1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/sysdev.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* The shift value of the current clocksource. */ 29 int shift; 30 31 /* Number of clock cycles in one NTP interval. */ 32 cycle_t cycle_interval; 33 /* Number of clock shifted nano seconds in one NTP interval. */ 34 u64 xtime_interval; 35 /* Raw nano seconds accumulated per NTP interval. */ 36 u32 raw_interval; 37 38 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ 39 u64 xtime_nsec; 40 /* Difference between accumulated time and NTP time in ntp 41 * shifted nano seconds. */ 42 s64 ntp_error; 43 /* Shift conversion between clock shifted nano seconds and 44 * ntp shifted nano seconds. */ 45 int ntp_error_shift; 46 /* NTP adjusted clock multiplier */ 47 u32 mult; 48 }; 49 50 struct timekeeper timekeeper; 51 52 /** 53 * timekeeper_setup_internals - Set up internals to use clocksource clock. 54 * 55 * @clock: Pointer to clocksource. 56 * 57 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 58 * pair and interval request. 59 * 60 * Unless you're the timekeeping code, you should not be using this! 61 */ 62 static void timekeeper_setup_internals(struct clocksource *clock) 63 { 64 cycle_t interval; 65 u64 tmp; 66 67 timekeeper.clock = clock; 68 clock->cycle_last = clock->read(clock); 69 70 /* Do the ns -> cycle conversion first, using original mult */ 71 tmp = NTP_INTERVAL_LENGTH; 72 tmp <<= clock->shift; 73 tmp += clock->mult/2; 74 do_div(tmp, clock->mult); 75 if (tmp == 0) 76 tmp = 1; 77 78 interval = (cycle_t) tmp; 79 timekeeper.cycle_interval = interval; 80 81 /* Go back from cycles -> shifted ns */ 82 timekeeper.xtime_interval = (u64) interval * clock->mult; 83 timekeeper.raw_interval = 84 ((u64) interval * clock->mult) >> clock->shift; 85 86 timekeeper.xtime_nsec = 0; 87 timekeeper.shift = clock->shift; 88 89 timekeeper.ntp_error = 0; 90 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 91 92 /* 93 * The timekeeper keeps its own mult values for the currently 94 * active clocksource. These value will be adjusted via NTP 95 * to counteract clock drifting. 96 */ 97 timekeeper.mult = clock->mult; 98 } 99 100 /* Timekeeper helper functions. */ 101 static inline s64 timekeeping_get_ns(void) 102 { 103 cycle_t cycle_now, cycle_delta; 104 struct clocksource *clock; 105 106 /* read clocksource: */ 107 clock = timekeeper.clock; 108 cycle_now = clock->read(clock); 109 110 /* calculate the delta since the last update_wall_time: */ 111 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 112 113 /* return delta convert to nanoseconds using ntp adjusted mult. */ 114 return clocksource_cyc2ns(cycle_delta, timekeeper.mult, 115 timekeeper.shift); 116 } 117 118 static inline s64 timekeeping_get_ns_raw(void) 119 { 120 cycle_t cycle_now, cycle_delta; 121 struct clocksource *clock; 122 123 /* read clocksource: */ 124 clock = timekeeper.clock; 125 cycle_now = clock->read(clock); 126 127 /* calculate the delta since the last update_wall_time: */ 128 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 129 130 /* return delta convert to nanoseconds using ntp adjusted mult. */ 131 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 132 } 133 134 /* 135 * This read-write spinlock protects us from races in SMP while 136 * playing with xtime. 137 */ 138 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 139 140 141 /* 142 * The current time 143 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 144 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 145 * at zero at system boot time, so wall_to_monotonic will be negative, 146 * however, we will ALWAYS keep the tv_nsec part positive so we can use 147 * the usual normalization. 148 * 149 * wall_to_monotonic is moved after resume from suspend for the monotonic 150 * time not to jump. We need to add total_sleep_time to wall_to_monotonic 151 * to get the real boot based time offset. 152 * 153 * - wall_to_monotonic is no longer the boot time, getboottime must be 154 * used instead. 155 */ 156 struct timespec xtime __attribute__ ((aligned (16))); 157 struct timespec wall_to_monotonic __attribute__ ((aligned (16))); 158 static struct timespec total_sleep_time; 159 160 /* 161 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. 162 */ 163 struct timespec raw_time; 164 165 /* flag for if timekeeping is suspended */ 166 int __read_mostly timekeeping_suspended; 167 168 static struct timespec xtime_cache __attribute__ ((aligned (16))); 169 void update_xtime_cache(u64 nsec) 170 { 171 xtime_cache = xtime; 172 timespec_add_ns(&xtime_cache, nsec); 173 } 174 175 /* must hold xtime_lock */ 176 void timekeeping_leap_insert(int leapsecond) 177 { 178 xtime.tv_sec += leapsecond; 179 wall_to_monotonic.tv_sec -= leapsecond; 180 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult); 181 } 182 183 #ifdef CONFIG_GENERIC_TIME 184 185 /** 186 * timekeeping_forward_now - update clock to the current time 187 * 188 * Forward the current clock to update its state since the last call to 189 * update_wall_time(). This is useful before significant clock changes, 190 * as it avoids having to deal with this time offset explicitly. 191 */ 192 static void timekeeping_forward_now(void) 193 { 194 cycle_t cycle_now, cycle_delta; 195 struct clocksource *clock; 196 s64 nsec; 197 198 clock = timekeeper.clock; 199 cycle_now = clock->read(clock); 200 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 201 clock->cycle_last = cycle_now; 202 203 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, 204 timekeeper.shift); 205 206 /* If arch requires, add in gettimeoffset() */ 207 nsec += arch_gettimeoffset(); 208 209 timespec_add_ns(&xtime, nsec); 210 211 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 212 timespec_add_ns(&raw_time, nsec); 213 } 214 215 /** 216 * getnstimeofday - Returns the time of day in a timespec 217 * @ts: pointer to the timespec to be set 218 * 219 * Returns the time of day in a timespec. 220 */ 221 void getnstimeofday(struct timespec *ts) 222 { 223 unsigned long seq; 224 s64 nsecs; 225 226 WARN_ON(timekeeping_suspended); 227 228 do { 229 seq = read_seqbegin(&xtime_lock); 230 231 *ts = xtime; 232 nsecs = timekeeping_get_ns(); 233 234 /* If arch requires, add in gettimeoffset() */ 235 nsecs += arch_gettimeoffset(); 236 237 } while (read_seqretry(&xtime_lock, seq)); 238 239 timespec_add_ns(ts, nsecs); 240 } 241 242 EXPORT_SYMBOL(getnstimeofday); 243 244 ktime_t ktime_get(void) 245 { 246 unsigned int seq; 247 s64 secs, nsecs; 248 249 WARN_ON(timekeeping_suspended); 250 251 do { 252 seq = read_seqbegin(&xtime_lock); 253 secs = xtime.tv_sec + wall_to_monotonic.tv_sec; 254 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; 255 nsecs += timekeeping_get_ns(); 256 257 } while (read_seqretry(&xtime_lock, seq)); 258 /* 259 * Use ktime_set/ktime_add_ns to create a proper ktime on 260 * 32-bit architectures without CONFIG_KTIME_SCALAR. 261 */ 262 return ktime_add_ns(ktime_set(secs, 0), nsecs); 263 } 264 EXPORT_SYMBOL_GPL(ktime_get); 265 266 /** 267 * ktime_get_ts - get the monotonic clock in timespec format 268 * @ts: pointer to timespec variable 269 * 270 * The function calculates the monotonic clock from the realtime 271 * clock and the wall_to_monotonic offset and stores the result 272 * in normalized timespec format in the variable pointed to by @ts. 273 */ 274 void ktime_get_ts(struct timespec *ts) 275 { 276 struct timespec tomono; 277 unsigned int seq; 278 s64 nsecs; 279 280 WARN_ON(timekeeping_suspended); 281 282 do { 283 seq = read_seqbegin(&xtime_lock); 284 *ts = xtime; 285 tomono = wall_to_monotonic; 286 nsecs = timekeeping_get_ns(); 287 288 } while (read_seqretry(&xtime_lock, seq)); 289 290 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 291 ts->tv_nsec + tomono.tv_nsec + nsecs); 292 } 293 EXPORT_SYMBOL_GPL(ktime_get_ts); 294 295 /** 296 * do_gettimeofday - Returns the time of day in a timeval 297 * @tv: pointer to the timeval to be set 298 * 299 * NOTE: Users should be converted to using getnstimeofday() 300 */ 301 void do_gettimeofday(struct timeval *tv) 302 { 303 struct timespec now; 304 305 getnstimeofday(&now); 306 tv->tv_sec = now.tv_sec; 307 tv->tv_usec = now.tv_nsec/1000; 308 } 309 310 EXPORT_SYMBOL(do_gettimeofday); 311 /** 312 * do_settimeofday - Sets the time of day 313 * @tv: pointer to the timespec variable containing the new time 314 * 315 * Sets the time of day to the new time and update NTP and notify hrtimers 316 */ 317 int do_settimeofday(struct timespec *tv) 318 { 319 struct timespec ts_delta; 320 unsigned long flags; 321 322 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 323 return -EINVAL; 324 325 write_seqlock_irqsave(&xtime_lock, flags); 326 327 timekeeping_forward_now(); 328 329 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; 330 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; 331 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta); 332 333 xtime = *tv; 334 335 update_xtime_cache(0); 336 337 timekeeper.ntp_error = 0; 338 ntp_clear(); 339 340 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult); 341 342 write_sequnlock_irqrestore(&xtime_lock, flags); 343 344 /* signal hrtimers about time change */ 345 clock_was_set(); 346 347 return 0; 348 } 349 350 EXPORT_SYMBOL(do_settimeofday); 351 352 /** 353 * change_clocksource - Swaps clocksources if a new one is available 354 * 355 * Accumulates current time interval and initializes new clocksource 356 */ 357 static int change_clocksource(void *data) 358 { 359 struct clocksource *new, *old; 360 361 new = (struct clocksource *) data; 362 363 timekeeping_forward_now(); 364 if (!new->enable || new->enable(new) == 0) { 365 old = timekeeper.clock; 366 timekeeper_setup_internals(new); 367 if (old->disable) 368 old->disable(old); 369 } 370 return 0; 371 } 372 373 /** 374 * timekeeping_notify - Install a new clock source 375 * @clock: pointer to the clock source 376 * 377 * This function is called from clocksource.c after a new, better clock 378 * source has been registered. The caller holds the clocksource_mutex. 379 */ 380 void timekeeping_notify(struct clocksource *clock) 381 { 382 if (timekeeper.clock == clock) 383 return; 384 stop_machine(change_clocksource, clock, NULL); 385 tick_clock_notify(); 386 } 387 388 #else /* GENERIC_TIME */ 389 390 static inline void timekeeping_forward_now(void) { } 391 392 /** 393 * ktime_get - get the monotonic time in ktime_t format 394 * 395 * returns the time in ktime_t format 396 */ 397 ktime_t ktime_get(void) 398 { 399 struct timespec now; 400 401 ktime_get_ts(&now); 402 403 return timespec_to_ktime(now); 404 } 405 EXPORT_SYMBOL_GPL(ktime_get); 406 407 /** 408 * ktime_get_ts - get the monotonic clock in timespec format 409 * @ts: pointer to timespec variable 410 * 411 * The function calculates the monotonic clock from the realtime 412 * clock and the wall_to_monotonic offset and stores the result 413 * in normalized timespec format in the variable pointed to by @ts. 414 */ 415 void ktime_get_ts(struct timespec *ts) 416 { 417 struct timespec tomono; 418 unsigned long seq; 419 420 do { 421 seq = read_seqbegin(&xtime_lock); 422 getnstimeofday(ts); 423 tomono = wall_to_monotonic; 424 425 } while (read_seqretry(&xtime_lock, seq)); 426 427 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 428 ts->tv_nsec + tomono.tv_nsec); 429 } 430 EXPORT_SYMBOL_GPL(ktime_get_ts); 431 432 #endif /* !GENERIC_TIME */ 433 434 /** 435 * ktime_get_real - get the real (wall-) time in ktime_t format 436 * 437 * returns the time in ktime_t format 438 */ 439 ktime_t ktime_get_real(void) 440 { 441 struct timespec now; 442 443 getnstimeofday(&now); 444 445 return timespec_to_ktime(now); 446 } 447 EXPORT_SYMBOL_GPL(ktime_get_real); 448 449 /** 450 * getrawmonotonic - Returns the raw monotonic time in a timespec 451 * @ts: pointer to the timespec to be set 452 * 453 * Returns the raw monotonic time (completely un-modified by ntp) 454 */ 455 void getrawmonotonic(struct timespec *ts) 456 { 457 unsigned long seq; 458 s64 nsecs; 459 460 do { 461 seq = read_seqbegin(&xtime_lock); 462 nsecs = timekeeping_get_ns_raw(); 463 *ts = raw_time; 464 465 } while (read_seqretry(&xtime_lock, seq)); 466 467 timespec_add_ns(ts, nsecs); 468 } 469 EXPORT_SYMBOL(getrawmonotonic); 470 471 472 /** 473 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 474 */ 475 int timekeeping_valid_for_hres(void) 476 { 477 unsigned long seq; 478 int ret; 479 480 do { 481 seq = read_seqbegin(&xtime_lock); 482 483 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 484 485 } while (read_seqretry(&xtime_lock, seq)); 486 487 return ret; 488 } 489 490 /** 491 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 492 * 493 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to 494 * ensure that the clocksource does not change! 495 */ 496 u64 timekeeping_max_deferment(void) 497 { 498 return timekeeper.clock->max_idle_ns; 499 } 500 501 /** 502 * read_persistent_clock - Return time from the persistent clock. 503 * 504 * Weak dummy function for arches that do not yet support it. 505 * Reads the time from the battery backed persistent clock. 506 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 507 * 508 * XXX - Do be sure to remove it once all arches implement it. 509 */ 510 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 511 { 512 ts->tv_sec = 0; 513 ts->tv_nsec = 0; 514 } 515 516 /** 517 * read_boot_clock - Return time of the system start. 518 * 519 * Weak dummy function for arches that do not yet support it. 520 * Function to read the exact time the system has been started. 521 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 522 * 523 * XXX - Do be sure to remove it once all arches implement it. 524 */ 525 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 526 { 527 ts->tv_sec = 0; 528 ts->tv_nsec = 0; 529 } 530 531 /* 532 * timekeeping_init - Initializes the clocksource and common timekeeping values 533 */ 534 void __init timekeeping_init(void) 535 { 536 struct clocksource *clock; 537 unsigned long flags; 538 struct timespec now, boot; 539 540 read_persistent_clock(&now); 541 read_boot_clock(&boot); 542 543 write_seqlock_irqsave(&xtime_lock, flags); 544 545 ntp_init(); 546 547 clock = clocksource_default_clock(); 548 if (clock->enable) 549 clock->enable(clock); 550 timekeeper_setup_internals(clock); 551 552 xtime.tv_sec = now.tv_sec; 553 xtime.tv_nsec = now.tv_nsec; 554 raw_time.tv_sec = 0; 555 raw_time.tv_nsec = 0; 556 if (boot.tv_sec == 0 && boot.tv_nsec == 0) { 557 boot.tv_sec = xtime.tv_sec; 558 boot.tv_nsec = xtime.tv_nsec; 559 } 560 set_normalized_timespec(&wall_to_monotonic, 561 -boot.tv_sec, -boot.tv_nsec); 562 update_xtime_cache(0); 563 total_sleep_time.tv_sec = 0; 564 total_sleep_time.tv_nsec = 0; 565 write_sequnlock_irqrestore(&xtime_lock, flags); 566 } 567 568 /* time in seconds when suspend began */ 569 static struct timespec timekeeping_suspend_time; 570 571 /** 572 * timekeeping_resume - Resumes the generic timekeeping subsystem. 573 * @dev: unused 574 * 575 * This is for the generic clocksource timekeeping. 576 * xtime/wall_to_monotonic/jiffies/etc are 577 * still managed by arch specific suspend/resume code. 578 */ 579 static int timekeeping_resume(struct sys_device *dev) 580 { 581 unsigned long flags; 582 struct timespec ts; 583 584 read_persistent_clock(&ts); 585 586 clocksource_resume(); 587 588 write_seqlock_irqsave(&xtime_lock, flags); 589 590 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 591 ts = timespec_sub(ts, timekeeping_suspend_time); 592 xtime = timespec_add_safe(xtime, ts); 593 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); 594 total_sleep_time = timespec_add_safe(total_sleep_time, ts); 595 } 596 update_xtime_cache(0); 597 /* re-base the last cycle value */ 598 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); 599 timekeeper.ntp_error = 0; 600 timekeeping_suspended = 0; 601 write_sequnlock_irqrestore(&xtime_lock, flags); 602 603 touch_softlockup_watchdog(); 604 605 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 606 607 /* Resume hrtimers */ 608 hres_timers_resume(); 609 610 return 0; 611 } 612 613 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) 614 { 615 unsigned long flags; 616 617 read_persistent_clock(&timekeeping_suspend_time); 618 619 write_seqlock_irqsave(&xtime_lock, flags); 620 timekeeping_forward_now(); 621 timekeeping_suspended = 1; 622 write_sequnlock_irqrestore(&xtime_lock, flags); 623 624 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 625 clocksource_suspend(); 626 627 return 0; 628 } 629 630 /* sysfs resume/suspend bits for timekeeping */ 631 static struct sysdev_class timekeeping_sysclass = { 632 .name = "timekeeping", 633 .resume = timekeeping_resume, 634 .suspend = timekeeping_suspend, 635 }; 636 637 static struct sys_device device_timer = { 638 .id = 0, 639 .cls = &timekeeping_sysclass, 640 }; 641 642 static int __init timekeeping_init_device(void) 643 { 644 int error = sysdev_class_register(&timekeeping_sysclass); 645 if (!error) 646 error = sysdev_register(&device_timer); 647 return error; 648 } 649 650 device_initcall(timekeeping_init_device); 651 652 /* 653 * If the error is already larger, we look ahead even further 654 * to compensate for late or lost adjustments. 655 */ 656 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, 657 s64 *offset) 658 { 659 s64 tick_error, i; 660 u32 look_ahead, adj; 661 s32 error2, mult; 662 663 /* 664 * Use the current error value to determine how much to look ahead. 665 * The larger the error the slower we adjust for it to avoid problems 666 * with losing too many ticks, otherwise we would overadjust and 667 * produce an even larger error. The smaller the adjustment the 668 * faster we try to adjust for it, as lost ticks can do less harm 669 * here. This is tuned so that an error of about 1 msec is adjusted 670 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 671 */ 672 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 673 error2 = abs(error2); 674 for (look_ahead = 0; error2 > 0; look_ahead++) 675 error2 >>= 2; 676 677 /* 678 * Now calculate the error in (1 << look_ahead) ticks, but first 679 * remove the single look ahead already included in the error. 680 */ 681 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); 682 tick_error -= timekeeper.xtime_interval >> 1; 683 error = ((error - tick_error) >> look_ahead) + tick_error; 684 685 /* Finally calculate the adjustment shift value. */ 686 i = *interval; 687 mult = 1; 688 if (error < 0) { 689 error = -error; 690 *interval = -*interval; 691 *offset = -*offset; 692 mult = -1; 693 } 694 for (adj = 0; error > i; adj++) 695 error >>= 1; 696 697 *interval <<= adj; 698 *offset <<= adj; 699 return mult << adj; 700 } 701 702 /* 703 * Adjust the multiplier to reduce the error value, 704 * this is optimized for the most common adjustments of -1,0,1, 705 * for other values we can do a bit more work. 706 */ 707 static void timekeeping_adjust(s64 offset) 708 { 709 s64 error, interval = timekeeper.cycle_interval; 710 int adj; 711 712 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 713 if (error > interval) { 714 error >>= 2; 715 if (likely(error <= interval)) 716 adj = 1; 717 else 718 adj = timekeeping_bigadjust(error, &interval, &offset); 719 } else if (error < -interval) { 720 error >>= 2; 721 if (likely(error >= -interval)) { 722 adj = -1; 723 interval = -interval; 724 offset = -offset; 725 } else 726 adj = timekeeping_bigadjust(error, &interval, &offset); 727 } else 728 return; 729 730 timekeeper.mult += adj; 731 timekeeper.xtime_interval += interval; 732 timekeeper.xtime_nsec -= offset; 733 timekeeper.ntp_error -= (interval - offset) << 734 timekeeper.ntp_error_shift; 735 } 736 737 738 /** 739 * logarithmic_accumulation - shifted accumulation of cycles 740 * 741 * This functions accumulates a shifted interval of cycles into 742 * into a shifted interval nanoseconds. Allows for O(log) accumulation 743 * loop. 744 * 745 * Returns the unconsumed cycles. 746 */ 747 static cycle_t logarithmic_accumulation(cycle_t offset, int shift) 748 { 749 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; 750 751 /* If the offset is smaller then a shifted interval, do nothing */ 752 if (offset < timekeeper.cycle_interval<<shift) 753 return offset; 754 755 /* Accumulate one shifted interval */ 756 offset -= timekeeper.cycle_interval << shift; 757 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; 758 759 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; 760 while (timekeeper.xtime_nsec >= nsecps) { 761 timekeeper.xtime_nsec -= nsecps; 762 xtime.tv_sec++; 763 second_overflow(); 764 } 765 766 /* Accumulate into raw time */ 767 raw_time.tv_nsec += timekeeper.raw_interval << shift;; 768 while (raw_time.tv_nsec >= NSEC_PER_SEC) { 769 raw_time.tv_nsec -= NSEC_PER_SEC; 770 raw_time.tv_sec++; 771 } 772 773 /* Accumulate error between NTP and clock interval */ 774 timekeeper.ntp_error += tick_length << shift; 775 timekeeper.ntp_error -= timekeeper.xtime_interval << 776 (timekeeper.ntp_error_shift + shift); 777 778 return offset; 779 } 780 781 782 /** 783 * update_wall_time - Uses the current clocksource to increment the wall time 784 * 785 * Called from the timer interrupt, must hold a write on xtime_lock. 786 */ 787 void update_wall_time(void) 788 { 789 struct clocksource *clock; 790 cycle_t offset; 791 u64 nsecs; 792 int shift = 0, maxshift; 793 794 /* Make sure we're fully resumed: */ 795 if (unlikely(timekeeping_suspended)) 796 return; 797 798 clock = timekeeper.clock; 799 #ifdef CONFIG_GENERIC_TIME 800 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 801 #else 802 offset = timekeeper.cycle_interval; 803 #endif 804 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; 805 806 /* 807 * With NO_HZ we may have to accumulate many cycle_intervals 808 * (think "ticks") worth of time at once. To do this efficiently, 809 * we calculate the largest doubling multiple of cycle_intervals 810 * that is smaller then the offset. We then accumulate that 811 * chunk in one go, and then try to consume the next smaller 812 * doubled multiple. 813 */ 814 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); 815 shift = max(0, shift); 816 /* Bound shift to one less then what overflows tick_length */ 817 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1; 818 shift = min(shift, maxshift); 819 while (offset >= timekeeper.cycle_interval) { 820 offset = logarithmic_accumulation(offset, shift); 821 if(offset < timekeeper.cycle_interval<<shift) 822 shift--; 823 } 824 825 /* correct the clock when NTP error is too big */ 826 timekeeping_adjust(offset); 827 828 /* 829 * Since in the loop above, we accumulate any amount of time 830 * in xtime_nsec over a second into xtime.tv_sec, its possible for 831 * xtime_nsec to be fairly small after the loop. Further, if we're 832 * slightly speeding the clocksource up in timekeeping_adjust(), 833 * its possible the required corrective factor to xtime_nsec could 834 * cause it to underflow. 835 * 836 * Now, we cannot simply roll the accumulated second back, since 837 * the NTP subsystem has been notified via second_overflow. So 838 * instead we push xtime_nsec forward by the amount we underflowed, 839 * and add that amount into the error. 840 * 841 * We'll correct this error next time through this function, when 842 * xtime_nsec is not as small. 843 */ 844 if (unlikely((s64)timekeeper.xtime_nsec < 0)) { 845 s64 neg = -(s64)timekeeper.xtime_nsec; 846 timekeeper.xtime_nsec = 0; 847 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; 848 } 849 850 /* store full nanoseconds into xtime after rounding it up and 851 * add the remainder to the error difference. 852 */ 853 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; 854 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; 855 timekeeper.ntp_error += timekeeper.xtime_nsec << 856 timekeeper.ntp_error_shift; 857 858 nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); 859 update_xtime_cache(nsecs); 860 861 /* check to see if there is a new clocksource to use */ 862 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult); 863 } 864 865 /** 866 * getboottime - Return the real time of system boot. 867 * @ts: pointer to the timespec to be set 868 * 869 * Returns the time of day in a timespec. 870 * 871 * This is based on the wall_to_monotonic offset and the total suspend 872 * time. Calls to settimeofday will affect the value returned (which 873 * basically means that however wrong your real time clock is at boot time, 874 * you get the right time here). 875 */ 876 void getboottime(struct timespec *ts) 877 { 878 struct timespec boottime = { 879 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, 880 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec 881 }; 882 883 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 884 } 885 EXPORT_SYMBOL_GPL(getboottime); 886 887 /** 888 * monotonic_to_bootbased - Convert the monotonic time to boot based. 889 * @ts: pointer to the timespec to be converted 890 */ 891 void monotonic_to_bootbased(struct timespec *ts) 892 { 893 *ts = timespec_add_safe(*ts, total_sleep_time); 894 } 895 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 896 897 unsigned long get_seconds(void) 898 { 899 return xtime_cache.tv_sec; 900 } 901 EXPORT_SYMBOL(get_seconds); 902 903 struct timespec __current_kernel_time(void) 904 { 905 return xtime_cache; 906 } 907 908 struct timespec current_kernel_time(void) 909 { 910 struct timespec now; 911 unsigned long seq; 912 913 do { 914 seq = read_seqbegin(&xtime_lock); 915 916 now = xtime_cache; 917 } while (read_seqretry(&xtime_lock, seq)); 918 919 return now; 920 } 921 EXPORT_SYMBOL(current_kernel_time); 922 923 struct timespec get_monotonic_coarse(void) 924 { 925 struct timespec now, mono; 926 unsigned long seq; 927 928 do { 929 seq = read_seqbegin(&xtime_lock); 930 931 now = xtime_cache; 932 mono = wall_to_monotonic; 933 } while (read_seqretry(&xtime_lock, seq)); 934 935 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 936 now.tv_nsec + mono.tv_nsec); 937 return now; 938 } 939