1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_CLOCK_WAS_SET (1 << 1) 34 35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 36 37 enum timekeeping_adv_mode { 38 /* Update timekeeper when a tick has passed */ 39 TK_ADV_TICK, 40 41 /* Update timekeeper on a direct frequency change */ 42 TK_ADV_FREQ 43 }; 44 45 /* 46 * The most important data for readout fits into a single 64 byte 47 * cache line. 48 */ 49 struct tk_data { 50 seqcount_raw_spinlock_t seq; 51 struct timekeeper timekeeper; 52 struct timekeeper shadow_timekeeper; 53 raw_spinlock_t lock; 54 } ____cacheline_aligned; 55 56 static struct tk_data tk_core; 57 58 /* flag for if timekeeping is suspended */ 59 int __read_mostly timekeeping_suspended; 60 61 /** 62 * struct tk_fast - NMI safe timekeeper 63 * @seq: Sequence counter for protecting updates. The lowest bit 64 * is the index for the tk_read_base array 65 * @base: tk_read_base array. Access is indexed by the lowest bit of 66 * @seq. 67 * 68 * See @update_fast_timekeeper() below. 69 */ 70 struct tk_fast { 71 seqcount_latch_t seq; 72 struct tk_read_base base[2]; 73 }; 74 75 /* Suspend-time cycles value for halted fast timekeeper. */ 76 static u64 cycles_at_suspend; 77 78 static u64 dummy_clock_read(struct clocksource *cs) 79 { 80 if (timekeeping_suspended) 81 return cycles_at_suspend; 82 return local_clock(); 83 } 84 85 static struct clocksource dummy_clock = { 86 .read = dummy_clock_read, 87 }; 88 89 /* 90 * Boot time initialization which allows local_clock() to be utilized 91 * during early boot when clocksources are not available. local_clock() 92 * returns nanoseconds already so no conversion is required, hence mult=1 93 * and shift=0. When the first proper clocksource is installed then 94 * the fast time keepers are updated with the correct values. 95 */ 96 #define FAST_TK_INIT \ 97 { \ 98 .clock = &dummy_clock, \ 99 .mask = CLOCKSOURCE_MASK(64), \ 100 .mult = 1, \ 101 .shift = 0, \ 102 } 103 104 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 106 .base[0] = FAST_TK_INIT, 107 .base[1] = FAST_TK_INIT, 108 }; 109 110 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 112 .base[0] = FAST_TK_INIT, 113 .base[1] = FAST_TK_INIT, 114 }; 115 116 unsigned long timekeeper_lock_irqsave(void) 117 { 118 unsigned long flags; 119 120 raw_spin_lock_irqsave(&tk_core.lock, flags); 121 return flags; 122 } 123 124 void timekeeper_unlock_irqrestore(unsigned long flags) 125 { 126 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 127 } 128 129 /* 130 * Multigrain timestamps require tracking the latest fine-grained timestamp 131 * that has been issued, and never returning a coarse-grained timestamp that is 132 * earlier than that value. 133 * 134 * mg_floor represents the latest fine-grained time that has been handed out as 135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 136 * converted to a realtime clock value on an as-needed basis. 137 * 138 * Maintaining mg_floor ensures the multigrain interfaces never issue a 139 * timestamp earlier than one that has been previously issued. 140 * 141 * The exception to this rule is when there is a backward realtime clock jump. If 142 * such an event occurs, a timestamp can appear to be earlier than a previous one. 143 */ 144 static __cacheline_aligned_in_smp atomic64_t mg_floor; 145 146 static inline void tk_normalize_xtime(struct timekeeper *tk) 147 { 148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 150 tk->xtime_sec++; 151 } 152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 154 tk->raw_sec++; 155 } 156 } 157 158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 159 { 160 struct timespec64 ts; 161 162 ts.tv_sec = tk->xtime_sec; 163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 164 return ts; 165 } 166 167 static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk) 168 { 169 struct timespec64 ts; 170 171 ts.tv_sec = tk->xtime_sec; 172 ts.tv_nsec = tk->coarse_nsec; 173 return ts; 174 } 175 176 /* 177 * Update the nanoseconds part for the coarse time keepers. They can't rely 178 * on xtime_nsec because xtime_nsec could be adjusted by a small negative 179 * amount when the multiplication factor of the clock is adjusted, which 180 * could cause the coarse clocks to go slightly backwards. See 181 * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse 182 * clockids which only is updated when the clock has been set or we have 183 * accumulated time. 184 */ 185 static inline void tk_update_coarse_nsecs(struct timekeeper *tk) 186 { 187 tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 188 } 189 190 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 191 { 192 tk->xtime_sec = ts->tv_sec; 193 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 194 tk_update_coarse_nsecs(tk); 195 } 196 197 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 198 { 199 tk->xtime_sec += ts->tv_sec; 200 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 201 tk_normalize_xtime(tk); 202 tk_update_coarse_nsecs(tk); 203 } 204 205 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 206 { 207 struct timespec64 tmp; 208 209 /* 210 * Verify consistency of: offset_real = -wall_to_monotonic 211 * before modifying anything 212 */ 213 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 214 -tk->wall_to_monotonic.tv_nsec); 215 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 216 tk->wall_to_monotonic = wtm; 217 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 218 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 219 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 220 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 221 } 222 223 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 224 { 225 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 226 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 227 /* 228 * Timespec representation for VDSO update to avoid 64bit division 229 * on every update. 230 */ 231 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 232 } 233 234 /* 235 * tk_clock_read - atomic clocksource read() helper 236 * 237 * This helper is necessary to use in the read paths because, while the 238 * seqcount ensures we don't return a bad value while structures are updated, 239 * it doesn't protect from potential crashes. There is the possibility that 240 * the tkr's clocksource may change between the read reference, and the 241 * clock reference passed to the read function. This can cause crashes if 242 * the wrong clocksource is passed to the wrong read function. 243 * This isn't necessary to use when holding the tk_core.lock or doing 244 * a read of the fast-timekeeper tkrs (which is protected by its own locking 245 * and update logic). 246 */ 247 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 248 { 249 struct clocksource *clock = READ_ONCE(tkr->clock); 250 251 return clock->read(clock); 252 } 253 254 /** 255 * tk_setup_internals - Set up internals to use clocksource clock. 256 * 257 * @tk: The target timekeeper to setup. 258 * @clock: Pointer to clocksource. 259 * 260 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 261 * pair and interval request. 262 * 263 * Unless you're the timekeeping code, you should not be using this! 264 */ 265 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 266 { 267 u64 interval; 268 u64 tmp, ntpinterval; 269 struct clocksource *old_clock; 270 271 ++tk->cs_was_changed_seq; 272 old_clock = tk->tkr_mono.clock; 273 tk->tkr_mono.clock = clock; 274 tk->tkr_mono.mask = clock->mask; 275 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 276 277 tk->tkr_raw.clock = clock; 278 tk->tkr_raw.mask = clock->mask; 279 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 280 281 /* Do the ns -> cycle conversion first, using original mult */ 282 tmp = NTP_INTERVAL_LENGTH; 283 tmp <<= clock->shift; 284 ntpinterval = tmp; 285 tmp += clock->mult/2; 286 do_div(tmp, clock->mult); 287 if (tmp == 0) 288 tmp = 1; 289 290 interval = (u64) tmp; 291 tk->cycle_interval = interval; 292 293 /* Go back from cycles -> shifted ns */ 294 tk->xtime_interval = interval * clock->mult; 295 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 296 tk->raw_interval = interval * clock->mult; 297 298 /* if changing clocks, convert xtime_nsec shift units */ 299 if (old_clock) { 300 int shift_change = clock->shift - old_clock->shift; 301 if (shift_change < 0) { 302 tk->tkr_mono.xtime_nsec >>= -shift_change; 303 tk->tkr_raw.xtime_nsec >>= -shift_change; 304 } else { 305 tk->tkr_mono.xtime_nsec <<= shift_change; 306 tk->tkr_raw.xtime_nsec <<= shift_change; 307 } 308 } 309 310 tk->tkr_mono.shift = clock->shift; 311 tk->tkr_raw.shift = clock->shift; 312 313 tk->ntp_error = 0; 314 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 315 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 316 317 /* 318 * The timekeeper keeps its own mult values for the currently 319 * active clocksource. These value will be adjusted via NTP 320 * to counteract clock drifting. 321 */ 322 tk->tkr_mono.mult = clock->mult; 323 tk->tkr_raw.mult = clock->mult; 324 tk->ntp_err_mult = 0; 325 tk->skip_second_overflow = 0; 326 } 327 328 /* Timekeeper helper functions. */ 329 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 330 { 331 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 332 } 333 334 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 335 { 336 /* Calculate the delta since the last update_wall_time() */ 337 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 338 339 /* 340 * This detects both negative motion and the case where the delta 341 * overflows the multiplication with tkr->mult. 342 */ 343 if (unlikely(delta > tkr->clock->max_cycles)) { 344 /* 345 * Handle clocksource inconsistency between CPUs to prevent 346 * time from going backwards by checking for the MSB of the 347 * mask being set in the delta. 348 */ 349 if (delta & ~(mask >> 1)) 350 return tkr->xtime_nsec >> tkr->shift; 351 352 return delta_to_ns_safe(tkr, delta); 353 } 354 355 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 356 } 357 358 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 359 { 360 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 361 } 362 363 /** 364 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 365 * @tkr: Timekeeping readout base from which we take the update 366 * @tkf: Pointer to NMI safe timekeeper 367 * 368 * We want to use this from any context including NMI and tracing / 369 * instrumenting the timekeeping code itself. 370 * 371 * Employ the latch technique; see @write_seqcount_latch. 372 * 373 * So if a NMI hits the update of base[0] then it will use base[1] 374 * which is still consistent. In the worst case this can result is a 375 * slightly wrong timestamp (a few nanoseconds). See 376 * @ktime_get_mono_fast_ns. 377 */ 378 static void update_fast_timekeeper(const struct tk_read_base *tkr, 379 struct tk_fast *tkf) 380 { 381 struct tk_read_base *base = tkf->base; 382 383 /* Force readers off to base[1] */ 384 write_seqcount_latch_begin(&tkf->seq); 385 386 /* Update base[0] */ 387 memcpy(base, tkr, sizeof(*base)); 388 389 /* Force readers back to base[0] */ 390 write_seqcount_latch(&tkf->seq); 391 392 /* Update base[1] */ 393 memcpy(base + 1, base, sizeof(*base)); 394 395 write_seqcount_latch_end(&tkf->seq); 396 } 397 398 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 399 { 400 struct tk_read_base *tkr; 401 unsigned int seq; 402 u64 now; 403 404 do { 405 seq = read_seqcount_latch(&tkf->seq); 406 tkr = tkf->base + (seq & 0x01); 407 now = ktime_to_ns(tkr->base); 408 now += timekeeping_get_ns(tkr); 409 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 410 411 return now; 412 } 413 414 /** 415 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 416 * 417 * This timestamp is not guaranteed to be monotonic across an update. 418 * The timestamp is calculated by: 419 * 420 * now = base_mono + clock_delta * slope 421 * 422 * So if the update lowers the slope, readers who are forced to the 423 * not yet updated second array are still using the old steeper slope. 424 * 425 * tmono 426 * ^ 427 * | o n 428 * | o n 429 * | u 430 * | o 431 * |o 432 * |12345678---> reader order 433 * 434 * o = old slope 435 * u = update 436 * n = new slope 437 * 438 * So reader 6 will observe time going backwards versus reader 5. 439 * 440 * While other CPUs are likely to be able to observe that, the only way 441 * for a CPU local observation is when an NMI hits in the middle of 442 * the update. Timestamps taken from that NMI context might be ahead 443 * of the following timestamps. Callers need to be aware of that and 444 * deal with it. 445 */ 446 u64 notrace ktime_get_mono_fast_ns(void) 447 { 448 return __ktime_get_fast_ns(&tk_fast_mono); 449 } 450 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 451 452 /** 453 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 454 * 455 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 456 * conversion factor is not affected by NTP/PTP correction. 457 */ 458 u64 notrace ktime_get_raw_fast_ns(void) 459 { 460 return __ktime_get_fast_ns(&tk_fast_raw); 461 } 462 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 463 464 /** 465 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 466 * 467 * To keep it NMI safe since we're accessing from tracing, we're not using a 468 * separate timekeeper with updates to monotonic clock and boot offset 469 * protected with seqcounts. This has the following minor side effects: 470 * 471 * (1) Its possible that a timestamp be taken after the boot offset is updated 472 * but before the timekeeper is updated. If this happens, the new boot offset 473 * is added to the old timekeeping making the clock appear to update slightly 474 * earlier: 475 * CPU 0 CPU 1 476 * timekeeping_inject_sleeptime64() 477 * __timekeeping_inject_sleeptime(tk, delta); 478 * timestamp(); 479 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 480 * 481 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 482 * partially updated. Since the tk->offs_boot update is a rare event, this 483 * should be a rare occurrence which postprocessing should be able to handle. 484 * 485 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 486 * apply as well. 487 */ 488 u64 notrace ktime_get_boot_fast_ns(void) 489 { 490 struct timekeeper *tk = &tk_core.timekeeper; 491 492 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 493 } 494 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 495 496 /** 497 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 498 * 499 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 500 * mono time and the TAI offset are not read atomically which may yield wrong 501 * readouts. However, an update of the TAI offset is an rare event e.g., caused 502 * by settime or adjtimex with an offset. The user of this function has to deal 503 * with the possibility of wrong timestamps in post processing. 504 */ 505 u64 notrace ktime_get_tai_fast_ns(void) 506 { 507 struct timekeeper *tk = &tk_core.timekeeper; 508 509 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 510 } 511 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 512 513 /** 514 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 515 * 516 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 517 */ 518 u64 ktime_get_real_fast_ns(void) 519 { 520 struct tk_fast *tkf = &tk_fast_mono; 521 struct tk_read_base *tkr; 522 u64 baser, delta; 523 unsigned int seq; 524 525 do { 526 seq = raw_read_seqcount_latch(&tkf->seq); 527 tkr = tkf->base + (seq & 0x01); 528 baser = ktime_to_ns(tkr->base_real); 529 delta = timekeeping_get_ns(tkr); 530 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 531 532 return baser + delta; 533 } 534 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 535 536 /** 537 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 538 * @tk: Timekeeper to snapshot. 539 * 540 * It generally is unsafe to access the clocksource after timekeeping has been 541 * suspended, so take a snapshot of the readout base of @tk and use it as the 542 * fast timekeeper's readout base while suspended. It will return the same 543 * number of cycles every time until timekeeping is resumed at which time the 544 * proper readout base for the fast timekeeper will be restored automatically. 545 */ 546 static void halt_fast_timekeeper(const struct timekeeper *tk) 547 { 548 static struct tk_read_base tkr_dummy; 549 const struct tk_read_base *tkr = &tk->tkr_mono; 550 551 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 552 cycles_at_suspend = tk_clock_read(tkr); 553 tkr_dummy.clock = &dummy_clock; 554 tkr_dummy.base_real = tkr->base + tk->offs_real; 555 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 556 557 tkr = &tk->tkr_raw; 558 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 559 tkr_dummy.clock = &dummy_clock; 560 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 561 } 562 563 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 564 565 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 566 { 567 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 568 } 569 570 /** 571 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 572 * @nb: Pointer to the notifier block to register 573 */ 574 int pvclock_gtod_register_notifier(struct notifier_block *nb) 575 { 576 struct timekeeper *tk = &tk_core.timekeeper; 577 int ret; 578 579 guard(raw_spinlock_irqsave)(&tk_core.lock); 580 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 581 update_pvclock_gtod(tk, true); 582 583 return ret; 584 } 585 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 586 587 /** 588 * pvclock_gtod_unregister_notifier - unregister a pvclock 589 * timedata update listener 590 * @nb: Pointer to the notifier block to unregister 591 */ 592 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 593 { 594 guard(raw_spinlock_irqsave)(&tk_core.lock); 595 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 596 } 597 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 598 599 /* 600 * tk_update_leap_state - helper to update the next_leap_ktime 601 */ 602 static inline void tk_update_leap_state(struct timekeeper *tk) 603 { 604 tk->next_leap_ktime = ntp_get_next_leap(); 605 if (tk->next_leap_ktime != KTIME_MAX) 606 /* Convert to monotonic time */ 607 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 608 } 609 610 /* 611 * Leap state update for both shadow and the real timekeeper 612 * Separate to spare a full memcpy() of the timekeeper. 613 */ 614 static void tk_update_leap_state_all(struct tk_data *tkd) 615 { 616 write_seqcount_begin(&tkd->seq); 617 tk_update_leap_state(&tkd->shadow_timekeeper); 618 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 619 write_seqcount_end(&tkd->seq); 620 } 621 622 /* 623 * Update the ktime_t based scalar nsec members of the timekeeper 624 */ 625 static inline void tk_update_ktime_data(struct timekeeper *tk) 626 { 627 u64 seconds; 628 u32 nsec; 629 630 /* 631 * The xtime based monotonic readout is: 632 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 633 * The ktime based monotonic readout is: 634 * nsec = base_mono + now(); 635 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 636 */ 637 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 638 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 639 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 640 641 /* 642 * The sum of the nanoseconds portions of xtime and 643 * wall_to_monotonic can be greater/equal one second. Take 644 * this into account before updating tk->ktime_sec. 645 */ 646 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 647 if (nsec >= NSEC_PER_SEC) 648 seconds++; 649 tk->ktime_sec = seconds; 650 651 /* Update the monotonic raw base */ 652 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 653 } 654 655 /* 656 * Restore the shadow timekeeper from the real timekeeper. 657 */ 658 static void timekeeping_restore_shadow(struct tk_data *tkd) 659 { 660 lockdep_assert_held(&tkd->lock); 661 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 662 } 663 664 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 665 { 666 struct timekeeper *tk = &tk_core.shadow_timekeeper; 667 668 lockdep_assert_held(&tkd->lock); 669 670 /* 671 * Block out readers before running the updates below because that 672 * updates VDSO and other time related infrastructure. Not blocking 673 * the readers might let a reader see time going backwards when 674 * reading from the VDSO after the VDSO update and then reading in 675 * the kernel from the timekeeper before that got updated. 676 */ 677 write_seqcount_begin(&tkd->seq); 678 679 if (action & TK_CLEAR_NTP) { 680 tk->ntp_error = 0; 681 ntp_clear(); 682 } 683 684 tk_update_leap_state(tk); 685 tk_update_ktime_data(tk); 686 687 update_vsyscall(tk); 688 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 689 690 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 691 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 692 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 693 694 if (action & TK_CLOCK_WAS_SET) 695 tk->clock_was_set_seq++; 696 697 /* 698 * Update the real timekeeper. 699 * 700 * We could avoid this memcpy() by switching pointers, but that has 701 * the downside that the reader side does not longer benefit from 702 * the cacheline optimized data layout of the timekeeper and requires 703 * another indirection. 704 */ 705 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 706 write_seqcount_end(&tkd->seq); 707 } 708 709 /** 710 * timekeeping_forward_now - update clock to the current time 711 * @tk: Pointer to the timekeeper to update 712 * 713 * Forward the current clock to update its state since the last call to 714 * update_wall_time(). This is useful before significant clock changes, 715 * as it avoids having to deal with this time offset explicitly. 716 */ 717 static void timekeeping_forward_now(struct timekeeper *tk) 718 { 719 u64 cycle_now, delta; 720 721 cycle_now = tk_clock_read(&tk->tkr_mono); 722 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 723 tk->tkr_mono.clock->max_raw_delta); 724 tk->tkr_mono.cycle_last = cycle_now; 725 tk->tkr_raw.cycle_last = cycle_now; 726 727 while (delta > 0) { 728 u64 max = tk->tkr_mono.clock->max_cycles; 729 u64 incr = delta < max ? delta : max; 730 731 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 732 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 733 tk_normalize_xtime(tk); 734 delta -= incr; 735 } 736 tk_update_coarse_nsecs(tk); 737 } 738 739 /** 740 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 741 * @ts: pointer to the timespec to be set 742 * 743 * Returns the time of day in a timespec64 (WARN if suspended). 744 */ 745 void ktime_get_real_ts64(struct timespec64 *ts) 746 { 747 struct timekeeper *tk = &tk_core.timekeeper; 748 unsigned int seq; 749 u64 nsecs; 750 751 WARN_ON(timekeeping_suspended); 752 753 do { 754 seq = read_seqcount_begin(&tk_core.seq); 755 756 ts->tv_sec = tk->xtime_sec; 757 nsecs = timekeeping_get_ns(&tk->tkr_mono); 758 759 } while (read_seqcount_retry(&tk_core.seq, seq)); 760 761 ts->tv_nsec = 0; 762 timespec64_add_ns(ts, nsecs); 763 } 764 EXPORT_SYMBOL(ktime_get_real_ts64); 765 766 ktime_t ktime_get(void) 767 { 768 struct timekeeper *tk = &tk_core.timekeeper; 769 unsigned int seq; 770 ktime_t base; 771 u64 nsecs; 772 773 WARN_ON(timekeeping_suspended); 774 775 do { 776 seq = read_seqcount_begin(&tk_core.seq); 777 base = tk->tkr_mono.base; 778 nsecs = timekeeping_get_ns(&tk->tkr_mono); 779 780 } while (read_seqcount_retry(&tk_core.seq, seq)); 781 782 return ktime_add_ns(base, nsecs); 783 } 784 EXPORT_SYMBOL_GPL(ktime_get); 785 786 u32 ktime_get_resolution_ns(void) 787 { 788 struct timekeeper *tk = &tk_core.timekeeper; 789 unsigned int seq; 790 u32 nsecs; 791 792 WARN_ON(timekeeping_suspended); 793 794 do { 795 seq = read_seqcount_begin(&tk_core.seq); 796 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 797 } while (read_seqcount_retry(&tk_core.seq, seq)); 798 799 return nsecs; 800 } 801 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 802 803 static ktime_t *offsets[TK_OFFS_MAX] = { 804 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 805 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 806 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 807 }; 808 809 ktime_t ktime_get_with_offset(enum tk_offsets offs) 810 { 811 struct timekeeper *tk = &tk_core.timekeeper; 812 unsigned int seq; 813 ktime_t base, *offset = offsets[offs]; 814 u64 nsecs; 815 816 WARN_ON(timekeeping_suspended); 817 818 do { 819 seq = read_seqcount_begin(&tk_core.seq); 820 base = ktime_add(tk->tkr_mono.base, *offset); 821 nsecs = timekeeping_get_ns(&tk->tkr_mono); 822 823 } while (read_seqcount_retry(&tk_core.seq, seq)); 824 825 return ktime_add_ns(base, nsecs); 826 827 } 828 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 829 830 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 831 { 832 struct timekeeper *tk = &tk_core.timekeeper; 833 ktime_t base, *offset = offsets[offs]; 834 unsigned int seq; 835 u64 nsecs; 836 837 WARN_ON(timekeeping_suspended); 838 839 do { 840 seq = read_seqcount_begin(&tk_core.seq); 841 base = ktime_add(tk->tkr_mono.base, *offset); 842 nsecs = tk->coarse_nsec; 843 844 } while (read_seqcount_retry(&tk_core.seq, seq)); 845 846 return ktime_add_ns(base, nsecs); 847 } 848 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 849 850 /** 851 * ktime_mono_to_any() - convert monotonic time to any other time 852 * @tmono: time to convert. 853 * @offs: which offset to use 854 */ 855 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 856 { 857 ktime_t *offset = offsets[offs]; 858 unsigned int seq; 859 ktime_t tconv; 860 861 if (IS_ENABLED(CONFIG_64BIT)) { 862 /* 863 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 864 * tk_update_sleep_time(). 865 */ 866 return ktime_add(tmono, READ_ONCE(*offset)); 867 } 868 869 do { 870 seq = read_seqcount_begin(&tk_core.seq); 871 tconv = ktime_add(tmono, *offset); 872 } while (read_seqcount_retry(&tk_core.seq, seq)); 873 874 return tconv; 875 } 876 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 877 878 /** 879 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 880 */ 881 ktime_t ktime_get_raw(void) 882 { 883 struct timekeeper *tk = &tk_core.timekeeper; 884 unsigned int seq; 885 ktime_t base; 886 u64 nsecs; 887 888 do { 889 seq = read_seqcount_begin(&tk_core.seq); 890 base = tk->tkr_raw.base; 891 nsecs = timekeeping_get_ns(&tk->tkr_raw); 892 893 } while (read_seqcount_retry(&tk_core.seq, seq)); 894 895 return ktime_add_ns(base, nsecs); 896 } 897 EXPORT_SYMBOL_GPL(ktime_get_raw); 898 899 /** 900 * ktime_get_ts64 - get the monotonic clock in timespec64 format 901 * @ts: pointer to timespec variable 902 * 903 * The function calculates the monotonic clock from the realtime 904 * clock and the wall_to_monotonic offset and stores the result 905 * in normalized timespec64 format in the variable pointed to by @ts. 906 */ 907 void ktime_get_ts64(struct timespec64 *ts) 908 { 909 struct timekeeper *tk = &tk_core.timekeeper; 910 struct timespec64 tomono; 911 unsigned int seq; 912 u64 nsec; 913 914 WARN_ON(timekeeping_suspended); 915 916 do { 917 seq = read_seqcount_begin(&tk_core.seq); 918 ts->tv_sec = tk->xtime_sec; 919 nsec = timekeeping_get_ns(&tk->tkr_mono); 920 tomono = tk->wall_to_monotonic; 921 922 } while (read_seqcount_retry(&tk_core.seq, seq)); 923 924 ts->tv_sec += tomono.tv_sec; 925 ts->tv_nsec = 0; 926 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 927 } 928 EXPORT_SYMBOL_GPL(ktime_get_ts64); 929 930 /** 931 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 932 * 933 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 934 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 935 * works on both 32 and 64 bit systems. On 32 bit systems the readout 936 * covers ~136 years of uptime which should be enough to prevent 937 * premature wrap arounds. 938 */ 939 time64_t ktime_get_seconds(void) 940 { 941 struct timekeeper *tk = &tk_core.timekeeper; 942 943 WARN_ON(timekeeping_suspended); 944 return tk->ktime_sec; 945 } 946 EXPORT_SYMBOL_GPL(ktime_get_seconds); 947 948 /** 949 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 950 * 951 * Returns the wall clock seconds since 1970. 952 * 953 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 954 * 32bit systems the access must be protected with the sequence 955 * counter to provide "atomic" access to the 64bit tk->xtime_sec 956 * value. 957 */ 958 time64_t ktime_get_real_seconds(void) 959 { 960 struct timekeeper *tk = &tk_core.timekeeper; 961 time64_t seconds; 962 unsigned int seq; 963 964 if (IS_ENABLED(CONFIG_64BIT)) 965 return tk->xtime_sec; 966 967 do { 968 seq = read_seqcount_begin(&tk_core.seq); 969 seconds = tk->xtime_sec; 970 971 } while (read_seqcount_retry(&tk_core.seq, seq)); 972 973 return seconds; 974 } 975 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 976 977 /** 978 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 979 * but without the sequence counter protect. This internal function 980 * is called just when timekeeping lock is already held. 981 */ 982 noinstr time64_t __ktime_get_real_seconds(void) 983 { 984 struct timekeeper *tk = &tk_core.timekeeper; 985 986 return tk->xtime_sec; 987 } 988 989 /** 990 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 991 * @systime_snapshot: pointer to struct receiving the system time snapshot 992 */ 993 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 994 { 995 struct timekeeper *tk = &tk_core.timekeeper; 996 unsigned int seq; 997 ktime_t base_raw; 998 ktime_t base_real; 999 ktime_t base_boot; 1000 u64 nsec_raw; 1001 u64 nsec_real; 1002 u64 now; 1003 1004 WARN_ON_ONCE(timekeeping_suspended); 1005 1006 do { 1007 seq = read_seqcount_begin(&tk_core.seq); 1008 now = tk_clock_read(&tk->tkr_mono); 1009 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1010 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1011 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1012 base_real = ktime_add(tk->tkr_mono.base, 1013 tk_core.timekeeper.offs_real); 1014 base_boot = ktime_add(tk->tkr_mono.base, 1015 tk_core.timekeeper.offs_boot); 1016 base_raw = tk->tkr_raw.base; 1017 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1018 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1019 } while (read_seqcount_retry(&tk_core.seq, seq)); 1020 1021 systime_snapshot->cycles = now; 1022 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1023 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1024 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1025 } 1026 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1027 1028 /* Scale base by mult/div checking for overflow */ 1029 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1030 { 1031 u64 tmp, rem; 1032 1033 tmp = div64_u64_rem(*base, div, &rem); 1034 1035 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1036 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1037 return -EOVERFLOW; 1038 tmp *= mult; 1039 1040 rem = div64_u64(rem * mult, div); 1041 *base = tmp + rem; 1042 return 0; 1043 } 1044 1045 /** 1046 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1047 * @history: Snapshot representing start of history 1048 * @partial_history_cycles: Cycle offset into history (fractional part) 1049 * @total_history_cycles: Total history length in cycles 1050 * @discontinuity: True indicates clock was set on history period 1051 * @ts: Cross timestamp that should be adjusted using 1052 * partial/total ratio 1053 * 1054 * Helper function used by get_device_system_crosststamp() to correct the 1055 * crosstimestamp corresponding to the start of the current interval to the 1056 * system counter value (timestamp point) provided by the driver. The 1057 * total_history_* quantities are the total history starting at the provided 1058 * reference point and ending at the start of the current interval. The cycle 1059 * count between the driver timestamp point and the start of the current 1060 * interval is partial_history_cycles. 1061 */ 1062 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1063 u64 partial_history_cycles, 1064 u64 total_history_cycles, 1065 bool discontinuity, 1066 struct system_device_crosststamp *ts) 1067 { 1068 struct timekeeper *tk = &tk_core.timekeeper; 1069 u64 corr_raw, corr_real; 1070 bool interp_forward; 1071 int ret; 1072 1073 if (total_history_cycles == 0 || partial_history_cycles == 0) 1074 return 0; 1075 1076 /* Interpolate shortest distance from beginning or end of history */ 1077 interp_forward = partial_history_cycles > total_history_cycles / 2; 1078 partial_history_cycles = interp_forward ? 1079 total_history_cycles - partial_history_cycles : 1080 partial_history_cycles; 1081 1082 /* 1083 * Scale the monotonic raw time delta by: 1084 * partial_history_cycles / total_history_cycles 1085 */ 1086 corr_raw = (u64)ktime_to_ns( 1087 ktime_sub(ts->sys_monoraw, history->raw)); 1088 ret = scale64_check_overflow(partial_history_cycles, 1089 total_history_cycles, &corr_raw); 1090 if (ret) 1091 return ret; 1092 1093 /* 1094 * If there is a discontinuity in the history, scale monotonic raw 1095 * correction by: 1096 * mult(real)/mult(raw) yielding the realtime correction 1097 * Otherwise, calculate the realtime correction similar to monotonic 1098 * raw calculation 1099 */ 1100 if (discontinuity) { 1101 corr_real = mul_u64_u32_div 1102 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1103 } else { 1104 corr_real = (u64)ktime_to_ns( 1105 ktime_sub(ts->sys_realtime, history->real)); 1106 ret = scale64_check_overflow(partial_history_cycles, 1107 total_history_cycles, &corr_real); 1108 if (ret) 1109 return ret; 1110 } 1111 1112 /* Fixup monotonic raw and real time time values */ 1113 if (interp_forward) { 1114 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1115 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1116 } else { 1117 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1118 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1119 } 1120 1121 return 0; 1122 } 1123 1124 /* 1125 * timestamp_in_interval - true if ts is chronologically in [start, end] 1126 * 1127 * True if ts occurs chronologically at or after start, and before or at end. 1128 */ 1129 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1130 { 1131 if (ts >= start && ts <= end) 1132 return true; 1133 if (start > end && (ts >= start || ts <= end)) 1134 return true; 1135 return false; 1136 } 1137 1138 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1139 { 1140 u64 rem, res; 1141 1142 if (!numerator || !denominator) 1143 return false; 1144 1145 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1146 *val = res + div_u64(rem * numerator, denominator); 1147 return true; 1148 } 1149 1150 static bool convert_base_to_cs(struct system_counterval_t *scv) 1151 { 1152 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1153 struct clocksource_base *base; 1154 u32 num, den; 1155 1156 /* The timestamp was taken from the time keeper clock source */ 1157 if (cs->id == scv->cs_id) 1158 return true; 1159 1160 /* 1161 * Check whether cs_id matches the base clock. Prevent the compiler from 1162 * re-evaluating @base as the clocksource might change concurrently. 1163 */ 1164 base = READ_ONCE(cs->base); 1165 if (!base || base->id != scv->cs_id) 1166 return false; 1167 1168 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1169 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1170 1171 if (!convert_clock(&scv->cycles, num, den)) 1172 return false; 1173 1174 scv->cycles += base->offset; 1175 return true; 1176 } 1177 1178 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1179 { 1180 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1181 struct clocksource_base *base; 1182 1183 /* 1184 * Check whether base_id matches the base clock. Prevent the compiler from 1185 * re-evaluating @base as the clocksource might change concurrently. 1186 */ 1187 base = READ_ONCE(cs->base); 1188 if (!base || base->id != base_id) 1189 return false; 1190 1191 *cycles -= base->offset; 1192 if (!convert_clock(cycles, base->denominator, base->numerator)) 1193 return false; 1194 return true; 1195 } 1196 1197 static bool convert_ns_to_cs(u64 *delta) 1198 { 1199 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1200 1201 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1202 return false; 1203 1204 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1205 return true; 1206 } 1207 1208 /** 1209 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1210 * @treal: CLOCK_REALTIME timestamp to convert 1211 * @base_id: base clocksource id 1212 * @cycles: pointer to store the converted base clock timestamp 1213 * 1214 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1215 * 1216 * Return: true if the conversion is successful, false otherwise. 1217 */ 1218 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1219 { 1220 struct timekeeper *tk = &tk_core.timekeeper; 1221 unsigned int seq; 1222 u64 delta; 1223 1224 do { 1225 seq = read_seqcount_begin(&tk_core.seq); 1226 if ((u64)treal < tk->tkr_mono.base_real) 1227 return false; 1228 delta = (u64)treal - tk->tkr_mono.base_real; 1229 if (!convert_ns_to_cs(&delta)) 1230 return false; 1231 *cycles = tk->tkr_mono.cycle_last + delta; 1232 if (!convert_cs_to_base(cycles, base_id)) 1233 return false; 1234 } while (read_seqcount_retry(&tk_core.seq, seq)); 1235 1236 return true; 1237 } 1238 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1239 1240 /** 1241 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1242 * @get_time_fn: Callback to get simultaneous device time and 1243 * system counter from the device driver 1244 * @ctx: Context passed to get_time_fn() 1245 * @history_begin: Historical reference point used to interpolate system 1246 * time when counter provided by the driver is before the current interval 1247 * @xtstamp: Receives simultaneously captured system and device time 1248 * 1249 * Reads a timestamp from a device and correlates it to system time 1250 */ 1251 int get_device_system_crosststamp(int (*get_time_fn) 1252 (ktime_t *device_time, 1253 struct system_counterval_t *sys_counterval, 1254 void *ctx), 1255 void *ctx, 1256 struct system_time_snapshot *history_begin, 1257 struct system_device_crosststamp *xtstamp) 1258 { 1259 struct system_counterval_t system_counterval; 1260 struct timekeeper *tk = &tk_core.timekeeper; 1261 u64 cycles, now, interval_start; 1262 unsigned int clock_was_set_seq = 0; 1263 ktime_t base_real, base_raw; 1264 u64 nsec_real, nsec_raw; 1265 u8 cs_was_changed_seq; 1266 unsigned int seq; 1267 bool do_interp; 1268 int ret; 1269 1270 do { 1271 seq = read_seqcount_begin(&tk_core.seq); 1272 /* 1273 * Try to synchronously capture device time and a system 1274 * counter value calling back into the device driver 1275 */ 1276 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1277 if (ret) 1278 return ret; 1279 1280 /* 1281 * Verify that the clocksource ID associated with the captured 1282 * system counter value is the same as for the currently 1283 * installed timekeeper clocksource 1284 */ 1285 if (system_counterval.cs_id == CSID_GENERIC || 1286 !convert_base_to_cs(&system_counterval)) 1287 return -ENODEV; 1288 cycles = system_counterval.cycles; 1289 1290 /* 1291 * Check whether the system counter value provided by the 1292 * device driver is on the current timekeeping interval. 1293 */ 1294 now = tk_clock_read(&tk->tkr_mono); 1295 interval_start = tk->tkr_mono.cycle_last; 1296 if (!timestamp_in_interval(interval_start, now, cycles)) { 1297 clock_was_set_seq = tk->clock_was_set_seq; 1298 cs_was_changed_seq = tk->cs_was_changed_seq; 1299 cycles = interval_start; 1300 do_interp = true; 1301 } else { 1302 do_interp = false; 1303 } 1304 1305 base_real = ktime_add(tk->tkr_mono.base, 1306 tk_core.timekeeper.offs_real); 1307 base_raw = tk->tkr_raw.base; 1308 1309 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1310 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1311 } while (read_seqcount_retry(&tk_core.seq, seq)); 1312 1313 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1314 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1315 1316 /* 1317 * Interpolate if necessary, adjusting back from the start of the 1318 * current interval 1319 */ 1320 if (do_interp) { 1321 u64 partial_history_cycles, total_history_cycles; 1322 bool discontinuity; 1323 1324 /* 1325 * Check that the counter value is not before the provided 1326 * history reference and that the history doesn't cross a 1327 * clocksource change 1328 */ 1329 if (!history_begin || 1330 !timestamp_in_interval(history_begin->cycles, 1331 cycles, system_counterval.cycles) || 1332 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1333 return -EINVAL; 1334 partial_history_cycles = cycles - system_counterval.cycles; 1335 total_history_cycles = cycles - history_begin->cycles; 1336 discontinuity = 1337 history_begin->clock_was_set_seq != clock_was_set_seq; 1338 1339 ret = adjust_historical_crosststamp(history_begin, 1340 partial_history_cycles, 1341 total_history_cycles, 1342 discontinuity, xtstamp); 1343 if (ret) 1344 return ret; 1345 } 1346 1347 return 0; 1348 } 1349 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1350 1351 /** 1352 * timekeeping_clocksource_has_base - Check whether the current clocksource 1353 * is based on given a base clock 1354 * @id: base clocksource ID 1355 * 1356 * Note: The return value is a snapshot which can become invalid right 1357 * after the function returns. 1358 * 1359 * Return: true if the timekeeper clocksource has a base clock with @id, 1360 * false otherwise 1361 */ 1362 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1363 { 1364 /* 1365 * This is a snapshot, so no point in using the sequence 1366 * count. Just prevent the compiler from re-evaluating @base as the 1367 * clocksource might change concurrently. 1368 */ 1369 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1370 1371 return base ? base->id == id : false; 1372 } 1373 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1374 1375 /** 1376 * do_settimeofday64 - Sets the time of day. 1377 * @ts: pointer to the timespec64 variable containing the new time 1378 * 1379 * Sets the time of day to the new time and update NTP and notify hrtimers 1380 */ 1381 int do_settimeofday64(const struct timespec64 *ts) 1382 { 1383 struct timespec64 ts_delta, xt; 1384 1385 if (!timespec64_valid_settod(ts)) 1386 return -EINVAL; 1387 1388 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1389 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1390 1391 timekeeping_forward_now(tks); 1392 1393 xt = tk_xtime(tks); 1394 ts_delta = timespec64_sub(*ts, xt); 1395 1396 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1397 timekeeping_restore_shadow(&tk_core); 1398 return -EINVAL; 1399 } 1400 1401 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1402 tk_set_xtime(tks, ts); 1403 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1404 } 1405 1406 /* Signal hrtimers about time change */ 1407 clock_was_set(CLOCK_SET_WALL); 1408 1409 audit_tk_injoffset(ts_delta); 1410 add_device_randomness(ts, sizeof(*ts)); 1411 return 0; 1412 } 1413 EXPORT_SYMBOL(do_settimeofday64); 1414 1415 /** 1416 * timekeeping_inject_offset - Adds or subtracts from the current time. 1417 * @ts: Pointer to the timespec variable containing the offset 1418 * 1419 * Adds or subtracts an offset value from the current time. 1420 */ 1421 static int timekeeping_inject_offset(const struct timespec64 *ts) 1422 { 1423 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1424 return -EINVAL; 1425 1426 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1427 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1428 struct timespec64 tmp; 1429 1430 timekeeping_forward_now(tks); 1431 1432 /* Make sure the proposed value is valid */ 1433 tmp = timespec64_add(tk_xtime(tks), *ts); 1434 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1435 !timespec64_valid_settod(&tmp)) { 1436 timekeeping_restore_shadow(&tk_core); 1437 return -EINVAL; 1438 } 1439 1440 tk_xtime_add(tks, ts); 1441 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1442 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1443 } 1444 1445 /* Signal hrtimers about time change */ 1446 clock_was_set(CLOCK_SET_WALL); 1447 return 0; 1448 } 1449 1450 /* 1451 * Indicates if there is an offset between the system clock and the hardware 1452 * clock/persistent clock/rtc. 1453 */ 1454 int persistent_clock_is_local; 1455 1456 /* 1457 * Adjust the time obtained from the CMOS to be UTC time instead of 1458 * local time. 1459 * 1460 * This is ugly, but preferable to the alternatives. Otherwise we 1461 * would either need to write a program to do it in /etc/rc (and risk 1462 * confusion if the program gets run more than once; it would also be 1463 * hard to make the program warp the clock precisely n hours) or 1464 * compile in the timezone information into the kernel. Bad, bad.... 1465 * 1466 * - TYT, 1992-01-01 1467 * 1468 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1469 * as real UNIX machines always do it. This avoids all headaches about 1470 * daylight saving times and warping kernel clocks. 1471 */ 1472 void timekeeping_warp_clock(void) 1473 { 1474 if (sys_tz.tz_minuteswest != 0) { 1475 struct timespec64 adjust; 1476 1477 persistent_clock_is_local = 1; 1478 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1479 adjust.tv_nsec = 0; 1480 timekeeping_inject_offset(&adjust); 1481 } 1482 } 1483 1484 /* 1485 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1486 */ 1487 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1488 { 1489 tk->tai_offset = tai_offset; 1490 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1491 } 1492 1493 /* 1494 * change_clocksource - Swaps clocksources if a new one is available 1495 * 1496 * Accumulates current time interval and initializes new clocksource 1497 */ 1498 static int change_clocksource(void *data) 1499 { 1500 struct clocksource *new = data, *old = NULL; 1501 1502 /* 1503 * If the clocksource is in a module, get a module reference. 1504 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1505 * reference can't be acquired. 1506 */ 1507 if (!try_module_get(new->owner)) 1508 return 0; 1509 1510 /* Abort if the device can't be enabled */ 1511 if (new->enable && new->enable(new) != 0) { 1512 module_put(new->owner); 1513 return 0; 1514 } 1515 1516 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1517 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1518 1519 timekeeping_forward_now(tks); 1520 old = tks->tkr_mono.clock; 1521 tk_setup_internals(tks, new); 1522 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1523 } 1524 1525 if (old) { 1526 if (old->disable) 1527 old->disable(old); 1528 module_put(old->owner); 1529 } 1530 1531 return 0; 1532 } 1533 1534 /** 1535 * timekeeping_notify - Install a new clock source 1536 * @clock: pointer to the clock source 1537 * 1538 * This function is called from clocksource.c after a new, better clock 1539 * source has been registered. The caller holds the clocksource_mutex. 1540 */ 1541 int timekeeping_notify(struct clocksource *clock) 1542 { 1543 struct timekeeper *tk = &tk_core.timekeeper; 1544 1545 if (tk->tkr_mono.clock == clock) 1546 return 0; 1547 stop_machine(change_clocksource, clock, NULL); 1548 tick_clock_notify(); 1549 return tk->tkr_mono.clock == clock ? 0 : -1; 1550 } 1551 1552 /** 1553 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1554 * @ts: pointer to the timespec64 to be set 1555 * 1556 * Returns the raw monotonic time (completely un-modified by ntp) 1557 */ 1558 void ktime_get_raw_ts64(struct timespec64 *ts) 1559 { 1560 struct timekeeper *tk = &tk_core.timekeeper; 1561 unsigned int seq; 1562 u64 nsecs; 1563 1564 do { 1565 seq = read_seqcount_begin(&tk_core.seq); 1566 ts->tv_sec = tk->raw_sec; 1567 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1568 1569 } while (read_seqcount_retry(&tk_core.seq, seq)); 1570 1571 ts->tv_nsec = 0; 1572 timespec64_add_ns(ts, nsecs); 1573 } 1574 EXPORT_SYMBOL(ktime_get_raw_ts64); 1575 1576 /** 1577 * ktime_get_clock_ts64 - Returns time of a clock in a timespec 1578 * @id: POSIX clock ID of the clock to read 1579 * @ts: Pointer to the timespec64 to be set 1580 * 1581 * The timestamp is invalidated (@ts->sec is set to -1) if the 1582 * clock @id is not available. 1583 */ 1584 void ktime_get_clock_ts64(clockid_t id, struct timespec64 *ts) 1585 { 1586 /* Invalidate time stamp */ 1587 ts->tv_sec = -1; 1588 ts->tv_nsec = 0; 1589 1590 switch (id) { 1591 case CLOCK_REALTIME: 1592 ktime_get_real_ts64(ts); 1593 return; 1594 case CLOCK_MONOTONIC: 1595 ktime_get_ts64(ts); 1596 return; 1597 case CLOCK_MONOTONIC_RAW: 1598 ktime_get_raw_ts64(ts); 1599 return; 1600 case CLOCK_AUX ... CLOCK_AUX_LAST: 1601 if (IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS)) 1602 ktime_get_aux_ts64(id, ts); 1603 return; 1604 default: 1605 WARN_ON_ONCE(1); 1606 } 1607 } 1608 EXPORT_SYMBOL_GPL(ktime_get_clock_ts64); 1609 1610 /** 1611 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1612 */ 1613 int timekeeping_valid_for_hres(void) 1614 { 1615 struct timekeeper *tk = &tk_core.timekeeper; 1616 unsigned int seq; 1617 int ret; 1618 1619 do { 1620 seq = read_seqcount_begin(&tk_core.seq); 1621 1622 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1623 1624 } while (read_seqcount_retry(&tk_core.seq, seq)); 1625 1626 return ret; 1627 } 1628 1629 /** 1630 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1631 */ 1632 u64 timekeeping_max_deferment(void) 1633 { 1634 struct timekeeper *tk = &tk_core.timekeeper; 1635 unsigned int seq; 1636 u64 ret; 1637 1638 do { 1639 seq = read_seqcount_begin(&tk_core.seq); 1640 1641 ret = tk->tkr_mono.clock->max_idle_ns; 1642 1643 } while (read_seqcount_retry(&tk_core.seq, seq)); 1644 1645 return ret; 1646 } 1647 1648 /** 1649 * read_persistent_clock64 - Return time from the persistent clock. 1650 * @ts: Pointer to the storage for the readout value 1651 * 1652 * Weak dummy function for arches that do not yet support it. 1653 * Reads the time from the battery backed persistent clock. 1654 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1655 * 1656 * XXX - Do be sure to remove it once all arches implement it. 1657 */ 1658 void __weak read_persistent_clock64(struct timespec64 *ts) 1659 { 1660 ts->tv_sec = 0; 1661 ts->tv_nsec = 0; 1662 } 1663 1664 /** 1665 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1666 * from the boot. 1667 * @wall_time: current time as returned by persistent clock 1668 * @boot_offset: offset that is defined as wall_time - boot_time 1669 * 1670 * Weak dummy function for arches that do not yet support it. 1671 * 1672 * The default function calculates offset based on the current value of 1673 * local_clock(). This way architectures that support sched_clock() but don't 1674 * support dedicated boot time clock will provide the best estimate of the 1675 * boot time. 1676 */ 1677 void __weak __init 1678 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1679 struct timespec64 *boot_offset) 1680 { 1681 read_persistent_clock64(wall_time); 1682 *boot_offset = ns_to_timespec64(local_clock()); 1683 } 1684 1685 static __init void tkd_basic_setup(struct tk_data *tkd) 1686 { 1687 raw_spin_lock_init(&tkd->lock); 1688 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1689 } 1690 1691 /* 1692 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1693 * 1694 * The flag starts of false and is only set when a suspend reaches 1695 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1696 * timekeeper clocksource is not stopping across suspend and has been 1697 * used to update sleep time. If the timekeeper clocksource has stopped 1698 * then the flag stays true and is used by the RTC resume code to decide 1699 * whether sleeptime must be injected and if so the flag gets false then. 1700 * 1701 * If a suspend fails before reaching timekeeping_resume() then the flag 1702 * stays false and prevents erroneous sleeptime injection. 1703 */ 1704 static bool suspend_timing_needed; 1705 1706 /* Flag for if there is a persistent clock on this platform */ 1707 static bool persistent_clock_exists; 1708 1709 /* 1710 * timekeeping_init - Initializes the clocksource and common timekeeping values 1711 */ 1712 void __init timekeeping_init(void) 1713 { 1714 struct timespec64 wall_time, boot_offset, wall_to_mono; 1715 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1716 struct clocksource *clock; 1717 1718 tkd_basic_setup(&tk_core); 1719 1720 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1721 if (timespec64_valid_settod(&wall_time) && 1722 timespec64_to_ns(&wall_time) > 0) { 1723 persistent_clock_exists = true; 1724 } else if (timespec64_to_ns(&wall_time) != 0) { 1725 pr_warn("Persistent clock returned invalid value"); 1726 wall_time = (struct timespec64){0}; 1727 } 1728 1729 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1730 boot_offset = (struct timespec64){0}; 1731 1732 /* 1733 * We want set wall_to_mono, so the following is true: 1734 * wall time + wall_to_mono = boot time 1735 */ 1736 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1737 1738 guard(raw_spinlock_irqsave)(&tk_core.lock); 1739 1740 ntp_init(); 1741 1742 clock = clocksource_default_clock(); 1743 if (clock->enable) 1744 clock->enable(clock); 1745 tk_setup_internals(tks, clock); 1746 1747 tk_set_xtime(tks, &wall_time); 1748 tks->raw_sec = 0; 1749 1750 tk_set_wall_to_mono(tks, wall_to_mono); 1751 1752 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1753 } 1754 1755 /* time in seconds when suspend began for persistent clock */ 1756 static struct timespec64 timekeeping_suspend_time; 1757 1758 /** 1759 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1760 * @tk: Pointer to the timekeeper to be updated 1761 * @delta: Pointer to the delta value in timespec64 format 1762 * 1763 * Takes a timespec offset measuring a suspend interval and properly 1764 * adds the sleep offset to the timekeeping variables. 1765 */ 1766 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1767 const struct timespec64 *delta) 1768 { 1769 if (!timespec64_valid_strict(delta)) { 1770 printk_deferred(KERN_WARNING 1771 "__timekeeping_inject_sleeptime: Invalid " 1772 "sleep delta value!\n"); 1773 return; 1774 } 1775 tk_xtime_add(tk, delta); 1776 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1777 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1778 tk_debug_account_sleep_time(delta); 1779 } 1780 1781 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1782 /* 1783 * We have three kinds of time sources to use for sleep time 1784 * injection, the preference order is: 1785 * 1) non-stop clocksource 1786 * 2) persistent clock (ie: RTC accessible when irqs are off) 1787 * 3) RTC 1788 * 1789 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1790 * If system has neither 1) nor 2), 3) will be used finally. 1791 * 1792 * 1793 * If timekeeping has injected sleeptime via either 1) or 2), 1794 * 3) becomes needless, so in this case we don't need to call 1795 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1796 * means. 1797 */ 1798 bool timekeeping_rtc_skipresume(void) 1799 { 1800 return !suspend_timing_needed; 1801 } 1802 1803 /* 1804 * 1) can be determined whether to use or not only when doing 1805 * timekeeping_resume() which is invoked after rtc_suspend(), 1806 * so we can't skip rtc_suspend() surely if system has 1). 1807 * 1808 * But if system has 2), 2) will definitely be used, so in this 1809 * case we don't need to call rtc_suspend(), and this is what 1810 * timekeeping_rtc_skipsuspend() means. 1811 */ 1812 bool timekeeping_rtc_skipsuspend(void) 1813 { 1814 return persistent_clock_exists; 1815 } 1816 1817 /** 1818 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1819 * @delta: pointer to a timespec64 delta value 1820 * 1821 * This hook is for architectures that cannot support read_persistent_clock64 1822 * because their RTC/persistent clock is only accessible when irqs are enabled. 1823 * and also don't have an effective nonstop clocksource. 1824 * 1825 * This function should only be called by rtc_resume(), and allows 1826 * a suspend offset to be injected into the timekeeping values. 1827 */ 1828 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1829 { 1830 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1831 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1832 1833 suspend_timing_needed = false; 1834 timekeeping_forward_now(tks); 1835 __timekeeping_inject_sleeptime(tks, delta); 1836 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1837 } 1838 1839 /* Signal hrtimers about time change */ 1840 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1841 } 1842 #endif 1843 1844 /** 1845 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1846 */ 1847 void timekeeping_resume(void) 1848 { 1849 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1850 struct clocksource *clock = tks->tkr_mono.clock; 1851 struct timespec64 ts_new, ts_delta; 1852 bool inject_sleeptime = false; 1853 u64 cycle_now, nsec; 1854 unsigned long flags; 1855 1856 read_persistent_clock64(&ts_new); 1857 1858 clockevents_resume(); 1859 clocksource_resume(); 1860 1861 raw_spin_lock_irqsave(&tk_core.lock, flags); 1862 1863 /* 1864 * After system resumes, we need to calculate the suspended time and 1865 * compensate it for the OS time. There are 3 sources that could be 1866 * used: Nonstop clocksource during suspend, persistent clock and rtc 1867 * device. 1868 * 1869 * One specific platform may have 1 or 2 or all of them, and the 1870 * preference will be: 1871 * suspend-nonstop clocksource -> persistent clock -> rtc 1872 * The less preferred source will only be tried if there is no better 1873 * usable source. The rtc part is handled separately in rtc core code. 1874 */ 1875 cycle_now = tk_clock_read(&tks->tkr_mono); 1876 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1877 if (nsec > 0) { 1878 ts_delta = ns_to_timespec64(nsec); 1879 inject_sleeptime = true; 1880 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1881 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1882 inject_sleeptime = true; 1883 } 1884 1885 if (inject_sleeptime) { 1886 suspend_timing_needed = false; 1887 __timekeeping_inject_sleeptime(tks, &ts_delta); 1888 } 1889 1890 /* Re-base the last cycle value */ 1891 tks->tkr_mono.cycle_last = cycle_now; 1892 tks->tkr_raw.cycle_last = cycle_now; 1893 1894 tks->ntp_error = 0; 1895 timekeeping_suspended = 0; 1896 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1897 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1898 1899 touch_softlockup_watchdog(); 1900 1901 /* Resume the clockevent device(s) and hrtimers */ 1902 tick_resume(); 1903 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1904 timerfd_resume(); 1905 } 1906 1907 int timekeeping_suspend(void) 1908 { 1909 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1910 struct timespec64 delta, delta_delta; 1911 static struct timespec64 old_delta; 1912 struct clocksource *curr_clock; 1913 unsigned long flags; 1914 u64 cycle_now; 1915 1916 read_persistent_clock64(&timekeeping_suspend_time); 1917 1918 /* 1919 * On some systems the persistent_clock can not be detected at 1920 * timekeeping_init by its return value, so if we see a valid 1921 * value returned, update the persistent_clock_exists flag. 1922 */ 1923 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1924 persistent_clock_exists = true; 1925 1926 suspend_timing_needed = true; 1927 1928 raw_spin_lock_irqsave(&tk_core.lock, flags); 1929 timekeeping_forward_now(tks); 1930 timekeeping_suspended = 1; 1931 1932 /* 1933 * Since we've called forward_now, cycle_last stores the value 1934 * just read from the current clocksource. Save this to potentially 1935 * use in suspend timing. 1936 */ 1937 curr_clock = tks->tkr_mono.clock; 1938 cycle_now = tks->tkr_mono.cycle_last; 1939 clocksource_start_suspend_timing(curr_clock, cycle_now); 1940 1941 if (persistent_clock_exists) { 1942 /* 1943 * To avoid drift caused by repeated suspend/resumes, 1944 * which each can add ~1 second drift error, 1945 * try to compensate so the difference in system time 1946 * and persistent_clock time stays close to constant. 1947 */ 1948 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 1949 delta_delta = timespec64_sub(delta, old_delta); 1950 if (abs(delta_delta.tv_sec) >= 2) { 1951 /* 1952 * if delta_delta is too large, assume time correction 1953 * has occurred and set old_delta to the current delta. 1954 */ 1955 old_delta = delta; 1956 } else { 1957 /* Otherwise try to adjust old_system to compensate */ 1958 timekeeping_suspend_time = 1959 timespec64_add(timekeeping_suspend_time, delta_delta); 1960 } 1961 } 1962 1963 timekeeping_update_from_shadow(&tk_core, 0); 1964 halt_fast_timekeeper(tks); 1965 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1966 1967 tick_suspend(); 1968 clocksource_suspend(); 1969 clockevents_suspend(); 1970 1971 return 0; 1972 } 1973 1974 /* sysfs resume/suspend bits for timekeeping */ 1975 static struct syscore_ops timekeeping_syscore_ops = { 1976 .resume = timekeeping_resume, 1977 .suspend = timekeeping_suspend, 1978 }; 1979 1980 static int __init timekeeping_init_ops(void) 1981 { 1982 register_syscore_ops(&timekeeping_syscore_ops); 1983 return 0; 1984 } 1985 device_initcall(timekeeping_init_ops); 1986 1987 /* 1988 * Apply a multiplier adjustment to the timekeeper 1989 */ 1990 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1991 s64 offset, 1992 s32 mult_adj) 1993 { 1994 s64 interval = tk->cycle_interval; 1995 1996 if (mult_adj == 0) { 1997 return; 1998 } else if (mult_adj == -1) { 1999 interval = -interval; 2000 offset = -offset; 2001 } else if (mult_adj != 1) { 2002 interval *= mult_adj; 2003 offset *= mult_adj; 2004 } 2005 2006 /* 2007 * So the following can be confusing. 2008 * 2009 * To keep things simple, lets assume mult_adj == 1 for now. 2010 * 2011 * When mult_adj != 1, remember that the interval and offset values 2012 * have been appropriately scaled so the math is the same. 2013 * 2014 * The basic idea here is that we're increasing the multiplier 2015 * by one, this causes the xtime_interval to be incremented by 2016 * one cycle_interval. This is because: 2017 * xtime_interval = cycle_interval * mult 2018 * So if mult is being incremented by one: 2019 * xtime_interval = cycle_interval * (mult + 1) 2020 * Its the same as: 2021 * xtime_interval = (cycle_interval * mult) + cycle_interval 2022 * Which can be shortened to: 2023 * xtime_interval += cycle_interval 2024 * 2025 * So offset stores the non-accumulated cycles. Thus the current 2026 * time (in shifted nanoseconds) is: 2027 * now = (offset * adj) + xtime_nsec 2028 * Now, even though we're adjusting the clock frequency, we have 2029 * to keep time consistent. In other words, we can't jump back 2030 * in time, and we also want to avoid jumping forward in time. 2031 * 2032 * So given the same offset value, we need the time to be the same 2033 * both before and after the freq adjustment. 2034 * now = (offset * adj_1) + xtime_nsec_1 2035 * now = (offset * adj_2) + xtime_nsec_2 2036 * So: 2037 * (offset * adj_1) + xtime_nsec_1 = 2038 * (offset * adj_2) + xtime_nsec_2 2039 * And we know: 2040 * adj_2 = adj_1 + 1 2041 * So: 2042 * (offset * adj_1) + xtime_nsec_1 = 2043 * (offset * (adj_1+1)) + xtime_nsec_2 2044 * (offset * adj_1) + xtime_nsec_1 = 2045 * (offset * adj_1) + offset + xtime_nsec_2 2046 * Canceling the sides: 2047 * xtime_nsec_1 = offset + xtime_nsec_2 2048 * Which gives us: 2049 * xtime_nsec_2 = xtime_nsec_1 - offset 2050 * Which simplifies to: 2051 * xtime_nsec -= offset 2052 */ 2053 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2054 /* NTP adjustment caused clocksource mult overflow */ 2055 WARN_ON_ONCE(1); 2056 return; 2057 } 2058 2059 tk->tkr_mono.mult += mult_adj; 2060 tk->xtime_interval += interval; 2061 tk->tkr_mono.xtime_nsec -= offset; 2062 } 2063 2064 /* 2065 * Adjust the timekeeper's multiplier to the correct frequency 2066 * and also to reduce the accumulated error value. 2067 */ 2068 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2069 { 2070 u64 ntp_tl = ntp_tick_length(); 2071 u32 mult; 2072 2073 /* 2074 * Determine the multiplier from the current NTP tick length. 2075 * Avoid expensive division when the tick length doesn't change. 2076 */ 2077 if (likely(tk->ntp_tick == ntp_tl)) { 2078 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2079 } else { 2080 tk->ntp_tick = ntp_tl; 2081 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2082 tk->xtime_remainder, tk->cycle_interval); 2083 } 2084 2085 /* 2086 * If the clock is behind the NTP time, increase the multiplier by 1 2087 * to catch up with it. If it's ahead and there was a remainder in the 2088 * tick division, the clock will slow down. Otherwise it will stay 2089 * ahead until the tick length changes to a non-divisible value. 2090 */ 2091 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2092 mult += tk->ntp_err_mult; 2093 2094 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2095 2096 if (unlikely(tk->tkr_mono.clock->maxadj && 2097 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2098 > tk->tkr_mono.clock->maxadj))) { 2099 printk_once(KERN_WARNING 2100 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2101 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2102 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2103 } 2104 2105 /* 2106 * It may be possible that when we entered this function, xtime_nsec 2107 * was very small. Further, if we're slightly speeding the clocksource 2108 * in the code above, its possible the required corrective factor to 2109 * xtime_nsec could cause it to underflow. 2110 * 2111 * Now, since we have already accumulated the second and the NTP 2112 * subsystem has been notified via second_overflow(), we need to skip 2113 * the next update. 2114 */ 2115 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2116 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2117 tk->tkr_mono.shift; 2118 tk->xtime_sec--; 2119 tk->skip_second_overflow = 1; 2120 } 2121 } 2122 2123 /* 2124 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2125 * 2126 * Helper function that accumulates the nsecs greater than a second 2127 * from the xtime_nsec field to the xtime_secs field. 2128 * It also calls into the NTP code to handle leapsecond processing. 2129 */ 2130 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2131 { 2132 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2133 unsigned int clock_set = 0; 2134 2135 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2136 int leap; 2137 2138 tk->tkr_mono.xtime_nsec -= nsecps; 2139 tk->xtime_sec++; 2140 2141 /* 2142 * Skip NTP update if this second was accumulated before, 2143 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2144 */ 2145 if (unlikely(tk->skip_second_overflow)) { 2146 tk->skip_second_overflow = 0; 2147 continue; 2148 } 2149 2150 /* Figure out if its a leap sec and apply if needed */ 2151 leap = second_overflow(tk->xtime_sec); 2152 if (unlikely(leap)) { 2153 struct timespec64 ts; 2154 2155 tk->xtime_sec += leap; 2156 2157 ts.tv_sec = leap; 2158 ts.tv_nsec = 0; 2159 tk_set_wall_to_mono(tk, 2160 timespec64_sub(tk->wall_to_monotonic, ts)); 2161 2162 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2163 2164 clock_set = TK_CLOCK_WAS_SET; 2165 } 2166 } 2167 return clock_set; 2168 } 2169 2170 /* 2171 * logarithmic_accumulation - shifted accumulation of cycles 2172 * 2173 * This functions accumulates a shifted interval of cycles into 2174 * a shifted interval nanoseconds. Allows for O(log) accumulation 2175 * loop. 2176 * 2177 * Returns the unconsumed cycles. 2178 */ 2179 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2180 u32 shift, unsigned int *clock_set) 2181 { 2182 u64 interval = tk->cycle_interval << shift; 2183 u64 snsec_per_sec; 2184 2185 /* If the offset is smaller than a shifted interval, do nothing */ 2186 if (offset < interval) 2187 return offset; 2188 2189 /* Accumulate one shifted interval */ 2190 offset -= interval; 2191 tk->tkr_mono.cycle_last += interval; 2192 tk->tkr_raw.cycle_last += interval; 2193 2194 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2195 *clock_set |= accumulate_nsecs_to_secs(tk); 2196 2197 /* Accumulate raw time */ 2198 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2199 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2200 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2201 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2202 tk->raw_sec++; 2203 } 2204 2205 /* Accumulate error between NTP and clock interval */ 2206 tk->ntp_error += tk->ntp_tick << shift; 2207 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2208 (tk->ntp_error_shift + shift); 2209 2210 return offset; 2211 } 2212 2213 /* 2214 * timekeeping_advance - Updates the timekeeper to the current time and 2215 * current NTP tick length 2216 */ 2217 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2218 { 2219 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2220 struct timekeeper *real_tk = &tk_core.timekeeper; 2221 unsigned int clock_set = 0; 2222 int shift = 0, maxshift; 2223 u64 offset, orig_offset; 2224 2225 guard(raw_spinlock_irqsave)(&tk_core.lock); 2226 2227 /* Make sure we're fully resumed: */ 2228 if (unlikely(timekeeping_suspended)) 2229 return false; 2230 2231 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2232 tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 2233 tk->tkr_mono.clock->max_raw_delta); 2234 orig_offset = offset; 2235 /* Check if there's really nothing to do */ 2236 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2237 return false; 2238 2239 /* 2240 * With NO_HZ we may have to accumulate many cycle_intervals 2241 * (think "ticks") worth of time at once. To do this efficiently, 2242 * we calculate the largest doubling multiple of cycle_intervals 2243 * that is smaller than the offset. We then accumulate that 2244 * chunk in one go, and then try to consume the next smaller 2245 * doubled multiple. 2246 */ 2247 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2248 shift = max(0, shift); 2249 /* Bound shift to one less than what overflows tick_length */ 2250 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2251 shift = min(shift, maxshift); 2252 while (offset >= tk->cycle_interval) { 2253 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2254 if (offset < tk->cycle_interval<<shift) 2255 shift--; 2256 } 2257 2258 /* Adjust the multiplier to correct NTP error */ 2259 timekeeping_adjust(tk, offset); 2260 2261 /* 2262 * Finally, make sure that after the rounding 2263 * xtime_nsec isn't larger than NSEC_PER_SEC 2264 */ 2265 clock_set |= accumulate_nsecs_to_secs(tk); 2266 2267 /* 2268 * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls 2269 * making small negative adjustments to the base xtime_nsec 2270 * value, only update the coarse clocks if we accumulated time 2271 */ 2272 if (orig_offset != offset) 2273 tk_update_coarse_nsecs(tk); 2274 2275 timekeeping_update_from_shadow(&tk_core, clock_set); 2276 2277 return !!clock_set; 2278 } 2279 2280 /** 2281 * update_wall_time - Uses the current clocksource to increment the wall time 2282 * 2283 */ 2284 void update_wall_time(void) 2285 { 2286 if (timekeeping_advance(TK_ADV_TICK)) 2287 clock_was_set_delayed(); 2288 } 2289 2290 /** 2291 * getboottime64 - Return the real time of system boot. 2292 * @ts: pointer to the timespec64 to be set 2293 * 2294 * Returns the wall-time of boot in a timespec64. 2295 * 2296 * This is based on the wall_to_monotonic offset and the total suspend 2297 * time. Calls to settimeofday will affect the value returned (which 2298 * basically means that however wrong your real time clock is at boot time, 2299 * you get the right time here). 2300 */ 2301 void getboottime64(struct timespec64 *ts) 2302 { 2303 struct timekeeper *tk = &tk_core.timekeeper; 2304 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2305 2306 *ts = ktime_to_timespec64(t); 2307 } 2308 EXPORT_SYMBOL_GPL(getboottime64); 2309 2310 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2311 { 2312 struct timekeeper *tk = &tk_core.timekeeper; 2313 unsigned int seq; 2314 2315 do { 2316 seq = read_seqcount_begin(&tk_core.seq); 2317 2318 *ts = tk_xtime_coarse(tk); 2319 } while (read_seqcount_retry(&tk_core.seq, seq)); 2320 } 2321 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2322 2323 /** 2324 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2325 * @ts: timespec64 to be filled 2326 * 2327 * Fetch the global mg_floor value, convert it to realtime and compare it 2328 * to the current coarse-grained time. Fill @ts with whichever is 2329 * latest. Note that this is a filesystem-specific interface and should be 2330 * avoided outside of that context. 2331 */ 2332 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2333 { 2334 struct timekeeper *tk = &tk_core.timekeeper; 2335 u64 floor = atomic64_read(&mg_floor); 2336 ktime_t f_real, offset, coarse; 2337 unsigned int seq; 2338 2339 do { 2340 seq = read_seqcount_begin(&tk_core.seq); 2341 *ts = tk_xtime_coarse(tk); 2342 offset = tk_core.timekeeper.offs_real; 2343 } while (read_seqcount_retry(&tk_core.seq, seq)); 2344 2345 coarse = timespec64_to_ktime(*ts); 2346 f_real = ktime_add(floor, offset); 2347 if (ktime_after(f_real, coarse)) 2348 *ts = ktime_to_timespec64(f_real); 2349 } 2350 2351 /** 2352 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2353 * @ts: pointer to the timespec to be set 2354 * 2355 * Get a monotonic fine-grained time value and attempt to swap it into 2356 * mg_floor. If that succeeds then accept the new floor value. If it fails 2357 * then another task raced in during the interim time and updated the 2358 * floor. Since any update to the floor must be later than the previous 2359 * floor, either outcome is acceptable. 2360 * 2361 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2362 * and determining that the resulting coarse-grained timestamp did not effect 2363 * a change in ctime. Any more recent floor value would effect a change to 2364 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2365 * 2366 * @ts will be filled with the latest floor value, regardless of the outcome of 2367 * the cmpxchg. Note that this is a filesystem specific interface and should be 2368 * avoided outside of that context. 2369 */ 2370 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2371 { 2372 struct timekeeper *tk = &tk_core.timekeeper; 2373 ktime_t old = atomic64_read(&mg_floor); 2374 ktime_t offset, mono; 2375 unsigned int seq; 2376 u64 nsecs; 2377 2378 do { 2379 seq = read_seqcount_begin(&tk_core.seq); 2380 2381 ts->tv_sec = tk->xtime_sec; 2382 mono = tk->tkr_mono.base; 2383 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2384 offset = tk_core.timekeeper.offs_real; 2385 } while (read_seqcount_retry(&tk_core.seq, seq)); 2386 2387 mono = ktime_add_ns(mono, nsecs); 2388 2389 /* 2390 * Attempt to update the floor with the new time value. As any 2391 * update must be later then the existing floor, and would effect 2392 * a change to ctime from the perspective of the current task, 2393 * accept the resulting floor value regardless of the outcome of 2394 * the swap. 2395 */ 2396 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2397 ts->tv_nsec = 0; 2398 timespec64_add_ns(ts, nsecs); 2399 timekeeping_inc_mg_floor_swaps(); 2400 } else { 2401 /* 2402 * Another task changed mg_floor since "old" was fetched. 2403 * "old" has been updated with the latest value of "mg_floor". 2404 * That value is newer than the previous floor value, which 2405 * is enough to effect a change to ctime. Accept it. 2406 */ 2407 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2408 } 2409 } 2410 2411 void ktime_get_coarse_ts64(struct timespec64 *ts) 2412 { 2413 struct timekeeper *tk = &tk_core.timekeeper; 2414 struct timespec64 now, mono; 2415 unsigned int seq; 2416 2417 do { 2418 seq = read_seqcount_begin(&tk_core.seq); 2419 2420 now = tk_xtime_coarse(tk); 2421 mono = tk->wall_to_monotonic; 2422 } while (read_seqcount_retry(&tk_core.seq, seq)); 2423 2424 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2425 now.tv_nsec + mono.tv_nsec); 2426 } 2427 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2428 2429 /* 2430 * Must hold jiffies_lock 2431 */ 2432 void do_timer(unsigned long ticks) 2433 { 2434 jiffies_64 += ticks; 2435 calc_global_load(); 2436 } 2437 2438 /** 2439 * ktime_get_update_offsets_now - hrtimer helper 2440 * @cwsseq: pointer to check and store the clock was set sequence number 2441 * @offs_real: pointer to storage for monotonic -> realtime offset 2442 * @offs_boot: pointer to storage for monotonic -> boottime offset 2443 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2444 * 2445 * Returns current monotonic time and updates the offsets if the 2446 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2447 * different. 2448 * 2449 * Called from hrtimer_interrupt() or retrigger_next_event() 2450 */ 2451 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2452 ktime_t *offs_boot, ktime_t *offs_tai) 2453 { 2454 struct timekeeper *tk = &tk_core.timekeeper; 2455 unsigned int seq; 2456 ktime_t base; 2457 u64 nsecs; 2458 2459 do { 2460 seq = read_seqcount_begin(&tk_core.seq); 2461 2462 base = tk->tkr_mono.base; 2463 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2464 base = ktime_add_ns(base, nsecs); 2465 2466 if (*cwsseq != tk->clock_was_set_seq) { 2467 *cwsseq = tk->clock_was_set_seq; 2468 *offs_real = tk->offs_real; 2469 *offs_boot = tk->offs_boot; 2470 *offs_tai = tk->offs_tai; 2471 } 2472 2473 /* Handle leapsecond insertion adjustments */ 2474 if (unlikely(base >= tk->next_leap_ktime)) 2475 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2476 2477 } while (read_seqcount_retry(&tk_core.seq, seq)); 2478 2479 return base; 2480 } 2481 2482 /* 2483 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2484 */ 2485 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2486 { 2487 if (txc->modes & ADJ_ADJTIME) { 2488 /* singleshot must not be used with any other mode bits */ 2489 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2490 return -EINVAL; 2491 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2492 !capable(CAP_SYS_TIME)) 2493 return -EPERM; 2494 } else { 2495 /* In order to modify anything, you gotta be super-user! */ 2496 if (txc->modes && !capable(CAP_SYS_TIME)) 2497 return -EPERM; 2498 /* 2499 * if the quartz is off by more than 10% then 2500 * something is VERY wrong! 2501 */ 2502 if (txc->modes & ADJ_TICK && 2503 (txc->tick < 900000/USER_HZ || 2504 txc->tick > 1100000/USER_HZ)) 2505 return -EINVAL; 2506 } 2507 2508 if (txc->modes & ADJ_SETOFFSET) { 2509 /* In order to inject time, you gotta be super-user! */ 2510 if (!capable(CAP_SYS_TIME)) 2511 return -EPERM; 2512 2513 /* 2514 * Validate if a timespec/timeval used to inject a time 2515 * offset is valid. Offsets can be positive or negative, so 2516 * we don't check tv_sec. The value of the timeval/timespec 2517 * is the sum of its fields,but *NOTE*: 2518 * The field tv_usec/tv_nsec must always be non-negative and 2519 * we can't have more nanoseconds/microseconds than a second. 2520 */ 2521 if (txc->time.tv_usec < 0) 2522 return -EINVAL; 2523 2524 if (txc->modes & ADJ_NANO) { 2525 if (txc->time.tv_usec >= NSEC_PER_SEC) 2526 return -EINVAL; 2527 } else { 2528 if (txc->time.tv_usec >= USEC_PER_SEC) 2529 return -EINVAL; 2530 } 2531 } 2532 2533 /* 2534 * Check for potential multiplication overflows that can 2535 * only happen on 64-bit systems: 2536 */ 2537 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2538 if (LLONG_MIN / PPM_SCALE > txc->freq) 2539 return -EINVAL; 2540 if (LLONG_MAX / PPM_SCALE < txc->freq) 2541 return -EINVAL; 2542 } 2543 2544 return 0; 2545 } 2546 2547 /** 2548 * random_get_entropy_fallback - Returns the raw clock source value, 2549 * used by random.c for platforms with no valid random_get_entropy(). 2550 */ 2551 unsigned long random_get_entropy_fallback(void) 2552 { 2553 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2554 struct clocksource *clock = READ_ONCE(tkr->clock); 2555 2556 if (unlikely(timekeeping_suspended || !clock)) 2557 return 0; 2558 return clock->read(clock); 2559 } 2560 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2561 2562 /** 2563 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2564 * @txc: Pointer to kernel_timex structure containing NTP parameters 2565 */ 2566 int do_adjtimex(struct __kernel_timex *txc) 2567 { 2568 struct audit_ntp_data ad; 2569 bool offset_set = false; 2570 bool clock_set = false; 2571 struct timespec64 ts; 2572 int ret; 2573 2574 /* Validate the data before disabling interrupts */ 2575 ret = timekeeping_validate_timex(txc); 2576 if (ret) 2577 return ret; 2578 add_device_randomness(txc, sizeof(*txc)); 2579 2580 if (txc->modes & ADJ_SETOFFSET) { 2581 struct timespec64 delta; 2582 2583 delta.tv_sec = txc->time.tv_sec; 2584 delta.tv_nsec = txc->time.tv_usec; 2585 if (!(txc->modes & ADJ_NANO)) 2586 delta.tv_nsec *= 1000; 2587 ret = timekeeping_inject_offset(&delta); 2588 if (ret) 2589 return ret; 2590 2591 offset_set = delta.tv_sec != 0; 2592 audit_tk_injoffset(delta); 2593 } 2594 2595 audit_ntp_init(&ad); 2596 2597 ktime_get_real_ts64(&ts); 2598 add_device_randomness(&ts, sizeof(ts)); 2599 2600 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 2601 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2602 s32 orig_tai, tai; 2603 2604 orig_tai = tai = tks->tai_offset; 2605 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2606 2607 if (tai != orig_tai) { 2608 __timekeeping_set_tai_offset(tks, tai); 2609 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 2610 clock_set = true; 2611 } else { 2612 tk_update_leap_state_all(&tk_core); 2613 } 2614 } 2615 2616 audit_ntp_log(&ad); 2617 2618 /* Update the multiplier immediately if frequency was set directly */ 2619 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2620 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2621 2622 if (clock_set) 2623 clock_was_set(CLOCK_SET_WALL); 2624 2625 ntp_notify_cmos_timer(offset_set); 2626 2627 return ret; 2628 } 2629 2630 #ifdef CONFIG_NTP_PPS 2631 /** 2632 * hardpps() - Accessor function to NTP __hardpps function 2633 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2634 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2635 */ 2636 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2637 { 2638 guard(raw_spinlock_irqsave)(&tk_core.lock); 2639 __hardpps(phase_ts, raw_ts); 2640 } 2641 EXPORT_SYMBOL(hardpps); 2642 #endif /* CONFIG_NTP_PPS */ 2643