xref: /linux/kernel/time/timekeeping.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* The shift value of the current clocksource. */
29 	int	shift;
30 
31 	/* Number of clock cycles in one NTP interval. */
32 	cycle_t cycle_interval;
33 	/* Number of clock shifted nano seconds in one NTP interval. */
34 	u64	xtime_interval;
35 	/* Raw nano seconds accumulated per NTP interval. */
36 	u32	raw_interval;
37 
38 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
39 	u64	xtime_nsec;
40 	/* Difference between accumulated time and NTP time in ntp
41 	 * shifted nano seconds. */
42 	s64	ntp_error;
43 	/* Shift conversion between clock shifted nano seconds and
44 	 * ntp shifted nano seconds. */
45 	int	ntp_error_shift;
46 	/* NTP adjusted clock multiplier */
47 	u32	mult;
48 };
49 
50 struct timekeeper timekeeper;
51 
52 /**
53  * timekeeper_setup_internals - Set up internals to use clocksource clock.
54  *
55  * @clock:		Pointer to clocksource.
56  *
57  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
58  * pair and interval request.
59  *
60  * Unless you're the timekeeping code, you should not be using this!
61  */
62 static void timekeeper_setup_internals(struct clocksource *clock)
63 {
64 	cycle_t interval;
65 	u64 tmp;
66 
67 	timekeeper.clock = clock;
68 	clock->cycle_last = clock->read(clock);
69 
70 	/* Do the ns -> cycle conversion first, using original mult */
71 	tmp = NTP_INTERVAL_LENGTH;
72 	tmp <<= clock->shift;
73 	tmp += clock->mult/2;
74 	do_div(tmp, clock->mult);
75 	if (tmp == 0)
76 		tmp = 1;
77 
78 	interval = (cycle_t) tmp;
79 	timekeeper.cycle_interval = interval;
80 
81 	/* Go back from cycles -> shifted ns */
82 	timekeeper.xtime_interval = (u64) interval * clock->mult;
83 	timekeeper.raw_interval =
84 		((u64) interval * clock->mult) >> clock->shift;
85 
86 	timekeeper.xtime_nsec = 0;
87 	timekeeper.shift = clock->shift;
88 
89 	timekeeper.ntp_error = 0;
90 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
91 
92 	/*
93 	 * The timekeeper keeps its own mult values for the currently
94 	 * active clocksource. These value will be adjusted via NTP
95 	 * to counteract clock drifting.
96 	 */
97 	timekeeper.mult = clock->mult;
98 }
99 
100 /* Timekeeper helper functions. */
101 static inline s64 timekeeping_get_ns(void)
102 {
103 	cycle_t cycle_now, cycle_delta;
104 	struct clocksource *clock;
105 
106 	/* read clocksource: */
107 	clock = timekeeper.clock;
108 	cycle_now = clock->read(clock);
109 
110 	/* calculate the delta since the last update_wall_time: */
111 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
112 
113 	/* return delta convert to nanoseconds using ntp adjusted mult. */
114 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
115 				  timekeeper.shift);
116 }
117 
118 static inline s64 timekeeping_get_ns_raw(void)
119 {
120 	cycle_t cycle_now, cycle_delta;
121 	struct clocksource *clock;
122 
123 	/* read clocksource: */
124 	clock = timekeeper.clock;
125 	cycle_now = clock->read(clock);
126 
127 	/* calculate the delta since the last update_wall_time: */
128 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
129 
130 	/* return delta convert to nanoseconds using ntp adjusted mult. */
131 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
132 }
133 
134 /*
135  * This read-write spinlock protects us from races in SMP while
136  * playing with xtime.
137  */
138 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
139 
140 
141 /*
142  * The current time
143  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
144  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
145  * at zero at system boot time, so wall_to_monotonic will be negative,
146  * however, we will ALWAYS keep the tv_nsec part positive so we can use
147  * the usual normalization.
148  *
149  * wall_to_monotonic is moved after resume from suspend for the monotonic
150  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
151  * to get the real boot based time offset.
152  *
153  * - wall_to_monotonic is no longer the boot time, getboottime must be
154  * used instead.
155  */
156 struct timespec xtime __attribute__ ((aligned (16)));
157 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158 static struct timespec total_sleep_time;
159 
160 /*
161  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
162  */
163 struct timespec raw_time;
164 
165 /* flag for if timekeeping is suspended */
166 int __read_mostly timekeeping_suspended;
167 
168 static struct timespec xtime_cache __attribute__ ((aligned (16)));
169 void update_xtime_cache(u64 nsec)
170 {
171 	xtime_cache = xtime;
172 	timespec_add_ns(&xtime_cache, nsec);
173 }
174 
175 /* must hold xtime_lock */
176 void timekeeping_leap_insert(int leapsecond)
177 {
178 	xtime.tv_sec += leapsecond;
179 	wall_to_monotonic.tv_sec -= leapsecond;
180 	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
181 }
182 
183 #ifdef CONFIG_GENERIC_TIME
184 
185 /**
186  * timekeeping_forward_now - update clock to the current time
187  *
188  * Forward the current clock to update its state since the last call to
189  * update_wall_time(). This is useful before significant clock changes,
190  * as it avoids having to deal with this time offset explicitly.
191  */
192 static void timekeeping_forward_now(void)
193 {
194 	cycle_t cycle_now, cycle_delta;
195 	struct clocksource *clock;
196 	s64 nsec;
197 
198 	clock = timekeeper.clock;
199 	cycle_now = clock->read(clock);
200 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
201 	clock->cycle_last = cycle_now;
202 
203 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
204 				  timekeeper.shift);
205 
206 	/* If arch requires, add in gettimeoffset() */
207 	nsec += arch_gettimeoffset();
208 
209 	timespec_add_ns(&xtime, nsec);
210 
211 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
212 	timespec_add_ns(&raw_time, nsec);
213 }
214 
215 /**
216  * getnstimeofday - Returns the time of day in a timespec
217  * @ts:		pointer to the timespec to be set
218  *
219  * Returns the time of day in a timespec.
220  */
221 void getnstimeofday(struct timespec *ts)
222 {
223 	unsigned long seq;
224 	s64 nsecs;
225 
226 	WARN_ON(timekeeping_suspended);
227 
228 	do {
229 		seq = read_seqbegin(&xtime_lock);
230 
231 		*ts = xtime;
232 		nsecs = timekeeping_get_ns();
233 
234 		/* If arch requires, add in gettimeoffset() */
235 		nsecs += arch_gettimeoffset();
236 
237 	} while (read_seqretry(&xtime_lock, seq));
238 
239 	timespec_add_ns(ts, nsecs);
240 }
241 
242 EXPORT_SYMBOL(getnstimeofday);
243 
244 ktime_t ktime_get(void)
245 {
246 	unsigned int seq;
247 	s64 secs, nsecs;
248 
249 	WARN_ON(timekeeping_suspended);
250 
251 	do {
252 		seq = read_seqbegin(&xtime_lock);
253 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
254 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
255 		nsecs += timekeeping_get_ns();
256 
257 	} while (read_seqretry(&xtime_lock, seq));
258 	/*
259 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
260 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
261 	 */
262 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
263 }
264 EXPORT_SYMBOL_GPL(ktime_get);
265 
266 /**
267  * ktime_get_ts - get the monotonic clock in timespec format
268  * @ts:		pointer to timespec variable
269  *
270  * The function calculates the monotonic clock from the realtime
271  * clock and the wall_to_monotonic offset and stores the result
272  * in normalized timespec format in the variable pointed to by @ts.
273  */
274 void ktime_get_ts(struct timespec *ts)
275 {
276 	struct timespec tomono;
277 	unsigned int seq;
278 	s64 nsecs;
279 
280 	WARN_ON(timekeeping_suspended);
281 
282 	do {
283 		seq = read_seqbegin(&xtime_lock);
284 		*ts = xtime;
285 		tomono = wall_to_monotonic;
286 		nsecs = timekeeping_get_ns();
287 
288 	} while (read_seqretry(&xtime_lock, seq));
289 
290 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
291 				ts->tv_nsec + tomono.tv_nsec + nsecs);
292 }
293 EXPORT_SYMBOL_GPL(ktime_get_ts);
294 
295 /**
296  * do_gettimeofday - Returns the time of day in a timeval
297  * @tv:		pointer to the timeval to be set
298  *
299  * NOTE: Users should be converted to using getnstimeofday()
300  */
301 void do_gettimeofday(struct timeval *tv)
302 {
303 	struct timespec now;
304 
305 	getnstimeofday(&now);
306 	tv->tv_sec = now.tv_sec;
307 	tv->tv_usec = now.tv_nsec/1000;
308 }
309 
310 EXPORT_SYMBOL(do_gettimeofday);
311 /**
312  * do_settimeofday - Sets the time of day
313  * @tv:		pointer to the timespec variable containing the new time
314  *
315  * Sets the time of day to the new time and update NTP and notify hrtimers
316  */
317 int do_settimeofday(struct timespec *tv)
318 {
319 	struct timespec ts_delta;
320 	unsigned long flags;
321 
322 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
323 		return -EINVAL;
324 
325 	write_seqlock_irqsave(&xtime_lock, flags);
326 
327 	timekeeping_forward_now();
328 
329 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
330 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
331 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
332 
333 	xtime = *tv;
334 
335 	update_xtime_cache(0);
336 
337 	timekeeper.ntp_error = 0;
338 	ntp_clear();
339 
340 	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
341 
342 	write_sequnlock_irqrestore(&xtime_lock, flags);
343 
344 	/* signal hrtimers about time change */
345 	clock_was_set();
346 
347 	return 0;
348 }
349 
350 EXPORT_SYMBOL(do_settimeofday);
351 
352 /**
353  * change_clocksource - Swaps clocksources if a new one is available
354  *
355  * Accumulates current time interval and initializes new clocksource
356  */
357 static int change_clocksource(void *data)
358 {
359 	struct clocksource *new, *old;
360 
361 	new = (struct clocksource *) data;
362 
363 	timekeeping_forward_now();
364 	if (!new->enable || new->enable(new) == 0) {
365 		old = timekeeper.clock;
366 		timekeeper_setup_internals(new);
367 		if (old->disable)
368 			old->disable(old);
369 	}
370 	return 0;
371 }
372 
373 /**
374  * timekeeping_notify - Install a new clock source
375  * @clock:		pointer to the clock source
376  *
377  * This function is called from clocksource.c after a new, better clock
378  * source has been registered. The caller holds the clocksource_mutex.
379  */
380 void timekeeping_notify(struct clocksource *clock)
381 {
382 	if (timekeeper.clock == clock)
383 		return;
384 	stop_machine(change_clocksource, clock, NULL);
385 	tick_clock_notify();
386 }
387 
388 #else /* GENERIC_TIME */
389 
390 static inline void timekeeping_forward_now(void) { }
391 
392 /**
393  * ktime_get - get the monotonic time in ktime_t format
394  *
395  * returns the time in ktime_t format
396  */
397 ktime_t ktime_get(void)
398 {
399 	struct timespec now;
400 
401 	ktime_get_ts(&now);
402 
403 	return timespec_to_ktime(now);
404 }
405 EXPORT_SYMBOL_GPL(ktime_get);
406 
407 /**
408  * ktime_get_ts - get the monotonic clock in timespec format
409  * @ts:		pointer to timespec variable
410  *
411  * The function calculates the monotonic clock from the realtime
412  * clock and the wall_to_monotonic offset and stores the result
413  * in normalized timespec format in the variable pointed to by @ts.
414  */
415 void ktime_get_ts(struct timespec *ts)
416 {
417 	struct timespec tomono;
418 	unsigned long seq;
419 
420 	do {
421 		seq = read_seqbegin(&xtime_lock);
422 		getnstimeofday(ts);
423 		tomono = wall_to_monotonic;
424 
425 	} while (read_seqretry(&xtime_lock, seq));
426 
427 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
428 				ts->tv_nsec + tomono.tv_nsec);
429 }
430 EXPORT_SYMBOL_GPL(ktime_get_ts);
431 
432 #endif /* !GENERIC_TIME */
433 
434 /**
435  * ktime_get_real - get the real (wall-) time in ktime_t format
436  *
437  * returns the time in ktime_t format
438  */
439 ktime_t ktime_get_real(void)
440 {
441 	struct timespec now;
442 
443 	getnstimeofday(&now);
444 
445 	return timespec_to_ktime(now);
446 }
447 EXPORT_SYMBOL_GPL(ktime_get_real);
448 
449 /**
450  * getrawmonotonic - Returns the raw monotonic time in a timespec
451  * @ts:		pointer to the timespec to be set
452  *
453  * Returns the raw monotonic time (completely un-modified by ntp)
454  */
455 void getrawmonotonic(struct timespec *ts)
456 {
457 	unsigned long seq;
458 	s64 nsecs;
459 
460 	do {
461 		seq = read_seqbegin(&xtime_lock);
462 		nsecs = timekeeping_get_ns_raw();
463 		*ts = raw_time;
464 
465 	} while (read_seqretry(&xtime_lock, seq));
466 
467 	timespec_add_ns(ts, nsecs);
468 }
469 EXPORT_SYMBOL(getrawmonotonic);
470 
471 
472 /**
473  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
474  */
475 int timekeeping_valid_for_hres(void)
476 {
477 	unsigned long seq;
478 	int ret;
479 
480 	do {
481 		seq = read_seqbegin(&xtime_lock);
482 
483 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
484 
485 	} while (read_seqretry(&xtime_lock, seq));
486 
487 	return ret;
488 }
489 
490 /**
491  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
492  *
493  * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
494  * ensure that the clocksource does not change!
495  */
496 u64 timekeeping_max_deferment(void)
497 {
498 	return timekeeper.clock->max_idle_ns;
499 }
500 
501 /**
502  * read_persistent_clock -  Return time from the persistent clock.
503  *
504  * Weak dummy function for arches that do not yet support it.
505  * Reads the time from the battery backed persistent clock.
506  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
507  *
508  *  XXX - Do be sure to remove it once all arches implement it.
509  */
510 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
511 {
512 	ts->tv_sec = 0;
513 	ts->tv_nsec = 0;
514 }
515 
516 /**
517  * read_boot_clock -  Return time of the system start.
518  *
519  * Weak dummy function for arches that do not yet support it.
520  * Function to read the exact time the system has been started.
521  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
522  *
523  *  XXX - Do be sure to remove it once all arches implement it.
524  */
525 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
526 {
527 	ts->tv_sec = 0;
528 	ts->tv_nsec = 0;
529 }
530 
531 /*
532  * timekeeping_init - Initializes the clocksource and common timekeeping values
533  */
534 void __init timekeeping_init(void)
535 {
536 	struct clocksource *clock;
537 	unsigned long flags;
538 	struct timespec now, boot;
539 
540 	read_persistent_clock(&now);
541 	read_boot_clock(&boot);
542 
543 	write_seqlock_irqsave(&xtime_lock, flags);
544 
545 	ntp_init();
546 
547 	clock = clocksource_default_clock();
548 	if (clock->enable)
549 		clock->enable(clock);
550 	timekeeper_setup_internals(clock);
551 
552 	xtime.tv_sec = now.tv_sec;
553 	xtime.tv_nsec = now.tv_nsec;
554 	raw_time.tv_sec = 0;
555 	raw_time.tv_nsec = 0;
556 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
557 		boot.tv_sec = xtime.tv_sec;
558 		boot.tv_nsec = xtime.tv_nsec;
559 	}
560 	set_normalized_timespec(&wall_to_monotonic,
561 				-boot.tv_sec, -boot.tv_nsec);
562 	update_xtime_cache(0);
563 	total_sleep_time.tv_sec = 0;
564 	total_sleep_time.tv_nsec = 0;
565 	write_sequnlock_irqrestore(&xtime_lock, flags);
566 }
567 
568 /* time in seconds when suspend began */
569 static struct timespec timekeeping_suspend_time;
570 
571 /**
572  * timekeeping_resume - Resumes the generic timekeeping subsystem.
573  * @dev:	unused
574  *
575  * This is for the generic clocksource timekeeping.
576  * xtime/wall_to_monotonic/jiffies/etc are
577  * still managed by arch specific suspend/resume code.
578  */
579 static int timekeeping_resume(struct sys_device *dev)
580 {
581 	unsigned long flags;
582 	struct timespec ts;
583 
584 	read_persistent_clock(&ts);
585 
586 	clocksource_resume();
587 
588 	write_seqlock_irqsave(&xtime_lock, flags);
589 
590 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
591 		ts = timespec_sub(ts, timekeeping_suspend_time);
592 		xtime = timespec_add_safe(xtime, ts);
593 		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
594 		total_sleep_time = timespec_add_safe(total_sleep_time, ts);
595 	}
596 	update_xtime_cache(0);
597 	/* re-base the last cycle value */
598 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
599 	timekeeper.ntp_error = 0;
600 	timekeeping_suspended = 0;
601 	write_sequnlock_irqrestore(&xtime_lock, flags);
602 
603 	touch_softlockup_watchdog();
604 
605 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
606 
607 	/* Resume hrtimers */
608 	hres_timers_resume();
609 
610 	return 0;
611 }
612 
613 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
614 {
615 	unsigned long flags;
616 
617 	read_persistent_clock(&timekeeping_suspend_time);
618 
619 	write_seqlock_irqsave(&xtime_lock, flags);
620 	timekeeping_forward_now();
621 	timekeeping_suspended = 1;
622 	write_sequnlock_irqrestore(&xtime_lock, flags);
623 
624 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
625 	clocksource_suspend();
626 
627 	return 0;
628 }
629 
630 /* sysfs resume/suspend bits for timekeeping */
631 static struct sysdev_class timekeeping_sysclass = {
632 	.name		= "timekeeping",
633 	.resume		= timekeeping_resume,
634 	.suspend	= timekeeping_suspend,
635 };
636 
637 static struct sys_device device_timer = {
638 	.id		= 0,
639 	.cls		= &timekeeping_sysclass,
640 };
641 
642 static int __init timekeeping_init_device(void)
643 {
644 	int error = sysdev_class_register(&timekeeping_sysclass);
645 	if (!error)
646 		error = sysdev_register(&device_timer);
647 	return error;
648 }
649 
650 device_initcall(timekeeping_init_device);
651 
652 /*
653  * If the error is already larger, we look ahead even further
654  * to compensate for late or lost adjustments.
655  */
656 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
657 						 s64 *offset)
658 {
659 	s64 tick_error, i;
660 	u32 look_ahead, adj;
661 	s32 error2, mult;
662 
663 	/*
664 	 * Use the current error value to determine how much to look ahead.
665 	 * The larger the error the slower we adjust for it to avoid problems
666 	 * with losing too many ticks, otherwise we would overadjust and
667 	 * produce an even larger error.  The smaller the adjustment the
668 	 * faster we try to adjust for it, as lost ticks can do less harm
669 	 * here.  This is tuned so that an error of about 1 msec is adjusted
670 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
671 	 */
672 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
673 	error2 = abs(error2);
674 	for (look_ahead = 0; error2 > 0; look_ahead++)
675 		error2 >>= 2;
676 
677 	/*
678 	 * Now calculate the error in (1 << look_ahead) ticks, but first
679 	 * remove the single look ahead already included in the error.
680 	 */
681 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
682 	tick_error -= timekeeper.xtime_interval >> 1;
683 	error = ((error - tick_error) >> look_ahead) + tick_error;
684 
685 	/* Finally calculate the adjustment shift value.  */
686 	i = *interval;
687 	mult = 1;
688 	if (error < 0) {
689 		error = -error;
690 		*interval = -*interval;
691 		*offset = -*offset;
692 		mult = -1;
693 	}
694 	for (adj = 0; error > i; adj++)
695 		error >>= 1;
696 
697 	*interval <<= adj;
698 	*offset <<= adj;
699 	return mult << adj;
700 }
701 
702 /*
703  * Adjust the multiplier to reduce the error value,
704  * this is optimized for the most common adjustments of -1,0,1,
705  * for other values we can do a bit more work.
706  */
707 static void timekeeping_adjust(s64 offset)
708 {
709 	s64 error, interval = timekeeper.cycle_interval;
710 	int adj;
711 
712 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
713 	if (error > interval) {
714 		error >>= 2;
715 		if (likely(error <= interval))
716 			adj = 1;
717 		else
718 			adj = timekeeping_bigadjust(error, &interval, &offset);
719 	} else if (error < -interval) {
720 		error >>= 2;
721 		if (likely(error >= -interval)) {
722 			adj = -1;
723 			interval = -interval;
724 			offset = -offset;
725 		} else
726 			adj = timekeeping_bigadjust(error, &interval, &offset);
727 	} else
728 		return;
729 
730 	timekeeper.mult += adj;
731 	timekeeper.xtime_interval += interval;
732 	timekeeper.xtime_nsec -= offset;
733 	timekeeper.ntp_error -= (interval - offset) <<
734 				timekeeper.ntp_error_shift;
735 }
736 
737 
738 /**
739  * logarithmic_accumulation - shifted accumulation of cycles
740  *
741  * This functions accumulates a shifted interval of cycles into
742  * into a shifted interval nanoseconds. Allows for O(log) accumulation
743  * loop.
744  *
745  * Returns the unconsumed cycles.
746  */
747 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
748 {
749 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
750 
751 	/* If the offset is smaller then a shifted interval, do nothing */
752 	if (offset < timekeeper.cycle_interval<<shift)
753 		return offset;
754 
755 	/* Accumulate one shifted interval */
756 	offset -= timekeeper.cycle_interval << shift;
757 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
758 
759 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
760 	while (timekeeper.xtime_nsec >= nsecps) {
761 		timekeeper.xtime_nsec -= nsecps;
762 		xtime.tv_sec++;
763 		second_overflow();
764 	}
765 
766 	/* Accumulate into raw time */
767 	raw_time.tv_nsec += timekeeper.raw_interval << shift;;
768 	while (raw_time.tv_nsec >= NSEC_PER_SEC) {
769 		raw_time.tv_nsec -= NSEC_PER_SEC;
770 		raw_time.tv_sec++;
771 	}
772 
773 	/* Accumulate error between NTP and clock interval */
774 	timekeeper.ntp_error += tick_length << shift;
775 	timekeeper.ntp_error -= timekeeper.xtime_interval <<
776 				(timekeeper.ntp_error_shift + shift);
777 
778 	return offset;
779 }
780 
781 
782 /**
783  * update_wall_time - Uses the current clocksource to increment the wall time
784  *
785  * Called from the timer interrupt, must hold a write on xtime_lock.
786  */
787 void update_wall_time(void)
788 {
789 	struct clocksource *clock;
790 	cycle_t offset;
791 	u64 nsecs;
792 	int shift = 0, maxshift;
793 
794 	/* Make sure we're fully resumed: */
795 	if (unlikely(timekeeping_suspended))
796 		return;
797 
798 	clock = timekeeper.clock;
799 #ifdef CONFIG_GENERIC_TIME
800 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
801 #else
802 	offset = timekeeper.cycle_interval;
803 #endif
804 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
805 
806 	/*
807 	 * With NO_HZ we may have to accumulate many cycle_intervals
808 	 * (think "ticks") worth of time at once. To do this efficiently,
809 	 * we calculate the largest doubling multiple of cycle_intervals
810 	 * that is smaller then the offset. We then accumulate that
811 	 * chunk in one go, and then try to consume the next smaller
812 	 * doubled multiple.
813 	 */
814 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
815 	shift = max(0, shift);
816 	/* Bound shift to one less then what overflows tick_length */
817 	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
818 	shift = min(shift, maxshift);
819 	while (offset >= timekeeper.cycle_interval) {
820 		offset = logarithmic_accumulation(offset, shift);
821 		if(offset < timekeeper.cycle_interval<<shift)
822 			shift--;
823 	}
824 
825 	/* correct the clock when NTP error is too big */
826 	timekeeping_adjust(offset);
827 
828 	/*
829 	 * Since in the loop above, we accumulate any amount of time
830 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
831 	 * xtime_nsec to be fairly small after the loop. Further, if we're
832 	 * slightly speeding the clocksource up in timekeeping_adjust(),
833 	 * its possible the required corrective factor to xtime_nsec could
834 	 * cause it to underflow.
835 	 *
836 	 * Now, we cannot simply roll the accumulated second back, since
837 	 * the NTP subsystem has been notified via second_overflow. So
838 	 * instead we push xtime_nsec forward by the amount we underflowed,
839 	 * and add that amount into the error.
840 	 *
841 	 * We'll correct this error next time through this function, when
842 	 * xtime_nsec is not as small.
843 	 */
844 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
845 		s64 neg = -(s64)timekeeper.xtime_nsec;
846 		timekeeper.xtime_nsec = 0;
847 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
848 	}
849 
850 	/* store full nanoseconds into xtime after rounding it up and
851 	 * add the remainder to the error difference.
852 	 */
853 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
854 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
855 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
856 				timekeeper.ntp_error_shift;
857 
858 	nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
859 	update_xtime_cache(nsecs);
860 
861 	/* check to see if there is a new clocksource to use */
862 	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
863 }
864 
865 /**
866  * getboottime - Return the real time of system boot.
867  * @ts:		pointer to the timespec to be set
868  *
869  * Returns the time of day in a timespec.
870  *
871  * This is based on the wall_to_monotonic offset and the total suspend
872  * time. Calls to settimeofday will affect the value returned (which
873  * basically means that however wrong your real time clock is at boot time,
874  * you get the right time here).
875  */
876 void getboottime(struct timespec *ts)
877 {
878 	struct timespec boottime = {
879 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
880 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
881 	};
882 
883 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
884 }
885 EXPORT_SYMBOL_GPL(getboottime);
886 
887 /**
888  * monotonic_to_bootbased - Convert the monotonic time to boot based.
889  * @ts:		pointer to the timespec to be converted
890  */
891 void monotonic_to_bootbased(struct timespec *ts)
892 {
893 	*ts = timespec_add_safe(*ts, total_sleep_time);
894 }
895 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
896 
897 unsigned long get_seconds(void)
898 {
899 	return xtime_cache.tv_sec;
900 }
901 EXPORT_SYMBOL(get_seconds);
902 
903 struct timespec __current_kernel_time(void)
904 {
905 	return xtime_cache;
906 }
907 
908 struct timespec current_kernel_time(void)
909 {
910 	struct timespec now;
911 	unsigned long seq;
912 
913 	do {
914 		seq = read_seqbegin(&xtime_lock);
915 
916 		now = xtime_cache;
917 	} while (read_seqretry(&xtime_lock, seq));
918 
919 	return now;
920 }
921 EXPORT_SYMBOL(current_kernel_time);
922 
923 struct timespec get_monotonic_coarse(void)
924 {
925 	struct timespec now, mono;
926 	unsigned long seq;
927 
928 	do {
929 		seq = read_seqbegin(&xtime_lock);
930 
931 		now = xtime_cache;
932 		mono = wall_to_monotonic;
933 	} while (read_seqretry(&xtime_lock, seq));
934 
935 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
936 				now.tv_nsec + mono.tv_nsec);
937 	return now;
938 }
939