xref: /linux/kernel/time/timekeeping.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* NTP adjusted clock multiplier */
29 	u32	mult;
30 	/* The shift value of the current clocksource. */
31 	int	shift;
32 
33 	/* Number of clock cycles in one NTP interval. */
34 	cycle_t cycle_interval;
35 	/* Number of clock shifted nano seconds in one NTP interval. */
36 	u64	xtime_interval;
37 	/* shifted nano seconds left over when rounding cycle_interval */
38 	s64	xtime_remainder;
39 	/* Raw nano seconds accumulated per NTP interval. */
40 	u32	raw_interval;
41 
42 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 	u64	xtime_nsec;
44 	/* Difference between accumulated time and NTP time in ntp
45 	 * shifted nano seconds. */
46 	s64	ntp_error;
47 	/* Shift conversion between clock shifted nano seconds and
48 	 * ntp shifted nano seconds. */
49 	int	ntp_error_shift;
50 
51 	/* The current time */
52 	struct timespec xtime;
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec wall_to_monotonic;
68 	/* time spent in suspend */
69 	struct timespec total_sleep_time;
70 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 	struct timespec raw_time;
72 
73 	/* Seqlock for all timekeeper values */
74 	seqlock_t lock;
75 };
76 
77 static struct timekeeper timekeeper;
78 
79 /*
80  * This read-write spinlock protects us from races in SMP while
81  * playing with xtime.
82  */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
84 
85 
86 /* flag for if timekeeping is suspended */
87 int __read_mostly timekeeping_suspended;
88 
89 
90 
91 /**
92  * timekeeper_setup_internals - Set up internals to use clocksource clock.
93  *
94  * @clock:		Pointer to clocksource.
95  *
96  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
97  * pair and interval request.
98  *
99  * Unless you're the timekeeping code, you should not be using this!
100  */
101 static void timekeeper_setup_internals(struct clocksource *clock)
102 {
103 	cycle_t interval;
104 	u64 tmp, ntpinterval;
105 
106 	timekeeper.clock = clock;
107 	clock->cycle_last = clock->read(clock);
108 
109 	/* Do the ns -> cycle conversion first, using original mult */
110 	tmp = NTP_INTERVAL_LENGTH;
111 	tmp <<= clock->shift;
112 	ntpinterval = tmp;
113 	tmp += clock->mult/2;
114 	do_div(tmp, clock->mult);
115 	if (tmp == 0)
116 		tmp = 1;
117 
118 	interval = (cycle_t) tmp;
119 	timekeeper.cycle_interval = interval;
120 
121 	/* Go back from cycles -> shifted ns */
122 	timekeeper.xtime_interval = (u64) interval * clock->mult;
123 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
124 	timekeeper.raw_interval =
125 		((u64) interval * clock->mult) >> clock->shift;
126 
127 	timekeeper.xtime_nsec = 0;
128 	timekeeper.shift = clock->shift;
129 
130 	timekeeper.ntp_error = 0;
131 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
132 
133 	/*
134 	 * The timekeeper keeps its own mult values for the currently
135 	 * active clocksource. These value will be adjusted via NTP
136 	 * to counteract clock drifting.
137 	 */
138 	timekeeper.mult = clock->mult;
139 }
140 
141 /* Timekeeper helper functions. */
142 static inline s64 timekeeping_get_ns(void)
143 {
144 	cycle_t cycle_now, cycle_delta;
145 	struct clocksource *clock;
146 
147 	/* read clocksource: */
148 	clock = timekeeper.clock;
149 	cycle_now = clock->read(clock);
150 
151 	/* calculate the delta since the last update_wall_time: */
152 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153 
154 	/* return delta convert to nanoseconds using ntp adjusted mult. */
155 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
156 				  timekeeper.shift);
157 }
158 
159 static inline s64 timekeeping_get_ns_raw(void)
160 {
161 	cycle_t cycle_now, cycle_delta;
162 	struct clocksource *clock;
163 
164 	/* read clocksource: */
165 	clock = timekeeper.clock;
166 	cycle_now = clock->read(clock);
167 
168 	/* calculate the delta since the last update_wall_time: */
169 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170 
171 	/* return delta convert to nanoseconds. */
172 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173 }
174 
175 /* must hold write on timekeeper.lock */
176 static void timekeeping_update(bool clearntp)
177 {
178 	if (clearntp) {
179 		timekeeper.ntp_error = 0;
180 		ntp_clear();
181 	}
182 	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
183 			 timekeeper.clock, timekeeper.mult);
184 }
185 
186 
187 void timekeeping_leap_insert(int leapsecond)
188 {
189 	unsigned long flags;
190 
191 	write_seqlock_irqsave(&timekeeper.lock, flags);
192 	timekeeper.xtime.tv_sec += leapsecond;
193 	timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
194 	timekeeping_update(false);
195 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
196 
197 }
198 
199 /**
200  * timekeeping_forward_now - update clock to the current time
201  *
202  * Forward the current clock to update its state since the last call to
203  * update_wall_time(). This is useful before significant clock changes,
204  * as it avoids having to deal with this time offset explicitly.
205  */
206 static void timekeeping_forward_now(void)
207 {
208 	cycle_t cycle_now, cycle_delta;
209 	struct clocksource *clock;
210 	s64 nsec;
211 
212 	clock = timekeeper.clock;
213 	cycle_now = clock->read(clock);
214 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
215 	clock->cycle_last = cycle_now;
216 
217 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
218 				  timekeeper.shift);
219 
220 	/* If arch requires, add in gettimeoffset() */
221 	nsec += arch_gettimeoffset();
222 
223 	timespec_add_ns(&timekeeper.xtime, nsec);
224 
225 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
226 	timespec_add_ns(&timekeeper.raw_time, nsec);
227 }
228 
229 /**
230  * getnstimeofday - Returns the time of day in a timespec
231  * @ts:		pointer to the timespec to be set
232  *
233  * Returns the time of day in a timespec.
234  */
235 void getnstimeofday(struct timespec *ts)
236 {
237 	unsigned long seq;
238 	s64 nsecs;
239 
240 	WARN_ON(timekeeping_suspended);
241 
242 	do {
243 		seq = read_seqbegin(&timekeeper.lock);
244 
245 		*ts = timekeeper.xtime;
246 		nsecs = timekeeping_get_ns();
247 
248 		/* If arch requires, add in gettimeoffset() */
249 		nsecs += arch_gettimeoffset();
250 
251 	} while (read_seqretry(&timekeeper.lock, seq));
252 
253 	timespec_add_ns(ts, nsecs);
254 }
255 
256 EXPORT_SYMBOL(getnstimeofday);
257 
258 ktime_t ktime_get(void)
259 {
260 	unsigned int seq;
261 	s64 secs, nsecs;
262 
263 	WARN_ON(timekeeping_suspended);
264 
265 	do {
266 		seq = read_seqbegin(&timekeeper.lock);
267 		secs = timekeeper.xtime.tv_sec +
268 				timekeeper.wall_to_monotonic.tv_sec;
269 		nsecs = timekeeper.xtime.tv_nsec +
270 				timekeeper.wall_to_monotonic.tv_nsec;
271 		nsecs += timekeeping_get_ns();
272 		/* If arch requires, add in gettimeoffset() */
273 		nsecs += arch_gettimeoffset();
274 
275 	} while (read_seqretry(&timekeeper.lock, seq));
276 	/*
277 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
278 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
279 	 */
280 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
281 }
282 EXPORT_SYMBOL_GPL(ktime_get);
283 
284 /**
285  * ktime_get_ts - get the monotonic clock in timespec format
286  * @ts:		pointer to timespec variable
287  *
288  * The function calculates the monotonic clock from the realtime
289  * clock and the wall_to_monotonic offset and stores the result
290  * in normalized timespec format in the variable pointed to by @ts.
291  */
292 void ktime_get_ts(struct timespec *ts)
293 {
294 	struct timespec tomono;
295 	unsigned int seq;
296 	s64 nsecs;
297 
298 	WARN_ON(timekeeping_suspended);
299 
300 	do {
301 		seq = read_seqbegin(&timekeeper.lock);
302 		*ts = timekeeper.xtime;
303 		tomono = timekeeper.wall_to_monotonic;
304 		nsecs = timekeeping_get_ns();
305 		/* If arch requires, add in gettimeoffset() */
306 		nsecs += arch_gettimeoffset();
307 
308 	} while (read_seqretry(&timekeeper.lock, seq));
309 
310 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
311 				ts->tv_nsec + tomono.tv_nsec + nsecs);
312 }
313 EXPORT_SYMBOL_GPL(ktime_get_ts);
314 
315 #ifdef CONFIG_NTP_PPS
316 
317 /**
318  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
319  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
320  * @ts_real:	pointer to the timespec to be set to the time of day
321  *
322  * This function reads both the time of day and raw monotonic time at the
323  * same time atomically and stores the resulting timestamps in timespec
324  * format.
325  */
326 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
327 {
328 	unsigned long seq;
329 	s64 nsecs_raw, nsecs_real;
330 
331 	WARN_ON_ONCE(timekeeping_suspended);
332 
333 	do {
334 		u32 arch_offset;
335 
336 		seq = read_seqbegin(&timekeeper.lock);
337 
338 		*ts_raw = timekeeper.raw_time;
339 		*ts_real = timekeeper.xtime;
340 
341 		nsecs_raw = timekeeping_get_ns_raw();
342 		nsecs_real = timekeeping_get_ns();
343 
344 		/* If arch requires, add in gettimeoffset() */
345 		arch_offset = arch_gettimeoffset();
346 		nsecs_raw += arch_offset;
347 		nsecs_real += arch_offset;
348 
349 	} while (read_seqretry(&timekeeper.lock, seq));
350 
351 	timespec_add_ns(ts_raw, nsecs_raw);
352 	timespec_add_ns(ts_real, nsecs_real);
353 }
354 EXPORT_SYMBOL(getnstime_raw_and_real);
355 
356 #endif /* CONFIG_NTP_PPS */
357 
358 /**
359  * do_gettimeofday - Returns the time of day in a timeval
360  * @tv:		pointer to the timeval to be set
361  *
362  * NOTE: Users should be converted to using getnstimeofday()
363  */
364 void do_gettimeofday(struct timeval *tv)
365 {
366 	struct timespec now;
367 
368 	getnstimeofday(&now);
369 	tv->tv_sec = now.tv_sec;
370 	tv->tv_usec = now.tv_nsec/1000;
371 }
372 
373 EXPORT_SYMBOL(do_gettimeofday);
374 /**
375  * do_settimeofday - Sets the time of day
376  * @tv:		pointer to the timespec variable containing the new time
377  *
378  * Sets the time of day to the new time and update NTP and notify hrtimers
379  */
380 int do_settimeofday(const struct timespec *tv)
381 {
382 	struct timespec ts_delta;
383 	unsigned long flags;
384 
385 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
386 		return -EINVAL;
387 
388 	write_seqlock_irqsave(&timekeeper.lock, flags);
389 
390 	timekeeping_forward_now();
391 
392 	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
393 	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
394 	timekeeper.wall_to_monotonic =
395 			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
396 
397 	timekeeper.xtime = *tv;
398 	timekeeping_update(true);
399 
400 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
401 
402 	/* signal hrtimers about time change */
403 	clock_was_set();
404 
405 	return 0;
406 }
407 
408 EXPORT_SYMBOL(do_settimeofday);
409 
410 
411 /**
412  * timekeeping_inject_offset - Adds or subtracts from the current time.
413  * @tv:		pointer to the timespec variable containing the offset
414  *
415  * Adds or subtracts an offset value from the current time.
416  */
417 int timekeeping_inject_offset(struct timespec *ts)
418 {
419 	unsigned long flags;
420 
421 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
422 		return -EINVAL;
423 
424 	write_seqlock_irqsave(&timekeeper.lock, flags);
425 
426 	timekeeping_forward_now();
427 
428 	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
429 	timekeeper.wall_to_monotonic =
430 				timespec_sub(timekeeper.wall_to_monotonic, *ts);
431 
432 	timekeeping_update(true);
433 
434 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
435 
436 	/* signal hrtimers about time change */
437 	clock_was_set();
438 
439 	return 0;
440 }
441 EXPORT_SYMBOL(timekeeping_inject_offset);
442 
443 /**
444  * change_clocksource - Swaps clocksources if a new one is available
445  *
446  * Accumulates current time interval and initializes new clocksource
447  */
448 static int change_clocksource(void *data)
449 {
450 	struct clocksource *new, *old;
451 
452 	new = (struct clocksource *) data;
453 
454 	timekeeping_forward_now();
455 	if (!new->enable || new->enable(new) == 0) {
456 		old = timekeeper.clock;
457 		timekeeper_setup_internals(new);
458 		if (old->disable)
459 			old->disable(old);
460 	}
461 	return 0;
462 }
463 
464 /**
465  * timekeeping_notify - Install a new clock source
466  * @clock:		pointer to the clock source
467  *
468  * This function is called from clocksource.c after a new, better clock
469  * source has been registered. The caller holds the clocksource_mutex.
470  */
471 void timekeeping_notify(struct clocksource *clock)
472 {
473 	if (timekeeper.clock == clock)
474 		return;
475 	stop_machine(change_clocksource, clock, NULL);
476 	tick_clock_notify();
477 }
478 
479 /**
480  * ktime_get_real - get the real (wall-) time in ktime_t format
481  *
482  * returns the time in ktime_t format
483  */
484 ktime_t ktime_get_real(void)
485 {
486 	struct timespec now;
487 
488 	getnstimeofday(&now);
489 
490 	return timespec_to_ktime(now);
491 }
492 EXPORT_SYMBOL_GPL(ktime_get_real);
493 
494 /**
495  * getrawmonotonic - Returns the raw monotonic time in a timespec
496  * @ts:		pointer to the timespec to be set
497  *
498  * Returns the raw monotonic time (completely un-modified by ntp)
499  */
500 void getrawmonotonic(struct timespec *ts)
501 {
502 	unsigned long seq;
503 	s64 nsecs;
504 
505 	do {
506 		seq = read_seqbegin(&timekeeper.lock);
507 		nsecs = timekeeping_get_ns_raw();
508 		*ts = timekeeper.raw_time;
509 
510 	} while (read_seqretry(&timekeeper.lock, seq));
511 
512 	timespec_add_ns(ts, nsecs);
513 }
514 EXPORT_SYMBOL(getrawmonotonic);
515 
516 
517 /**
518  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
519  */
520 int timekeeping_valid_for_hres(void)
521 {
522 	unsigned long seq;
523 	int ret;
524 
525 	do {
526 		seq = read_seqbegin(&timekeeper.lock);
527 
528 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
529 
530 	} while (read_seqretry(&timekeeper.lock, seq));
531 
532 	return ret;
533 }
534 
535 /**
536  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
537  */
538 u64 timekeeping_max_deferment(void)
539 {
540 	unsigned long seq;
541 	u64 ret;
542 	do {
543 		seq = read_seqbegin(&timekeeper.lock);
544 
545 		ret = timekeeper.clock->max_idle_ns;
546 
547 	} while (read_seqretry(&timekeeper.lock, seq));
548 
549 	return ret;
550 }
551 
552 /**
553  * read_persistent_clock -  Return time from the persistent clock.
554  *
555  * Weak dummy function for arches that do not yet support it.
556  * Reads the time from the battery backed persistent clock.
557  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
558  *
559  *  XXX - Do be sure to remove it once all arches implement it.
560  */
561 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
562 {
563 	ts->tv_sec = 0;
564 	ts->tv_nsec = 0;
565 }
566 
567 /**
568  * read_boot_clock -  Return time of the system start.
569  *
570  * Weak dummy function for arches that do not yet support it.
571  * Function to read the exact time the system has been started.
572  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
573  *
574  *  XXX - Do be sure to remove it once all arches implement it.
575  */
576 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
577 {
578 	ts->tv_sec = 0;
579 	ts->tv_nsec = 0;
580 }
581 
582 /*
583  * timekeeping_init - Initializes the clocksource and common timekeeping values
584  */
585 void __init timekeeping_init(void)
586 {
587 	struct clocksource *clock;
588 	unsigned long flags;
589 	struct timespec now, boot;
590 
591 	read_persistent_clock(&now);
592 	read_boot_clock(&boot);
593 
594 	seqlock_init(&timekeeper.lock);
595 
596 	ntp_init();
597 
598 	write_seqlock_irqsave(&timekeeper.lock, flags);
599 	clock = clocksource_default_clock();
600 	if (clock->enable)
601 		clock->enable(clock);
602 	timekeeper_setup_internals(clock);
603 
604 	timekeeper.xtime.tv_sec = now.tv_sec;
605 	timekeeper.xtime.tv_nsec = now.tv_nsec;
606 	timekeeper.raw_time.tv_sec = 0;
607 	timekeeper.raw_time.tv_nsec = 0;
608 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
609 		boot.tv_sec = timekeeper.xtime.tv_sec;
610 		boot.tv_nsec = timekeeper.xtime.tv_nsec;
611 	}
612 	set_normalized_timespec(&timekeeper.wall_to_monotonic,
613 				-boot.tv_sec, -boot.tv_nsec);
614 	timekeeper.total_sleep_time.tv_sec = 0;
615 	timekeeper.total_sleep_time.tv_nsec = 0;
616 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
617 }
618 
619 /* time in seconds when suspend began */
620 static struct timespec timekeeping_suspend_time;
621 
622 /**
623  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
624  * @delta: pointer to a timespec delta value
625  *
626  * Takes a timespec offset measuring a suspend interval and properly
627  * adds the sleep offset to the timekeeping variables.
628  */
629 static void __timekeeping_inject_sleeptime(struct timespec *delta)
630 {
631 	if (!timespec_valid(delta)) {
632 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
633 					"sleep delta value!\n");
634 		return;
635 	}
636 
637 	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
638 	timekeeper.wall_to_monotonic =
639 			timespec_sub(timekeeper.wall_to_monotonic, *delta);
640 	timekeeper.total_sleep_time = timespec_add(
641 					timekeeper.total_sleep_time, *delta);
642 }
643 
644 
645 /**
646  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
647  * @delta: pointer to a timespec delta value
648  *
649  * This hook is for architectures that cannot support read_persistent_clock
650  * because their RTC/persistent clock is only accessible when irqs are enabled.
651  *
652  * This function should only be called by rtc_resume(), and allows
653  * a suspend offset to be injected into the timekeeping values.
654  */
655 void timekeeping_inject_sleeptime(struct timespec *delta)
656 {
657 	unsigned long flags;
658 	struct timespec ts;
659 
660 	/* Make sure we don't set the clock twice */
661 	read_persistent_clock(&ts);
662 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
663 		return;
664 
665 	write_seqlock_irqsave(&timekeeper.lock, flags);
666 
667 	timekeeping_forward_now();
668 
669 	__timekeeping_inject_sleeptime(delta);
670 
671 	timekeeping_update(true);
672 
673 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
674 
675 	/* signal hrtimers about time change */
676 	clock_was_set();
677 }
678 
679 
680 /**
681  * timekeeping_resume - Resumes the generic timekeeping subsystem.
682  *
683  * This is for the generic clocksource timekeeping.
684  * xtime/wall_to_monotonic/jiffies/etc are
685  * still managed by arch specific suspend/resume code.
686  */
687 static void timekeeping_resume(void)
688 {
689 	unsigned long flags;
690 	struct timespec ts;
691 
692 	read_persistent_clock(&ts);
693 
694 	clocksource_resume();
695 
696 	write_seqlock_irqsave(&timekeeper.lock, flags);
697 
698 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
699 		ts = timespec_sub(ts, timekeeping_suspend_time);
700 		__timekeeping_inject_sleeptime(&ts);
701 	}
702 	/* re-base the last cycle value */
703 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
704 	timekeeper.ntp_error = 0;
705 	timekeeping_suspended = 0;
706 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
707 
708 	touch_softlockup_watchdog();
709 
710 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
711 
712 	/* Resume hrtimers */
713 	hrtimers_resume();
714 }
715 
716 static int timekeeping_suspend(void)
717 {
718 	unsigned long flags;
719 	struct timespec		delta, delta_delta;
720 	static struct timespec	old_delta;
721 
722 	read_persistent_clock(&timekeeping_suspend_time);
723 
724 	write_seqlock_irqsave(&timekeeper.lock, flags);
725 	timekeeping_forward_now();
726 	timekeeping_suspended = 1;
727 
728 	/*
729 	 * To avoid drift caused by repeated suspend/resumes,
730 	 * which each can add ~1 second drift error,
731 	 * try to compensate so the difference in system time
732 	 * and persistent_clock time stays close to constant.
733 	 */
734 	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
735 	delta_delta = timespec_sub(delta, old_delta);
736 	if (abs(delta_delta.tv_sec)  >= 2) {
737 		/*
738 		 * if delta_delta is too large, assume time correction
739 		 * has occured and set old_delta to the current delta.
740 		 */
741 		old_delta = delta;
742 	} else {
743 		/* Otherwise try to adjust old_system to compensate */
744 		timekeeping_suspend_time =
745 			timespec_add(timekeeping_suspend_time, delta_delta);
746 	}
747 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
748 
749 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
750 	clocksource_suspend();
751 
752 	return 0;
753 }
754 
755 /* sysfs resume/suspend bits for timekeeping */
756 static struct syscore_ops timekeeping_syscore_ops = {
757 	.resume		= timekeeping_resume,
758 	.suspend	= timekeeping_suspend,
759 };
760 
761 static int __init timekeeping_init_ops(void)
762 {
763 	register_syscore_ops(&timekeeping_syscore_ops);
764 	return 0;
765 }
766 
767 device_initcall(timekeeping_init_ops);
768 
769 /*
770  * If the error is already larger, we look ahead even further
771  * to compensate for late or lost adjustments.
772  */
773 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
774 						 s64 *offset)
775 {
776 	s64 tick_error, i;
777 	u32 look_ahead, adj;
778 	s32 error2, mult;
779 
780 	/*
781 	 * Use the current error value to determine how much to look ahead.
782 	 * The larger the error the slower we adjust for it to avoid problems
783 	 * with losing too many ticks, otherwise we would overadjust and
784 	 * produce an even larger error.  The smaller the adjustment the
785 	 * faster we try to adjust for it, as lost ticks can do less harm
786 	 * here.  This is tuned so that an error of about 1 msec is adjusted
787 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
788 	 */
789 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
790 	error2 = abs(error2);
791 	for (look_ahead = 0; error2 > 0; look_ahead++)
792 		error2 >>= 2;
793 
794 	/*
795 	 * Now calculate the error in (1 << look_ahead) ticks, but first
796 	 * remove the single look ahead already included in the error.
797 	 */
798 	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
799 	tick_error -= timekeeper.xtime_interval >> 1;
800 	error = ((error - tick_error) >> look_ahead) + tick_error;
801 
802 	/* Finally calculate the adjustment shift value.  */
803 	i = *interval;
804 	mult = 1;
805 	if (error < 0) {
806 		error = -error;
807 		*interval = -*interval;
808 		*offset = -*offset;
809 		mult = -1;
810 	}
811 	for (adj = 0; error > i; adj++)
812 		error >>= 1;
813 
814 	*interval <<= adj;
815 	*offset <<= adj;
816 	return mult << adj;
817 }
818 
819 /*
820  * Adjust the multiplier to reduce the error value,
821  * this is optimized for the most common adjustments of -1,0,1,
822  * for other values we can do a bit more work.
823  */
824 static void timekeeping_adjust(s64 offset)
825 {
826 	s64 error, interval = timekeeper.cycle_interval;
827 	int adj;
828 
829 	/*
830 	 * The point of this is to check if the error is greater then half
831 	 * an interval.
832 	 *
833 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
834 	 *
835 	 * Note we subtract one in the shift, so that error is really error*2.
836 	 * This "saves" dividing(shifting) interval twice, but keeps the
837 	 * (error > interval) comparison as still measuring if error is
838 	 * larger then half an interval.
839 	 *
840 	 * Note: It does not "save" on aggravation when reading the code.
841 	 */
842 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
843 	if (error > interval) {
844 		/*
845 		 * We now divide error by 4(via shift), which checks if
846 		 * the error is greater then twice the interval.
847 		 * If it is greater, we need a bigadjust, if its smaller,
848 		 * we can adjust by 1.
849 		 */
850 		error >>= 2;
851 		/*
852 		 * XXX - In update_wall_time, we round up to the next
853 		 * nanosecond, and store the amount rounded up into
854 		 * the error. This causes the likely below to be unlikely.
855 		 *
856 		 * The proper fix is to avoid rounding up by using
857 		 * the high precision timekeeper.xtime_nsec instead of
858 		 * xtime.tv_nsec everywhere. Fixing this will take some
859 		 * time.
860 		 */
861 		if (likely(error <= interval))
862 			adj = 1;
863 		else
864 			adj = timekeeping_bigadjust(error, &interval, &offset);
865 	} else if (error < -interval) {
866 		/* See comment above, this is just switched for the negative */
867 		error >>= 2;
868 		if (likely(error >= -interval)) {
869 			adj = -1;
870 			interval = -interval;
871 			offset = -offset;
872 		} else
873 			adj = timekeeping_bigadjust(error, &interval, &offset);
874 	} else /* No adjustment needed */
875 		return;
876 
877 	WARN_ONCE(timekeeper.clock->maxadj &&
878 			(timekeeper.mult + adj > timekeeper.clock->mult +
879 						timekeeper.clock->maxadj),
880 			"Adjusting %s more then 11%% (%ld vs %ld)\n",
881 			timekeeper.clock->name, (long)timekeeper.mult + adj,
882 			(long)timekeeper.clock->mult +
883 				timekeeper.clock->maxadj);
884 	/*
885 	 * So the following can be confusing.
886 	 *
887 	 * To keep things simple, lets assume adj == 1 for now.
888 	 *
889 	 * When adj != 1, remember that the interval and offset values
890 	 * have been appropriately scaled so the math is the same.
891 	 *
892 	 * The basic idea here is that we're increasing the multiplier
893 	 * by one, this causes the xtime_interval to be incremented by
894 	 * one cycle_interval. This is because:
895 	 *	xtime_interval = cycle_interval * mult
896 	 * So if mult is being incremented by one:
897 	 *	xtime_interval = cycle_interval * (mult + 1)
898 	 * Its the same as:
899 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
900 	 * Which can be shortened to:
901 	 *	xtime_interval += cycle_interval
902 	 *
903 	 * So offset stores the non-accumulated cycles. Thus the current
904 	 * time (in shifted nanoseconds) is:
905 	 *	now = (offset * adj) + xtime_nsec
906 	 * Now, even though we're adjusting the clock frequency, we have
907 	 * to keep time consistent. In other words, we can't jump back
908 	 * in time, and we also want to avoid jumping forward in time.
909 	 *
910 	 * So given the same offset value, we need the time to be the same
911 	 * both before and after the freq adjustment.
912 	 *	now = (offset * adj_1) + xtime_nsec_1
913 	 *	now = (offset * adj_2) + xtime_nsec_2
914 	 * So:
915 	 *	(offset * adj_1) + xtime_nsec_1 =
916 	 *		(offset * adj_2) + xtime_nsec_2
917 	 * And we know:
918 	 *	adj_2 = adj_1 + 1
919 	 * So:
920 	 *	(offset * adj_1) + xtime_nsec_1 =
921 	 *		(offset * (adj_1+1)) + xtime_nsec_2
922 	 *	(offset * adj_1) + xtime_nsec_1 =
923 	 *		(offset * adj_1) + offset + xtime_nsec_2
924 	 * Canceling the sides:
925 	 *	xtime_nsec_1 = offset + xtime_nsec_2
926 	 * Which gives us:
927 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
928 	 * Which simplfies to:
929 	 *	xtime_nsec -= offset
930 	 *
931 	 * XXX - TODO: Doc ntp_error calculation.
932 	 */
933 	timekeeper.mult += adj;
934 	timekeeper.xtime_interval += interval;
935 	timekeeper.xtime_nsec -= offset;
936 	timekeeper.ntp_error -= (interval - offset) <<
937 				timekeeper.ntp_error_shift;
938 }
939 
940 
941 /**
942  * logarithmic_accumulation - shifted accumulation of cycles
943  *
944  * This functions accumulates a shifted interval of cycles into
945  * into a shifted interval nanoseconds. Allows for O(log) accumulation
946  * loop.
947  *
948  * Returns the unconsumed cycles.
949  */
950 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
951 {
952 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
953 	u64 raw_nsecs;
954 
955 	/* If the offset is smaller then a shifted interval, do nothing */
956 	if (offset < timekeeper.cycle_interval<<shift)
957 		return offset;
958 
959 	/* Accumulate one shifted interval */
960 	offset -= timekeeper.cycle_interval << shift;
961 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
962 
963 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
964 	while (timekeeper.xtime_nsec >= nsecps) {
965 		timekeeper.xtime_nsec -= nsecps;
966 		timekeeper.xtime.tv_sec++;
967 		second_overflow();
968 	}
969 
970 	/* Accumulate raw time */
971 	raw_nsecs = timekeeper.raw_interval << shift;
972 	raw_nsecs += timekeeper.raw_time.tv_nsec;
973 	if (raw_nsecs >= NSEC_PER_SEC) {
974 		u64 raw_secs = raw_nsecs;
975 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
976 		timekeeper.raw_time.tv_sec += raw_secs;
977 	}
978 	timekeeper.raw_time.tv_nsec = raw_nsecs;
979 
980 	/* Accumulate error between NTP and clock interval */
981 	timekeeper.ntp_error += ntp_tick_length() << shift;
982 	timekeeper.ntp_error -=
983 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
984 				(timekeeper.ntp_error_shift + shift);
985 
986 	return offset;
987 }
988 
989 
990 /**
991  * update_wall_time - Uses the current clocksource to increment the wall time
992  *
993  */
994 static void update_wall_time(void)
995 {
996 	struct clocksource *clock;
997 	cycle_t offset;
998 	int shift = 0, maxshift;
999 	unsigned long flags;
1000 
1001 	write_seqlock_irqsave(&timekeeper.lock, flags);
1002 
1003 	/* Make sure we're fully resumed: */
1004 	if (unlikely(timekeeping_suspended))
1005 		goto out;
1006 
1007 	clock = timekeeper.clock;
1008 
1009 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1010 	offset = timekeeper.cycle_interval;
1011 #else
1012 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1013 #endif
1014 	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1015 						timekeeper.shift;
1016 
1017 	/*
1018 	 * With NO_HZ we may have to accumulate many cycle_intervals
1019 	 * (think "ticks") worth of time at once. To do this efficiently,
1020 	 * we calculate the largest doubling multiple of cycle_intervals
1021 	 * that is smaller then the offset. We then accumulate that
1022 	 * chunk in one go, and then try to consume the next smaller
1023 	 * doubled multiple.
1024 	 */
1025 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1026 	shift = max(0, shift);
1027 	/* Bound shift to one less then what overflows tick_length */
1028 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1029 	shift = min(shift, maxshift);
1030 	while (offset >= timekeeper.cycle_interval) {
1031 		offset = logarithmic_accumulation(offset, shift);
1032 		if(offset < timekeeper.cycle_interval<<shift)
1033 			shift--;
1034 	}
1035 
1036 	/* correct the clock when NTP error is too big */
1037 	timekeeping_adjust(offset);
1038 
1039 	/*
1040 	 * Since in the loop above, we accumulate any amount of time
1041 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1042 	 * xtime_nsec to be fairly small after the loop. Further, if we're
1043 	 * slightly speeding the clocksource up in timekeeping_adjust(),
1044 	 * its possible the required corrective factor to xtime_nsec could
1045 	 * cause it to underflow.
1046 	 *
1047 	 * Now, we cannot simply roll the accumulated second back, since
1048 	 * the NTP subsystem has been notified via second_overflow. So
1049 	 * instead we push xtime_nsec forward by the amount we underflowed,
1050 	 * and add that amount into the error.
1051 	 *
1052 	 * We'll correct this error next time through this function, when
1053 	 * xtime_nsec is not as small.
1054 	 */
1055 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1056 		s64 neg = -(s64)timekeeper.xtime_nsec;
1057 		timekeeper.xtime_nsec = 0;
1058 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1059 	}
1060 
1061 
1062 	/*
1063 	 * Store full nanoseconds into xtime after rounding it up and
1064 	 * add the remainder to the error difference.
1065 	 */
1066 	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1067 						timekeeper.shift) + 1;
1068 	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1069 						timekeeper.shift;
1070 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
1071 				timekeeper.ntp_error_shift;
1072 
1073 	/*
1074 	 * Finally, make sure that after the rounding
1075 	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1076 	 */
1077 	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1078 		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1079 		timekeeper.xtime.tv_sec++;
1080 		second_overflow();
1081 	}
1082 
1083 	timekeeping_update(false);
1084 
1085 out:
1086 	write_sequnlock_irqrestore(&timekeeper.lock, flags);
1087 
1088 }
1089 
1090 /**
1091  * getboottime - Return the real time of system boot.
1092  * @ts:		pointer to the timespec to be set
1093  *
1094  * Returns the wall-time of boot in a timespec.
1095  *
1096  * This is based on the wall_to_monotonic offset and the total suspend
1097  * time. Calls to settimeofday will affect the value returned (which
1098  * basically means that however wrong your real time clock is at boot time,
1099  * you get the right time here).
1100  */
1101 void getboottime(struct timespec *ts)
1102 {
1103 	struct timespec boottime = {
1104 		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1105 				timekeeper.total_sleep_time.tv_sec,
1106 		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1107 				timekeeper.total_sleep_time.tv_nsec
1108 	};
1109 
1110 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1111 }
1112 EXPORT_SYMBOL_GPL(getboottime);
1113 
1114 
1115 /**
1116  * get_monotonic_boottime - Returns monotonic time since boot
1117  * @ts:		pointer to the timespec to be set
1118  *
1119  * Returns the monotonic time since boot in a timespec.
1120  *
1121  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1122  * includes the time spent in suspend.
1123  */
1124 void get_monotonic_boottime(struct timespec *ts)
1125 {
1126 	struct timespec tomono, sleep;
1127 	unsigned int seq;
1128 	s64 nsecs;
1129 
1130 	WARN_ON(timekeeping_suspended);
1131 
1132 	do {
1133 		seq = read_seqbegin(&timekeeper.lock);
1134 		*ts = timekeeper.xtime;
1135 		tomono = timekeeper.wall_to_monotonic;
1136 		sleep = timekeeper.total_sleep_time;
1137 		nsecs = timekeeping_get_ns();
1138 
1139 	} while (read_seqretry(&timekeeper.lock, seq));
1140 
1141 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1142 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1143 }
1144 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1145 
1146 /**
1147  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1148  *
1149  * Returns the monotonic time since boot in a ktime
1150  *
1151  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1152  * includes the time spent in suspend.
1153  */
1154 ktime_t ktime_get_boottime(void)
1155 {
1156 	struct timespec ts;
1157 
1158 	get_monotonic_boottime(&ts);
1159 	return timespec_to_ktime(ts);
1160 }
1161 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1162 
1163 /**
1164  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1165  * @ts:		pointer to the timespec to be converted
1166  */
1167 void monotonic_to_bootbased(struct timespec *ts)
1168 {
1169 	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
1170 }
1171 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1172 
1173 unsigned long get_seconds(void)
1174 {
1175 	return timekeeper.xtime.tv_sec;
1176 }
1177 EXPORT_SYMBOL(get_seconds);
1178 
1179 struct timespec __current_kernel_time(void)
1180 {
1181 	return timekeeper.xtime;
1182 }
1183 
1184 struct timespec current_kernel_time(void)
1185 {
1186 	struct timespec now;
1187 	unsigned long seq;
1188 
1189 	do {
1190 		seq = read_seqbegin(&timekeeper.lock);
1191 
1192 		now = timekeeper.xtime;
1193 	} while (read_seqretry(&timekeeper.lock, seq));
1194 
1195 	return now;
1196 }
1197 EXPORT_SYMBOL(current_kernel_time);
1198 
1199 struct timespec get_monotonic_coarse(void)
1200 {
1201 	struct timespec now, mono;
1202 	unsigned long seq;
1203 
1204 	do {
1205 		seq = read_seqbegin(&timekeeper.lock);
1206 
1207 		now = timekeeper.xtime;
1208 		mono = timekeeper.wall_to_monotonic;
1209 	} while (read_seqretry(&timekeeper.lock, seq));
1210 
1211 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1212 				now.tv_nsec + mono.tv_nsec);
1213 	return now;
1214 }
1215 
1216 /*
1217  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1218  * without sampling the sequence number in xtime_lock.
1219  * jiffies is defined in the linker script...
1220  */
1221 void do_timer(unsigned long ticks)
1222 {
1223 	jiffies_64 += ticks;
1224 	update_wall_time();
1225 	calc_global_load(ticks);
1226 }
1227 
1228 /**
1229  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1230  *    and sleep offsets.
1231  * @xtim:	pointer to timespec to be set with xtime
1232  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1233  * @sleep:	pointer to timespec to be set with time in suspend
1234  */
1235 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1236 				struct timespec *wtom, struct timespec *sleep)
1237 {
1238 	unsigned long seq;
1239 
1240 	do {
1241 		seq = read_seqbegin(&timekeeper.lock);
1242 		*xtim = timekeeper.xtime;
1243 		*wtom = timekeeper.wall_to_monotonic;
1244 		*sleep = timekeeper.total_sleep_time;
1245 	} while (read_seqretry(&timekeeper.lock, seq));
1246 }
1247 
1248 /**
1249  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1250  */
1251 ktime_t ktime_get_monotonic_offset(void)
1252 {
1253 	unsigned long seq;
1254 	struct timespec wtom;
1255 
1256 	do {
1257 		seq = read_seqbegin(&timekeeper.lock);
1258 		wtom = timekeeper.wall_to_monotonic;
1259 	} while (read_seqretry(&timekeeper.lock, seq));
1260 
1261 	return timespec_to_ktime(wtom);
1262 }
1263 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1264 
1265 
1266 /**
1267  * xtime_update() - advances the timekeeping infrastructure
1268  * @ticks:	number of ticks, that have elapsed since the last call.
1269  *
1270  * Must be called with interrupts disabled.
1271  */
1272 void xtime_update(unsigned long ticks)
1273 {
1274 	write_seqlock(&xtime_lock);
1275 	do_timer(ticks);
1276 	write_sequnlock(&xtime_lock);
1277 }
1278