1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* NTP adjusted clock multiplier */ 29 u32 mult; 30 /* The shift value of the current clocksource. */ 31 int shift; 32 33 /* Number of clock cycles in one NTP interval. */ 34 cycle_t cycle_interval; 35 /* Number of clock shifted nano seconds in one NTP interval. */ 36 u64 xtime_interval; 37 /* shifted nano seconds left over when rounding cycle_interval */ 38 s64 xtime_remainder; 39 /* Raw nano seconds accumulated per NTP interval. */ 40 u32 raw_interval; 41 42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ 43 u64 xtime_nsec; 44 /* Difference between accumulated time and NTP time in ntp 45 * shifted nano seconds. */ 46 s64 ntp_error; 47 /* Shift conversion between clock shifted nano seconds and 48 * ntp shifted nano seconds. */ 49 int ntp_error_shift; 50 51 /* The current time */ 52 struct timespec xtime; 53 /* 54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 56 * at zero at system boot time, so wall_to_monotonic will be negative, 57 * however, we will ALWAYS keep the tv_nsec part positive so we can use 58 * the usual normalization. 59 * 60 * wall_to_monotonic is moved after resume from suspend for the 61 * monotonic time not to jump. We need to add total_sleep_time to 62 * wall_to_monotonic to get the real boot based time offset. 63 * 64 * - wall_to_monotonic is no longer the boot time, getboottime must be 65 * used instead. 66 */ 67 struct timespec wall_to_monotonic; 68 /* time spent in suspend */ 69 struct timespec total_sleep_time; 70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ 71 struct timespec raw_time; 72 73 /* Seqlock for all timekeeper values */ 74 seqlock_t lock; 75 }; 76 77 static struct timekeeper timekeeper; 78 79 /* 80 * This read-write spinlock protects us from races in SMP while 81 * playing with xtime. 82 */ 83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 84 85 86 /* flag for if timekeeping is suspended */ 87 int __read_mostly timekeeping_suspended; 88 89 90 91 /** 92 * timekeeper_setup_internals - Set up internals to use clocksource clock. 93 * 94 * @clock: Pointer to clocksource. 95 * 96 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 97 * pair and interval request. 98 * 99 * Unless you're the timekeeping code, you should not be using this! 100 */ 101 static void timekeeper_setup_internals(struct clocksource *clock) 102 { 103 cycle_t interval; 104 u64 tmp, ntpinterval; 105 106 timekeeper.clock = clock; 107 clock->cycle_last = clock->read(clock); 108 109 /* Do the ns -> cycle conversion first, using original mult */ 110 tmp = NTP_INTERVAL_LENGTH; 111 tmp <<= clock->shift; 112 ntpinterval = tmp; 113 tmp += clock->mult/2; 114 do_div(tmp, clock->mult); 115 if (tmp == 0) 116 tmp = 1; 117 118 interval = (cycle_t) tmp; 119 timekeeper.cycle_interval = interval; 120 121 /* Go back from cycles -> shifted ns */ 122 timekeeper.xtime_interval = (u64) interval * clock->mult; 123 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval; 124 timekeeper.raw_interval = 125 ((u64) interval * clock->mult) >> clock->shift; 126 127 timekeeper.xtime_nsec = 0; 128 timekeeper.shift = clock->shift; 129 130 timekeeper.ntp_error = 0; 131 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 132 133 /* 134 * The timekeeper keeps its own mult values for the currently 135 * active clocksource. These value will be adjusted via NTP 136 * to counteract clock drifting. 137 */ 138 timekeeper.mult = clock->mult; 139 } 140 141 /* Timekeeper helper functions. */ 142 static inline s64 timekeeping_get_ns(void) 143 { 144 cycle_t cycle_now, cycle_delta; 145 struct clocksource *clock; 146 147 /* read clocksource: */ 148 clock = timekeeper.clock; 149 cycle_now = clock->read(clock); 150 151 /* calculate the delta since the last update_wall_time: */ 152 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 153 154 /* return delta convert to nanoseconds using ntp adjusted mult. */ 155 return clocksource_cyc2ns(cycle_delta, timekeeper.mult, 156 timekeeper.shift); 157 } 158 159 static inline s64 timekeeping_get_ns_raw(void) 160 { 161 cycle_t cycle_now, cycle_delta; 162 struct clocksource *clock; 163 164 /* read clocksource: */ 165 clock = timekeeper.clock; 166 cycle_now = clock->read(clock); 167 168 /* calculate the delta since the last update_wall_time: */ 169 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 170 171 /* return delta convert to nanoseconds. */ 172 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 173 } 174 175 /* must hold write on timekeeper.lock */ 176 static void timekeeping_update(bool clearntp) 177 { 178 if (clearntp) { 179 timekeeper.ntp_error = 0; 180 ntp_clear(); 181 } 182 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic, 183 timekeeper.clock, timekeeper.mult); 184 } 185 186 187 void timekeeping_leap_insert(int leapsecond) 188 { 189 unsigned long flags; 190 191 write_seqlock_irqsave(&timekeeper.lock, flags); 192 timekeeper.xtime.tv_sec += leapsecond; 193 timekeeper.wall_to_monotonic.tv_sec -= leapsecond; 194 timekeeping_update(false); 195 write_sequnlock_irqrestore(&timekeeper.lock, flags); 196 197 } 198 199 /** 200 * timekeeping_forward_now - update clock to the current time 201 * 202 * Forward the current clock to update its state since the last call to 203 * update_wall_time(). This is useful before significant clock changes, 204 * as it avoids having to deal with this time offset explicitly. 205 */ 206 static void timekeeping_forward_now(void) 207 { 208 cycle_t cycle_now, cycle_delta; 209 struct clocksource *clock; 210 s64 nsec; 211 212 clock = timekeeper.clock; 213 cycle_now = clock->read(clock); 214 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 215 clock->cycle_last = cycle_now; 216 217 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, 218 timekeeper.shift); 219 220 /* If arch requires, add in gettimeoffset() */ 221 nsec += arch_gettimeoffset(); 222 223 timespec_add_ns(&timekeeper.xtime, nsec); 224 225 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 226 timespec_add_ns(&timekeeper.raw_time, nsec); 227 } 228 229 /** 230 * getnstimeofday - Returns the time of day in a timespec 231 * @ts: pointer to the timespec to be set 232 * 233 * Returns the time of day in a timespec. 234 */ 235 void getnstimeofday(struct timespec *ts) 236 { 237 unsigned long seq; 238 s64 nsecs; 239 240 WARN_ON(timekeeping_suspended); 241 242 do { 243 seq = read_seqbegin(&timekeeper.lock); 244 245 *ts = timekeeper.xtime; 246 nsecs = timekeeping_get_ns(); 247 248 /* If arch requires, add in gettimeoffset() */ 249 nsecs += arch_gettimeoffset(); 250 251 } while (read_seqretry(&timekeeper.lock, seq)); 252 253 timespec_add_ns(ts, nsecs); 254 } 255 256 EXPORT_SYMBOL(getnstimeofday); 257 258 ktime_t ktime_get(void) 259 { 260 unsigned int seq; 261 s64 secs, nsecs; 262 263 WARN_ON(timekeeping_suspended); 264 265 do { 266 seq = read_seqbegin(&timekeeper.lock); 267 secs = timekeeper.xtime.tv_sec + 268 timekeeper.wall_to_monotonic.tv_sec; 269 nsecs = timekeeper.xtime.tv_nsec + 270 timekeeper.wall_to_monotonic.tv_nsec; 271 nsecs += timekeeping_get_ns(); 272 /* If arch requires, add in gettimeoffset() */ 273 nsecs += arch_gettimeoffset(); 274 275 } while (read_seqretry(&timekeeper.lock, seq)); 276 /* 277 * Use ktime_set/ktime_add_ns to create a proper ktime on 278 * 32-bit architectures without CONFIG_KTIME_SCALAR. 279 */ 280 return ktime_add_ns(ktime_set(secs, 0), nsecs); 281 } 282 EXPORT_SYMBOL_GPL(ktime_get); 283 284 /** 285 * ktime_get_ts - get the monotonic clock in timespec format 286 * @ts: pointer to timespec variable 287 * 288 * The function calculates the monotonic clock from the realtime 289 * clock and the wall_to_monotonic offset and stores the result 290 * in normalized timespec format in the variable pointed to by @ts. 291 */ 292 void ktime_get_ts(struct timespec *ts) 293 { 294 struct timespec tomono; 295 unsigned int seq; 296 s64 nsecs; 297 298 WARN_ON(timekeeping_suspended); 299 300 do { 301 seq = read_seqbegin(&timekeeper.lock); 302 *ts = timekeeper.xtime; 303 tomono = timekeeper.wall_to_monotonic; 304 nsecs = timekeeping_get_ns(); 305 /* If arch requires, add in gettimeoffset() */ 306 nsecs += arch_gettimeoffset(); 307 308 } while (read_seqretry(&timekeeper.lock, seq)); 309 310 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 311 ts->tv_nsec + tomono.tv_nsec + nsecs); 312 } 313 EXPORT_SYMBOL_GPL(ktime_get_ts); 314 315 #ifdef CONFIG_NTP_PPS 316 317 /** 318 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 319 * @ts_raw: pointer to the timespec to be set to raw monotonic time 320 * @ts_real: pointer to the timespec to be set to the time of day 321 * 322 * This function reads both the time of day and raw monotonic time at the 323 * same time atomically and stores the resulting timestamps in timespec 324 * format. 325 */ 326 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 327 { 328 unsigned long seq; 329 s64 nsecs_raw, nsecs_real; 330 331 WARN_ON_ONCE(timekeeping_suspended); 332 333 do { 334 u32 arch_offset; 335 336 seq = read_seqbegin(&timekeeper.lock); 337 338 *ts_raw = timekeeper.raw_time; 339 *ts_real = timekeeper.xtime; 340 341 nsecs_raw = timekeeping_get_ns_raw(); 342 nsecs_real = timekeeping_get_ns(); 343 344 /* If arch requires, add in gettimeoffset() */ 345 arch_offset = arch_gettimeoffset(); 346 nsecs_raw += arch_offset; 347 nsecs_real += arch_offset; 348 349 } while (read_seqretry(&timekeeper.lock, seq)); 350 351 timespec_add_ns(ts_raw, nsecs_raw); 352 timespec_add_ns(ts_real, nsecs_real); 353 } 354 EXPORT_SYMBOL(getnstime_raw_and_real); 355 356 #endif /* CONFIG_NTP_PPS */ 357 358 /** 359 * do_gettimeofday - Returns the time of day in a timeval 360 * @tv: pointer to the timeval to be set 361 * 362 * NOTE: Users should be converted to using getnstimeofday() 363 */ 364 void do_gettimeofday(struct timeval *tv) 365 { 366 struct timespec now; 367 368 getnstimeofday(&now); 369 tv->tv_sec = now.tv_sec; 370 tv->tv_usec = now.tv_nsec/1000; 371 } 372 373 EXPORT_SYMBOL(do_gettimeofday); 374 /** 375 * do_settimeofday - Sets the time of day 376 * @tv: pointer to the timespec variable containing the new time 377 * 378 * Sets the time of day to the new time and update NTP and notify hrtimers 379 */ 380 int do_settimeofday(const struct timespec *tv) 381 { 382 struct timespec ts_delta; 383 unsigned long flags; 384 385 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 386 return -EINVAL; 387 388 write_seqlock_irqsave(&timekeeper.lock, flags); 389 390 timekeeping_forward_now(); 391 392 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec; 393 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec; 394 timekeeper.wall_to_monotonic = 395 timespec_sub(timekeeper.wall_to_monotonic, ts_delta); 396 397 timekeeper.xtime = *tv; 398 timekeeping_update(true); 399 400 write_sequnlock_irqrestore(&timekeeper.lock, flags); 401 402 /* signal hrtimers about time change */ 403 clock_was_set(); 404 405 return 0; 406 } 407 408 EXPORT_SYMBOL(do_settimeofday); 409 410 411 /** 412 * timekeeping_inject_offset - Adds or subtracts from the current time. 413 * @tv: pointer to the timespec variable containing the offset 414 * 415 * Adds or subtracts an offset value from the current time. 416 */ 417 int timekeeping_inject_offset(struct timespec *ts) 418 { 419 unsigned long flags; 420 421 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 422 return -EINVAL; 423 424 write_seqlock_irqsave(&timekeeper.lock, flags); 425 426 timekeeping_forward_now(); 427 428 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts); 429 timekeeper.wall_to_monotonic = 430 timespec_sub(timekeeper.wall_to_monotonic, *ts); 431 432 timekeeping_update(true); 433 434 write_sequnlock_irqrestore(&timekeeper.lock, flags); 435 436 /* signal hrtimers about time change */ 437 clock_was_set(); 438 439 return 0; 440 } 441 EXPORT_SYMBOL(timekeeping_inject_offset); 442 443 /** 444 * change_clocksource - Swaps clocksources if a new one is available 445 * 446 * Accumulates current time interval and initializes new clocksource 447 */ 448 static int change_clocksource(void *data) 449 { 450 struct clocksource *new, *old; 451 452 new = (struct clocksource *) data; 453 454 timekeeping_forward_now(); 455 if (!new->enable || new->enable(new) == 0) { 456 old = timekeeper.clock; 457 timekeeper_setup_internals(new); 458 if (old->disable) 459 old->disable(old); 460 } 461 return 0; 462 } 463 464 /** 465 * timekeeping_notify - Install a new clock source 466 * @clock: pointer to the clock source 467 * 468 * This function is called from clocksource.c after a new, better clock 469 * source has been registered. The caller holds the clocksource_mutex. 470 */ 471 void timekeeping_notify(struct clocksource *clock) 472 { 473 if (timekeeper.clock == clock) 474 return; 475 stop_machine(change_clocksource, clock, NULL); 476 tick_clock_notify(); 477 } 478 479 /** 480 * ktime_get_real - get the real (wall-) time in ktime_t format 481 * 482 * returns the time in ktime_t format 483 */ 484 ktime_t ktime_get_real(void) 485 { 486 struct timespec now; 487 488 getnstimeofday(&now); 489 490 return timespec_to_ktime(now); 491 } 492 EXPORT_SYMBOL_GPL(ktime_get_real); 493 494 /** 495 * getrawmonotonic - Returns the raw monotonic time in a timespec 496 * @ts: pointer to the timespec to be set 497 * 498 * Returns the raw monotonic time (completely un-modified by ntp) 499 */ 500 void getrawmonotonic(struct timespec *ts) 501 { 502 unsigned long seq; 503 s64 nsecs; 504 505 do { 506 seq = read_seqbegin(&timekeeper.lock); 507 nsecs = timekeeping_get_ns_raw(); 508 *ts = timekeeper.raw_time; 509 510 } while (read_seqretry(&timekeeper.lock, seq)); 511 512 timespec_add_ns(ts, nsecs); 513 } 514 EXPORT_SYMBOL(getrawmonotonic); 515 516 517 /** 518 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 519 */ 520 int timekeeping_valid_for_hres(void) 521 { 522 unsigned long seq; 523 int ret; 524 525 do { 526 seq = read_seqbegin(&timekeeper.lock); 527 528 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 529 530 } while (read_seqretry(&timekeeper.lock, seq)); 531 532 return ret; 533 } 534 535 /** 536 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 537 */ 538 u64 timekeeping_max_deferment(void) 539 { 540 unsigned long seq; 541 u64 ret; 542 do { 543 seq = read_seqbegin(&timekeeper.lock); 544 545 ret = timekeeper.clock->max_idle_ns; 546 547 } while (read_seqretry(&timekeeper.lock, seq)); 548 549 return ret; 550 } 551 552 /** 553 * read_persistent_clock - Return time from the persistent clock. 554 * 555 * Weak dummy function for arches that do not yet support it. 556 * Reads the time from the battery backed persistent clock. 557 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 558 * 559 * XXX - Do be sure to remove it once all arches implement it. 560 */ 561 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 562 { 563 ts->tv_sec = 0; 564 ts->tv_nsec = 0; 565 } 566 567 /** 568 * read_boot_clock - Return time of the system start. 569 * 570 * Weak dummy function for arches that do not yet support it. 571 * Function to read the exact time the system has been started. 572 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 573 * 574 * XXX - Do be sure to remove it once all arches implement it. 575 */ 576 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 577 { 578 ts->tv_sec = 0; 579 ts->tv_nsec = 0; 580 } 581 582 /* 583 * timekeeping_init - Initializes the clocksource and common timekeeping values 584 */ 585 void __init timekeeping_init(void) 586 { 587 struct clocksource *clock; 588 unsigned long flags; 589 struct timespec now, boot; 590 591 read_persistent_clock(&now); 592 read_boot_clock(&boot); 593 594 seqlock_init(&timekeeper.lock); 595 596 ntp_init(); 597 598 write_seqlock_irqsave(&timekeeper.lock, flags); 599 clock = clocksource_default_clock(); 600 if (clock->enable) 601 clock->enable(clock); 602 timekeeper_setup_internals(clock); 603 604 timekeeper.xtime.tv_sec = now.tv_sec; 605 timekeeper.xtime.tv_nsec = now.tv_nsec; 606 timekeeper.raw_time.tv_sec = 0; 607 timekeeper.raw_time.tv_nsec = 0; 608 if (boot.tv_sec == 0 && boot.tv_nsec == 0) { 609 boot.tv_sec = timekeeper.xtime.tv_sec; 610 boot.tv_nsec = timekeeper.xtime.tv_nsec; 611 } 612 set_normalized_timespec(&timekeeper.wall_to_monotonic, 613 -boot.tv_sec, -boot.tv_nsec); 614 timekeeper.total_sleep_time.tv_sec = 0; 615 timekeeper.total_sleep_time.tv_nsec = 0; 616 write_sequnlock_irqrestore(&timekeeper.lock, flags); 617 } 618 619 /* time in seconds when suspend began */ 620 static struct timespec timekeeping_suspend_time; 621 622 /** 623 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 624 * @delta: pointer to a timespec delta value 625 * 626 * Takes a timespec offset measuring a suspend interval and properly 627 * adds the sleep offset to the timekeeping variables. 628 */ 629 static void __timekeeping_inject_sleeptime(struct timespec *delta) 630 { 631 if (!timespec_valid(delta)) { 632 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 633 "sleep delta value!\n"); 634 return; 635 } 636 637 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta); 638 timekeeper.wall_to_monotonic = 639 timespec_sub(timekeeper.wall_to_monotonic, *delta); 640 timekeeper.total_sleep_time = timespec_add( 641 timekeeper.total_sleep_time, *delta); 642 } 643 644 645 /** 646 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 647 * @delta: pointer to a timespec delta value 648 * 649 * This hook is for architectures that cannot support read_persistent_clock 650 * because their RTC/persistent clock is only accessible when irqs are enabled. 651 * 652 * This function should only be called by rtc_resume(), and allows 653 * a suspend offset to be injected into the timekeeping values. 654 */ 655 void timekeeping_inject_sleeptime(struct timespec *delta) 656 { 657 unsigned long flags; 658 struct timespec ts; 659 660 /* Make sure we don't set the clock twice */ 661 read_persistent_clock(&ts); 662 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) 663 return; 664 665 write_seqlock_irqsave(&timekeeper.lock, flags); 666 667 timekeeping_forward_now(); 668 669 __timekeeping_inject_sleeptime(delta); 670 671 timekeeping_update(true); 672 673 write_sequnlock_irqrestore(&timekeeper.lock, flags); 674 675 /* signal hrtimers about time change */ 676 clock_was_set(); 677 } 678 679 680 /** 681 * timekeeping_resume - Resumes the generic timekeeping subsystem. 682 * 683 * This is for the generic clocksource timekeeping. 684 * xtime/wall_to_monotonic/jiffies/etc are 685 * still managed by arch specific suspend/resume code. 686 */ 687 static void timekeeping_resume(void) 688 { 689 unsigned long flags; 690 struct timespec ts; 691 692 read_persistent_clock(&ts); 693 694 clocksource_resume(); 695 696 write_seqlock_irqsave(&timekeeper.lock, flags); 697 698 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 699 ts = timespec_sub(ts, timekeeping_suspend_time); 700 __timekeeping_inject_sleeptime(&ts); 701 } 702 /* re-base the last cycle value */ 703 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); 704 timekeeper.ntp_error = 0; 705 timekeeping_suspended = 0; 706 write_sequnlock_irqrestore(&timekeeper.lock, flags); 707 708 touch_softlockup_watchdog(); 709 710 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 711 712 /* Resume hrtimers */ 713 hrtimers_resume(); 714 } 715 716 static int timekeeping_suspend(void) 717 { 718 unsigned long flags; 719 struct timespec delta, delta_delta; 720 static struct timespec old_delta; 721 722 read_persistent_clock(&timekeeping_suspend_time); 723 724 write_seqlock_irqsave(&timekeeper.lock, flags); 725 timekeeping_forward_now(); 726 timekeeping_suspended = 1; 727 728 /* 729 * To avoid drift caused by repeated suspend/resumes, 730 * which each can add ~1 second drift error, 731 * try to compensate so the difference in system time 732 * and persistent_clock time stays close to constant. 733 */ 734 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time); 735 delta_delta = timespec_sub(delta, old_delta); 736 if (abs(delta_delta.tv_sec) >= 2) { 737 /* 738 * if delta_delta is too large, assume time correction 739 * has occured and set old_delta to the current delta. 740 */ 741 old_delta = delta; 742 } else { 743 /* Otherwise try to adjust old_system to compensate */ 744 timekeeping_suspend_time = 745 timespec_add(timekeeping_suspend_time, delta_delta); 746 } 747 write_sequnlock_irqrestore(&timekeeper.lock, flags); 748 749 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 750 clocksource_suspend(); 751 752 return 0; 753 } 754 755 /* sysfs resume/suspend bits for timekeeping */ 756 static struct syscore_ops timekeeping_syscore_ops = { 757 .resume = timekeeping_resume, 758 .suspend = timekeeping_suspend, 759 }; 760 761 static int __init timekeeping_init_ops(void) 762 { 763 register_syscore_ops(&timekeeping_syscore_ops); 764 return 0; 765 } 766 767 device_initcall(timekeeping_init_ops); 768 769 /* 770 * If the error is already larger, we look ahead even further 771 * to compensate for late or lost adjustments. 772 */ 773 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, 774 s64 *offset) 775 { 776 s64 tick_error, i; 777 u32 look_ahead, adj; 778 s32 error2, mult; 779 780 /* 781 * Use the current error value to determine how much to look ahead. 782 * The larger the error the slower we adjust for it to avoid problems 783 * with losing too many ticks, otherwise we would overadjust and 784 * produce an even larger error. The smaller the adjustment the 785 * faster we try to adjust for it, as lost ticks can do less harm 786 * here. This is tuned so that an error of about 1 msec is adjusted 787 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 788 */ 789 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 790 error2 = abs(error2); 791 for (look_ahead = 0; error2 > 0; look_ahead++) 792 error2 >>= 2; 793 794 /* 795 * Now calculate the error in (1 << look_ahead) ticks, but first 796 * remove the single look ahead already included in the error. 797 */ 798 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1); 799 tick_error -= timekeeper.xtime_interval >> 1; 800 error = ((error - tick_error) >> look_ahead) + tick_error; 801 802 /* Finally calculate the adjustment shift value. */ 803 i = *interval; 804 mult = 1; 805 if (error < 0) { 806 error = -error; 807 *interval = -*interval; 808 *offset = -*offset; 809 mult = -1; 810 } 811 for (adj = 0; error > i; adj++) 812 error >>= 1; 813 814 *interval <<= adj; 815 *offset <<= adj; 816 return mult << adj; 817 } 818 819 /* 820 * Adjust the multiplier to reduce the error value, 821 * this is optimized for the most common adjustments of -1,0,1, 822 * for other values we can do a bit more work. 823 */ 824 static void timekeeping_adjust(s64 offset) 825 { 826 s64 error, interval = timekeeper.cycle_interval; 827 int adj; 828 829 /* 830 * The point of this is to check if the error is greater then half 831 * an interval. 832 * 833 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 834 * 835 * Note we subtract one in the shift, so that error is really error*2. 836 * This "saves" dividing(shifting) interval twice, but keeps the 837 * (error > interval) comparison as still measuring if error is 838 * larger then half an interval. 839 * 840 * Note: It does not "save" on aggravation when reading the code. 841 */ 842 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 843 if (error > interval) { 844 /* 845 * We now divide error by 4(via shift), which checks if 846 * the error is greater then twice the interval. 847 * If it is greater, we need a bigadjust, if its smaller, 848 * we can adjust by 1. 849 */ 850 error >>= 2; 851 /* 852 * XXX - In update_wall_time, we round up to the next 853 * nanosecond, and store the amount rounded up into 854 * the error. This causes the likely below to be unlikely. 855 * 856 * The proper fix is to avoid rounding up by using 857 * the high precision timekeeper.xtime_nsec instead of 858 * xtime.tv_nsec everywhere. Fixing this will take some 859 * time. 860 */ 861 if (likely(error <= interval)) 862 adj = 1; 863 else 864 adj = timekeeping_bigadjust(error, &interval, &offset); 865 } else if (error < -interval) { 866 /* See comment above, this is just switched for the negative */ 867 error >>= 2; 868 if (likely(error >= -interval)) { 869 adj = -1; 870 interval = -interval; 871 offset = -offset; 872 } else 873 adj = timekeeping_bigadjust(error, &interval, &offset); 874 } else /* No adjustment needed */ 875 return; 876 877 WARN_ONCE(timekeeper.clock->maxadj && 878 (timekeeper.mult + adj > timekeeper.clock->mult + 879 timekeeper.clock->maxadj), 880 "Adjusting %s more then 11%% (%ld vs %ld)\n", 881 timekeeper.clock->name, (long)timekeeper.mult + adj, 882 (long)timekeeper.clock->mult + 883 timekeeper.clock->maxadj); 884 /* 885 * So the following can be confusing. 886 * 887 * To keep things simple, lets assume adj == 1 for now. 888 * 889 * When adj != 1, remember that the interval and offset values 890 * have been appropriately scaled so the math is the same. 891 * 892 * The basic idea here is that we're increasing the multiplier 893 * by one, this causes the xtime_interval to be incremented by 894 * one cycle_interval. This is because: 895 * xtime_interval = cycle_interval * mult 896 * So if mult is being incremented by one: 897 * xtime_interval = cycle_interval * (mult + 1) 898 * Its the same as: 899 * xtime_interval = (cycle_interval * mult) + cycle_interval 900 * Which can be shortened to: 901 * xtime_interval += cycle_interval 902 * 903 * So offset stores the non-accumulated cycles. Thus the current 904 * time (in shifted nanoseconds) is: 905 * now = (offset * adj) + xtime_nsec 906 * Now, even though we're adjusting the clock frequency, we have 907 * to keep time consistent. In other words, we can't jump back 908 * in time, and we also want to avoid jumping forward in time. 909 * 910 * So given the same offset value, we need the time to be the same 911 * both before and after the freq adjustment. 912 * now = (offset * adj_1) + xtime_nsec_1 913 * now = (offset * adj_2) + xtime_nsec_2 914 * So: 915 * (offset * adj_1) + xtime_nsec_1 = 916 * (offset * adj_2) + xtime_nsec_2 917 * And we know: 918 * adj_2 = adj_1 + 1 919 * So: 920 * (offset * adj_1) + xtime_nsec_1 = 921 * (offset * (adj_1+1)) + xtime_nsec_2 922 * (offset * adj_1) + xtime_nsec_1 = 923 * (offset * adj_1) + offset + xtime_nsec_2 924 * Canceling the sides: 925 * xtime_nsec_1 = offset + xtime_nsec_2 926 * Which gives us: 927 * xtime_nsec_2 = xtime_nsec_1 - offset 928 * Which simplfies to: 929 * xtime_nsec -= offset 930 * 931 * XXX - TODO: Doc ntp_error calculation. 932 */ 933 timekeeper.mult += adj; 934 timekeeper.xtime_interval += interval; 935 timekeeper.xtime_nsec -= offset; 936 timekeeper.ntp_error -= (interval - offset) << 937 timekeeper.ntp_error_shift; 938 } 939 940 941 /** 942 * logarithmic_accumulation - shifted accumulation of cycles 943 * 944 * This functions accumulates a shifted interval of cycles into 945 * into a shifted interval nanoseconds. Allows for O(log) accumulation 946 * loop. 947 * 948 * Returns the unconsumed cycles. 949 */ 950 static cycle_t logarithmic_accumulation(cycle_t offset, int shift) 951 { 952 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; 953 u64 raw_nsecs; 954 955 /* If the offset is smaller then a shifted interval, do nothing */ 956 if (offset < timekeeper.cycle_interval<<shift) 957 return offset; 958 959 /* Accumulate one shifted interval */ 960 offset -= timekeeper.cycle_interval << shift; 961 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; 962 963 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; 964 while (timekeeper.xtime_nsec >= nsecps) { 965 timekeeper.xtime_nsec -= nsecps; 966 timekeeper.xtime.tv_sec++; 967 second_overflow(); 968 } 969 970 /* Accumulate raw time */ 971 raw_nsecs = timekeeper.raw_interval << shift; 972 raw_nsecs += timekeeper.raw_time.tv_nsec; 973 if (raw_nsecs >= NSEC_PER_SEC) { 974 u64 raw_secs = raw_nsecs; 975 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 976 timekeeper.raw_time.tv_sec += raw_secs; 977 } 978 timekeeper.raw_time.tv_nsec = raw_nsecs; 979 980 /* Accumulate error between NTP and clock interval */ 981 timekeeper.ntp_error += ntp_tick_length() << shift; 982 timekeeper.ntp_error -= 983 (timekeeper.xtime_interval + timekeeper.xtime_remainder) << 984 (timekeeper.ntp_error_shift + shift); 985 986 return offset; 987 } 988 989 990 /** 991 * update_wall_time - Uses the current clocksource to increment the wall time 992 * 993 */ 994 static void update_wall_time(void) 995 { 996 struct clocksource *clock; 997 cycle_t offset; 998 int shift = 0, maxshift; 999 unsigned long flags; 1000 1001 write_seqlock_irqsave(&timekeeper.lock, flags); 1002 1003 /* Make sure we're fully resumed: */ 1004 if (unlikely(timekeeping_suspended)) 1005 goto out; 1006 1007 clock = timekeeper.clock; 1008 1009 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1010 offset = timekeeper.cycle_interval; 1011 #else 1012 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1013 #endif 1014 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec << 1015 timekeeper.shift; 1016 1017 /* 1018 * With NO_HZ we may have to accumulate many cycle_intervals 1019 * (think "ticks") worth of time at once. To do this efficiently, 1020 * we calculate the largest doubling multiple of cycle_intervals 1021 * that is smaller then the offset. We then accumulate that 1022 * chunk in one go, and then try to consume the next smaller 1023 * doubled multiple. 1024 */ 1025 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); 1026 shift = max(0, shift); 1027 /* Bound shift to one less then what overflows tick_length */ 1028 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1029 shift = min(shift, maxshift); 1030 while (offset >= timekeeper.cycle_interval) { 1031 offset = logarithmic_accumulation(offset, shift); 1032 if(offset < timekeeper.cycle_interval<<shift) 1033 shift--; 1034 } 1035 1036 /* correct the clock when NTP error is too big */ 1037 timekeeping_adjust(offset); 1038 1039 /* 1040 * Since in the loop above, we accumulate any amount of time 1041 * in xtime_nsec over a second into xtime.tv_sec, its possible for 1042 * xtime_nsec to be fairly small after the loop. Further, if we're 1043 * slightly speeding the clocksource up in timekeeping_adjust(), 1044 * its possible the required corrective factor to xtime_nsec could 1045 * cause it to underflow. 1046 * 1047 * Now, we cannot simply roll the accumulated second back, since 1048 * the NTP subsystem has been notified via second_overflow. So 1049 * instead we push xtime_nsec forward by the amount we underflowed, 1050 * and add that amount into the error. 1051 * 1052 * We'll correct this error next time through this function, when 1053 * xtime_nsec is not as small. 1054 */ 1055 if (unlikely((s64)timekeeper.xtime_nsec < 0)) { 1056 s64 neg = -(s64)timekeeper.xtime_nsec; 1057 timekeeper.xtime_nsec = 0; 1058 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; 1059 } 1060 1061 1062 /* 1063 * Store full nanoseconds into xtime after rounding it up and 1064 * add the remainder to the error difference. 1065 */ 1066 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >> 1067 timekeeper.shift) + 1; 1068 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec << 1069 timekeeper.shift; 1070 timekeeper.ntp_error += timekeeper.xtime_nsec << 1071 timekeeper.ntp_error_shift; 1072 1073 /* 1074 * Finally, make sure that after the rounding 1075 * xtime.tv_nsec isn't larger then NSEC_PER_SEC 1076 */ 1077 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) { 1078 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC; 1079 timekeeper.xtime.tv_sec++; 1080 second_overflow(); 1081 } 1082 1083 timekeeping_update(false); 1084 1085 out: 1086 write_sequnlock_irqrestore(&timekeeper.lock, flags); 1087 1088 } 1089 1090 /** 1091 * getboottime - Return the real time of system boot. 1092 * @ts: pointer to the timespec to be set 1093 * 1094 * Returns the wall-time of boot in a timespec. 1095 * 1096 * This is based on the wall_to_monotonic offset and the total suspend 1097 * time. Calls to settimeofday will affect the value returned (which 1098 * basically means that however wrong your real time clock is at boot time, 1099 * you get the right time here). 1100 */ 1101 void getboottime(struct timespec *ts) 1102 { 1103 struct timespec boottime = { 1104 .tv_sec = timekeeper.wall_to_monotonic.tv_sec + 1105 timekeeper.total_sleep_time.tv_sec, 1106 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec + 1107 timekeeper.total_sleep_time.tv_nsec 1108 }; 1109 1110 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1111 } 1112 EXPORT_SYMBOL_GPL(getboottime); 1113 1114 1115 /** 1116 * get_monotonic_boottime - Returns monotonic time since boot 1117 * @ts: pointer to the timespec to be set 1118 * 1119 * Returns the monotonic time since boot in a timespec. 1120 * 1121 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1122 * includes the time spent in suspend. 1123 */ 1124 void get_monotonic_boottime(struct timespec *ts) 1125 { 1126 struct timespec tomono, sleep; 1127 unsigned int seq; 1128 s64 nsecs; 1129 1130 WARN_ON(timekeeping_suspended); 1131 1132 do { 1133 seq = read_seqbegin(&timekeeper.lock); 1134 *ts = timekeeper.xtime; 1135 tomono = timekeeper.wall_to_monotonic; 1136 sleep = timekeeper.total_sleep_time; 1137 nsecs = timekeeping_get_ns(); 1138 1139 } while (read_seqretry(&timekeeper.lock, seq)); 1140 1141 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, 1142 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs); 1143 } 1144 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1145 1146 /** 1147 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1148 * 1149 * Returns the monotonic time since boot in a ktime 1150 * 1151 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1152 * includes the time spent in suspend. 1153 */ 1154 ktime_t ktime_get_boottime(void) 1155 { 1156 struct timespec ts; 1157 1158 get_monotonic_boottime(&ts); 1159 return timespec_to_ktime(ts); 1160 } 1161 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1162 1163 /** 1164 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1165 * @ts: pointer to the timespec to be converted 1166 */ 1167 void monotonic_to_bootbased(struct timespec *ts) 1168 { 1169 *ts = timespec_add(*ts, timekeeper.total_sleep_time); 1170 } 1171 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1172 1173 unsigned long get_seconds(void) 1174 { 1175 return timekeeper.xtime.tv_sec; 1176 } 1177 EXPORT_SYMBOL(get_seconds); 1178 1179 struct timespec __current_kernel_time(void) 1180 { 1181 return timekeeper.xtime; 1182 } 1183 1184 struct timespec current_kernel_time(void) 1185 { 1186 struct timespec now; 1187 unsigned long seq; 1188 1189 do { 1190 seq = read_seqbegin(&timekeeper.lock); 1191 1192 now = timekeeper.xtime; 1193 } while (read_seqretry(&timekeeper.lock, seq)); 1194 1195 return now; 1196 } 1197 EXPORT_SYMBOL(current_kernel_time); 1198 1199 struct timespec get_monotonic_coarse(void) 1200 { 1201 struct timespec now, mono; 1202 unsigned long seq; 1203 1204 do { 1205 seq = read_seqbegin(&timekeeper.lock); 1206 1207 now = timekeeper.xtime; 1208 mono = timekeeper.wall_to_monotonic; 1209 } while (read_seqretry(&timekeeper.lock, seq)); 1210 1211 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1212 now.tv_nsec + mono.tv_nsec); 1213 return now; 1214 } 1215 1216 /* 1217 * The 64-bit jiffies value is not atomic - you MUST NOT read it 1218 * without sampling the sequence number in xtime_lock. 1219 * jiffies is defined in the linker script... 1220 */ 1221 void do_timer(unsigned long ticks) 1222 { 1223 jiffies_64 += ticks; 1224 update_wall_time(); 1225 calc_global_load(ticks); 1226 } 1227 1228 /** 1229 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1230 * and sleep offsets. 1231 * @xtim: pointer to timespec to be set with xtime 1232 * @wtom: pointer to timespec to be set with wall_to_monotonic 1233 * @sleep: pointer to timespec to be set with time in suspend 1234 */ 1235 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1236 struct timespec *wtom, struct timespec *sleep) 1237 { 1238 unsigned long seq; 1239 1240 do { 1241 seq = read_seqbegin(&timekeeper.lock); 1242 *xtim = timekeeper.xtime; 1243 *wtom = timekeeper.wall_to_monotonic; 1244 *sleep = timekeeper.total_sleep_time; 1245 } while (read_seqretry(&timekeeper.lock, seq)); 1246 } 1247 1248 /** 1249 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1250 */ 1251 ktime_t ktime_get_monotonic_offset(void) 1252 { 1253 unsigned long seq; 1254 struct timespec wtom; 1255 1256 do { 1257 seq = read_seqbegin(&timekeeper.lock); 1258 wtom = timekeeper.wall_to_monotonic; 1259 } while (read_seqretry(&timekeeper.lock, seq)); 1260 1261 return timespec_to_ktime(wtom); 1262 } 1263 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1264 1265 1266 /** 1267 * xtime_update() - advances the timekeeping infrastructure 1268 * @ticks: number of ticks, that have elapsed since the last call. 1269 * 1270 * Must be called with interrupts disabled. 1271 */ 1272 void xtime_update(unsigned long ticks) 1273 { 1274 write_seqlock(&xtime_lock); 1275 do_timer(ticks); 1276 write_sequnlock(&xtime_lock); 1277 } 1278