1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_CLOCK_WAS_SET (1 << 1) 34 35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 36 37 enum timekeeping_adv_mode { 38 /* Update timekeeper when a tick has passed */ 39 TK_ADV_TICK, 40 41 /* Update timekeeper on a direct frequency change */ 42 TK_ADV_FREQ 43 }; 44 45 /* 46 * The most important data for readout fits into a single 64 byte 47 * cache line. 48 */ 49 struct tk_data { 50 seqcount_raw_spinlock_t seq; 51 struct timekeeper timekeeper; 52 struct timekeeper shadow_timekeeper; 53 raw_spinlock_t lock; 54 } ____cacheline_aligned; 55 56 static struct tk_data tk_core; 57 58 /* flag for if timekeeping is suspended */ 59 int __read_mostly timekeeping_suspended; 60 61 /** 62 * struct tk_fast - NMI safe timekeeper 63 * @seq: Sequence counter for protecting updates. The lowest bit 64 * is the index for the tk_read_base array 65 * @base: tk_read_base array. Access is indexed by the lowest bit of 66 * @seq. 67 * 68 * See @update_fast_timekeeper() below. 69 */ 70 struct tk_fast { 71 seqcount_latch_t seq; 72 struct tk_read_base base[2]; 73 }; 74 75 /* Suspend-time cycles value for halted fast timekeeper. */ 76 static u64 cycles_at_suspend; 77 78 static u64 dummy_clock_read(struct clocksource *cs) 79 { 80 if (timekeeping_suspended) 81 return cycles_at_suspend; 82 return local_clock(); 83 } 84 85 static struct clocksource dummy_clock = { 86 .read = dummy_clock_read, 87 }; 88 89 /* 90 * Boot time initialization which allows local_clock() to be utilized 91 * during early boot when clocksources are not available. local_clock() 92 * returns nanoseconds already so no conversion is required, hence mult=1 93 * and shift=0. When the first proper clocksource is installed then 94 * the fast time keepers are updated with the correct values. 95 */ 96 #define FAST_TK_INIT \ 97 { \ 98 .clock = &dummy_clock, \ 99 .mask = CLOCKSOURCE_MASK(64), \ 100 .mult = 1, \ 101 .shift = 0, \ 102 } 103 104 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 106 .base[0] = FAST_TK_INIT, 107 .base[1] = FAST_TK_INIT, 108 }; 109 110 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 112 .base[0] = FAST_TK_INIT, 113 .base[1] = FAST_TK_INIT, 114 }; 115 116 unsigned long timekeeper_lock_irqsave(void) 117 { 118 unsigned long flags; 119 120 raw_spin_lock_irqsave(&tk_core.lock, flags); 121 return flags; 122 } 123 124 void timekeeper_unlock_irqrestore(unsigned long flags) 125 { 126 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 127 } 128 129 /* 130 * Multigrain timestamps require tracking the latest fine-grained timestamp 131 * that has been issued, and never returning a coarse-grained timestamp that is 132 * earlier than that value. 133 * 134 * mg_floor represents the latest fine-grained time that has been handed out as 135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 136 * converted to a realtime clock value on an as-needed basis. 137 * 138 * Maintaining mg_floor ensures the multigrain interfaces never issue a 139 * timestamp earlier than one that has been previously issued. 140 * 141 * The exception to this rule is when there is a backward realtime clock jump. If 142 * such an event occurs, a timestamp can appear to be earlier than a previous one. 143 */ 144 static __cacheline_aligned_in_smp atomic64_t mg_floor; 145 146 static inline void tk_normalize_xtime(struct timekeeper *tk) 147 { 148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 150 tk->xtime_sec++; 151 } 152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 154 tk->raw_sec++; 155 } 156 } 157 158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 159 { 160 struct timespec64 ts; 161 162 ts.tv_sec = tk->xtime_sec; 163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 164 return ts; 165 } 166 167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 168 { 169 tk->xtime_sec = ts->tv_sec; 170 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 171 } 172 173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 174 { 175 tk->xtime_sec += ts->tv_sec; 176 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 177 tk_normalize_xtime(tk); 178 } 179 180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 181 { 182 struct timespec64 tmp; 183 184 /* 185 * Verify consistency of: offset_real = -wall_to_monotonic 186 * before modifying anything 187 */ 188 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 189 -tk->wall_to_monotonic.tv_nsec); 190 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 191 tk->wall_to_monotonic = wtm; 192 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 193 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 194 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 195 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 196 } 197 198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 199 { 200 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 201 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 202 /* 203 * Timespec representation for VDSO update to avoid 64bit division 204 * on every update. 205 */ 206 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 207 } 208 209 /* 210 * tk_clock_read - atomic clocksource read() helper 211 * 212 * This helper is necessary to use in the read paths because, while the 213 * seqcount ensures we don't return a bad value while structures are updated, 214 * it doesn't protect from potential crashes. There is the possibility that 215 * the tkr's clocksource may change between the read reference, and the 216 * clock reference passed to the read function. This can cause crashes if 217 * the wrong clocksource is passed to the wrong read function. 218 * This isn't necessary to use when holding the tk_core.lock or doing 219 * a read of the fast-timekeeper tkrs (which is protected by its own locking 220 * and update logic). 221 */ 222 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 223 { 224 struct clocksource *clock = READ_ONCE(tkr->clock); 225 226 return clock->read(clock); 227 } 228 229 /** 230 * tk_setup_internals - Set up internals to use clocksource clock. 231 * 232 * @tk: The target timekeeper to setup. 233 * @clock: Pointer to clocksource. 234 * 235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 236 * pair and interval request. 237 * 238 * Unless you're the timekeeping code, you should not be using this! 239 */ 240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 241 { 242 u64 interval; 243 u64 tmp, ntpinterval; 244 struct clocksource *old_clock; 245 246 ++tk->cs_was_changed_seq; 247 old_clock = tk->tkr_mono.clock; 248 tk->tkr_mono.clock = clock; 249 tk->tkr_mono.mask = clock->mask; 250 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 251 252 tk->tkr_raw.clock = clock; 253 tk->tkr_raw.mask = clock->mask; 254 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 255 256 /* Do the ns -> cycle conversion first, using original mult */ 257 tmp = NTP_INTERVAL_LENGTH; 258 tmp <<= clock->shift; 259 ntpinterval = tmp; 260 tmp += clock->mult/2; 261 do_div(tmp, clock->mult); 262 if (tmp == 0) 263 tmp = 1; 264 265 interval = (u64) tmp; 266 tk->cycle_interval = interval; 267 268 /* Go back from cycles -> shifted ns */ 269 tk->xtime_interval = interval * clock->mult; 270 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 271 tk->raw_interval = interval * clock->mult; 272 273 /* if changing clocks, convert xtime_nsec shift units */ 274 if (old_clock) { 275 int shift_change = clock->shift - old_clock->shift; 276 if (shift_change < 0) { 277 tk->tkr_mono.xtime_nsec >>= -shift_change; 278 tk->tkr_raw.xtime_nsec >>= -shift_change; 279 } else { 280 tk->tkr_mono.xtime_nsec <<= shift_change; 281 tk->tkr_raw.xtime_nsec <<= shift_change; 282 } 283 } 284 285 tk->tkr_mono.shift = clock->shift; 286 tk->tkr_raw.shift = clock->shift; 287 288 tk->ntp_error = 0; 289 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 290 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 291 292 /* 293 * The timekeeper keeps its own mult values for the currently 294 * active clocksource. These value will be adjusted via NTP 295 * to counteract clock drifting. 296 */ 297 tk->tkr_mono.mult = clock->mult; 298 tk->tkr_raw.mult = clock->mult; 299 tk->ntp_err_mult = 0; 300 tk->skip_second_overflow = 0; 301 } 302 303 /* Timekeeper helper functions. */ 304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 305 { 306 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 307 } 308 309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 310 { 311 /* Calculate the delta since the last update_wall_time() */ 312 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 313 314 /* 315 * This detects both negative motion and the case where the delta 316 * overflows the multiplication with tkr->mult. 317 */ 318 if (unlikely(delta > tkr->clock->max_cycles)) { 319 /* 320 * Handle clocksource inconsistency between CPUs to prevent 321 * time from going backwards by checking for the MSB of the 322 * mask being set in the delta. 323 */ 324 if (delta & ~(mask >> 1)) 325 return tkr->xtime_nsec >> tkr->shift; 326 327 return delta_to_ns_safe(tkr, delta); 328 } 329 330 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 331 } 332 333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 334 { 335 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 336 } 337 338 /** 339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 340 * @tkr: Timekeeping readout base from which we take the update 341 * @tkf: Pointer to NMI safe timekeeper 342 * 343 * We want to use this from any context including NMI and tracing / 344 * instrumenting the timekeeping code itself. 345 * 346 * Employ the latch technique; see @write_seqcount_latch. 347 * 348 * So if a NMI hits the update of base[0] then it will use base[1] 349 * which is still consistent. In the worst case this can result is a 350 * slightly wrong timestamp (a few nanoseconds). See 351 * @ktime_get_mono_fast_ns. 352 */ 353 static void update_fast_timekeeper(const struct tk_read_base *tkr, 354 struct tk_fast *tkf) 355 { 356 struct tk_read_base *base = tkf->base; 357 358 /* Force readers off to base[1] */ 359 write_seqcount_latch_begin(&tkf->seq); 360 361 /* Update base[0] */ 362 memcpy(base, tkr, sizeof(*base)); 363 364 /* Force readers back to base[0] */ 365 write_seqcount_latch(&tkf->seq); 366 367 /* Update base[1] */ 368 memcpy(base + 1, base, sizeof(*base)); 369 370 write_seqcount_latch_end(&tkf->seq); 371 } 372 373 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 374 { 375 struct tk_read_base *tkr; 376 unsigned int seq; 377 u64 now; 378 379 do { 380 seq = read_seqcount_latch(&tkf->seq); 381 tkr = tkf->base + (seq & 0x01); 382 now = ktime_to_ns(tkr->base); 383 now += timekeeping_get_ns(tkr); 384 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 385 386 return now; 387 } 388 389 /** 390 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 391 * 392 * This timestamp is not guaranteed to be monotonic across an update. 393 * The timestamp is calculated by: 394 * 395 * now = base_mono + clock_delta * slope 396 * 397 * So if the update lowers the slope, readers who are forced to the 398 * not yet updated second array are still using the old steeper slope. 399 * 400 * tmono 401 * ^ 402 * | o n 403 * | o n 404 * | u 405 * | o 406 * |o 407 * |12345678---> reader order 408 * 409 * o = old slope 410 * u = update 411 * n = new slope 412 * 413 * So reader 6 will observe time going backwards versus reader 5. 414 * 415 * While other CPUs are likely to be able to observe that, the only way 416 * for a CPU local observation is when an NMI hits in the middle of 417 * the update. Timestamps taken from that NMI context might be ahead 418 * of the following timestamps. Callers need to be aware of that and 419 * deal with it. 420 */ 421 u64 notrace ktime_get_mono_fast_ns(void) 422 { 423 return __ktime_get_fast_ns(&tk_fast_mono); 424 } 425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 426 427 /** 428 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 429 * 430 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 431 * conversion factor is not affected by NTP/PTP correction. 432 */ 433 u64 notrace ktime_get_raw_fast_ns(void) 434 { 435 return __ktime_get_fast_ns(&tk_fast_raw); 436 } 437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 438 439 /** 440 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 441 * 442 * To keep it NMI safe since we're accessing from tracing, we're not using a 443 * separate timekeeper with updates to monotonic clock and boot offset 444 * protected with seqcounts. This has the following minor side effects: 445 * 446 * (1) Its possible that a timestamp be taken after the boot offset is updated 447 * but before the timekeeper is updated. If this happens, the new boot offset 448 * is added to the old timekeeping making the clock appear to update slightly 449 * earlier: 450 * CPU 0 CPU 1 451 * timekeeping_inject_sleeptime64() 452 * __timekeeping_inject_sleeptime(tk, delta); 453 * timestamp(); 454 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 455 * 456 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 457 * partially updated. Since the tk->offs_boot update is a rare event, this 458 * should be a rare occurrence which postprocessing should be able to handle. 459 * 460 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 461 * apply as well. 462 */ 463 u64 notrace ktime_get_boot_fast_ns(void) 464 { 465 struct timekeeper *tk = &tk_core.timekeeper; 466 467 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 468 } 469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 470 471 /** 472 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 473 * 474 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 475 * mono time and the TAI offset are not read atomically which may yield wrong 476 * readouts. However, an update of the TAI offset is an rare event e.g., caused 477 * by settime or adjtimex with an offset. The user of this function has to deal 478 * with the possibility of wrong timestamps in post processing. 479 */ 480 u64 notrace ktime_get_tai_fast_ns(void) 481 { 482 struct timekeeper *tk = &tk_core.timekeeper; 483 484 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 485 } 486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 487 488 /** 489 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 490 * 491 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 492 */ 493 u64 ktime_get_real_fast_ns(void) 494 { 495 struct tk_fast *tkf = &tk_fast_mono; 496 struct tk_read_base *tkr; 497 u64 baser, delta; 498 unsigned int seq; 499 500 do { 501 seq = raw_read_seqcount_latch(&tkf->seq); 502 tkr = tkf->base + (seq & 0x01); 503 baser = ktime_to_ns(tkr->base_real); 504 delta = timekeeping_get_ns(tkr); 505 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 506 507 return baser + delta; 508 } 509 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 510 511 /** 512 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 513 * @tk: Timekeeper to snapshot. 514 * 515 * It generally is unsafe to access the clocksource after timekeeping has been 516 * suspended, so take a snapshot of the readout base of @tk and use it as the 517 * fast timekeeper's readout base while suspended. It will return the same 518 * number of cycles every time until timekeeping is resumed at which time the 519 * proper readout base for the fast timekeeper will be restored automatically. 520 */ 521 static void halt_fast_timekeeper(const struct timekeeper *tk) 522 { 523 static struct tk_read_base tkr_dummy; 524 const struct tk_read_base *tkr = &tk->tkr_mono; 525 526 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 527 cycles_at_suspend = tk_clock_read(tkr); 528 tkr_dummy.clock = &dummy_clock; 529 tkr_dummy.base_real = tkr->base + tk->offs_real; 530 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 531 532 tkr = &tk->tkr_raw; 533 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 534 tkr_dummy.clock = &dummy_clock; 535 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 536 } 537 538 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 539 540 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 541 { 542 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 543 } 544 545 /** 546 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 547 * @nb: Pointer to the notifier block to register 548 */ 549 int pvclock_gtod_register_notifier(struct notifier_block *nb) 550 { 551 struct timekeeper *tk = &tk_core.timekeeper; 552 int ret; 553 554 guard(raw_spinlock_irqsave)(&tk_core.lock); 555 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 556 update_pvclock_gtod(tk, true); 557 558 return ret; 559 } 560 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 561 562 /** 563 * pvclock_gtod_unregister_notifier - unregister a pvclock 564 * timedata update listener 565 * @nb: Pointer to the notifier block to unregister 566 */ 567 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 568 { 569 guard(raw_spinlock_irqsave)(&tk_core.lock); 570 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 571 } 572 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 573 574 /* 575 * tk_update_leap_state - helper to update the next_leap_ktime 576 */ 577 static inline void tk_update_leap_state(struct timekeeper *tk) 578 { 579 tk->next_leap_ktime = ntp_get_next_leap(); 580 if (tk->next_leap_ktime != KTIME_MAX) 581 /* Convert to monotonic time */ 582 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 583 } 584 585 /* 586 * Leap state update for both shadow and the real timekeeper 587 * Separate to spare a full memcpy() of the timekeeper. 588 */ 589 static void tk_update_leap_state_all(struct tk_data *tkd) 590 { 591 write_seqcount_begin(&tkd->seq); 592 tk_update_leap_state(&tkd->shadow_timekeeper); 593 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 594 write_seqcount_end(&tkd->seq); 595 } 596 597 /* 598 * Update the ktime_t based scalar nsec members of the timekeeper 599 */ 600 static inline void tk_update_ktime_data(struct timekeeper *tk) 601 { 602 u64 seconds; 603 u32 nsec; 604 605 /* 606 * The xtime based monotonic readout is: 607 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 608 * The ktime based monotonic readout is: 609 * nsec = base_mono + now(); 610 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 611 */ 612 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 613 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 614 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 615 616 /* 617 * The sum of the nanoseconds portions of xtime and 618 * wall_to_monotonic can be greater/equal one second. Take 619 * this into account before updating tk->ktime_sec. 620 */ 621 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 622 if (nsec >= NSEC_PER_SEC) 623 seconds++; 624 tk->ktime_sec = seconds; 625 626 /* Update the monotonic raw base */ 627 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 628 } 629 630 /* 631 * Restore the shadow timekeeper from the real timekeeper. 632 */ 633 static void timekeeping_restore_shadow(struct tk_data *tkd) 634 { 635 lockdep_assert_held(&tkd->lock); 636 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 637 } 638 639 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 640 { 641 struct timekeeper *tk = &tk_core.shadow_timekeeper; 642 643 lockdep_assert_held(&tkd->lock); 644 645 /* 646 * Block out readers before running the updates below because that 647 * updates VDSO and other time related infrastructure. Not blocking 648 * the readers might let a reader see time going backwards when 649 * reading from the VDSO after the VDSO update and then reading in 650 * the kernel from the timekeeper before that got updated. 651 */ 652 write_seqcount_begin(&tkd->seq); 653 654 if (action & TK_CLEAR_NTP) { 655 tk->ntp_error = 0; 656 ntp_clear(); 657 } 658 659 tk_update_leap_state(tk); 660 tk_update_ktime_data(tk); 661 662 update_vsyscall(tk); 663 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 664 665 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 666 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 667 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 668 669 if (action & TK_CLOCK_WAS_SET) 670 tk->clock_was_set_seq++; 671 672 /* 673 * Update the real timekeeper. 674 * 675 * We could avoid this memcpy() by switching pointers, but that has 676 * the downside that the reader side does not longer benefit from 677 * the cacheline optimized data layout of the timekeeper and requires 678 * another indirection. 679 */ 680 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 681 write_seqcount_end(&tkd->seq); 682 } 683 684 /** 685 * timekeeping_forward - update clock to given cycle now value 686 * @tk: Pointer to the timekeeper to update 687 * @cycle_now: Current clocksource read value 688 * 689 * Forward the current clock to update its state since the last call to 690 * update_wall_time(). This is useful before significant clock changes, 691 * as it avoids having to deal with this time offset explicitly. 692 */ 693 static void timekeeping_forward(struct timekeeper *tk, u64 cycle_now) 694 { 695 u64 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 696 tk->tkr_mono.clock->max_raw_delta); 697 698 tk->tkr_mono.cycle_last = cycle_now; 699 tk->tkr_raw.cycle_last = cycle_now; 700 701 while (delta > 0) { 702 u64 max = tk->tkr_mono.clock->max_cycles; 703 u64 incr = delta < max ? delta : max; 704 705 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 706 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 707 tk_normalize_xtime(tk); 708 delta -= incr; 709 } 710 } 711 712 /** 713 * timekeeping_forward_now - update clock to the current time 714 * @tk: Pointer to the timekeeper to update 715 * 716 * Forward the current clock to update its state since the last call to 717 * update_wall_time(). This is useful before significant clock changes, 718 * as it avoids having to deal with this time offset explicitly. 719 */ 720 static void timekeeping_forward_now(struct timekeeper *tk) 721 { 722 u64 cycle_now = tk_clock_read(&tk->tkr_mono); 723 724 timekeeping_forward(tk, cycle_now); 725 } 726 727 /** 728 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 729 * @ts: pointer to the timespec to be set 730 * 731 * Returns the time of day in a timespec64 (WARN if suspended). 732 */ 733 void ktime_get_real_ts64(struct timespec64 *ts) 734 { 735 struct timekeeper *tk = &tk_core.timekeeper; 736 unsigned int seq; 737 u64 nsecs; 738 739 WARN_ON(timekeeping_suspended); 740 741 do { 742 seq = read_seqcount_begin(&tk_core.seq); 743 744 ts->tv_sec = tk->xtime_sec; 745 nsecs = timekeeping_get_ns(&tk->tkr_mono); 746 747 } while (read_seqcount_retry(&tk_core.seq, seq)); 748 749 ts->tv_nsec = 0; 750 timespec64_add_ns(ts, nsecs); 751 } 752 EXPORT_SYMBOL(ktime_get_real_ts64); 753 754 ktime_t ktime_get(void) 755 { 756 struct timekeeper *tk = &tk_core.timekeeper; 757 unsigned int seq; 758 ktime_t base; 759 u64 nsecs; 760 761 WARN_ON(timekeeping_suspended); 762 763 do { 764 seq = read_seqcount_begin(&tk_core.seq); 765 base = tk->tkr_mono.base; 766 nsecs = timekeeping_get_ns(&tk->tkr_mono); 767 768 } while (read_seqcount_retry(&tk_core.seq, seq)); 769 770 return ktime_add_ns(base, nsecs); 771 } 772 EXPORT_SYMBOL_GPL(ktime_get); 773 774 u32 ktime_get_resolution_ns(void) 775 { 776 struct timekeeper *tk = &tk_core.timekeeper; 777 unsigned int seq; 778 u32 nsecs; 779 780 WARN_ON(timekeeping_suspended); 781 782 do { 783 seq = read_seqcount_begin(&tk_core.seq); 784 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 785 } while (read_seqcount_retry(&tk_core.seq, seq)); 786 787 return nsecs; 788 } 789 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 790 791 static ktime_t *offsets[TK_OFFS_MAX] = { 792 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 793 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 794 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 795 }; 796 797 ktime_t ktime_get_with_offset(enum tk_offsets offs) 798 { 799 struct timekeeper *tk = &tk_core.timekeeper; 800 unsigned int seq; 801 ktime_t base, *offset = offsets[offs]; 802 u64 nsecs; 803 804 WARN_ON(timekeeping_suspended); 805 806 do { 807 seq = read_seqcount_begin(&tk_core.seq); 808 base = ktime_add(tk->tkr_mono.base, *offset); 809 nsecs = timekeeping_get_ns(&tk->tkr_mono); 810 811 } while (read_seqcount_retry(&tk_core.seq, seq)); 812 813 return ktime_add_ns(base, nsecs); 814 815 } 816 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 817 818 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 819 { 820 struct timekeeper *tk = &tk_core.timekeeper; 821 unsigned int seq; 822 ktime_t base, *offset = offsets[offs]; 823 u64 nsecs; 824 825 WARN_ON(timekeeping_suspended); 826 827 do { 828 seq = read_seqcount_begin(&tk_core.seq); 829 base = ktime_add(tk->tkr_mono.base, *offset); 830 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 831 832 } while (read_seqcount_retry(&tk_core.seq, seq)); 833 834 return ktime_add_ns(base, nsecs); 835 } 836 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 837 838 /** 839 * ktime_mono_to_any() - convert monotonic time to any other time 840 * @tmono: time to convert. 841 * @offs: which offset to use 842 */ 843 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 844 { 845 ktime_t *offset = offsets[offs]; 846 unsigned int seq; 847 ktime_t tconv; 848 849 if (IS_ENABLED(CONFIG_64BIT)) { 850 /* 851 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 852 * tk_update_sleep_time(). 853 */ 854 return ktime_add(tmono, READ_ONCE(*offset)); 855 } 856 857 do { 858 seq = read_seqcount_begin(&tk_core.seq); 859 tconv = ktime_add(tmono, *offset); 860 } while (read_seqcount_retry(&tk_core.seq, seq)); 861 862 return tconv; 863 } 864 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 865 866 /** 867 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 868 */ 869 ktime_t ktime_get_raw(void) 870 { 871 struct timekeeper *tk = &tk_core.timekeeper; 872 unsigned int seq; 873 ktime_t base; 874 u64 nsecs; 875 876 do { 877 seq = read_seqcount_begin(&tk_core.seq); 878 base = tk->tkr_raw.base; 879 nsecs = timekeeping_get_ns(&tk->tkr_raw); 880 881 } while (read_seqcount_retry(&tk_core.seq, seq)); 882 883 return ktime_add_ns(base, nsecs); 884 } 885 EXPORT_SYMBOL_GPL(ktime_get_raw); 886 887 /** 888 * ktime_get_ts64 - get the monotonic clock in timespec64 format 889 * @ts: pointer to timespec variable 890 * 891 * The function calculates the monotonic clock from the realtime 892 * clock and the wall_to_monotonic offset and stores the result 893 * in normalized timespec64 format in the variable pointed to by @ts. 894 */ 895 void ktime_get_ts64(struct timespec64 *ts) 896 { 897 struct timekeeper *tk = &tk_core.timekeeper; 898 struct timespec64 tomono; 899 unsigned int seq; 900 u64 nsec; 901 902 WARN_ON(timekeeping_suspended); 903 904 do { 905 seq = read_seqcount_begin(&tk_core.seq); 906 ts->tv_sec = tk->xtime_sec; 907 nsec = timekeeping_get_ns(&tk->tkr_mono); 908 tomono = tk->wall_to_monotonic; 909 910 } while (read_seqcount_retry(&tk_core.seq, seq)); 911 912 ts->tv_sec += tomono.tv_sec; 913 ts->tv_nsec = 0; 914 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 915 } 916 EXPORT_SYMBOL_GPL(ktime_get_ts64); 917 918 /** 919 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 920 * 921 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 922 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 923 * works on both 32 and 64 bit systems. On 32 bit systems the readout 924 * covers ~136 years of uptime which should be enough to prevent 925 * premature wrap arounds. 926 */ 927 time64_t ktime_get_seconds(void) 928 { 929 struct timekeeper *tk = &tk_core.timekeeper; 930 931 WARN_ON(timekeeping_suspended); 932 return tk->ktime_sec; 933 } 934 EXPORT_SYMBOL_GPL(ktime_get_seconds); 935 936 /** 937 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 938 * 939 * Returns the wall clock seconds since 1970. 940 * 941 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 942 * 32bit systems the access must be protected with the sequence 943 * counter to provide "atomic" access to the 64bit tk->xtime_sec 944 * value. 945 */ 946 time64_t ktime_get_real_seconds(void) 947 { 948 struct timekeeper *tk = &tk_core.timekeeper; 949 time64_t seconds; 950 unsigned int seq; 951 952 if (IS_ENABLED(CONFIG_64BIT)) 953 return tk->xtime_sec; 954 955 do { 956 seq = read_seqcount_begin(&tk_core.seq); 957 seconds = tk->xtime_sec; 958 959 } while (read_seqcount_retry(&tk_core.seq, seq)); 960 961 return seconds; 962 } 963 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 964 965 /** 966 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 967 * but without the sequence counter protect. This internal function 968 * is called just when timekeeping lock is already held. 969 */ 970 noinstr time64_t __ktime_get_real_seconds(void) 971 { 972 struct timekeeper *tk = &tk_core.timekeeper; 973 974 return tk->xtime_sec; 975 } 976 977 /** 978 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 979 * @systime_snapshot: pointer to struct receiving the system time snapshot 980 */ 981 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 982 { 983 struct timekeeper *tk = &tk_core.timekeeper; 984 unsigned int seq; 985 ktime_t base_raw; 986 ktime_t base_real; 987 ktime_t base_boot; 988 u64 nsec_raw; 989 u64 nsec_real; 990 u64 now; 991 992 WARN_ON_ONCE(timekeeping_suspended); 993 994 do { 995 seq = read_seqcount_begin(&tk_core.seq); 996 now = tk_clock_read(&tk->tkr_mono); 997 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 998 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 999 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1000 base_real = ktime_add(tk->tkr_mono.base, 1001 tk_core.timekeeper.offs_real); 1002 base_boot = ktime_add(tk->tkr_mono.base, 1003 tk_core.timekeeper.offs_boot); 1004 base_raw = tk->tkr_raw.base; 1005 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1006 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1007 } while (read_seqcount_retry(&tk_core.seq, seq)); 1008 1009 systime_snapshot->cycles = now; 1010 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1011 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1012 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1013 } 1014 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1015 1016 /* Scale base by mult/div checking for overflow */ 1017 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1018 { 1019 u64 tmp, rem; 1020 1021 tmp = div64_u64_rem(*base, div, &rem); 1022 1023 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1024 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1025 return -EOVERFLOW; 1026 tmp *= mult; 1027 1028 rem = div64_u64(rem * mult, div); 1029 *base = tmp + rem; 1030 return 0; 1031 } 1032 1033 /** 1034 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1035 * @history: Snapshot representing start of history 1036 * @partial_history_cycles: Cycle offset into history (fractional part) 1037 * @total_history_cycles: Total history length in cycles 1038 * @discontinuity: True indicates clock was set on history period 1039 * @ts: Cross timestamp that should be adjusted using 1040 * partial/total ratio 1041 * 1042 * Helper function used by get_device_system_crosststamp() to correct the 1043 * crosstimestamp corresponding to the start of the current interval to the 1044 * system counter value (timestamp point) provided by the driver. The 1045 * total_history_* quantities are the total history starting at the provided 1046 * reference point and ending at the start of the current interval. The cycle 1047 * count between the driver timestamp point and the start of the current 1048 * interval is partial_history_cycles. 1049 */ 1050 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1051 u64 partial_history_cycles, 1052 u64 total_history_cycles, 1053 bool discontinuity, 1054 struct system_device_crosststamp *ts) 1055 { 1056 struct timekeeper *tk = &tk_core.timekeeper; 1057 u64 corr_raw, corr_real; 1058 bool interp_forward; 1059 int ret; 1060 1061 if (total_history_cycles == 0 || partial_history_cycles == 0) 1062 return 0; 1063 1064 /* Interpolate shortest distance from beginning or end of history */ 1065 interp_forward = partial_history_cycles > total_history_cycles / 2; 1066 partial_history_cycles = interp_forward ? 1067 total_history_cycles - partial_history_cycles : 1068 partial_history_cycles; 1069 1070 /* 1071 * Scale the monotonic raw time delta by: 1072 * partial_history_cycles / total_history_cycles 1073 */ 1074 corr_raw = (u64)ktime_to_ns( 1075 ktime_sub(ts->sys_monoraw, history->raw)); 1076 ret = scale64_check_overflow(partial_history_cycles, 1077 total_history_cycles, &corr_raw); 1078 if (ret) 1079 return ret; 1080 1081 /* 1082 * If there is a discontinuity in the history, scale monotonic raw 1083 * correction by: 1084 * mult(real)/mult(raw) yielding the realtime correction 1085 * Otherwise, calculate the realtime correction similar to monotonic 1086 * raw calculation 1087 */ 1088 if (discontinuity) { 1089 corr_real = mul_u64_u32_div 1090 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1091 } else { 1092 corr_real = (u64)ktime_to_ns( 1093 ktime_sub(ts->sys_realtime, history->real)); 1094 ret = scale64_check_overflow(partial_history_cycles, 1095 total_history_cycles, &corr_real); 1096 if (ret) 1097 return ret; 1098 } 1099 1100 /* Fixup monotonic raw and real time time values */ 1101 if (interp_forward) { 1102 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1103 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1104 } else { 1105 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1106 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1107 } 1108 1109 return 0; 1110 } 1111 1112 /* 1113 * timestamp_in_interval - true if ts is chronologically in [start, end] 1114 * 1115 * True if ts occurs chronologically at or after start, and before or at end. 1116 */ 1117 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1118 { 1119 if (ts >= start && ts <= end) 1120 return true; 1121 if (start > end && (ts >= start || ts <= end)) 1122 return true; 1123 return false; 1124 } 1125 1126 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1127 { 1128 u64 rem, res; 1129 1130 if (!numerator || !denominator) 1131 return false; 1132 1133 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1134 *val = res + div_u64(rem * numerator, denominator); 1135 return true; 1136 } 1137 1138 static bool convert_base_to_cs(struct system_counterval_t *scv) 1139 { 1140 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1141 struct clocksource_base *base; 1142 u32 num, den; 1143 1144 /* The timestamp was taken from the time keeper clock source */ 1145 if (cs->id == scv->cs_id) 1146 return true; 1147 1148 /* 1149 * Check whether cs_id matches the base clock. Prevent the compiler from 1150 * re-evaluating @base as the clocksource might change concurrently. 1151 */ 1152 base = READ_ONCE(cs->base); 1153 if (!base || base->id != scv->cs_id) 1154 return false; 1155 1156 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1157 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1158 1159 if (!convert_clock(&scv->cycles, num, den)) 1160 return false; 1161 1162 scv->cycles += base->offset; 1163 return true; 1164 } 1165 1166 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1167 { 1168 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1169 struct clocksource_base *base; 1170 1171 /* 1172 * Check whether base_id matches the base clock. Prevent the compiler from 1173 * re-evaluating @base as the clocksource might change concurrently. 1174 */ 1175 base = READ_ONCE(cs->base); 1176 if (!base || base->id != base_id) 1177 return false; 1178 1179 *cycles -= base->offset; 1180 if (!convert_clock(cycles, base->denominator, base->numerator)) 1181 return false; 1182 return true; 1183 } 1184 1185 static bool convert_ns_to_cs(u64 *delta) 1186 { 1187 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1188 1189 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1190 return false; 1191 1192 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1193 return true; 1194 } 1195 1196 /** 1197 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1198 * @treal: CLOCK_REALTIME timestamp to convert 1199 * @base_id: base clocksource id 1200 * @cycles: pointer to store the converted base clock timestamp 1201 * 1202 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1203 * 1204 * Return: true if the conversion is successful, false otherwise. 1205 */ 1206 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1207 { 1208 struct timekeeper *tk = &tk_core.timekeeper; 1209 unsigned int seq; 1210 u64 delta; 1211 1212 do { 1213 seq = read_seqcount_begin(&tk_core.seq); 1214 if ((u64)treal < tk->tkr_mono.base_real) 1215 return false; 1216 delta = (u64)treal - tk->tkr_mono.base_real; 1217 if (!convert_ns_to_cs(&delta)) 1218 return false; 1219 *cycles = tk->tkr_mono.cycle_last + delta; 1220 if (!convert_cs_to_base(cycles, base_id)) 1221 return false; 1222 } while (read_seqcount_retry(&tk_core.seq, seq)); 1223 1224 return true; 1225 } 1226 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1227 1228 /** 1229 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1230 * @get_time_fn: Callback to get simultaneous device time and 1231 * system counter from the device driver 1232 * @ctx: Context passed to get_time_fn() 1233 * @history_begin: Historical reference point used to interpolate system 1234 * time when counter provided by the driver is before the current interval 1235 * @xtstamp: Receives simultaneously captured system and device time 1236 * 1237 * Reads a timestamp from a device and correlates it to system time 1238 */ 1239 int get_device_system_crosststamp(int (*get_time_fn) 1240 (ktime_t *device_time, 1241 struct system_counterval_t *sys_counterval, 1242 void *ctx), 1243 void *ctx, 1244 struct system_time_snapshot *history_begin, 1245 struct system_device_crosststamp *xtstamp) 1246 { 1247 struct system_counterval_t system_counterval; 1248 struct timekeeper *tk = &tk_core.timekeeper; 1249 u64 cycles, now, interval_start; 1250 unsigned int clock_was_set_seq = 0; 1251 ktime_t base_real, base_raw; 1252 u64 nsec_real, nsec_raw; 1253 u8 cs_was_changed_seq; 1254 unsigned int seq; 1255 bool do_interp; 1256 int ret; 1257 1258 do { 1259 seq = read_seqcount_begin(&tk_core.seq); 1260 /* 1261 * Try to synchronously capture device time and a system 1262 * counter value calling back into the device driver 1263 */ 1264 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1265 if (ret) 1266 return ret; 1267 1268 /* 1269 * Verify that the clocksource ID associated with the captured 1270 * system counter value is the same as for the currently 1271 * installed timekeeper clocksource 1272 */ 1273 if (system_counterval.cs_id == CSID_GENERIC || 1274 !convert_base_to_cs(&system_counterval)) 1275 return -ENODEV; 1276 cycles = system_counterval.cycles; 1277 1278 /* 1279 * Check whether the system counter value provided by the 1280 * device driver is on the current timekeeping interval. 1281 */ 1282 now = tk_clock_read(&tk->tkr_mono); 1283 interval_start = tk->tkr_mono.cycle_last; 1284 if (!timestamp_in_interval(interval_start, now, cycles)) { 1285 clock_was_set_seq = tk->clock_was_set_seq; 1286 cs_was_changed_seq = tk->cs_was_changed_seq; 1287 cycles = interval_start; 1288 do_interp = true; 1289 } else { 1290 do_interp = false; 1291 } 1292 1293 base_real = ktime_add(tk->tkr_mono.base, 1294 tk_core.timekeeper.offs_real); 1295 base_raw = tk->tkr_raw.base; 1296 1297 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1298 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1299 } while (read_seqcount_retry(&tk_core.seq, seq)); 1300 1301 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1302 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1303 1304 /* 1305 * Interpolate if necessary, adjusting back from the start of the 1306 * current interval 1307 */ 1308 if (do_interp) { 1309 u64 partial_history_cycles, total_history_cycles; 1310 bool discontinuity; 1311 1312 /* 1313 * Check that the counter value is not before the provided 1314 * history reference and that the history doesn't cross a 1315 * clocksource change 1316 */ 1317 if (!history_begin || 1318 !timestamp_in_interval(history_begin->cycles, 1319 cycles, system_counterval.cycles) || 1320 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1321 return -EINVAL; 1322 partial_history_cycles = cycles - system_counterval.cycles; 1323 total_history_cycles = cycles - history_begin->cycles; 1324 discontinuity = 1325 history_begin->clock_was_set_seq != clock_was_set_seq; 1326 1327 ret = adjust_historical_crosststamp(history_begin, 1328 partial_history_cycles, 1329 total_history_cycles, 1330 discontinuity, xtstamp); 1331 if (ret) 1332 return ret; 1333 } 1334 1335 return 0; 1336 } 1337 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1338 1339 /** 1340 * timekeeping_clocksource_has_base - Check whether the current clocksource 1341 * is based on given a base clock 1342 * @id: base clocksource ID 1343 * 1344 * Note: The return value is a snapshot which can become invalid right 1345 * after the function returns. 1346 * 1347 * Return: true if the timekeeper clocksource has a base clock with @id, 1348 * false otherwise 1349 */ 1350 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1351 { 1352 /* 1353 * This is a snapshot, so no point in using the sequence 1354 * count. Just prevent the compiler from re-evaluating @base as the 1355 * clocksource might change concurrently. 1356 */ 1357 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1358 1359 return base ? base->id == id : false; 1360 } 1361 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1362 1363 /** 1364 * do_settimeofday64 - Sets the time of day. 1365 * @ts: pointer to the timespec64 variable containing the new time 1366 * 1367 * Sets the time of day to the new time and update NTP and notify hrtimers 1368 */ 1369 int do_settimeofday64(const struct timespec64 *ts) 1370 { 1371 struct timespec64 ts_delta, xt; 1372 1373 if (!timespec64_valid_settod(ts)) 1374 return -EINVAL; 1375 1376 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1377 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1378 1379 timekeeping_forward_now(tks); 1380 1381 xt = tk_xtime(tks); 1382 ts_delta = timespec64_sub(*ts, xt); 1383 1384 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1385 timekeeping_restore_shadow(&tk_core); 1386 return -EINVAL; 1387 } 1388 1389 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1390 tk_set_xtime(tks, ts); 1391 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1392 } 1393 1394 /* Signal hrtimers about time change */ 1395 clock_was_set(CLOCK_SET_WALL); 1396 1397 audit_tk_injoffset(ts_delta); 1398 add_device_randomness(ts, sizeof(*ts)); 1399 return 0; 1400 } 1401 EXPORT_SYMBOL(do_settimeofday64); 1402 1403 /** 1404 * timekeeping_inject_offset - Adds or subtracts from the current time. 1405 * @ts: Pointer to the timespec variable containing the offset 1406 * 1407 * Adds or subtracts an offset value from the current time. 1408 */ 1409 static int timekeeping_inject_offset(const struct timespec64 *ts) 1410 { 1411 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1412 return -EINVAL; 1413 1414 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1415 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1416 struct timespec64 tmp; 1417 1418 timekeeping_forward_now(tks); 1419 1420 /* Make sure the proposed value is valid */ 1421 tmp = timespec64_add(tk_xtime(tks), *ts); 1422 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1423 !timespec64_valid_settod(&tmp)) { 1424 timekeeping_restore_shadow(&tk_core); 1425 return -EINVAL; 1426 } 1427 1428 tk_xtime_add(tks, ts); 1429 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1430 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1431 } 1432 1433 /* Signal hrtimers about time change */ 1434 clock_was_set(CLOCK_SET_WALL); 1435 return 0; 1436 } 1437 1438 /* 1439 * Indicates if there is an offset between the system clock and the hardware 1440 * clock/persistent clock/rtc. 1441 */ 1442 int persistent_clock_is_local; 1443 1444 /* 1445 * Adjust the time obtained from the CMOS to be UTC time instead of 1446 * local time. 1447 * 1448 * This is ugly, but preferable to the alternatives. Otherwise we 1449 * would either need to write a program to do it in /etc/rc (and risk 1450 * confusion if the program gets run more than once; it would also be 1451 * hard to make the program warp the clock precisely n hours) or 1452 * compile in the timezone information into the kernel. Bad, bad.... 1453 * 1454 * - TYT, 1992-01-01 1455 * 1456 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1457 * as real UNIX machines always do it. This avoids all headaches about 1458 * daylight saving times and warping kernel clocks. 1459 */ 1460 void timekeeping_warp_clock(void) 1461 { 1462 if (sys_tz.tz_minuteswest != 0) { 1463 struct timespec64 adjust; 1464 1465 persistent_clock_is_local = 1; 1466 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1467 adjust.tv_nsec = 0; 1468 timekeeping_inject_offset(&adjust); 1469 } 1470 } 1471 1472 /* 1473 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1474 */ 1475 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1476 { 1477 tk->tai_offset = tai_offset; 1478 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1479 } 1480 1481 /* 1482 * change_clocksource - Swaps clocksources if a new one is available 1483 * 1484 * Accumulates current time interval and initializes new clocksource 1485 */ 1486 static int change_clocksource(void *data) 1487 { 1488 struct clocksource *new = data, *old = NULL; 1489 1490 /* 1491 * If the clocksource is in a module, get a module reference. 1492 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1493 * reference can't be acquired. 1494 */ 1495 if (!try_module_get(new->owner)) 1496 return 0; 1497 1498 /* Abort if the device can't be enabled */ 1499 if (new->enable && new->enable(new) != 0) { 1500 module_put(new->owner); 1501 return 0; 1502 } 1503 1504 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1505 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1506 1507 timekeeping_forward_now(tks); 1508 old = tks->tkr_mono.clock; 1509 tk_setup_internals(tks, new); 1510 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1511 } 1512 1513 if (old) { 1514 if (old->disable) 1515 old->disable(old); 1516 module_put(old->owner); 1517 } 1518 1519 return 0; 1520 } 1521 1522 /** 1523 * timekeeping_notify - Install a new clock source 1524 * @clock: pointer to the clock source 1525 * 1526 * This function is called from clocksource.c after a new, better clock 1527 * source has been registered. The caller holds the clocksource_mutex. 1528 */ 1529 int timekeeping_notify(struct clocksource *clock) 1530 { 1531 struct timekeeper *tk = &tk_core.timekeeper; 1532 1533 if (tk->tkr_mono.clock == clock) 1534 return 0; 1535 stop_machine(change_clocksource, clock, NULL); 1536 tick_clock_notify(); 1537 return tk->tkr_mono.clock == clock ? 0 : -1; 1538 } 1539 1540 /** 1541 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1542 * @ts: pointer to the timespec64 to be set 1543 * 1544 * Returns the raw monotonic time (completely un-modified by ntp) 1545 */ 1546 void ktime_get_raw_ts64(struct timespec64 *ts) 1547 { 1548 struct timekeeper *tk = &tk_core.timekeeper; 1549 unsigned int seq; 1550 u64 nsecs; 1551 1552 do { 1553 seq = read_seqcount_begin(&tk_core.seq); 1554 ts->tv_sec = tk->raw_sec; 1555 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1556 1557 } while (read_seqcount_retry(&tk_core.seq, seq)); 1558 1559 ts->tv_nsec = 0; 1560 timespec64_add_ns(ts, nsecs); 1561 } 1562 EXPORT_SYMBOL(ktime_get_raw_ts64); 1563 1564 1565 /** 1566 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1567 */ 1568 int timekeeping_valid_for_hres(void) 1569 { 1570 struct timekeeper *tk = &tk_core.timekeeper; 1571 unsigned int seq; 1572 int ret; 1573 1574 do { 1575 seq = read_seqcount_begin(&tk_core.seq); 1576 1577 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1578 1579 } while (read_seqcount_retry(&tk_core.seq, seq)); 1580 1581 return ret; 1582 } 1583 1584 /** 1585 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1586 */ 1587 u64 timekeeping_max_deferment(void) 1588 { 1589 struct timekeeper *tk = &tk_core.timekeeper; 1590 unsigned int seq; 1591 u64 ret; 1592 1593 do { 1594 seq = read_seqcount_begin(&tk_core.seq); 1595 1596 ret = tk->tkr_mono.clock->max_idle_ns; 1597 1598 } while (read_seqcount_retry(&tk_core.seq, seq)); 1599 1600 return ret; 1601 } 1602 1603 /** 1604 * read_persistent_clock64 - Return time from the persistent clock. 1605 * @ts: Pointer to the storage for the readout value 1606 * 1607 * Weak dummy function for arches that do not yet support it. 1608 * Reads the time from the battery backed persistent clock. 1609 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1610 * 1611 * XXX - Do be sure to remove it once all arches implement it. 1612 */ 1613 void __weak read_persistent_clock64(struct timespec64 *ts) 1614 { 1615 ts->tv_sec = 0; 1616 ts->tv_nsec = 0; 1617 } 1618 1619 /** 1620 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1621 * from the boot. 1622 * @wall_time: current time as returned by persistent clock 1623 * @boot_offset: offset that is defined as wall_time - boot_time 1624 * 1625 * Weak dummy function for arches that do not yet support it. 1626 * 1627 * The default function calculates offset based on the current value of 1628 * local_clock(). This way architectures that support sched_clock() but don't 1629 * support dedicated boot time clock will provide the best estimate of the 1630 * boot time. 1631 */ 1632 void __weak __init 1633 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1634 struct timespec64 *boot_offset) 1635 { 1636 read_persistent_clock64(wall_time); 1637 *boot_offset = ns_to_timespec64(local_clock()); 1638 } 1639 1640 static __init void tkd_basic_setup(struct tk_data *tkd) 1641 { 1642 raw_spin_lock_init(&tkd->lock); 1643 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1644 } 1645 1646 /* 1647 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1648 * 1649 * The flag starts of false and is only set when a suspend reaches 1650 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1651 * timekeeper clocksource is not stopping across suspend and has been 1652 * used to update sleep time. If the timekeeper clocksource has stopped 1653 * then the flag stays true and is used by the RTC resume code to decide 1654 * whether sleeptime must be injected and if so the flag gets false then. 1655 * 1656 * If a suspend fails before reaching timekeeping_resume() then the flag 1657 * stays false and prevents erroneous sleeptime injection. 1658 */ 1659 static bool suspend_timing_needed; 1660 1661 /* Flag for if there is a persistent clock on this platform */ 1662 static bool persistent_clock_exists; 1663 1664 /* 1665 * timekeeping_init - Initializes the clocksource and common timekeeping values 1666 */ 1667 void __init timekeeping_init(void) 1668 { 1669 struct timespec64 wall_time, boot_offset, wall_to_mono; 1670 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1671 struct clocksource *clock; 1672 1673 tkd_basic_setup(&tk_core); 1674 1675 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1676 if (timespec64_valid_settod(&wall_time) && 1677 timespec64_to_ns(&wall_time) > 0) { 1678 persistent_clock_exists = true; 1679 } else if (timespec64_to_ns(&wall_time) != 0) { 1680 pr_warn("Persistent clock returned invalid value"); 1681 wall_time = (struct timespec64){0}; 1682 } 1683 1684 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1685 boot_offset = (struct timespec64){0}; 1686 1687 /* 1688 * We want set wall_to_mono, so the following is true: 1689 * wall time + wall_to_mono = boot time 1690 */ 1691 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1692 1693 guard(raw_spinlock_irqsave)(&tk_core.lock); 1694 1695 ntp_init(); 1696 1697 clock = clocksource_default_clock(); 1698 if (clock->enable) 1699 clock->enable(clock); 1700 tk_setup_internals(tks, clock); 1701 1702 tk_set_xtime(tks, &wall_time); 1703 tks->raw_sec = 0; 1704 1705 tk_set_wall_to_mono(tks, wall_to_mono); 1706 1707 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1708 } 1709 1710 /* time in seconds when suspend began for persistent clock */ 1711 static struct timespec64 timekeeping_suspend_time; 1712 1713 /** 1714 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1715 * @tk: Pointer to the timekeeper to be updated 1716 * @delta: Pointer to the delta value in timespec64 format 1717 * 1718 * Takes a timespec offset measuring a suspend interval and properly 1719 * adds the sleep offset to the timekeeping variables. 1720 */ 1721 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1722 const struct timespec64 *delta) 1723 { 1724 if (!timespec64_valid_strict(delta)) { 1725 printk_deferred(KERN_WARNING 1726 "__timekeeping_inject_sleeptime: Invalid " 1727 "sleep delta value!\n"); 1728 return; 1729 } 1730 tk_xtime_add(tk, delta); 1731 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1732 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1733 tk_debug_account_sleep_time(delta); 1734 } 1735 1736 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1737 /* 1738 * We have three kinds of time sources to use for sleep time 1739 * injection, the preference order is: 1740 * 1) non-stop clocksource 1741 * 2) persistent clock (ie: RTC accessible when irqs are off) 1742 * 3) RTC 1743 * 1744 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1745 * If system has neither 1) nor 2), 3) will be used finally. 1746 * 1747 * 1748 * If timekeeping has injected sleeptime via either 1) or 2), 1749 * 3) becomes needless, so in this case we don't need to call 1750 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1751 * means. 1752 */ 1753 bool timekeeping_rtc_skipresume(void) 1754 { 1755 return !suspend_timing_needed; 1756 } 1757 1758 /* 1759 * 1) can be determined whether to use or not only when doing 1760 * timekeeping_resume() which is invoked after rtc_suspend(), 1761 * so we can't skip rtc_suspend() surely if system has 1). 1762 * 1763 * But if system has 2), 2) will definitely be used, so in this 1764 * case we don't need to call rtc_suspend(), and this is what 1765 * timekeeping_rtc_skipsuspend() means. 1766 */ 1767 bool timekeeping_rtc_skipsuspend(void) 1768 { 1769 return persistent_clock_exists; 1770 } 1771 1772 /** 1773 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1774 * @delta: pointer to a timespec64 delta value 1775 * 1776 * This hook is for architectures that cannot support read_persistent_clock64 1777 * because their RTC/persistent clock is only accessible when irqs are enabled. 1778 * and also don't have an effective nonstop clocksource. 1779 * 1780 * This function should only be called by rtc_resume(), and allows 1781 * a suspend offset to be injected into the timekeeping values. 1782 */ 1783 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1784 { 1785 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1786 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1787 1788 suspend_timing_needed = false; 1789 timekeeping_forward_now(tks); 1790 __timekeeping_inject_sleeptime(tks, delta); 1791 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1792 } 1793 1794 /* Signal hrtimers about time change */ 1795 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1796 } 1797 #endif 1798 1799 /** 1800 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1801 */ 1802 void timekeeping_resume(void) 1803 { 1804 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1805 struct clocksource *clock = tks->tkr_mono.clock; 1806 struct timespec64 ts_new, ts_delta; 1807 bool inject_sleeptime = false; 1808 u64 cycle_now, nsec; 1809 unsigned long flags; 1810 1811 read_persistent_clock64(&ts_new); 1812 1813 clockevents_resume(); 1814 clocksource_resume(); 1815 1816 raw_spin_lock_irqsave(&tk_core.lock, flags); 1817 1818 /* 1819 * After system resumes, we need to calculate the suspended time and 1820 * compensate it for the OS time. There are 3 sources that could be 1821 * used: Nonstop clocksource during suspend, persistent clock and rtc 1822 * device. 1823 * 1824 * One specific platform may have 1 or 2 or all of them, and the 1825 * preference will be: 1826 * suspend-nonstop clocksource -> persistent clock -> rtc 1827 * The less preferred source will only be tried if there is no better 1828 * usable source. The rtc part is handled separately in rtc core code. 1829 */ 1830 cycle_now = tk_clock_read(&tks->tkr_mono); 1831 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1832 if (nsec > 0) { 1833 ts_delta = ns_to_timespec64(nsec); 1834 inject_sleeptime = true; 1835 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1836 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1837 inject_sleeptime = true; 1838 } 1839 1840 if (inject_sleeptime) { 1841 suspend_timing_needed = false; 1842 __timekeeping_inject_sleeptime(tks, &ts_delta); 1843 } 1844 1845 /* Re-base the last cycle value */ 1846 tks->tkr_mono.cycle_last = cycle_now; 1847 tks->tkr_raw.cycle_last = cycle_now; 1848 1849 tks->ntp_error = 0; 1850 timekeeping_suspended = 0; 1851 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1852 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1853 1854 touch_softlockup_watchdog(); 1855 1856 /* Resume the clockevent device(s) and hrtimers */ 1857 tick_resume(); 1858 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1859 timerfd_resume(); 1860 } 1861 1862 int timekeeping_suspend(void) 1863 { 1864 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1865 struct timespec64 delta, delta_delta; 1866 static struct timespec64 old_delta; 1867 struct clocksource *curr_clock; 1868 unsigned long flags; 1869 u64 cycle_now; 1870 1871 read_persistent_clock64(&timekeeping_suspend_time); 1872 1873 /* 1874 * On some systems the persistent_clock can not be detected at 1875 * timekeeping_init by its return value, so if we see a valid 1876 * value returned, update the persistent_clock_exists flag. 1877 */ 1878 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1879 persistent_clock_exists = true; 1880 1881 suspend_timing_needed = true; 1882 1883 raw_spin_lock_irqsave(&tk_core.lock, flags); 1884 timekeeping_forward_now(tks); 1885 timekeeping_suspended = 1; 1886 1887 /* 1888 * Since we've called forward_now, cycle_last stores the value 1889 * just read from the current clocksource. Save this to potentially 1890 * use in suspend timing. 1891 */ 1892 curr_clock = tks->tkr_mono.clock; 1893 cycle_now = tks->tkr_mono.cycle_last; 1894 clocksource_start_suspend_timing(curr_clock, cycle_now); 1895 1896 if (persistent_clock_exists) { 1897 /* 1898 * To avoid drift caused by repeated suspend/resumes, 1899 * which each can add ~1 second drift error, 1900 * try to compensate so the difference in system time 1901 * and persistent_clock time stays close to constant. 1902 */ 1903 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 1904 delta_delta = timespec64_sub(delta, old_delta); 1905 if (abs(delta_delta.tv_sec) >= 2) { 1906 /* 1907 * if delta_delta is too large, assume time correction 1908 * has occurred and set old_delta to the current delta. 1909 */ 1910 old_delta = delta; 1911 } else { 1912 /* Otherwise try to adjust old_system to compensate */ 1913 timekeeping_suspend_time = 1914 timespec64_add(timekeeping_suspend_time, delta_delta); 1915 } 1916 } 1917 1918 timekeeping_update_from_shadow(&tk_core, 0); 1919 halt_fast_timekeeper(tks); 1920 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1921 1922 tick_suspend(); 1923 clocksource_suspend(); 1924 clockevents_suspend(); 1925 1926 return 0; 1927 } 1928 1929 /* sysfs resume/suspend bits for timekeeping */ 1930 static struct syscore_ops timekeeping_syscore_ops = { 1931 .resume = timekeeping_resume, 1932 .suspend = timekeeping_suspend, 1933 }; 1934 1935 static int __init timekeeping_init_ops(void) 1936 { 1937 register_syscore_ops(&timekeeping_syscore_ops); 1938 return 0; 1939 } 1940 device_initcall(timekeeping_init_ops); 1941 1942 /* 1943 * Apply a multiplier adjustment to the timekeeper 1944 */ 1945 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1946 s64 offset, 1947 s32 mult_adj) 1948 { 1949 s64 interval = tk->cycle_interval; 1950 1951 if (mult_adj == 0) { 1952 return; 1953 } else if (mult_adj == -1) { 1954 interval = -interval; 1955 offset = -offset; 1956 } else if (mult_adj != 1) { 1957 interval *= mult_adj; 1958 offset *= mult_adj; 1959 } 1960 1961 /* 1962 * So the following can be confusing. 1963 * 1964 * To keep things simple, lets assume mult_adj == 1 for now. 1965 * 1966 * When mult_adj != 1, remember that the interval and offset values 1967 * have been appropriately scaled so the math is the same. 1968 * 1969 * The basic idea here is that we're increasing the multiplier 1970 * by one, this causes the xtime_interval to be incremented by 1971 * one cycle_interval. This is because: 1972 * xtime_interval = cycle_interval * mult 1973 * So if mult is being incremented by one: 1974 * xtime_interval = cycle_interval * (mult + 1) 1975 * Its the same as: 1976 * xtime_interval = (cycle_interval * mult) + cycle_interval 1977 * Which can be shortened to: 1978 * xtime_interval += cycle_interval 1979 * 1980 * So offset stores the non-accumulated cycles. Thus the current 1981 * time (in shifted nanoseconds) is: 1982 * now = (offset * adj) + xtime_nsec 1983 * Now, even though we're adjusting the clock frequency, we have 1984 * to keep time consistent. In other words, we can't jump back 1985 * in time, and we also want to avoid jumping forward in time. 1986 * 1987 * So given the same offset value, we need the time to be the same 1988 * both before and after the freq adjustment. 1989 * now = (offset * adj_1) + xtime_nsec_1 1990 * now = (offset * adj_2) + xtime_nsec_2 1991 * So: 1992 * (offset * adj_1) + xtime_nsec_1 = 1993 * (offset * adj_2) + xtime_nsec_2 1994 * And we know: 1995 * adj_2 = adj_1 + 1 1996 * So: 1997 * (offset * adj_1) + xtime_nsec_1 = 1998 * (offset * (adj_1+1)) + xtime_nsec_2 1999 * (offset * adj_1) + xtime_nsec_1 = 2000 * (offset * adj_1) + offset + xtime_nsec_2 2001 * Canceling the sides: 2002 * xtime_nsec_1 = offset + xtime_nsec_2 2003 * Which gives us: 2004 * xtime_nsec_2 = xtime_nsec_1 - offset 2005 * Which simplifies to: 2006 * xtime_nsec -= offset 2007 */ 2008 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2009 /* NTP adjustment caused clocksource mult overflow */ 2010 WARN_ON_ONCE(1); 2011 return; 2012 } 2013 2014 tk->tkr_mono.mult += mult_adj; 2015 tk->xtime_interval += interval; 2016 tk->tkr_mono.xtime_nsec -= offset; 2017 } 2018 2019 /* 2020 * Adjust the timekeeper's multiplier to the correct frequency 2021 * and also to reduce the accumulated error value. 2022 */ 2023 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2024 { 2025 u64 ntp_tl = ntp_tick_length(); 2026 u32 mult; 2027 2028 /* 2029 * Determine the multiplier from the current NTP tick length. 2030 * Avoid expensive division when the tick length doesn't change. 2031 */ 2032 if (likely(tk->ntp_tick == ntp_tl)) { 2033 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2034 } else { 2035 tk->ntp_tick = ntp_tl; 2036 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2037 tk->xtime_remainder, tk->cycle_interval); 2038 } 2039 2040 /* 2041 * If the clock is behind the NTP time, increase the multiplier by 1 2042 * to catch up with it. If it's ahead and there was a remainder in the 2043 * tick division, the clock will slow down. Otherwise it will stay 2044 * ahead until the tick length changes to a non-divisible value. 2045 */ 2046 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2047 mult += tk->ntp_err_mult; 2048 2049 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2050 2051 if (unlikely(tk->tkr_mono.clock->maxadj && 2052 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2053 > tk->tkr_mono.clock->maxadj))) { 2054 printk_once(KERN_WARNING 2055 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2056 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2057 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2058 } 2059 2060 /* 2061 * It may be possible that when we entered this function, xtime_nsec 2062 * was very small. Further, if we're slightly speeding the clocksource 2063 * in the code above, its possible the required corrective factor to 2064 * xtime_nsec could cause it to underflow. 2065 * 2066 * Now, since we have already accumulated the second and the NTP 2067 * subsystem has been notified via second_overflow(), we need to skip 2068 * the next update. 2069 */ 2070 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2071 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2072 tk->tkr_mono.shift; 2073 tk->xtime_sec--; 2074 tk->skip_second_overflow = 1; 2075 } 2076 } 2077 2078 /* 2079 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2080 * 2081 * Helper function that accumulates the nsecs greater than a second 2082 * from the xtime_nsec field to the xtime_secs field. 2083 * It also calls into the NTP code to handle leapsecond processing. 2084 */ 2085 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2086 { 2087 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2088 unsigned int clock_set = 0; 2089 2090 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2091 int leap; 2092 2093 tk->tkr_mono.xtime_nsec -= nsecps; 2094 tk->xtime_sec++; 2095 2096 /* 2097 * Skip NTP update if this second was accumulated before, 2098 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2099 */ 2100 if (unlikely(tk->skip_second_overflow)) { 2101 tk->skip_second_overflow = 0; 2102 continue; 2103 } 2104 2105 /* Figure out if its a leap sec and apply if needed */ 2106 leap = second_overflow(tk->xtime_sec); 2107 if (unlikely(leap)) { 2108 struct timespec64 ts; 2109 2110 tk->xtime_sec += leap; 2111 2112 ts.tv_sec = leap; 2113 ts.tv_nsec = 0; 2114 tk_set_wall_to_mono(tk, 2115 timespec64_sub(tk->wall_to_monotonic, ts)); 2116 2117 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2118 2119 clock_set = TK_CLOCK_WAS_SET; 2120 } 2121 } 2122 return clock_set; 2123 } 2124 2125 /* 2126 * logarithmic_accumulation - shifted accumulation of cycles 2127 * 2128 * This functions accumulates a shifted interval of cycles into 2129 * a shifted interval nanoseconds. Allows for O(log) accumulation 2130 * loop. 2131 * 2132 * Returns the unconsumed cycles. 2133 */ 2134 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2135 u32 shift, unsigned int *clock_set) 2136 { 2137 u64 interval = tk->cycle_interval << shift; 2138 u64 snsec_per_sec; 2139 2140 /* If the offset is smaller than a shifted interval, do nothing */ 2141 if (offset < interval) 2142 return offset; 2143 2144 /* Accumulate one shifted interval */ 2145 offset -= interval; 2146 tk->tkr_mono.cycle_last += interval; 2147 tk->tkr_raw.cycle_last += interval; 2148 2149 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2150 *clock_set |= accumulate_nsecs_to_secs(tk); 2151 2152 /* Accumulate raw time */ 2153 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2154 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2155 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2156 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2157 tk->raw_sec++; 2158 } 2159 2160 /* Accumulate error between NTP and clock interval */ 2161 tk->ntp_error += tk->ntp_tick << shift; 2162 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2163 (tk->ntp_error_shift + shift); 2164 2165 return offset; 2166 } 2167 2168 static u64 timekeeping_accumulate(struct timekeeper *tk, u64 offset, 2169 enum timekeeping_adv_mode mode, 2170 unsigned int *clock_set) 2171 { 2172 int shift = 0, maxshift; 2173 2174 /* 2175 * TK_ADV_FREQ indicates that adjtimex(2) directly set the 2176 * frequency or the tick length. 2177 * 2178 * Accumulate the offset, so that the new multiplier starts from 2179 * now. This is required as otherwise for offsets, which are 2180 * smaller than tk::cycle_interval, timekeeping_adjust() could set 2181 * xtime_nsec backwards, which subsequently causes time going 2182 * backwards in the coarse time getters. But even for the case 2183 * where offset is greater than tk::cycle_interval the periodic 2184 * accumulation does not have much value. 2185 * 2186 * Also reset tk::ntp_error as it does not make sense to keep the 2187 * old accumulated error around in this case. 2188 */ 2189 if (mode == TK_ADV_FREQ) { 2190 timekeeping_forward(tk, tk->tkr_mono.cycle_last + offset); 2191 tk->ntp_error = 0; 2192 return 0; 2193 } 2194 2195 /* 2196 * With NO_HZ we may have to accumulate many cycle_intervals 2197 * (think "ticks") worth of time at once. To do this efficiently, 2198 * we calculate the largest doubling multiple of cycle_intervals 2199 * that is smaller than the offset. We then accumulate that 2200 * chunk in one go, and then try to consume the next smaller 2201 * doubled multiple. 2202 */ 2203 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2204 shift = max(0, shift); 2205 /* Bound shift to one less than what overflows tick_length */ 2206 maxshift = (64 - (ilog2(ntp_tick_length()) + 1)) - 1; 2207 shift = min(shift, maxshift); 2208 while (offset >= tk->cycle_interval) { 2209 offset = logarithmic_accumulation(tk, offset, shift, clock_set); 2210 if (offset < tk->cycle_interval << shift) 2211 shift--; 2212 } 2213 return offset; 2214 } 2215 2216 /* 2217 * timekeeping_advance - Updates the timekeeper to the current time and 2218 * current NTP tick length 2219 */ 2220 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2221 { 2222 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2223 struct timekeeper *real_tk = &tk_core.timekeeper; 2224 unsigned int clock_set = 0; 2225 u64 offset; 2226 2227 guard(raw_spinlock_irqsave)(&tk_core.lock); 2228 2229 /* Make sure we're fully resumed: */ 2230 if (unlikely(timekeeping_suspended)) 2231 return false; 2232 2233 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2234 tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 2235 tk->tkr_mono.clock->max_raw_delta); 2236 2237 /* Check if there's really nothing to do */ 2238 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2239 return false; 2240 2241 offset = timekeeping_accumulate(tk, offset, mode, &clock_set); 2242 2243 /* Adjust the multiplier to correct NTP error */ 2244 timekeeping_adjust(tk, offset); 2245 2246 /* 2247 * Finally, make sure that after the rounding 2248 * xtime_nsec isn't larger than NSEC_PER_SEC 2249 */ 2250 clock_set |= accumulate_nsecs_to_secs(tk); 2251 2252 timekeeping_update_from_shadow(&tk_core, clock_set); 2253 2254 return !!clock_set; 2255 } 2256 2257 /** 2258 * update_wall_time - Uses the current clocksource to increment the wall time 2259 * 2260 */ 2261 void update_wall_time(void) 2262 { 2263 if (timekeeping_advance(TK_ADV_TICK)) 2264 clock_was_set_delayed(); 2265 } 2266 2267 /** 2268 * getboottime64 - Return the real time of system boot. 2269 * @ts: pointer to the timespec64 to be set 2270 * 2271 * Returns the wall-time of boot in a timespec64. 2272 * 2273 * This is based on the wall_to_monotonic offset and the total suspend 2274 * time. Calls to settimeofday will affect the value returned (which 2275 * basically means that however wrong your real time clock is at boot time, 2276 * you get the right time here). 2277 */ 2278 void getboottime64(struct timespec64 *ts) 2279 { 2280 struct timekeeper *tk = &tk_core.timekeeper; 2281 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2282 2283 *ts = ktime_to_timespec64(t); 2284 } 2285 EXPORT_SYMBOL_GPL(getboottime64); 2286 2287 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2288 { 2289 struct timekeeper *tk = &tk_core.timekeeper; 2290 unsigned int seq; 2291 2292 do { 2293 seq = read_seqcount_begin(&tk_core.seq); 2294 2295 *ts = tk_xtime(tk); 2296 } while (read_seqcount_retry(&tk_core.seq, seq)); 2297 } 2298 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2299 2300 /** 2301 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2302 * @ts: timespec64 to be filled 2303 * 2304 * Fetch the global mg_floor value, convert it to realtime and compare it 2305 * to the current coarse-grained time. Fill @ts with whichever is 2306 * latest. Note that this is a filesystem-specific interface and should be 2307 * avoided outside of that context. 2308 */ 2309 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2310 { 2311 struct timekeeper *tk = &tk_core.timekeeper; 2312 u64 floor = atomic64_read(&mg_floor); 2313 ktime_t f_real, offset, coarse; 2314 unsigned int seq; 2315 2316 do { 2317 seq = read_seqcount_begin(&tk_core.seq); 2318 *ts = tk_xtime(tk); 2319 offset = tk_core.timekeeper.offs_real; 2320 } while (read_seqcount_retry(&tk_core.seq, seq)); 2321 2322 coarse = timespec64_to_ktime(*ts); 2323 f_real = ktime_add(floor, offset); 2324 if (ktime_after(f_real, coarse)) 2325 *ts = ktime_to_timespec64(f_real); 2326 } 2327 2328 /** 2329 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2330 * @ts: pointer to the timespec to be set 2331 * 2332 * Get a monotonic fine-grained time value and attempt to swap it into 2333 * mg_floor. If that succeeds then accept the new floor value. If it fails 2334 * then another task raced in during the interim time and updated the 2335 * floor. Since any update to the floor must be later than the previous 2336 * floor, either outcome is acceptable. 2337 * 2338 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2339 * and determining that the resulting coarse-grained timestamp did not effect 2340 * a change in ctime. Any more recent floor value would effect a change to 2341 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2342 * 2343 * @ts will be filled with the latest floor value, regardless of the outcome of 2344 * the cmpxchg. Note that this is a filesystem specific interface and should be 2345 * avoided outside of that context. 2346 */ 2347 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2348 { 2349 struct timekeeper *tk = &tk_core.timekeeper; 2350 ktime_t old = atomic64_read(&mg_floor); 2351 ktime_t offset, mono; 2352 unsigned int seq; 2353 u64 nsecs; 2354 2355 do { 2356 seq = read_seqcount_begin(&tk_core.seq); 2357 2358 ts->tv_sec = tk->xtime_sec; 2359 mono = tk->tkr_mono.base; 2360 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2361 offset = tk_core.timekeeper.offs_real; 2362 } while (read_seqcount_retry(&tk_core.seq, seq)); 2363 2364 mono = ktime_add_ns(mono, nsecs); 2365 2366 /* 2367 * Attempt to update the floor with the new time value. As any 2368 * update must be later then the existing floor, and would effect 2369 * a change to ctime from the perspective of the current task, 2370 * accept the resulting floor value regardless of the outcome of 2371 * the swap. 2372 */ 2373 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2374 ts->tv_nsec = 0; 2375 timespec64_add_ns(ts, nsecs); 2376 timekeeping_inc_mg_floor_swaps(); 2377 } else { 2378 /* 2379 * Another task changed mg_floor since "old" was fetched. 2380 * "old" has been updated with the latest value of "mg_floor". 2381 * That value is newer than the previous floor value, which 2382 * is enough to effect a change to ctime. Accept it. 2383 */ 2384 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2385 } 2386 } 2387 2388 void ktime_get_coarse_ts64(struct timespec64 *ts) 2389 { 2390 struct timekeeper *tk = &tk_core.timekeeper; 2391 struct timespec64 now, mono; 2392 unsigned int seq; 2393 2394 do { 2395 seq = read_seqcount_begin(&tk_core.seq); 2396 2397 now = tk_xtime(tk); 2398 mono = tk->wall_to_monotonic; 2399 } while (read_seqcount_retry(&tk_core.seq, seq)); 2400 2401 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2402 now.tv_nsec + mono.tv_nsec); 2403 } 2404 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2405 2406 /* 2407 * Must hold jiffies_lock 2408 */ 2409 void do_timer(unsigned long ticks) 2410 { 2411 jiffies_64 += ticks; 2412 calc_global_load(); 2413 } 2414 2415 /** 2416 * ktime_get_update_offsets_now - hrtimer helper 2417 * @cwsseq: pointer to check and store the clock was set sequence number 2418 * @offs_real: pointer to storage for monotonic -> realtime offset 2419 * @offs_boot: pointer to storage for monotonic -> boottime offset 2420 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2421 * 2422 * Returns current monotonic time and updates the offsets if the 2423 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2424 * different. 2425 * 2426 * Called from hrtimer_interrupt() or retrigger_next_event() 2427 */ 2428 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2429 ktime_t *offs_boot, ktime_t *offs_tai) 2430 { 2431 struct timekeeper *tk = &tk_core.timekeeper; 2432 unsigned int seq; 2433 ktime_t base; 2434 u64 nsecs; 2435 2436 do { 2437 seq = read_seqcount_begin(&tk_core.seq); 2438 2439 base = tk->tkr_mono.base; 2440 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2441 base = ktime_add_ns(base, nsecs); 2442 2443 if (*cwsseq != tk->clock_was_set_seq) { 2444 *cwsseq = tk->clock_was_set_seq; 2445 *offs_real = tk->offs_real; 2446 *offs_boot = tk->offs_boot; 2447 *offs_tai = tk->offs_tai; 2448 } 2449 2450 /* Handle leapsecond insertion adjustments */ 2451 if (unlikely(base >= tk->next_leap_ktime)) 2452 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2453 2454 } while (read_seqcount_retry(&tk_core.seq, seq)); 2455 2456 return base; 2457 } 2458 2459 /* 2460 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2461 */ 2462 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2463 { 2464 if (txc->modes & ADJ_ADJTIME) { 2465 /* singleshot must not be used with any other mode bits */ 2466 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2467 return -EINVAL; 2468 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2469 !capable(CAP_SYS_TIME)) 2470 return -EPERM; 2471 } else { 2472 /* In order to modify anything, you gotta be super-user! */ 2473 if (txc->modes && !capable(CAP_SYS_TIME)) 2474 return -EPERM; 2475 /* 2476 * if the quartz is off by more than 10% then 2477 * something is VERY wrong! 2478 */ 2479 if (txc->modes & ADJ_TICK && 2480 (txc->tick < 900000/USER_HZ || 2481 txc->tick > 1100000/USER_HZ)) 2482 return -EINVAL; 2483 } 2484 2485 if (txc->modes & ADJ_SETOFFSET) { 2486 /* In order to inject time, you gotta be super-user! */ 2487 if (!capable(CAP_SYS_TIME)) 2488 return -EPERM; 2489 2490 /* 2491 * Validate if a timespec/timeval used to inject a time 2492 * offset is valid. Offsets can be positive or negative, so 2493 * we don't check tv_sec. The value of the timeval/timespec 2494 * is the sum of its fields,but *NOTE*: 2495 * The field tv_usec/tv_nsec must always be non-negative and 2496 * we can't have more nanoseconds/microseconds than a second. 2497 */ 2498 if (txc->time.tv_usec < 0) 2499 return -EINVAL; 2500 2501 if (txc->modes & ADJ_NANO) { 2502 if (txc->time.tv_usec >= NSEC_PER_SEC) 2503 return -EINVAL; 2504 } else { 2505 if (txc->time.tv_usec >= USEC_PER_SEC) 2506 return -EINVAL; 2507 } 2508 } 2509 2510 /* 2511 * Check for potential multiplication overflows that can 2512 * only happen on 64-bit systems: 2513 */ 2514 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2515 if (LLONG_MIN / PPM_SCALE > txc->freq) 2516 return -EINVAL; 2517 if (LLONG_MAX / PPM_SCALE < txc->freq) 2518 return -EINVAL; 2519 } 2520 2521 return 0; 2522 } 2523 2524 /** 2525 * random_get_entropy_fallback - Returns the raw clock source value, 2526 * used by random.c for platforms with no valid random_get_entropy(). 2527 */ 2528 unsigned long random_get_entropy_fallback(void) 2529 { 2530 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2531 struct clocksource *clock = READ_ONCE(tkr->clock); 2532 2533 if (unlikely(timekeeping_suspended || !clock)) 2534 return 0; 2535 return clock->read(clock); 2536 } 2537 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2538 2539 /** 2540 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2541 * @txc: Pointer to kernel_timex structure containing NTP parameters 2542 */ 2543 int do_adjtimex(struct __kernel_timex *txc) 2544 { 2545 struct audit_ntp_data ad; 2546 bool offset_set = false; 2547 bool clock_set = false; 2548 struct timespec64 ts; 2549 int ret; 2550 2551 /* Validate the data before disabling interrupts */ 2552 ret = timekeeping_validate_timex(txc); 2553 if (ret) 2554 return ret; 2555 add_device_randomness(txc, sizeof(*txc)); 2556 2557 if (txc->modes & ADJ_SETOFFSET) { 2558 struct timespec64 delta; 2559 2560 delta.tv_sec = txc->time.tv_sec; 2561 delta.tv_nsec = txc->time.tv_usec; 2562 if (!(txc->modes & ADJ_NANO)) 2563 delta.tv_nsec *= 1000; 2564 ret = timekeeping_inject_offset(&delta); 2565 if (ret) 2566 return ret; 2567 2568 offset_set = delta.tv_sec != 0; 2569 audit_tk_injoffset(delta); 2570 } 2571 2572 audit_ntp_init(&ad); 2573 2574 ktime_get_real_ts64(&ts); 2575 add_device_randomness(&ts, sizeof(ts)); 2576 2577 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 2578 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2579 s32 orig_tai, tai; 2580 2581 orig_tai = tai = tks->tai_offset; 2582 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2583 2584 if (tai != orig_tai) { 2585 __timekeeping_set_tai_offset(tks, tai); 2586 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 2587 clock_set = true; 2588 } else { 2589 tk_update_leap_state_all(&tk_core); 2590 } 2591 } 2592 2593 audit_ntp_log(&ad); 2594 2595 /* Update the multiplier immediately if frequency was set directly */ 2596 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2597 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2598 2599 if (clock_set) 2600 clock_was_set(CLOCK_SET_WALL); 2601 2602 ntp_notify_cmos_timer(offset_set); 2603 2604 return ret; 2605 } 2606 2607 #ifdef CONFIG_NTP_PPS 2608 /** 2609 * hardpps() - Accessor function to NTP __hardpps function 2610 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2611 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2612 */ 2613 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2614 { 2615 guard(raw_spinlock_irqsave)(&tk_core.lock); 2616 __hardpps(phase_ts, raw_ts); 2617 } 2618 EXPORT_SYMBOL(hardpps); 2619 #endif /* CONFIG_NTP_PPS */ 2620