base + 1, base, sizeof(*base)); 438 439 write_seqcount_latch_end(&tkf->seq); 440 } 441 442 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 443 { 444 struct tk_read_base *tkr; 445 unsigned int seq; 446 u64 now; 447 448 do { 449 seq = read_seqcount_latch(&tkf->seq); 450 tkr = tkf->base + (seq & 0x01); 451 now = ktime_to_ns(tkr->base); 452 now += timekeeping_get_ns(tkr); 453 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 454 455 return now; 456 } 457 458 /** 459 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 460 * 461 * This timestamp is not guaranteed to be monotonic across an update. 462 * The timestamp is calculated by: 463 * 464 * now = base_mono + clock_delta * slope 465 * 466 * So if the update lowers the slope, readers who are forced to the 467 * not yet updated second array are still using the old steeper slope. 468 * 469 * tmono 470 * ^ 471 * | o n 472 * | o n 473 * | u 474 * | o 475 * |o 476 * |12345678---> reader order 477 * 478 * o = old slope 479 * u = update 480 * n = new slope 481 * 482 * So reader 6 will observe time going backwards versus reader 5. 483 * 484 * While other CPUs are likely to be able to observe that, the only way 485 * for a CPU local observation is when an NMI hits in the middle of 486 * the update. Timestamps taken from that NMI context might be ahead 487 * of the following timestamps. Callers need to be aware of that and 488 * deal with it. 489 */ 490 u64 notrace ktime_get_mono_fast_ns(void) 491 { 492 return __ktime_get_fast_ns(&tk_fast_mono); 493 } 494 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 495 496 /** 497 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 498 * 499 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 500 * conversion factor is not affected by NTP/PTP correction. 501 */ 502 u64 notrace ktime_get_raw_fast_ns(void) 503 { 504 return __ktime_get_fast_ns(&tk_fast_raw); 505 } 506 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 507 508 /** 509 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 510 * 511 * To keep it NMI safe since we're accessing from tracing, we're not using a 512 * separate timekeeper with updates to monotonic clock and boot offset 513 * protected with seqcounts. This has the following minor side effects: 514 * 515 * (1) Its possible that a timestamp be taken after the boot offset is updated 516 * but before the timekeeper is updated. If this happens, the new boot offset 517 * is added to the old timekeeping making the clock appear to update slightly 518 * earlier: 519 * CPU 0 CPU 1 520 * timekeeping_inject_sleeptime64() 521 * __timekeeping_inject_sleeptime(tk, delta); 522 * timestamp(); 523 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 524 * 525 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 526 * partially updated. Since the tk->offs_boot update is a rare event, this 527 * should be a rare occurrence which postprocessing should be able to handle. 528 * 529 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 530 * apply as well. 531 */ 532 u64 notrace ktime_get_boot_fast_ns(void) 533 { 534 struct timekeeper *tk = &tk_core.timekeeper; 535 536 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 537 } 538 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 539 540 /** 541 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 542 * 543 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 544 * mono time and the TAI offset are not read atomically which may yield wrong 545 * readouts. However, an update of the TAI offset is an rare event e.g., caused 546 * by settime or adjtimex with an offset. The user of this function has to deal 547 * with the possibility of wrong timestamps in post processing. 548 */ 549 u64 notrace ktime_get_tai_fast_ns(void) 550 { 551 struct timekeeper *tk = &tk_core.timekeeper; 552 553 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 554 } 555 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 556 557 /** 558 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 559 * 560 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 561 */ 562 u64 ktime_get_real_fast_ns(void) 563 { 564 struct tk_fast *tkf = &tk_fast_mono; 565 struct tk_read_base *tkr; 566 u64 baser, delta; 567 unsigned int seq; 568 569 do { 570 seq = raw_read_seqcount_latch(&tkf->seq); 571 tkr = tkf->base + (seq & 0x01); 572 baser = ktime_to_ns(tkr->base_real); 573 delta = timekeeping_get_ns(tkr); 574 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 575 576 return baser + delta; 577 } 578 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 579 580 /** 581 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 582 * @tk: Timekeeper to snapshot. 583 * 584 * It generally is unsafe to access the clocksource after timekeeping has been 585 * suspended, so take a snapshot of the readout base of @tk and use it as the 586 * fast timekeeper's readout base while suspended. It will return the same 587 * number of cycles every time until timekeeping is resumed at which time the 588 * proper readout base for the fast timekeeper will be restored automatically. 589 */ 590 static void halt_fast_timekeeper(const struct timekeeper *tk) 591 { 592 static struct tk_read_base tkr_dummy; 593 const struct tk_read_base *tkr = &tk->tkr_mono; 594 595 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 596 cycles_at_suspend = tk_clock_read(tkr); 597 tkr_dummy.clock = &dummy_clock; 598 tkr_dummy.base_real = tkr->base + tk->offs_real; 599 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 600 601 tkr = &tk->tkr_raw; 602 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 603 tkr_dummy.clock = &dummy_clock; 604 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 605 } 606 607 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 608 609 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 610 { 611 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 612 } 613 614 /** 615 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 616 * @nb: Pointer to the notifier block to register 617 */ 618 int pvclock_gtod_register_notifier(struct notifier_block *nb) 619 { 620 struct timekeeper *tk = &tk_core.timekeeper; 621 int ret; 622 623 guard(raw_spinlock_irqsave)(&tk_core.lock); 624 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 625 update_pvclock_gtod(tk, true); 626 627 return ret; 628 } 629 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 630 631 /** 632 * pvclock_gtod_unregister_notifier - unregister a pvclock 633 * timedata update listener 634 * @nb: Pointer to the notifier block to unregister 635 */ 636 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 637 { 638 guard(raw_spinlock_irqsave)(&tk_core.lock); 639 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 640 } 641 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 642 643 /* 644 * tk_update_leap_state - helper to update the next_leap_ktime 645 */ 646 static inline void tk_update_leap_state(struct timekeeper *tk) 647 { 648 tk->next_leap_ktime = ntp_get_next_leap(tk->id); 649 if (tk->next_leap_ktime != KTIME_MAX) 650 /* Convert to monotonic time */ 651 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 652 } 653 654 /* 655 * Leap state update for both shadow and the real timekeeper 656 * Separate to spare a full memcpy() of the timekeeper. 657 */ 658 static void tk_update_leap_state_all(struct tk_data *tkd) 659 { 660 write_seqcount_begin(&tkd->seq); 661 tk_update_leap_state(&tkd->shadow_timekeeper); 662 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 663 write_seqcount_end(&tkd->seq); 664 } 665 666 /* 667 * Update the ktime_t based scalar nsec members of the timekeeper 668 */ 669 static inline void tk_update_ktime_data(struct timekeeper *tk) 670 { 671 u64 seconds; 672 u32 nsec; 673 674 /* 675 * The xtime based monotonic readout is: 676 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 677 * The ktime based monotonic readout is: 678 * nsec = base_mono + now(); 679 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 680 */ 681 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 682 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 683 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 684 685 /* 686 * The sum of the nanoseconds portions of xtime and 687 * wall_to_monotonic can be greater/equal one second. Take 688 * this into account before updating tk->ktime_sec. 689 */ 690 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 691 if (nsec >= NSEC_PER_SEC) 692 seconds++; 693 tk->ktime_sec = seconds; 694 695 /* Update the monotonic raw base */ 696 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 697 } 698 699 /* 700 * Restore the shadow timekeeper from the real timekeeper. 701 */ 702 static void timekeeping_restore_shadow(struct tk_data *tkd) 703 { 704 lockdep_assert_held(&tkd->lock); 705 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 706 } 707 708 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 709 { 710 struct timekeeper *tk = &tkd->shadow_timekeeper; 711 712 lockdep_assert_held(&tkd->lock); 713 714 /* 715 * Block out readers before running the updates below because that 716 * updates VDSO and other time related infrastructure. Not blocking 717 * the readers might let a reader see time going backwards when 718 * reading from the VDSO after the VDSO update and then reading in 719 * the kernel from the timekeeper before that got updated. 720 */ 721 write_seqcount_begin(&tkd->seq); 722 723 if (action & TK_CLEAR_NTP) { 724 tk->ntp_error = 0; 725 ntp_clear(tk->id); 726 } 727 728 tk_update_leap_state(tk); 729 tk_update_ktime_data(tk); 730 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 731 732 if (tk->id == TIMEKEEPER_CORE) { 733 update_vsyscall(tk); 734 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 735 736 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 737 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 738 } else if (tk_is_aux(tk)) { 739 vdso_time_update_aux(tk); 740 } 741 742 if (action & TK_CLOCK_WAS_SET) 743 tk->clock_was_set_seq++; 744 745 /* 746 * Update the real timekeeper. 747 * 748 * We could avoid this memcpy() by switching pointers, but that has 749 * the downside that the reader side does not longer benefit from 750 * the cacheline optimized data layout of the timekeeper and requires 751 * another indirection. 752 */ 753 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 754 write_seqcount_end(&tkd->seq); 755 } 756 757 /** 758 * timekeeping_forward_now - update clock to the current time 759 * @tk: Pointer to the timekeeper to update 760 * 761 * Forward the current clock to update its state since the last call to 762 * update_wall_time(). This is useful before significant clock changes, 763 * as it avoids having to deal with this time offset explicitly. 764 */ 765 static void timekeeping_forward_now(struct timekeeper *tk) 766 { 767 u64 cycle_now, delta; 768 769 cycle_now = tk_clock_read(&tk->tkr_mono); 770 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 771 tk->tkr_mono.clock->max_raw_delta); 772 tk->tkr_mono.cycle_last = cycle_now; 773 tk->tkr_raw.cycle_last = cycle_now; 774 775 while (delta > 0) { 776 u64 max = tk->tkr_mono.clock->max_cycles; 777 u64 incr = delta < max ? delta : max; 778 779 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 780 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 781 tk_normalize_xtime(tk); 782 delta -= incr; 783 } 784 tk_update_coarse_nsecs(tk); 785 } 786 787 /** 788 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 789 * @ts: pointer to the timespec to be set 790 * 791 * Returns the time of day in a timespec64 (WARN if suspended). 792 */ 793 void ktime_get_real_ts64(struct timespec64 *ts) 794 { 795 struct timekeeper *tk = &tk_core.timekeeper; 796 unsigned int seq; 797 u64 nsecs; 798 799 WARN_ON(timekeeping_suspended); 800 801 do { 802 seq = read_seqcount_begin(&tk_core.seq); 803 804 ts->tv_sec = tk->xtime_sec; 805 nsecs = timekeeping_get_ns(&tk->tkr_mono); 806 807 } while (read_seqcount_retry(&tk_core.seq, seq)); 808 809 ts->tv_nsec = 0; 810 timespec64_add_ns(ts, nsecs); 811 } 812 EXPORT_SYMBOL(ktime_get_real_ts64); 813 814 ktime_t ktime_get(void) 815 { 816 struct timekeeper *tk = &tk_core.timekeeper; 817 unsigned int seq; 818 ktime_t base; 819 u64 nsecs; 820 821 WARN_ON(timekeeping_suspended); 822 823 do { 824 seq = read_seqcount_begin(&tk_core.seq); 825 base = tk->tkr_mono.base; 826 nsecs = timekeeping_get_ns(&tk->tkr_mono); 827 828 } while (read_seqcount_retry(&tk_core.seq, seq)); 829 830 return ktime_add_ns(base, nsecs); 831 } 832 EXPORT_SYMBOL_GPL(ktime_get); 833 834 u32 ktime_get_resolution_ns(void) 835 { 836 struct timekeeper *tk = &tk_core.timekeeper; 837 unsigned int seq; 838 u32 nsecs; 839 840 WARN_ON(timekeeping_suspended); 841 842 do { 843 seq = read_seqcount_begin(&tk_core.seq); 844 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 845 } while (read_seqcount_retry(&tk_core.seq, seq)); 846 847 return nsecs; 848 } 849 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 850 851 static ktime_t *offsets[TK_OFFS_MAX] = { 852 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 853 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 854 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 855 }; 856 857 ktime_t ktime_get_with_offset(enum tk_offsets offs) 858 { 859 struct timekeeper *tk = &tk_core.timekeeper; 860 unsigned int seq; 861 ktime_t base, *offset = offsets[offs]; 862 u64 nsecs; 863 864 WARN_ON(timekeeping_suspended); 865 866 do { 867 seq = read_seqcount_begin(&tk_core.seq); 868 base = ktime_add(tk->tkr_mono.base, *offset); 869 nsecs = timekeeping_get_ns(&tk->tkr_mono); 870 871 } while (read_seqcount_retry(&tk_core.seq, seq)); 872 873 return ktime_add_ns(base, nsecs); 874 875 } 876 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 877 878 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 879 { 880 struct timekeeper *tk = &tk_core.timekeeper; 881 ktime_t base, *offset = offsets[offs]; 882 unsigned int seq; 883 u64 nsecs; 884 885 WARN_ON(timekeeping_suspended); 886 887 do { 888 seq = read_seqcount_begin(&tk_core.seq); 889 base = ktime_add(tk->tkr_mono.base, *offset); 890 nsecs = tk->coarse_nsec; 891 892 } while (read_seqcount_retry(&tk_core.seq, seq)); 893 894 return ktime_add_ns(base, nsecs); 895 } 896 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 897 898 /** 899 * ktime_mono_to_any() - convert monotonic time to any other time 900 * @tmono: time to convert. 901 * @offs: which offset to use 902 */ 903 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 904 { 905 ktime_t *offset = offsets[offs]; 906 unsigned int seq; 907 ktime_t tconv; 908 909 if (IS_ENABLED(CONFIG_64BIT)) { 910 /* 911 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 912 * tk_update_sleep_time(). 913 */ 914 return ktime_add(tmono, READ_ONCE(*offset)); 915 } 916 917 do { 918 seq = read_seqcount_begin(&tk_core.seq); 919 tconv = ktime_add(tmono, *offset); 920 } while (read_seqcount_retry(&tk_core.seq, seq)); 921 922 return tconv; 923 } 924 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 925 926 /** 927 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 928 */ 929 ktime_t ktime_get_raw(void) 930 { 931 struct timekeeper *tk = &tk_core.timekeeper; 932 unsigned int seq; 933 ktime_t base; 934 u64 nsecs; 935 936 do { 937 seq = read_seqcount_begin(&tk_core.seq); 938 base = tk->tkr_raw.base; 939 nsecs = timekeeping_get_ns(&tk->tkr_raw); 940 941 } while (read_seqcount_retry(&tk_core.seq, seq)); 942 943 return ktime_add_ns(base, nsecs); 944 } 945 EXPORT_SYMBOL_GPL(ktime_get_raw); 946 947 /** 948 * ktime_get_ts64 - get the monotonic clock in timespec64 format 949 * @ts: pointer to timespec variable 950 * 951 * The function calculates the monotonic clock from the realtime 952 * clock and the wall_to_monotonic offset and stores the result 953 * in normalized timespec64 format in the variable pointed to by @ts. 954 */ 955 void ktime_get_ts64(struct timespec64 *ts) 956 { 957 struct timekeeper *tk = &tk_core.timekeeper; 958 struct timespec64 tomono; 959 unsigned int seq; 960 u64 nsec; 961 962 WARN_ON(timekeeping_suspended); 963 964 do { 965 seq = read_seqcount_begin(&tk_core.seq); 966 ts->tv_sec = tk->xtime_sec; 967 nsec = timekeeping_get_ns(&tk->tkr_mono); 968 tomono = tk->wall_to_monotonic; 969 970 } while (read_seqcount_retry(&tk_core.seq, seq)); 971 972 ts->tv_sec += tomono.tv_sec; 973 ts->tv_nsec = 0; 974 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 975 } 976 EXPORT_SYMBOL_GPL(ktime_get_ts64); 977 978 /** 979 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 980 * 981 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 982 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 983 * works on both 32 and 64 bit systems. On 32 bit systems the readout 984 * covers ~136 years of uptime which should be enough to prevent 985 * premature wrap arounds. 986 */ 987 time64_t ktime_get_seconds(void) 988 { 989 struct timekeeper *tk = &tk_core.timekeeper; 990 991 WARN_ON(timekeeping_suspended); 992 return tk->ktime_sec; 993 } 994 EXPORT_SYMBOL_GPL(ktime_get_seconds); 995 996 /** 997 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 998 * 999 * Returns the wall clock seconds since 1970. 1000 * 1001 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1002 * 32bit systems the access must be protected with the sequence 1003 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1004 * value. 1005 */ 1006 time64_t ktime_get_real_seconds(void) 1007 { 1008 struct timekeeper *tk = &tk_core.timekeeper; 1009 time64_t seconds; 1010 unsigned int seq; 1011 1012 if (IS_ENABLED(CONFIG_64BIT)) 1013 return tk->xtime_sec; 1014 1015 do { 1016 seq = read_seqcount_begin(&tk_core.seq); 1017 seconds = tk->xtime_sec; 1018 1019 } while (read_seqcount_retry(&tk_core.seq, seq)); 1020 1021 return seconds; 1022 } 1023 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1024 1025 /** 1026 * __ktime_get_real_seconds - Unprotected access to CLOCK_REALTIME seconds 1027 * 1028 * The same as ktime_get_real_seconds() but without the sequence counter 1029 * protection. This function is used in restricted contexts like the x86 MCE 1030 * handler and in KGDB. It's unprotected on 32-bit vs. concurrent half 1031 * completed modification and only to be used for such critical contexts. 1032 * 1033 * Returns: Racy snapshot of the CLOCK_REALTIME seconds value 1034 */ 1035 noinstr time64_t __ktime_get_real_seconds(void) 1036 { 1037 struct timekeeper *tk = &tk_core.timekeeper; 1038 1039 return tk->xtime_sec; 1040 } 1041 1042 /** 1043 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1044 * @systime_snapshot: pointer to struct receiving the system time snapshot 1045 */ 1046 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1047 { 1048 struct timekeeper *tk = &tk_core.timekeeper; 1049 unsigned int seq; 1050 ktime_t base_raw; 1051 ktime_t base_real; 1052 ktime_t base_boot; 1053 u64 nsec_raw; 1054 u64 nsec_real; 1055 u64 now; 1056 1057 WARN_ON_ONCE(timekeeping_suspended); 1058 1059 do { 1060 seq = read_seqcount_begin(&tk_core.seq); 1061 now = tk_clock_read(&tk->tkr_mono); 1062 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1063 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1064 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1065 base_real = ktime_add(tk->tkr_mono.base, 1066 tk_core.timekeeper.offs_real); 1067 base_boot = ktime_add(tk->tkr_mono.base, 1068 tk_core.timekeeper.offs_boot); 1069 base_raw = tk->tkr_raw.base; 1070 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1071 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1072 } while (read_seqcount_retry(&tk_core.seq, seq)); 1073 1074 systime_snapshot->cycles = now; 1075 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1076 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1077 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1078 } 1079 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1080 1081 /* Scale base by mult/div checking for overflow */ 1082 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1083 { 1084 u64 tmp, rem; 1085 1086 tmp = div64_u64_rem(*base, div, &rem); 1087 1088 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1089 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1090 return -EOVERFLOW; 1091 tmp *= mult; 1092 1093 rem = div64_u64(rem * mult, div); 1094 *base = tmp + rem; 1095 return 0; 1096 } 1097 1098 /** 1099 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1100 * @history: Snapshot representing start of history 1101 * @partial_history_cycles: Cycle offset into history (fractional part) 1102 * @total_history_cycles: Total history length in cycles 1103 * @discontinuity: True indicates clock was set on history period 1104 * @ts: Cross timestamp that should be adjusted using 1105 * partial/total ratio 1106 * 1107 * Helper function used by get_device_system_crosststamp() to correct the 1108 * crosstimestamp corresponding to the start of the current interval to the 1109 * system counter value (timestamp point) provided by the driver. The 1110 * total_history_* quantities are the total history starting at the provided 1111 * reference point and ending at the start of the current interval. The cycle 1112 * count between the driver timestamp point and the start of the current 1113 * interval is partial_history_cycles. 1114 */ 1115 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1116 u64 partial_history_cycles, 1117 u64 total_history_cycles, 1118 bool discontinuity, 1119 struct system_device_crosststamp *ts) 1120 { 1121 struct timekeeper *tk = &tk_core.timekeeper; 1122 u64 corr_raw, corr_real; 1123 bool interp_forward; 1124 int ret; 1125 1126 if (total_history_cycles == 0 || partial_history_cycles == 0) 1127 return 0; 1128 1129 /* Interpolate shortest distance from beginning or end of history */ 1130 interp_forward = partial_history_cycles > total_history_cycles / 2; 1131 partial_history_cycles = interp_forward ? 1132 total_history_cycles - partial_history_cycles : 1133 partial_history_cycles; 1134 1135 /* 1136 * Scale the monotonic raw time delta by: 1137 * partial_history_cycles / total_history_cycles 1138 */ 1139 corr_raw = (u64)ktime_to_ns( 1140 ktime_sub(ts->sys_monoraw, history->raw)); 1141 ret = scale64_check_overflow(partial_history_cycles, 1142 total_history_cycles, &corr_raw); 1143 if (ret) 1144 return ret; 1145 1146 /* 1147 * If there is a discontinuity in the history, scale monotonic raw 1148 * correction by: 1149 * mult(real)/mult(raw) yielding the realtime correction 1150 * Otherwise, calculate the realtime correction similar to monotonic 1151 * raw calculation 1152 */ 1153 if (discontinuity) { 1154 corr_real = mul_u64_u32_div 1155 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1156 } else { 1157 corr_real = (u64)ktime_to_ns( 1158 ktime_sub(ts->sys_realtime, history->real)); 1159 ret = scale64_check_overflow(partial_history_cycles, 1160 total_history_cycles, &corr_real); 1161 if (ret) 1162 return ret; 1163 } 1164 1165 /* Fixup monotonic raw and real time time values */ 1166 if (interp_forward) { 1167 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1168 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1169 } else { 1170 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1171 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1172 } 1173 1174 return 0; 1175 } 1176 1177 /* 1178 * timestamp_in_interval - true if ts is chronologically in [start, end] 1179 * 1180 * True if ts occurs chronologically at or after start, and before or at end. 1181 */ 1182 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1183 { 1184 if (ts >= start && ts <= end) 1185 return true; 1186 if (start > end && (ts >= start || ts <= end)) 1187 return true; 1188 return false; 1189 } 1190 1191 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1192 { 1193 u64 rem, res; 1194 1195 if (!numerator || !denominator) 1196 return false; 1197 1198 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1199 *val = res + div_u64(rem * numerator, denominator); 1200 return true; 1201 } 1202 1203 static bool convert_base_to_cs(struct system_counterval_t *scv) 1204 { 1205 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1206 struct clocksource_base *base; 1207 u32 num, den; 1208 1209 /* The timestamp was taken from the time keeper clock source */ 1210 if (cs->id == scv->cs_id) 1211 return true; 1212 1213 /* 1214 * Check whether cs_id matches the base clock. Prevent the compiler from 1215 * re-evaluating @base as the clocksource might change concurrently. 1216 */ 1217 base = READ_ONCE(cs->base); 1218 if (!base || base->id != scv->cs_id) 1219 return false; 1220 1221 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1222 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1223 1224 if (!convert_clock(&scv->cycles, num, den)) 1225 return false; 1226 1227 scv->cycles += base->offset; 1228 return true; 1229 } 1230 1231 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1232 { 1233 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1234 struct clocksource_base *base; 1235 1236 /* 1237 * Check whether base_id matches the base clock. Prevent the compiler from 1238 * re-evaluating @base as the clocksource might change concurrently. 1239 */ 1240 base = READ_ONCE(cs->base); 1241 if (!base || base->id != base_id) 1242 return false; 1243 1244 *cycles -= base->offset; 1245 if (!convert_clock(cycles, base->denominator, base->numerator)) 1246 return false; 1247 return true; 1248 } 1249 1250 static bool convert_ns_to_cs(u64 *delta) 1251 { 1252 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1253 1254 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1255 return false; 1256 1257 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1258 return true; 1259 } 1260 1261 /** 1262 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1263 * @treal: CLOCK_REALTIME timestamp to convert 1264 * @base_id: base clocksource id 1265 * @cycles: pointer to store the converted base clock timestamp 1266 * 1267 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1268 * 1269 * Return: true if the conversion is successful, false otherwise. 1270 */ 1271 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1272 { 1273 struct timekeeper *tk = &tk_core.timekeeper; 1274 unsigned int seq; 1275 u64 delta; 1276 1277 do { 1278 seq = read_seqcount_begin(&tk_core.seq); 1279 if ((u64)treal < tk->tkr_mono.base_real) 1280 return false; 1281 delta = (u64)treal - tk->tkr_mono.base_real; 1282 if (!convert_ns_to_cs(&delta)) 1283 return false; 1284 *cycles = tk->tkr_mono.cycle_last + delta; 1285 if (!convert_cs_to_base(cycles, base_id)) 1286 return false; 1287 } while (read_seqcount_retry(&tk_core.seq, seq)); 1288 1289 return true; 1290 } 1291 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1292 1293 /** 1294 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1295 * @get_time_fn: Callback to get simultaneous device time and 1296 * system counter from the device driver 1297 * @ctx: Context passed to get_time_fn() 1298 * @history_begin: Historical reference point used to interpolate system 1299 * time when counter provided by the driver is before the current interval 1300 * @xtstamp: Receives simultaneously captured system and device time 1301 * 1302 * Reads a timestamp from a device and correlates it to system time 1303 */ 1304 int get_device_system_crosststamp(int (*get_time_fn) 1305 (ktime_t *device_time, 1306 struct system_counterval_t *sys_counterval, 1307 void *ctx), 1308 void *ctx, 1309 struct system_time_snapshot *history_begin, 1310 struct system_device_crosststamp *xtstamp) 1311 { 1312 struct system_counterval_t system_counterval = {}; 1313 struct timekeeper *tk = &tk_core.timekeeper; 1314 u64 cycles, now, interval_start; 1315 unsigned int clock_was_set_seq = 0; 1316 ktime_t base_real, base_raw; 1317 u64 nsec_real, nsec_raw; 1318 u8 cs_was_changed_seq; 1319 unsigned int seq; 1320 bool do_interp; 1321 int ret; 1322 1323 do { 1324 seq = read_seqcount_begin(&tk_core.seq); 1325 /* 1326 * Try to synchronously capture device time and a system 1327 * counter value calling back into the device driver 1328 */ 1329 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1330 if (ret) 1331 return ret; 1332 1333 /* 1334 * Verify that the clocksource ID associated with the captured 1335 * system counter value is the same as for the currently 1336 * installed timekeeper clocksource 1337 */ 1338 if (system_counterval.cs_id == CSID_GENERIC || 1339 !convert_base_to_cs(&system_counterval)) 1340 return -ENODEV; 1341 cycles = system_counterval.cycles; 1342 1343 /* 1344 * Check whether the system counter value provided by the 1345 * device driver is on the current timekeeping interval. 1346 */ 1347 now = tk_clock_read(&tk->tkr_mono); 1348 interval_start = tk->tkr_mono.cycle_last; 1349 if (!timestamp_in_interval(interval_start, now, cycles)) { 1350 clock_was_set_seq = tk->clock_was_set_seq; 1351 cs_was_changed_seq = tk->cs_was_changed_seq; 1352 cycles = interval_start; 1353 do_interp = true; 1354 } else { 1355 do_interp = false; 1356 } 1357 1358 base_real = ktime_add(tk->tkr_mono.base, 1359 tk_core.timekeeper.offs_real); 1360 base_raw = tk->tkr_raw.base; 1361 1362 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1363 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1364 } while (read_seqcount_retry(&tk_core.seq, seq)); 1365 1366 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1367 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1368 1369 /* 1370 * Interpolate if necessary, adjusting back from the start of the 1371 * current interval 1372 */ 1373 if (do_interp) { 1374 u64 partial_history_cycles, total_history_cycles; 1375 bool discontinuity; 1376 1377 /* 1378 * Check that the counter value is not before the provided 1379 * history reference and that the history doesn't cross a 1380 * clocksource change 1381 */ 1382 if (!history_begin || 1383 !timestamp_in_interval(history_begin->cycles, 1384 cycles, system_counterval.cycles) || 1385 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1386 return -EINVAL; 1387 partial_history_cycles = cycles - system_counterval.cycles; 1388 total_history_cycles = cycles - history_begin->cycles; 1389 discontinuity = 1390 history_begin->clock_was_set_seq != clock_was_set_seq; 1391 1392 ret = adjust_historical_crosststamp(history_begin, 1393 partial_history_cycles, 1394 total_history_cycles, 1395 discontinuity, xtstamp); 1396 if (ret) 1397 return ret; 1398 } 1399 1400 return 0; 1401 } 1402 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1403 1404 /** 1405 * timekeeping_clocksource_has_base - Check whether the current clocksource 1406 * is based on given a base clock 1407 * @id: base clocksource ID 1408 * 1409 * Note: The return value is a snapshot which can become invalid right 1410 * after the function returns. 1411 * 1412 * Return: true if the timekeeper clocksource has a base clock with @id, 1413 * false otherwise 1414 */ 1415 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1416 { 1417 /* 1418 * This is a snapshot, so no point in using the sequence 1419 * count. Just prevent the compiler from re-evaluating @base as the 1420 * clocksource might change concurrently. 1421 */ 1422 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1423 1424 return base ? base->id == id : false; 1425 } 1426 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1427 1428 /** 1429 * do_settimeofday64 - Sets the time of day. 1430 * @ts: pointer to the timespec64 variable containing the new time 1431 * 1432 * Sets the time of day to the new time and update NTP and notify hrtimers 1433 */ 1434 int do_settimeofday64(const struct timespec64 *ts) 1435 { 1436 struct timespec64 ts_delta, xt; 1437 1438 if (!timespec64_valid_settod(ts)) 1439 return -EINVAL; 1440 1441 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1442 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1443 1444 timekeeping_forward_now(tks); 1445 1446 xt = tk_xtime(tks); 1447 ts_delta = timespec64_sub(*ts, xt); 1448 1449 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1450 timekeeping_restore_shadow(&tk_core); 1451 return -EINVAL; 1452 } 1453 1454 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1455 tk_set_xtime(tks, ts); 1456 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1457 } 1458 1459 /* Signal hrtimers about time change */ 1460 clock_was_set(CLOCK_SET_WALL); 1461 1462 audit_tk_injoffset(ts_delta); 1463 add_device_randomness(ts, sizeof(*ts)); 1464 return 0; 1465 } 1466 EXPORT_SYMBOL(do_settimeofday64); 1467 1468 static inline bool timekeeper_is_core_tk(struct timekeeper *tk) 1469 { 1470 return !IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS) || tk->id == TIMEKEEPER_CORE; 1471 } 1472 1473 /** 1474 * __timekeeping_inject_offset - Adds or subtracts from the current time. 1475 * @tkd: Pointer to the timekeeper to modify 1476 * @ts: Pointer to the timespec variable containing the offset 1477 * 1478 * Adds or subtracts an offset value from the current time. 1479 */ 1480 static int __timekeeping_inject_offset(struct tk_data *tkd, const struct timespec64 *ts) 1481 { 1482 struct timekeeper *tks = &tkd->shadow_timekeeper; 1483 struct timespec64 tmp; 1484 1485 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1486 return -EINVAL; 1487 1488 timekeeping_forward_now(tks); 1489 1490 if (timekeeper_is_core_tk(tks)) { 1491 /* Make sure the proposed value is valid */ 1492 tmp = timespec64_add(tk_xtime(tks), *ts); 1493 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1494 !timespec64_valid_settod(&tmp)) { 1495 timekeeping_restore_shadow(tkd); 1496 return -EINVAL; 1497 } 1498 1499 tk_xtime_add(tks, ts); 1500 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1501 } else { 1502 struct tk_read_base *tkr_mono = &tks->tkr_mono; 1503 ktime_t now, offs; 1504 1505 /* Get the current time */ 1506 now = ktime_add_ns(tkr_mono->base, timekeeping_get_ns(tkr_mono)); 1507 /* Add the relative offset change */ 1508 offs = ktime_add(tks->offs_aux, timespec64_to_ktime(*ts)); 1509 1510 /* Prevent that the resulting time becomes negative */ 1511 if (ktime_add(now, offs) < 0) { 1512 timekeeping_restore_shadow(tkd); 1513 return -EINVAL; 1514 } 1515 tk_update_aux_offs(tks, offs); 1516 } 1517 1518 timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL); 1519 return 0; 1520 } 1521 1522 static int timekeeping_inject_offset(const struct timespec64 *ts) 1523 { 1524 int ret; 1525 1526 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) 1527 ret = __timekeeping_inject_offset(&tk_core, ts); 1528 1529 /* Signal hrtimers about time change */ 1530 if (!ret) 1531 clock_was_set(CLOCK_SET_WALL); 1532 return ret; 1533 } 1534 1535 /* 1536 * Indicates if there is an offset between the system clock and the hardware 1537 * clock/persistent clock/rtc. 1538 */ 1539 int persistent_clock_is_local; 1540 1541 /* 1542 * Adjust the time obtained from the CMOS to be UTC time instead of 1543 * local time. 1544 * 1545 * This is ugly, but preferable to the alternatives. Otherwise we 1546 * would either need to write a program to do it in /etc/rc (and risk 1547 * confusion if the program gets run more than once; it would also be 1548 * hard to make the program warp the clock precisely n hours) or 1549 * compile in the timezone information into the kernel. Bad, bad.... 1550 * 1551 * - TYT, 1992-01-01 1552 * 1553 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1554 * as real UNIX machines always do it. This avoids all headaches about 1555 * daylight saving times and warping kernel clocks. 1556 */ 1557 void timekeeping_warp_clock(void) 1558 { 1559 if (sys_tz.tz_minuteswest != 0) { 1560 struct timespec64 adjust; 1561 1562 persistent_clock_is_local = 1; 1563 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1564 adjust.tv_nsec = 0; 1565 timekeeping_inject_offset(&adjust); 1566 } 1567 } 1568 1569 /* 1570 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1571 */ 1572 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1573 { 1574 tk->tai_offset = tai_offset; 1575 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1576 } 1577 1578 /* 1579 * change_clocksource - Swaps clocksources if a new one is available 1580 * 1581 * Accumulates current time interval and initializes new clocksource 1582 */ 1583 static int change_clocksource(void *data) 1584 { 1585 struct clocksource *new = data, *old = NULL; 1586 1587 /* 1588 * If the clocksource is in a module, get a module reference. 1589 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1590 * reference can't be acquired. 1591 */ 1592 if (!try_module_get(new->owner)) 1593 return 0; 1594 1595 /* Abort if the device can't be enabled */ 1596 if (new->enable && new->enable(new) != 0) { 1597 module_put(new->owner); 1598 return 0; 1599 } 1600 1601 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1602 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1603 1604 timekeeping_forward_now(tks); 1605 old = tks->tkr_mono.clock; 1606 tk_setup_internals(tks, new); 1607 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1608 } 1609 1610 tk_aux_update_clocksource(); 1611 1612 if (old) { 1613 if (old->disable) 1614 old->disable(old); 1615 module_put(old->owner); 1616 } 1617 1618 return 0; 1619 } 1620 1621 /** 1622 * timekeeping_notify - Install a new clock source 1623 * @clock: pointer to the clock source 1624 * 1625 * This function is called from clocksource.c after a new, better clock 1626 * source has been registered. The caller holds the clocksource_mutex. 1627 */ 1628 int timekeeping_notify(struct clocksource *clock) 1629 { 1630 struct timekeeper *tk = &tk_core.timekeeper; 1631 1632 if (tk->tkr_mono.clock == clock) 1633 return 0; 1634 stop_machine(change_clocksource, clock, NULL); 1635 tick_clock_notify(); 1636 return tk->tkr_mono.clock == clock ? 0 : -1; 1637 } 1638 1639 /** 1640 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1641 * @ts: pointer to the timespec64 to be set 1642 * 1643 * Returns the raw monotonic time (completely un-modified by ntp) 1644 */ 1645 void ktime_get_raw_ts64(struct timespec64 *ts) 1646 { 1647 struct timekeeper *tk = &tk_core.timekeeper; 1648 unsigned int seq; 1649 u64 nsecs; 1650 1651 do { 1652 seq = read_seqcount_begin(&tk_core.seq); 1653 ts->tv_sec = tk->raw_sec; 1654 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1655 1656 } while (read_seqcount_retry(&tk_core.seq, seq)); 1657 1658 ts->tv_nsec = 0; 1659 timespec64_add_ns(ts, nsecs); 1660 } 1661 EXPORT_SYMBOL(ktime_get_raw_ts64); 1662 1663 /** 1664 * ktime_get_clock_ts64 - Returns time of a clock in a timespec 1665 * @id: POSIX clock ID of the clock to read 1666 * @ts: Pointer to the timespec64 to be set 1667 * 1668 * The timestamp is invalidated (@ts->sec is set to -1) if the 1669 * clock @id is not available. 1670 */ 1671 void ktime_get_clock_ts64(clockid_t id, struct timespec64 *ts) 1672 { 1673 /* Invalidate time stamp */ 1674 ts->tv_sec = -1; 1675 ts->tv_nsec = 0; 1676 1677 switch (id) { 1678 case CLOCK_REALTIME: 1679 ktime_get_real_ts64(ts); 1680 return; 1681 case CLOCK_MONOTONIC: 1682 ktime_get_ts64(ts); 1683 return; 1684 case CLOCK_MONOTONIC_RAW: 1685 ktime_get_raw_ts64(ts); 1686 return; 1687 case CLOCK_AUX ... CLOCK_AUX_LAST: 1688 if (IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS)) 1689 ktime_get_aux_ts64(id, ts); 1690 return; 1691 default: 1692 WARN_ON_ONCE(1); 1693 } 1694 } 1695 EXPORT_SYMBOL_GPL(ktime_get_clock_ts64); 1696 1697 /** 1698 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1699 */ 1700 int timekeeping_valid_for_hres(void) 1701 { 1702 struct timekeeper *tk = &tk_core.timekeeper; 1703 unsigned int seq; 1704 int ret; 1705 1706 do { 1707 seq = read_seqcount_begin(&tk_core.seq); 1708 1709 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1710 1711 } while (read_seqcount_retry(&tk_core.seq, seq)); 1712 1713 return ret; 1714 } 1715 1716 /** 1717 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1718 */ 1719 u64 timekeeping_max_deferment(void) 1720 { 1721 struct timekeeper *tk = &tk_core.timekeeper; 1722 unsigned int seq; 1723 u64 ret; 1724 1725 do { 1726 seq = read_seqcount_begin(&tk_core.seq); 1727 1728 ret = tk->tkr_mono.clock->max_idle_ns; 1729 1730 } while (read_seqcount_retry(&tk_core.seq, seq)); 1731 1732 return ret; 1733 } 1734 1735 /** 1736 * read_persistent_clock64 - Return time from the persistent clock. 1737 * @ts: Pointer to the storage for the readout value 1738 * 1739 * Weak dummy function for arches that do not yet support it. 1740 * Reads the time from the battery backed persistent clock. 1741 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1742 * 1743 * XXX - Do be sure to remove it once all arches implement it. 1744 */ 1745 void __weak read_persistent_clock64(struct timespec64 *ts) 1746 { 1747 ts->tv_sec = 0; 1748 ts->tv_nsec = 0; 1749 } 1750 1751 /** 1752 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1753 * from the boot. 1754 * @wall_time: current time as returned by persistent clock 1755 * @boot_offset: offset that is defined as wall_time - boot_time 1756 * 1757 * Weak dummy function for arches that do not yet support it. 1758 * 1759 * The default function calculates offset based on the current value of 1760 * local_clock(). This way architectures that support sched_clock() but don't 1761 * support dedicated boot time clock will provide the best estimate of the 1762 * boot time. 1763 */ 1764 void __weak __init 1765 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1766 struct timespec64 *boot_offset) 1767 { 1768 read_persistent_clock64(wall_time); 1769 *boot_offset = ns_to_timespec64(local_clock()); 1770 } 1771 1772 static __init void tkd_basic_setup(struct tk_data *tkd, enum timekeeper_ids tk_id, bool valid) 1773 { 1774 raw_spin_lock_init(&tkd->lock); 1775 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1776 tkd->timekeeper.id = tkd->shadow_timekeeper.id = tk_id; 1777 tkd->timekeeper.clock_valid = tkd->shadow_timekeeper.clock_valid = valid; 1778 } 1779 1780 /* 1781 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1782 * 1783 * The flag starts of false and is only set when a suspend reaches 1784 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1785 * timekeeper clocksource is not stopping across suspend and has been 1786 * used to update sleep time. If the timekeeper clocksource has stopped 1787 * then the flag stays true and is used by the RTC resume code to decide 1788 * whether sleeptime must be injected and if so the flag gets false then. 1789 * 1790 * If a suspend fails before reaching timekeeping_resume() then the flag 1791 * stays false and prevents erroneous sleeptime injection. 1792 */ 1793 static bool suspend_timing_needed; 1794 1795 /* Flag for if there is a persistent clock on this platform */ 1796 static bool persistent_clock_exists; 1797 1798 /* 1799 * timekeeping_init - Initializes the clocksource and common timekeeping values 1800 */ 1801 void __init timekeeping_init(void) 1802 { 1803 struct timespec64 wall_time, boot_offset, wall_to_mono; 1804 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1805 struct clocksource *clock; 1806 1807 tkd_basic_setup(&tk_core, TIMEKEEPER_CORE, true); 1808 tk_aux_setup(); 1809 1810 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1811 if (timespec64_valid_settod(&wall_time) && 1812 timespec64_to_ns(&wall_time) > 0) { 1813 persistent_clock_exists = true; 1814 } else if (timespec64_to_ns(&wall_time) != 0) { 1815 pr_warn("Persistent clock returned invalid value"); 1816 wall_time = (struct timespec64){0}; 1817 } 1818 1819 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1820 boot_offset = (struct timespec64){0}; 1821 1822 /* 1823 * We want set wall_to_mono, so the following is true: 1824 * wall time + wall_to_mono = boot time 1825 */ 1826 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1827 1828 guard(raw_spinlock_irqsave)(&tk_core.lock); 1829 1830 ntp_init(); 1831 1832 clock = clocksource_default_clock(); 1833 if (clock->enable) 1834 clock->enable(clock); 1835 tk_setup_internals(tks, clock); 1836 1837 tk_set_xtime(tks, &wall_time); 1838 tks->raw_sec = 0; 1839 1840 tk_set_wall_to_mono(tks, wall_to_mono); 1841 1842 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1843 } 1844 1845 /* time in seconds when suspend began for persistent clock */ 1846 static struct timespec64 timekeeping_suspend_time; 1847 1848 /** 1849 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1850 * @tk: Pointer to the timekeeper to be updated 1851 * @delta: Pointer to the delta value in timespec64 format 1852 * 1853 * Takes a timespec offset measuring a suspend interval and properly 1854 * adds the sleep offset to the timekeeping variables. 1855 */ 1856 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1857 const struct timespec64 *delta) 1858 { 1859 if (!timespec64_valid_strict(delta)) { 1860 printk_deferred(KERN_WARNING 1861 "__timekeeping_inject_sleeptime: Invalid " 1862 "sleep delta value!\n"); 1863 return; 1864 } 1865 tk_xtime_add(tk, delta); 1866 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1867 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1868 tk_debug_account_sleep_time(delta); 1869 } 1870 1871 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1872 /* 1873 * We have three kinds of time sources to use for sleep time 1874 * injection, the preference order is: 1875 * 1) non-stop clocksource 1876 * 2) persistent clock (ie: RTC accessible when irqs are off) 1877 * 3) RTC 1878 * 1879 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1880 * If system has neither 1) nor 2), 3) will be used finally. 1881 * 1882 * 1883 * If timekeeping has injected sleeptime via either 1) or 2), 1884 * 3) becomes needless, so in this case we don't need to call 1885 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1886 * means. 1887 */ 1888 bool timekeeping_rtc_skipresume(void) 1889 { 1890 return !suspend_timing_needed; 1891 } 1892 1893 /* 1894 * 1) can be determined whether to use or not only when doing 1895 * timekeeping_resume() which is invoked after rtc_suspend(), 1896 * so we can't skip rtc_suspend() surely if system has 1). 1897 * 1898 * But if system has 2), 2) will definitely be used, so in this 1899 * case we don't need to call rtc_suspend(), and this is what 1900 * timekeeping_rtc_skipsuspend() means. 1901 */ 1902 bool timekeeping_rtc_skipsuspend(void) 1903 { 1904 return persistent_clock_exists; 1905 } 1906 1907 /** 1908 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1909 * @delta: pointer to a timespec64 delta value 1910 * 1911 * This hook is for architectures that cannot support read_persistent_clock64 1912 * because their RTC/persistent clock is only accessible when irqs are enabled. 1913 * and also don't have an effective nonstop clocksource. 1914 * 1915 * This function should only be called by rtc_resume(), and allows 1916 * a suspend offset to be injected into the timekeeping values. 1917 */ 1918 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1919 { 1920 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1921 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1922 1923 suspend_timing_needed = false; 1924 timekeeping_forward_now(tks); 1925 __timekeeping_inject_sleeptime(tks, delta); 1926 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1927 } 1928 1929 /* Signal hrtimers about time change */ 1930 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1931 } 1932 #endif 1933 1934 /** 1935 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1936 */ 1937 void timekeeping_resume(void) 1938 { 1939 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1940 struct clocksource *clock = tks->tkr_mono.clock; 1941 struct timespec64 ts_new, ts_delta; 1942 bool inject_sleeptime = false; 1943 u64 cycle_now, nsec; 1944 unsigned long flags; 1945 1946 read_persistent_clock64(&ts_new); 1947 1948 clockevents_resume(); 1949 clocksource_resume(); 1950 1951 raw_spin_lock_irqsave(&tk_core.lock, flags); 1952 1953 /* 1954 * After system resumes, we need to calculate the suspended time and 1955 * compensate it for the OS time. There are 3 sources that could be 1956 * used: Nonstop clocksource during suspend, persistent clock and rtc 1957 * device. 1958 * 1959 * One specific platform may have 1 or 2 or all of them, and the 1960 * preference will be: 1961 * suspend-nonstop clocksource -> persistent clock -> rtc 1962 * The less preferred source will only be tried if there is no better 1963 * usable source. The rtc part is handled separately in rtc core code. 1964 */ 1965 cycle_now = tk_clock_read(&tks->tkr_mono); 1966 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1967 if (nsec > 0) { 1968 ts_delta = ns_to_timespec64(nsec); 1969 inject_sleeptime = true; 1970 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1971 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1972 inject_sleeptime = true; 1973 } 1974 1975 if (inject_sleeptime) { 1976 suspend_timing_needed = false; 1977 __timekeeping_inject_sleeptime(tks, &ts_delta); 1978 } 1979 1980 /* Re-base the last cycle value */ 1981 tks->tkr_mono.cycle_last = cycle_now; 1982 tks->tkr_raw.cycle_last = cycle_now; 1983 1984 tks->ntp_error = 0; 1985 timekeeping_suspended = 0; 1986 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1987 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1988 1989 touch_softlockup_watchdog(); 1990 1991 /* Resume the clockevent device(s) and hrtimers */ 1992 tick_resume(); 1993 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1994 timerfd_resume(); 1995 } 1996 1997 static void timekeeping_syscore_resume(void *data) 1998 { 1999 timekeeping_resume(); 2000 } 2001 2002 int timekeeping_suspend(void) 2003 { 2004 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2005 struct timespec64 delta, delta_delta; 2006 static struct timespec64 old_delta; 2007 struct clocksource *curr_clock; 2008 unsigned long flags; 2009 u64 cycle_now; 2010 2011 read_persistent_clock64(&timekeeping_suspend_time); 2012 2013 /* 2014 * On some systems the persistent_clock can not be detected at 2015 * timekeeping_init by its return value, so if we see a valid 2016 * value returned, update the persistent_clock_exists flag. 2017 */ 2018 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 2019 persistent_clock_exists = true; 2020 2021 suspend_timing_needed = true; 2022 2023 raw_spin_lock_irqsave(&tk_core.lock, flags); 2024 timekeeping_forward_now(tks); 2025 timekeeping_suspended = 1; 2026 2027 /* 2028 * Since we've called forward_now, cycle_last stores the value 2029 * just read from the current clocksource. Save this to potentially 2030 * use in suspend timing. 2031 */ 2032 curr_clock = tks->tkr_mono.clock; 2033 cycle_now = tks->tkr_mono.cycle_last; 2034 clocksource_start_suspend_timing(curr_clock, cycle_now); 2035 2036 if (persistent_clock_exists) { 2037 /* 2038 * To avoid drift caused by repeated suspend/resumes, 2039 * which each can add ~1 second drift error, 2040 * try to compensate so the difference in system time 2041 * and persistent_clock time stays close to constant. 2042 */ 2043 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 2044 delta_delta = timespec64_sub(delta, old_delta); 2045 if (abs(delta_delta.tv_sec) >= 2) { 2046 /* 2047 * if delta_delta is too large, assume time correction 2048 * has occurred and set old_delta to the current delta. 2049 */ 2050 old_delta = delta; 2051 } else { 2052 /* Otherwise try to adjust old_system to compensate */ 2053 timekeeping_suspend_time = 2054 timespec64_add(timekeeping_suspend_time, delta_delta); 2055 } 2056 } 2057 2058 timekeeping_update_from_shadow(&tk_core, 0); 2059 halt_fast_timekeeper(tks); 2060 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 2061 2062 tick_suspend(); 2063 clocksource_suspend(); 2064 clockevents_suspend(); 2065 2066 return 0; 2067 } 2068 2069 static int timekeeping_syscore_suspend(void *data) 2070 { 2071 return timekeeping_suspend(); 2072 } 2073 2074 /* sysfs resume/suspend bits for timekeeping */ 2075 static const struct syscore_ops timekeeping_syscore_ops = { 2076 .resume = timekeeping_syscore_resume, 2077 .suspend = timekeeping_syscore_suspend, 2078 }; 2079 2080 static struct syscore timekeeping_syscore = { 2081 .ops = &timekeeping_syscore_ops, 2082 }; 2083 2084 static int __init timekeeping_init_ops(void) 2085 { 2086 register_syscore(&timekeeping_syscore); 2087 return 0; 2088 } 2089 device_initcall(timekeeping_init_ops); 2090 2091 /* 2092 * Apply a multiplier adjustment to the timekeeper 2093 */ 2094 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2095 s64 offset, 2096 s32 mult_adj) 2097 { 2098 s64 interval = tk->cycle_interval; 2099 2100 if (mult_adj == 0) { 2101 return; 2102 } else if (mult_adj == -1) { 2103 interval = -interval; 2104 offset = -offset; 2105 } else if (mult_adj != 1) { 2106 interval *= mult_adj; 2107 offset *= mult_adj; 2108 } 2109 2110 /* 2111 * So the following can be confusing. 2112 * 2113 * To keep things simple, lets assume mult_adj == 1 for now. 2114 * 2115 * When mult_adj != 1, remember that the interval and offset values 2116 * have been appropriately scaled so the math is the same. 2117 * 2118 * The basic idea here is that we're increasing the multiplier 2119 * by one, this causes the xtime_interval to be incremented by 2120 * one cycle_interval. This is because: 2121 * xtime_interval = cycle_interval * mult 2122 * So if mult is being incremented by one: 2123 * xtime_interval = cycle_interval * (mult + 1) 2124 * Its the same as: 2125 * xtime_interval = (cycle_interval * mult) + cycle_interval 2126 * Which can be shortened to: 2127 * xtime_interval += cycle_interval 2128 * 2129 * So offset stores the non-accumulated cycles. Thus the current 2130 * time (in shifted nanoseconds) is: 2131 * now = (offset * adj) + xtime_nsec 2132 * Now, even though we're adjusting the clock frequency, we have 2133 * to keep time consistent. In other words, we can't jump back 2134 * in time, and we also want to avoid jumping forward in time. 2135 * 2136 * So given the same offset value, we need the time to be the same 2137 * both before and after the freq adjustment. 2138 * now = (offset * adj_1) + xtime_nsec_1 2139 * now = (offset * adj_2) + xtime_nsec_2 2140 * So: 2141 * (offset * adj_1) + xtime_nsec_1 = 2142 * (offset * adj_2) + xtime_nsec_2 2143 * And we know: 2144 * adj_2 = adj_1 + 1 2145 * So: 2146 * (offset * adj_1) + xtime_nsec_1 = 2147 * (offset * (adj_1+1)) + xtime_nsec_2 2148 * (offset * adj_1) + xtime_nsec_1 = 2149 * (offset * adj_1) + offset + xtime_nsec_2 2150 * Canceling the sides: 2151 * xtime_nsec_1 = offset + xtime_nsec_2 2152 * Which gives us: 2153 * xtime_nsec_2 = xtime_nsec_1 - offset 2154 * Which simplifies to: 2155 * xtime_nsec -= offset 2156 */ 2157 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2158 /* NTP adjustment caused clocksource mult overflow */ 2159 WARN_ON_ONCE(1); 2160 return; 2161 } 2162 2163 tk->tkr_mono.mult += mult_adj; 2164 tk->xtime_interval += interval; 2165 tk->tkr_mono.xtime_nsec -= offset; 2166 } 2167 2168 /* 2169 * Adjust the timekeeper's multiplier to the correct frequency 2170 * and also to reduce the accumulated error value. 2171 */ 2172 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2173 { 2174 u64 ntp_tl = ntp_tick_length(tk->id); 2175 u32 mult; 2176 2177 /* 2178 * Determine the multiplier from the current NTP tick length. 2179 * Avoid expensive division when the tick length doesn't change. 2180 */ 2181 if (likely(tk->ntp_tick == ntp_tl)) { 2182 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2183 } else { 2184 tk->ntp_tick = ntp_tl; 2185 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2186 tk->xtime_remainder, tk->cycle_interval); 2187 } 2188 2189 /* 2190 * If the clock is behind the NTP time, increase the multiplier by 1 2191 * to catch up with it. If it's ahead and there was a remainder in the 2192 * tick division, the clock will slow down. Otherwise it will stay 2193 * ahead until the tick length changes to a non-divisible value. 2194 */ 2195 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2196 mult += tk->ntp_err_mult; 2197 2198 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2199 2200 if (unlikely(tk->tkr_mono.clock->maxadj && 2201 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2202 > tk->tkr_mono.clock->maxadj))) { 2203 printk_once(KERN_WARNING 2204 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2205 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2206 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2207 } 2208 2209 /* 2210 * It may be possible that when we entered this function, xtime_nsec 2211 * was very small. Further, if we're slightly speeding the clocksource 2212 * in the code above, its possible the required corrective factor to 2213 * xtime_nsec could cause it to underflow. 2214 * 2215 * Now, since we have already accumulated the second and the NTP 2216 * subsystem has been notified via second_overflow(), we need to skip 2217 * the next update. 2218 */ 2219 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2220 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2221 tk->tkr_mono.shift; 2222 tk->xtime_sec--; 2223 tk->skip_second_overflow = 1; 2224 } 2225 } 2226 2227 /* 2228 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2229 * 2230 * Helper function that accumulates the nsecs greater than a second 2231 * from the xtime_nsec field to the xtime_secs field. 2232 * It also calls into the NTP code to handle leapsecond processing. 2233 */ 2234 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2235 { 2236 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2237 unsigned int clock_set = 0; 2238 2239 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2240 int leap; 2241 2242 tk->tkr_mono.xtime_nsec -= nsecps; 2243 tk->xtime_sec++; 2244 2245 /* 2246 * Skip NTP update if this second was accumulated before, 2247 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2248 */ 2249 if (unlikely(tk->skip_second_overflow)) { 2250 tk->skip_second_overflow = 0; 2251 continue; 2252 } 2253 2254 /* Figure out if its a leap sec and apply if needed */ 2255 leap = second_overflow(tk->id, tk->xtime_sec); 2256 if (unlikely(leap)) { 2257 struct timespec64 ts; 2258 2259 tk->xtime_sec += leap; 2260 2261 ts.tv_sec = leap; 2262 ts.tv_nsec = 0; 2263 tk_set_wall_to_mono(tk, 2264 timespec64_sub(tk->wall_to_monotonic, ts)); 2265 2266 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2267 2268 clock_set = TK_CLOCK_WAS_SET; 2269 } 2270 } 2271 return clock_set; 2272 } 2273 2274 /* 2275 * logarithmic_accumulation - shifted accumulation of cycles 2276 * 2277 * This functions accumulates a shifted interval of cycles into 2278 * a shifted interval nanoseconds. Allows for O(log) accumulation 2279 * loop. 2280 * 2281 * Returns the unconsumed cycles. 2282 */ 2283 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2284 u32 shift, unsigned int *clock_set) 2285 { 2286 u64 interval = tk->cycle_interval << shift; 2287 u64 snsec_per_sec; 2288 2289 /* If the offset is smaller than a shifted interval, do nothing */ 2290 if (offset < interval) 2291 return offset; 2292 2293 /* Accumulate one shifted interval */ 2294 offset -= interval; 2295 tk->tkr_mono.cycle_last += interval; 2296 tk->tkr_raw.cycle_last += interval; 2297 2298 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2299 *clock_set |= accumulate_nsecs_to_secs(tk); 2300 2301 /* Accumulate raw time */ 2302 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2303 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2304 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2305 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2306 tk->raw_sec++; 2307 } 2308 2309 /* Accumulate error between NTP and clock interval */ 2310 tk->ntp_error += tk->ntp_tick << shift; 2311 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2312 (tk->ntp_error_shift + shift); 2313 2314 return offset; 2315 } 2316 2317 /* 2318 * timekeeping_advance - Updates the timekeeper to the current time and 2319 * current NTP tick length 2320 */ 2321 static bool __timekeeping_advance(struct tk_data *tkd, enum timekeeping_adv_mode mode) 2322 { 2323 struct timekeeper *tk = &tkd->shadow_timekeeper; 2324 struct timekeeper *real_tk = &tkd->timekeeper; 2325 unsigned int clock_set = 0; 2326 int shift = 0, maxshift; 2327 u64 offset, orig_offset; 2328 2329 /* Make sure we're fully resumed: */ 2330 if (unlikely(timekeeping_suspended)) 2331 return false; 2332 2333 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2334 tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 2335 tk->tkr_mono.clock->max_raw_delta); 2336 orig_offset = offset; 2337 /* Check if there's really nothing to do */ 2338 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2339 return false; 2340 2341 /* 2342 * With NO_HZ we may have to accumulate many cycle_intervals 2343 * (think "ticks") worth of time at once. To do this efficiently, 2344 * we calculate the largest doubling multiple of cycle_intervals 2345 * that is smaller than the offset. We then accumulate that 2346 * chunk in one go, and then try to consume the next smaller 2347 * doubled multiple. 2348 */ 2349 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2350 shift = max(0, shift); 2351 /* Bound shift to one less than what overflows tick_length */ 2352 maxshift = (64 - (ilog2(ntp_tick_length(tk->id)) + 1)) - 1; 2353 shift = min(shift, maxshift); 2354 while (offset >= tk->cycle_interval) { 2355 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2356 if (offset < tk->cycle_interval<<shift) 2357 shift--; 2358 } 2359 2360 /* Adjust the multiplier to correct NTP error */ 2361 timekeeping_adjust(tk, offset); 2362 2363 /* 2364 * Finally, make sure that after the rounding 2365 * xtime_nsec isn't larger than NSEC_PER_SEC 2366 */ 2367 clock_set |= accumulate_nsecs_to_secs(tk); 2368 2369 /* 2370 * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls 2371 * making small negative adjustments to the base xtime_nsec 2372 * value, only update the coarse clocks if we accumulated time 2373 */ 2374 if (orig_offset != offset) 2375 tk_update_coarse_nsecs(tk); 2376 2377 timekeeping_update_from_shadow(tkd, clock_set); 2378 2379 return !!clock_set; 2380 } 2381 2382 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2383 { 2384 guard(raw_spinlock_irqsave)(&tk_core.lock); 2385 return __timekeeping_advance(&tk_core, mode); 2386 } 2387 2388 /** 2389 * update_wall_time - Uses the current clocksource to increment the wall time 2390 * 2391 * It also updates the enabled auxiliary clock timekeepers 2392 */ 2393 void update_wall_time(void) 2394 { 2395 if (timekeeping_advance(TK_ADV_TICK)) 2396 clock_was_set_delayed(); 2397 tk_aux_advance(); 2398 } 2399 2400 /** 2401 * getboottime64 - Return the real time of system boot. 2402 * @ts: pointer to the timespec64 to be set 2403 * 2404 * Returns the wall-time of boot in a timespec64. 2405 * 2406 * This is based on the wall_to_monotonic offset and the total suspend 2407 * time. Calls to settimeofday will affect the value returned (which 2408 * basically means that however wrong your real time clock is at boot time, 2409 * you get the right time here). 2410 */ 2411 void getboottime64(struct timespec64 *ts) 2412 { 2413 struct timekeeper *tk = &tk_core.timekeeper; 2414 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2415 2416 *ts = ktime_to_timespec64(t); 2417 } 2418 EXPORT_SYMBOL_GPL(getboottime64); 2419 2420 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2421 { 2422 struct timekeeper *tk = &tk_core.timekeeper; 2423 unsigned int seq; 2424 2425 do { 2426 seq = read_seqcount_begin(&tk_core.seq); 2427 2428 *ts = tk_xtime_coarse(tk); 2429 } while (read_seqcount_retry(&tk_core.seq, seq)); 2430 } 2431 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2432 2433 /** 2434 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2435 * @ts: timespec64 to be filled 2436 * 2437 * Fetch the global mg_floor value, convert it to realtime and compare it 2438 * to the current coarse-grained time. Fill @ts with whichever is 2439 * latest. Note that this is a filesystem-specific interface and should be 2440 * avoided outside of that context. 2441 */ 2442 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2443 { 2444 struct timekeeper *tk = &tk_core.timekeeper; 2445 u64 floor = atomic64_read(&mg_floor); 2446 ktime_t f_real, offset, coarse; 2447 unsigned int seq; 2448 2449 do { 2450 seq = read_seqcount_begin(&tk_core.seq); 2451 *ts = tk_xtime_coarse(tk); 2452 offset = tk_core.timekeeper.offs_real; 2453 } while (read_seqcount_retry(&tk_core.seq, seq)); 2454 2455 coarse = timespec64_to_ktime(*ts); 2456 f_real = ktime_add(floor, offset); 2457 if (ktime_after(f_real, coarse)) 2458 *ts = ktime_to_timespec64(f_real); 2459 } 2460 2461 /** 2462 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2463 * @ts: pointer to the timespec to be set 2464 * 2465 * Get a monotonic fine-grained time value and attempt to swap it into 2466 * mg_floor. If that succeeds then accept the new floor value. If it fails 2467 * then another task raced in during the interim time and updated the 2468 * floor. Since any update to the floor must be later than the previous 2469 * floor, either outcome is acceptable. 2470 * 2471 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2472 * and determining that the resulting coarse-grained timestamp did not effect 2473 * a change in ctime. Any more recent floor value would effect a change to 2474 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2475 * 2476 * @ts will be filled with the latest floor value, regardless of the outcome of 2477 * the cmpxchg. Note that this is a filesystem specific interface and should be 2478 * avoided outside of that context. 2479 */ 2480 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2481 { 2482 struct timekeeper *tk = &tk_core.timekeeper; 2483 ktime_t old = atomic64_read(&mg_floor); 2484 ktime_t offset, mono; 2485 unsigned int seq; 2486 u64 nsecs; 2487 2488 do { 2489 seq = read_seqcount_begin(&tk_core.seq); 2490 2491 ts->tv_sec = tk->xtime_sec; 2492 mono = tk->tkr_mono.base; 2493 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2494 offset = tk_core.timekeeper.offs_real; 2495 } while (read_seqcount_retry(&tk_core.seq, seq)); 2496 2497 mono = ktime_add_ns(mono, nsecs); 2498 2499 /* 2500 * Attempt to update the floor with the new time value. As any 2501 * update must be later then the existing floor, and would effect 2502 * a change to ctime from the perspective of the current task, 2503 * accept the resulting floor value regardless of the outcome of 2504 * the swap. 2505 */ 2506 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2507 ts->tv_nsec = 0; 2508 timespec64_add_ns(ts, nsecs); 2509 timekeeping_inc_mg_floor_swaps(); 2510 } else { 2511 /* 2512 * Another task changed mg_floor since "old" was fetched. 2513 * "old" has been updated with the latest value of "mg_floor". 2514 * That value is newer than the previous floor value, which 2515 * is enough to effect a change to ctime. Accept it. 2516 */ 2517 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2518 } 2519 } 2520 2521 void ktime_get_coarse_ts64(struct timespec64 *ts) 2522 { 2523 struct timekeeper *tk = &tk_core.timekeeper; 2524 struct timespec64 now, mono; 2525 unsigned int seq; 2526 2527 do { 2528 seq = read_seqcount_begin(&tk_core.seq); 2529 2530 now = tk_xtime_coarse(tk); 2531 mono = tk->wall_to_monotonic; 2532 } while (read_seqcount_retry(&tk_core.seq, seq)); 2533 2534 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2535 now.tv_nsec + mono.tv_nsec); 2536 } 2537 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2538 2539 /* 2540 * Must hold jiffies_lock 2541 */ 2542 void do_timer(unsigned long ticks) 2543 { 2544 jiffies_64 += ticks; 2545 calc_global_load(); 2546 } 2547 2548 /** 2549 * ktime_get_update_offsets_now - hrtimer helper 2550 * @cwsseq: pointer to check and store the clock was set sequence number 2551 * @offs_real: pointer to storage for monotonic -> realtime offset 2552 * @offs_boot: pointer to storage for monotonic -> boottime offset 2553 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2554 * 2555 * Returns current monotonic time and updates the offsets if the 2556 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2557 * different. 2558 * 2559 * Called from hrtimer_interrupt() or retrigger_next_event() 2560 */ 2561 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2562 ktime_t *offs_boot, ktime_t *offs_tai) 2563 { 2564 struct timekeeper *tk = &tk_core.timekeeper; 2565 unsigned int seq; 2566 ktime_t base; 2567 u64 nsecs; 2568 2569 do { 2570 seq = read_seqcount_begin(&tk_core.seq); 2571 2572 base = tk->tkr_mono.base; 2573 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2574 base = ktime_add_ns(base, nsecs); 2575 2576 if (*cwsseq != tk->clock_was_set_seq) { 2577 *cwsseq = tk->clock_was_set_seq; 2578 *offs_real = tk->offs_real; 2579 *offs_boot = tk->offs_boot; 2580 *offs_tai = tk->offs_tai; 2581 } 2582 2583 /* Handle leapsecond insertion adjustments */ 2584 if (unlikely(base >= tk->next_leap_ktime)) 2585 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2586 2587 } while (read_seqcount_retry(&tk_core.seq, seq)); 2588 2589 return base; 2590 } 2591 2592 /* 2593 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2594 */ 2595 static int timekeeping_validate_timex(const struct __kernel_timex *txc, bool aux_clock) 2596 { 2597 if (txc->modes & ADJ_ADJTIME) { 2598 /* singleshot must not be used with any other mode bits */ 2599 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2600 return -EINVAL; 2601 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2602 !capable(CAP_SYS_TIME)) 2603 return -EPERM; 2604 } else { 2605 /* In order to modify anything, you gotta be super-user! */ 2606 if (txc->modes && !capable(CAP_SYS_TIME)) 2607 return -EPERM; 2608 /* 2609 * if the quartz is off by more than 10% then 2610 * something is VERY wrong! 2611 */ 2612 if (txc->modes & ADJ_TICK && 2613 (txc->tick < 900000/USER_HZ || 2614 txc->tick > 1100000/USER_HZ)) 2615 return -EINVAL; 2616 } 2617 2618 if (txc->modes & ADJ_SETOFFSET) { 2619 /* In order to inject time, you gotta be super-user! */ 2620 if (!capable(CAP_SYS_TIME)) 2621 return -EPERM; 2622 2623 /* 2624 * Validate if a timespec/timeval used to inject a time 2625 * offset is valid. Offsets can be positive or negative, so 2626 * we don't check tv_sec. The value of the timeval/timespec 2627 * is the sum of its fields,but *NOTE*: 2628 * The field tv_usec/tv_nsec must always be non-negative and 2629 * we can't have more nanoseconds/microseconds than a second. 2630 */ 2631 if (txc->time.tv_usec < 0) 2632 return -EINVAL; 2633 2634 if (txc->modes & ADJ_NANO) { 2635 if (txc->time.tv_usec >= NSEC_PER_SEC) 2636 return -EINVAL; 2637 } else { 2638 if (txc->time.tv_usec >= USEC_PER_SEC) 2639 return -EINVAL; 2640 } 2641 } 2642 2643 /* 2644 * Check for potential multiplication overflows that can 2645 * only happen on 64-bit systems: 2646 */ 2647 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2648 if (LLONG_MIN / PPM_SCALE > txc->freq) 2649 return -EINVAL; 2650 if (LLONG_MAX / PPM_SCALE < txc->freq) 2651 return -EINVAL; 2652 } 2653 2654 if (aux_clock) { 2655 /* Auxiliary clocks are similar to TAI and do not have leap seconds */ 2656 if (txc->status & (STA_INS | STA_DEL)) 2657 return -EINVAL; 2658 2659 /* No TAI offset setting */ 2660 if (txc->modes & ADJ_TAI) 2661 return -EINVAL; 2662 2663 /* No PPS support either */ 2664 if (txc->status & (STA_PPSFREQ | STA_PPSTIME)) 2665 return -EINVAL; 2666 } 2667 2668 return 0; 2669 } 2670 2671 /** 2672 * random_get_entropy_fallback - Returns the raw clock source value, 2673 * used by random.c for platforms with no valid random_get_entropy(). 2674 */ 2675 unsigned long random_get_entropy_fallback(void) 2676 { 2677 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2678 struct clocksource *clock = READ_ONCE(tkr->clock); 2679 2680 if (unlikely(timekeeping_suspended || !clock)) 2681 return 0; 2682 return clock->read(clock); 2683 } 2684 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2685 2686 struct adjtimex_result { 2687 struct audit_ntp_data ad; 2688 struct timespec64 delta; 2689 bool clock_set; 2690 }; 2691 2692 static int __do_adjtimex(struct tk_data *tkd, struct __kernel_timex *txc, 2693 struct adjtimex_result *result) 2694 { 2695 struct timekeeper *tks = &tkd->shadow_timekeeper; 2696 bool aux_clock = !timekeeper_is_core_tk(tks); 2697 struct timespec64 ts; 2698 s32 orig_tai, tai; 2699 int ret; 2700 2701 /* Validate the data before disabling interrupts */ 2702 ret = timekeeping_validate_timex(txc, aux_clock); 2703 if (ret) 2704 return ret; 2705 add_device_randomness(txc, sizeof(*txc)); 2706 2707 if (!aux_clock) 2708 ktime_get_real_ts64(&ts); 2709 else 2710 tk_get_aux_ts64(tkd->timekeeper.id, &ts); 2711 2712 add_device_randomness(&ts, sizeof(ts)); 2713 2714 guard(raw_spinlock_irqsave)(&tkd->lock); 2715 2716 if (!tks->clock_valid) 2717 return -ENODEV; 2718 2719 if (txc->modes & ADJ_SETOFFSET) { 2720 result->delta.tv_sec = txc->time.tv_sec; 2721 result->delta.tv_nsec = txc->time.tv_usec; 2722 if (!(txc->modes & ADJ_NANO)) 2723 result->delta.tv_nsec *= 1000; 2724 ret = __timekeeping_inject_offset(tkd, &result->delta); 2725 if (ret) 2726 return ret; 2727 result->clock_set = true; 2728 } 2729 2730 orig_tai = tai = tks->tai_offset; 2731 ret = ntp_adjtimex(tks->id, txc, &ts, &tai, &result->ad); 2732 2733 if (tai != orig_tai) { 2734 __timekeeping_set_tai_offset(tks, tai); 2735 timekeeping_update_from_shadow(tkd, TK_CLOCK_WAS_SET); 2736 result->clock_set = true; 2737 } else { 2738 tk_update_leap_state_all(&tk_core); 2739 } 2740 2741 /* Update the multiplier immediately if frequency was set directly */ 2742 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2743 result->clock_set |= __timekeeping_advance(tkd, TK_ADV_FREQ); 2744 2745 return ret; 2746 } 2747 2748 /** 2749 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2750 * @txc: Pointer to kernel_timex structure containing NTP parameters 2751 */ 2752 int do_adjtimex(struct __kernel_timex *txc) 2753 { 2754 struct adjtimex_result result = { }; 2755 int ret; 2756 2757 ret = __do_adjtimex(&tk_core, txc, &result); 2758 if (ret < 0) 2759 return ret; 2760 2761 if (txc->modes & ADJ_SETOFFSET) 2762 audit_tk_injoffset(result.delta); 2763 2764 audit_ntp_log(&result.ad); 2765 2766 if (result.clock_set) 2767 clock_was_set(CLOCK_SET_WALL); 2768 2769 ntp_notify_cmos_timer(result.delta.tv_sec != 0); 2770 2771 return ret; 2772 } 2773 2774 /* 2775 * Invoked from NTP with the time keeper lock held, so lockless access is 2776 * fine. 2777 */ 2778 long ktime_get_ntp_seconds(unsigned int id) 2779 { 2780 return timekeeper_data[id].timekeeper.xtime_sec; 2781 } 2782 2783 #ifdef CONFIG_NTP_PPS 2784 /** 2785 * hardpps() - Accessor function to NTP __hardpps function 2786 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2787 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2788 */ 2789 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2790 { 2791 guard(raw_spinlock_irqsave)(&tk_core.lock); 2792 __hardpps(phase_ts, raw_ts); 2793 } 2794 EXPORT_SYMBOL(hardpps); 2795 #endif /* CONFIG_NTP_PPS */ 2796 2797 #ifdef CONFIG_POSIX_AUX_CLOCKS 2798 #include "posix-timers.h" 2799 2800 /* 2801 * Bitmap for the activated auxiliary timekeepers to allow lockless quick 2802 * checks in the hot paths without touching extra cache lines. If set, then 2803 * the state of the corresponding timekeeper has to be re-checked under 2804 * timekeeper::lock. 2805 */ 2806 static unsigned long aux_timekeepers; 2807 2808 static inline unsigned int clockid_to_tkid(unsigned int id) 2809 { 2810 return TIMEKEEPER_AUX_FIRST + id - CLOCK_AUX; 2811 } 2812 2813 static inline struct tk_data *aux_get_tk_data(clockid_t id) 2814 { 2815 if (!clockid_aux_valid(id)) 2816 return NULL; 2817 return &timekeeper_data[clockid_to_tkid(id)]; 2818 } 2819 2820 /* Invoked from timekeeping after a clocksource change */ 2821 static void tk_aux_update_clocksource(void) 2822 { 2823 unsigned long active = READ_ONCE(aux_timekeepers); 2824 unsigned int id; 2825 2826 for_each_set_bit(id, &active, BITS_PER_LONG) { 2827 struct tk_data *tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST]; 2828 struct timekeeper *tks = &tkd->shadow_timekeeper; 2829 2830 guard(raw_spinlock_irqsave)(&tkd->lock); 2831 if (!tks->clock_valid) 2832 continue; 2833 2834 timekeeping_forward_now(tks); 2835 tk_setup_internals(tks, tk_core.timekeeper.tkr_mono.clock); 2836 timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL); 2837 } 2838 } 2839 2840 static void tk_aux_advance(void) 2841 { 2842 unsigned long active = READ_ONCE(aux_timekeepers); 2843 unsigned int id; 2844 2845 /* Lockless quick check to avoid extra cache lines */ 2846 for_each_set_bit(id, &active, BITS_PER_LONG) { 2847 struct tk_data *aux_tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST]; 2848 2849 guard(raw_spinlock)(&aux_tkd->lock); 2850 if (aux_tkd->shadow_timekeeper.clock_valid) 2851 __timekeeping_advance(aux_tkd, TK_ADV_TICK); 2852 } 2853 } 2854 2855 /** 2856 * ktime_get_aux - Get time for a AUX clock 2857 * @id: ID of the clock to read (CLOCK_AUX...) 2858 * @kt: Pointer to ktime_t to store the time stamp 2859 * 2860 * Returns: True if the timestamp is valid, false otherwise 2861 */ 2862 bool ktime_get_aux(clockid_t id, ktime_t *kt) 2863 { 2864 struct tk_data *aux_tkd = aux_get_tk_data(id); 2865 struct timekeeper *aux_tk; 2866 unsigned int seq; 2867 ktime_t base; 2868 u64 nsecs; 2869 2870 WARN_ON(timekeeping_suspended); 2871 2872 if (!aux_tkd) 2873 return false; 2874 2875 aux_tk = &aux_tkd->timekeeper; 2876 do { 2877 seq = read_seqcount_begin(&aux_tkd->seq); 2878 if (!aux_tk->clock_valid) 2879 return false; 2880 2881 base = ktime_add(aux_tk->tkr_mono.base, aux_tk->offs_aux); 2882 nsecs = timekeeping_get_ns(&aux_tk->tkr_mono); 2883 } while (read_seqcount_retry(&aux_tkd->seq, seq)); 2884 2885 *kt = ktime_add_ns(base, nsecs); 2886 return true; 2887 } 2888 EXPORT_SYMBOL_GPL(ktime_get_aux); 2889 2890 /** 2891 * ktime_get_aux_ts64 - Get time for a AUX clock 2892 * @id: ID of the clock to read (CLOCK_AUX...) 2893 * @ts: Pointer to timespec64 to store the time stamp 2894 * 2895 * Returns: True if the timestamp is valid, false otherwise 2896 */ 2897 bool ktime_get_aux_ts64(clockid_t id, struct timespec64 *ts) 2898 { 2899 ktime_t now; 2900 2901 if (!ktime_get_aux(id, &now)) 2902 return false; 2903 *ts = ktime_to_timespec64(now); 2904 return true; 2905 } 2906 EXPORT_SYMBOL_GPL(ktime_get_aux_ts64); 2907 2908 static int aux_get_res(clockid_t id, struct timespec64 *tp) 2909 { 2910 if (!clockid_aux_valid(id)) 2911 return -ENODEV; 2912 2913 tp->tv_sec = aux_clock_resolution_ns() / NSEC_PER_SEC; 2914 tp->tv_nsec = aux_clock_resolution_ns() % NSEC_PER_SEC; 2915 return 0; 2916 } 2917 2918 static int aux_get_timespec(clockid_t id, struct timespec64 *tp) 2919 { 2920 return ktime_get_aux_ts64(id, tp) ? 0 : -ENODEV; 2921 } 2922 2923 static int aux_clock_set(const clockid_t id, const struct timespec64 *tnew) 2924 { 2925 struct tk_data *aux_tkd = aux_get_tk_data(id); 2926 struct timekeeper *aux_tks; 2927 ktime_t tnow, nsecs; 2928 2929 if (!timespec64_valid_settod(tnew)) 2930 return -EINVAL; 2931 if (!aux_tkd) 2932 return -ENODEV; 2933 2934 aux_tks = &aux_tkd->shadow_timekeeper; 2935 2936 guard(raw_spinlock_irq)(&aux_tkd->lock); 2937 if (!aux_tks->clock_valid) 2938 return -ENODEV; 2939 2940 /* Forward the timekeeper base time */ 2941 timekeeping_forward_now(aux_tks); 2942 /* 2943 * Get the updated base time. tkr_mono.base has not been 2944 * updated yet, so do that first. That makes the update 2945 * in timekeeping_update_from_shadow() redundant, but 2946 * that's harmless. After that @tnow can be calculated 2947 * by using tkr_mono::cycle_last, which has been set 2948 * by timekeeping_forward_now(). 2949 */ 2950 tk_update_ktime_data(aux_tks); 2951 nsecs = timekeeping_cycles_to_ns(&aux_tks->tkr_mono, aux_tks->tkr_mono.cycle_last); 2952 tnow = ktime_add(aux_tks->tkr_mono.base, nsecs); 2953 2954 /* 2955 * Calculate the new AUX offset as delta to @tnow ("monotonic"). 2956 * That avoids all the tk::xtime back and forth conversions as 2957 * xtime ("realtime") is not applicable for auxiliary clocks and 2958 * kept in sync with "monotonic". 2959 */ 2960 tk_update_aux_offs(aux_tks, ktime_sub(timespec64_to_ktime(*tnew), tnow)); 2961 2962 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); 2963 return 0; 2964 } 2965 2966 static int aux_clock_adj(const clockid_t id, struct __kernel_timex *txc) 2967 { 2968 struct tk_data *aux_tkd = aux_get_tk_data(id); 2969 struct adjtimex_result result = { }; 2970 2971 if (!aux_tkd) 2972 return -ENODEV; 2973 2974 /* 2975 * @result is ignored for now as there are neither hrtimers nor a 2976 * RTC related to auxiliary clocks for now. 2977 */ 2978 return __do_adjtimex(aux_tkd, txc, &result); 2979 } 2980 2981 const struct k_clock clock_aux = { 2982 .clock_getres = aux_get_res, 2983 .clock_get_timespec = aux_get_timespec, 2984 .clock_set = aux_clock_set, 2985 .clock_adj = aux_clock_adj, 2986 }; 2987 2988 static void aux_clock_enable(clockid_t id) 2989 { 2990 struct tk_read_base *tkr_raw = &tk_core.timekeeper.tkr_raw; 2991 struct tk_data *aux_tkd = aux_get_tk_data(id); 2992 struct timekeeper *aux_tks = &aux_tkd->shadow_timekeeper; 2993 2994 /* Prevent the core timekeeper from changing. */ 2995 guard(raw_spinlock_irq)(&tk_core.lock); 2996 2997 /* 2998 * Setup the auxiliary clock assuming that the raw core timekeeper 2999 * clock frequency conversion is close enough. Userspace has to 3000 * adjust for the deviation via clock_adjtime(2). 3001 */ 3002 guard(raw_spinlock_nested)(&aux_tkd->lock); 3003 3004 /* Remove leftovers of a previous registration */ 3005 memset(aux_tks, 0, sizeof(*aux_tks)); 3006 /* Restore the timekeeper id */ 3007 aux_tks->id = aux_tkd->timekeeper.id; 3008 /* Setup the timekeeper based on the current system clocksource */ 3009 tk_setup_internals(aux_tks, tkr_raw->clock); 3010 3011 /* Mark it valid and set it live */ 3012 aux_tks->clock_valid = true; 3013 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); 3014 } 3015 3016 static void aux_clock_disable(clockid_t id) 3017 { 3018 struct tk_data *aux_tkd = aux_get_tk_data(id); 3019 3020 guard(raw_spinlock_irq)(&aux_tkd->lock); 3021 aux_tkd->shadow_timekeeper.clock_valid = false; 3022 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); 3023 } 3024 3025 static DEFINE_MUTEX(aux_clock_mutex); 3026 3027 static ssize_t aux_clock_enable_store(struct kobject *kobj, struct kobj_attribute *attr, 3028 const char *buf, size_t count) 3029 { 3030 /* Lazy atoi() as name is "0..7" */ 3031 int id = kobj->name[0] & 0x7; 3032 bool enable; 3033 3034 if (!capable(CAP_SYS_TIME)) 3035 return -EPERM; 3036 3037 if (kstrtobool(buf, &enable) < 0) 3038 return -EINVAL; 3039 3040 guard(mutex)(&aux_clock_mutex); 3041 if (enable == test_bit(id, &aux_timekeepers)) 3042 return count; 3043 3044 if (enable) { 3045 aux_clock_enable(CLOCK_AUX + id); 3046 set_bit(id, &aux_timekeepers); 3047 } else { 3048 aux_clock_disable(CLOCK_AUX + id); 3049 clear_bit(id, &aux_timekeepers); 3050 } 3051 return count; 3052 } 3053 3054 static ssize_t aux_clock_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 3055 { 3056 unsigned long active = READ_ONCE(aux_timekeepers); 3057 /* Lazy atoi() as name is "0..7" */ 3058 int id = kobj->name[0] & 0x7; 3059 3060 return sysfs_emit(buf, "%d\n", test_bit(id, &active)); 3061 } 3062 3063 static struct kobj_attribute aux_clock_enable_attr = __ATTR_RW(aux_clock_enable); 3064 3065 static struct attribute *aux_clock_enable_attrs[] = { 3066 &aux_clock_enable_attr.attr, 3067 NULL 3068 }; 3069 3070 static const struct attribute_group aux_clock_enable_attr_group = { 3071 .attrs = aux_clock_enable_attrs, 3072 }; 3073 3074 static int __init tk_aux_sysfs_init(void) 3075 { 3076 struct kobject *auxo, *tko = kobject_create_and_add("time", kernel_kobj); 3077 int ret = -ENOMEM; 3078 3079 if (!tko) 3080 return ret; 3081 3082 auxo = kobject_create_and_add("aux_clocks", tko); 3083 if (!auxo) 3084 goto err_clean; 3085 3086 for (int i = 0; i < MAX_AUX_CLOCKS; i++) { 3087 char id[2] = { [0] = '0' + i, }; 3088 struct kobject *clk = kobject_create_and_add(id, auxo); 3089 3090 if (!clk) { 3091 ret = -ENOMEM; 3092 goto err_clean; 3093 } 3094 3095 ret = sysfs_create_group(clk, &aux_clock_enable_attr_group); 3096 if (ret) 3097 goto err_clean; 3098 } 3099 return 0; 3100 3101 err_clean: 3102 kobject_put(auxo); 3103 kobject_put(tko); 3104 return ret; 3105 } 3106 late_initcall(tk_aux_sysfs_init); 3107 3108 static __init void tk_aux_setup(void) 3109 { 3110 for (int i = TIMEKEEPER_AUX_FIRST; i <= TIMEKEEPER_AUX_LAST; i++) 3111 tkd_basic_setup(&timekeeper_data[i], i, false); 3112 } 3113 #endif /* CONFIG_POSIX_AUX_CLOCKS */ 3114