xref: /linux/kernel/time/timekeeping.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource	*clock;
28 	/* NTP adjusted clock multiplier */
29 	u32			mult;
30 	/* The shift value of the current clocksource. */
31 	u32			shift;
32 	/* Number of clock cycles in one NTP interval. */
33 	cycle_t			cycle_interval;
34 	/* Number of clock shifted nano seconds in one NTP interval. */
35 	u64			xtime_interval;
36 	/* shifted nano seconds left over when rounding cycle_interval */
37 	s64			xtime_remainder;
38 	/* Raw nano seconds accumulated per NTP interval. */
39 	u32			raw_interval;
40 
41 	/* Current CLOCK_REALTIME time in seconds */
42 	u64			xtime_sec;
43 	/* Clock shifted nano seconds */
44 	u64			xtime_nsec;
45 
46 	/* Difference between accumulated time and NTP time in ntp
47 	 * shifted nano seconds. */
48 	s64			ntp_error;
49 	/* Shift conversion between clock shifted nano seconds and
50 	 * ntp shifted nano seconds. */
51 	u32			ntp_error_shift;
52 
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec		wall_to_monotonic;
68 	/* Offset clock monotonic -> clock realtime */
69 	ktime_t			offs_real;
70 	/* time spent in suspend */
71 	struct timespec		total_sleep_time;
72 	/* Offset clock monotonic -> clock boottime */
73 	ktime_t			offs_boot;
74 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
75 	struct timespec		raw_time;
76 	/* Seqlock for all timekeeper values */
77 	seqlock_t		lock;
78 };
79 
80 static struct timekeeper timekeeper;
81 
82 /*
83  * This read-write spinlock protects us from races in SMP while
84  * playing with xtime.
85  */
86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
87 
88 /* flag for if timekeeping is suspended */
89 int __read_mostly timekeeping_suspended;
90 
91 static inline void tk_normalize_xtime(struct timekeeper *tk)
92 {
93 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
94 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
95 		tk->xtime_sec++;
96 	}
97 }
98 
99 static struct timespec tk_xtime(struct timekeeper *tk)
100 {
101 	struct timespec ts;
102 
103 	ts.tv_sec = tk->xtime_sec;
104 	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
105 	return ts;
106 }
107 
108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
109 {
110 	tk->xtime_sec = ts->tv_sec;
111 	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
112 }
113 
114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
115 {
116 	tk->xtime_sec += ts->tv_sec;
117 	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
118 	tk_normalize_xtime(tk);
119 }
120 
121 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
122 {
123 	struct timespec tmp;
124 
125 	/*
126 	 * Verify consistency of: offset_real = -wall_to_monotonic
127 	 * before modifying anything
128 	 */
129 	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
130 					-tk->wall_to_monotonic.tv_nsec);
131 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
132 	tk->wall_to_monotonic = wtm;
133 	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
134 	tk->offs_real = timespec_to_ktime(tmp);
135 }
136 
137 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
138 {
139 	/* Verify consistency before modifying */
140 	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
141 
142 	tk->total_sleep_time	= t;
143 	tk->offs_boot		= timespec_to_ktime(t);
144 }
145 
146 /**
147  * timekeeper_setup_internals - Set up internals to use clocksource clock.
148  *
149  * @clock:		Pointer to clocksource.
150  *
151  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
152  * pair and interval request.
153  *
154  * Unless you're the timekeeping code, you should not be using this!
155  */
156 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
157 {
158 	cycle_t interval;
159 	u64 tmp, ntpinterval;
160 	struct clocksource *old_clock;
161 
162 	old_clock = tk->clock;
163 	tk->clock = clock;
164 	clock->cycle_last = clock->read(clock);
165 
166 	/* Do the ns -> cycle conversion first, using original mult */
167 	tmp = NTP_INTERVAL_LENGTH;
168 	tmp <<= clock->shift;
169 	ntpinterval = tmp;
170 	tmp += clock->mult/2;
171 	do_div(tmp, clock->mult);
172 	if (tmp == 0)
173 		tmp = 1;
174 
175 	interval = (cycle_t) tmp;
176 	tk->cycle_interval = interval;
177 
178 	/* Go back from cycles -> shifted ns */
179 	tk->xtime_interval = (u64) interval * clock->mult;
180 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
181 	tk->raw_interval =
182 		((u64) interval * clock->mult) >> clock->shift;
183 
184 	 /* if changing clocks, convert xtime_nsec shift units */
185 	if (old_clock) {
186 		int shift_change = clock->shift - old_clock->shift;
187 		if (shift_change < 0)
188 			tk->xtime_nsec >>= -shift_change;
189 		else
190 			tk->xtime_nsec <<= shift_change;
191 	}
192 	tk->shift = clock->shift;
193 
194 	tk->ntp_error = 0;
195 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
196 
197 	/*
198 	 * The timekeeper keeps its own mult values for the currently
199 	 * active clocksource. These value will be adjusted via NTP
200 	 * to counteract clock drifting.
201 	 */
202 	tk->mult = clock->mult;
203 }
204 
205 /* Timekeeper helper functions. */
206 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
207 {
208 	cycle_t cycle_now, cycle_delta;
209 	struct clocksource *clock;
210 	s64 nsec;
211 
212 	/* read clocksource: */
213 	clock = tk->clock;
214 	cycle_now = clock->read(clock);
215 
216 	/* calculate the delta since the last update_wall_time: */
217 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
218 
219 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
220 	nsec >>= tk->shift;
221 
222 	/* If arch requires, add in gettimeoffset() */
223 	return nsec + arch_gettimeoffset();
224 }
225 
226 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
227 {
228 	cycle_t cycle_now, cycle_delta;
229 	struct clocksource *clock;
230 	s64 nsec;
231 
232 	/* read clocksource: */
233 	clock = tk->clock;
234 	cycle_now = clock->read(clock);
235 
236 	/* calculate the delta since the last update_wall_time: */
237 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
238 
239 	/* convert delta to nanoseconds. */
240 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
241 
242 	/* If arch requires, add in gettimeoffset() */
243 	return nsec + arch_gettimeoffset();
244 }
245 
246 /* must hold write on timekeeper.lock */
247 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
248 {
249 	struct timespec xt;
250 
251 	if (clearntp) {
252 		tk->ntp_error = 0;
253 		ntp_clear();
254 	}
255 	xt = tk_xtime(tk);
256 	update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
257 }
258 
259 /**
260  * timekeeping_forward_now - update clock to the current time
261  *
262  * Forward the current clock to update its state since the last call to
263  * update_wall_time(). This is useful before significant clock changes,
264  * as it avoids having to deal with this time offset explicitly.
265  */
266 static void timekeeping_forward_now(struct timekeeper *tk)
267 {
268 	cycle_t cycle_now, cycle_delta;
269 	struct clocksource *clock;
270 	s64 nsec;
271 
272 	clock = tk->clock;
273 	cycle_now = clock->read(clock);
274 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
275 	clock->cycle_last = cycle_now;
276 
277 	tk->xtime_nsec += cycle_delta * tk->mult;
278 
279 	/* If arch requires, add in gettimeoffset() */
280 	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
281 
282 	tk_normalize_xtime(tk);
283 
284 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
285 	timespec_add_ns(&tk->raw_time, nsec);
286 }
287 
288 /**
289  * getnstimeofday - Returns the time of day in a timespec
290  * @ts:		pointer to the timespec to be set
291  *
292  * Returns the time of day in a timespec.
293  */
294 void getnstimeofday(struct timespec *ts)
295 {
296 	struct timekeeper *tk = &timekeeper;
297 	unsigned long seq;
298 	s64 nsecs = 0;
299 
300 	WARN_ON(timekeeping_suspended);
301 
302 	do {
303 		seq = read_seqbegin(&tk->lock);
304 
305 		ts->tv_sec = tk->xtime_sec;
306 		ts->tv_nsec = timekeeping_get_ns(tk);
307 
308 	} while (read_seqretry(&tk->lock, seq));
309 
310 	timespec_add_ns(ts, nsecs);
311 }
312 EXPORT_SYMBOL(getnstimeofday);
313 
314 ktime_t ktime_get(void)
315 {
316 	struct timekeeper *tk = &timekeeper;
317 	unsigned int seq;
318 	s64 secs, nsecs;
319 
320 	WARN_ON(timekeeping_suspended);
321 
322 	do {
323 		seq = read_seqbegin(&tk->lock);
324 		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
325 		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
326 
327 	} while (read_seqretry(&tk->lock, seq));
328 	/*
329 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
330 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
331 	 */
332 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
333 }
334 EXPORT_SYMBOL_GPL(ktime_get);
335 
336 /**
337  * ktime_get_ts - get the monotonic clock in timespec format
338  * @ts:		pointer to timespec variable
339  *
340  * The function calculates the monotonic clock from the realtime
341  * clock and the wall_to_monotonic offset and stores the result
342  * in normalized timespec format in the variable pointed to by @ts.
343  */
344 void ktime_get_ts(struct timespec *ts)
345 {
346 	struct timekeeper *tk = &timekeeper;
347 	struct timespec tomono;
348 	unsigned int seq;
349 
350 	WARN_ON(timekeeping_suspended);
351 
352 	do {
353 		seq = read_seqbegin(&tk->lock);
354 		ts->tv_sec = tk->xtime_sec;
355 		ts->tv_nsec = timekeeping_get_ns(tk);
356 		tomono = tk->wall_to_monotonic;
357 
358 	} while (read_seqretry(&tk->lock, seq));
359 
360 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
361 				ts->tv_nsec + tomono.tv_nsec);
362 }
363 EXPORT_SYMBOL_GPL(ktime_get_ts);
364 
365 #ifdef CONFIG_NTP_PPS
366 
367 /**
368  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
369  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
370  * @ts_real:	pointer to the timespec to be set to the time of day
371  *
372  * This function reads both the time of day and raw monotonic time at the
373  * same time atomically and stores the resulting timestamps in timespec
374  * format.
375  */
376 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
377 {
378 	struct timekeeper *tk = &timekeeper;
379 	unsigned long seq;
380 	s64 nsecs_raw, nsecs_real;
381 
382 	WARN_ON_ONCE(timekeeping_suspended);
383 
384 	do {
385 		seq = read_seqbegin(&tk->lock);
386 
387 		*ts_raw = tk->raw_time;
388 		ts_real->tv_sec = tk->xtime_sec;
389 		ts_real->tv_nsec = 0;
390 
391 		nsecs_raw = timekeeping_get_ns_raw(tk);
392 		nsecs_real = timekeeping_get_ns(tk);
393 
394 	} while (read_seqretry(&tk->lock, seq));
395 
396 	timespec_add_ns(ts_raw, nsecs_raw);
397 	timespec_add_ns(ts_real, nsecs_real);
398 }
399 EXPORT_SYMBOL(getnstime_raw_and_real);
400 
401 #endif /* CONFIG_NTP_PPS */
402 
403 /**
404  * do_gettimeofday - Returns the time of day in a timeval
405  * @tv:		pointer to the timeval to be set
406  *
407  * NOTE: Users should be converted to using getnstimeofday()
408  */
409 void do_gettimeofday(struct timeval *tv)
410 {
411 	struct timespec now;
412 
413 	getnstimeofday(&now);
414 	tv->tv_sec = now.tv_sec;
415 	tv->tv_usec = now.tv_nsec/1000;
416 }
417 EXPORT_SYMBOL(do_gettimeofday);
418 
419 /**
420  * do_settimeofday - Sets the time of day
421  * @tv:		pointer to the timespec variable containing the new time
422  *
423  * Sets the time of day to the new time and update NTP and notify hrtimers
424  */
425 int do_settimeofday(const struct timespec *tv)
426 {
427 	struct timekeeper *tk = &timekeeper;
428 	struct timespec ts_delta, xt;
429 	unsigned long flags;
430 
431 	if (!timespec_valid_strict(tv))
432 		return -EINVAL;
433 
434 	write_seqlock_irqsave(&tk->lock, flags);
435 
436 	timekeeping_forward_now(tk);
437 
438 	xt = tk_xtime(tk);
439 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
440 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
441 
442 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
443 
444 	tk_set_xtime(tk, tv);
445 
446 	timekeeping_update(tk, true);
447 
448 	write_sequnlock_irqrestore(&tk->lock, flags);
449 
450 	/* signal hrtimers about time change */
451 	clock_was_set();
452 
453 	return 0;
454 }
455 EXPORT_SYMBOL(do_settimeofday);
456 
457 /**
458  * timekeeping_inject_offset - Adds or subtracts from the current time.
459  * @tv:		pointer to the timespec variable containing the offset
460  *
461  * Adds or subtracts an offset value from the current time.
462  */
463 int timekeeping_inject_offset(struct timespec *ts)
464 {
465 	struct timekeeper *tk = &timekeeper;
466 	unsigned long flags;
467 	struct timespec tmp;
468 	int ret = 0;
469 
470 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
471 		return -EINVAL;
472 
473 	write_seqlock_irqsave(&tk->lock, flags);
474 
475 	timekeeping_forward_now(tk);
476 
477 	/* Make sure the proposed value is valid */
478 	tmp = timespec_add(tk_xtime(tk),  *ts);
479 	if (!timespec_valid_strict(&tmp)) {
480 		ret = -EINVAL;
481 		goto error;
482 	}
483 
484 	tk_xtime_add(tk, ts);
485 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
486 
487 error: /* even if we error out, we forwarded the time, so call update */
488 	timekeeping_update(tk, true);
489 
490 	write_sequnlock_irqrestore(&tk->lock, flags);
491 
492 	/* signal hrtimers about time change */
493 	clock_was_set();
494 
495 	return ret;
496 }
497 EXPORT_SYMBOL(timekeeping_inject_offset);
498 
499 /**
500  * change_clocksource - Swaps clocksources if a new one is available
501  *
502  * Accumulates current time interval and initializes new clocksource
503  */
504 static int change_clocksource(void *data)
505 {
506 	struct timekeeper *tk = &timekeeper;
507 	struct clocksource *new, *old;
508 	unsigned long flags;
509 
510 	new = (struct clocksource *) data;
511 
512 	write_seqlock_irqsave(&tk->lock, flags);
513 
514 	timekeeping_forward_now(tk);
515 	if (!new->enable || new->enable(new) == 0) {
516 		old = tk->clock;
517 		tk_setup_internals(tk, new);
518 		if (old->disable)
519 			old->disable(old);
520 	}
521 	timekeeping_update(tk, true);
522 
523 	write_sequnlock_irqrestore(&tk->lock, flags);
524 
525 	return 0;
526 }
527 
528 /**
529  * timekeeping_notify - Install a new clock source
530  * @clock:		pointer to the clock source
531  *
532  * This function is called from clocksource.c after a new, better clock
533  * source has been registered. The caller holds the clocksource_mutex.
534  */
535 void timekeeping_notify(struct clocksource *clock)
536 {
537 	struct timekeeper *tk = &timekeeper;
538 
539 	if (tk->clock == clock)
540 		return;
541 	stop_machine(change_clocksource, clock, NULL);
542 	tick_clock_notify();
543 }
544 
545 /**
546  * ktime_get_real - get the real (wall-) time in ktime_t format
547  *
548  * returns the time in ktime_t format
549  */
550 ktime_t ktime_get_real(void)
551 {
552 	struct timespec now;
553 
554 	getnstimeofday(&now);
555 
556 	return timespec_to_ktime(now);
557 }
558 EXPORT_SYMBOL_GPL(ktime_get_real);
559 
560 /**
561  * getrawmonotonic - Returns the raw monotonic time in a timespec
562  * @ts:		pointer to the timespec to be set
563  *
564  * Returns the raw monotonic time (completely un-modified by ntp)
565  */
566 void getrawmonotonic(struct timespec *ts)
567 {
568 	struct timekeeper *tk = &timekeeper;
569 	unsigned long seq;
570 	s64 nsecs;
571 
572 	do {
573 		seq = read_seqbegin(&tk->lock);
574 		nsecs = timekeeping_get_ns_raw(tk);
575 		*ts = tk->raw_time;
576 
577 	} while (read_seqretry(&tk->lock, seq));
578 
579 	timespec_add_ns(ts, nsecs);
580 }
581 EXPORT_SYMBOL(getrawmonotonic);
582 
583 /**
584  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
585  */
586 int timekeeping_valid_for_hres(void)
587 {
588 	struct timekeeper *tk = &timekeeper;
589 	unsigned long seq;
590 	int ret;
591 
592 	do {
593 		seq = read_seqbegin(&tk->lock);
594 
595 		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
596 
597 	} while (read_seqretry(&tk->lock, seq));
598 
599 	return ret;
600 }
601 
602 /**
603  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
604  */
605 u64 timekeeping_max_deferment(void)
606 {
607 	struct timekeeper *tk = &timekeeper;
608 	unsigned long seq;
609 	u64 ret;
610 
611 	do {
612 		seq = read_seqbegin(&tk->lock);
613 
614 		ret = tk->clock->max_idle_ns;
615 
616 	} while (read_seqretry(&tk->lock, seq));
617 
618 	return ret;
619 }
620 
621 /**
622  * read_persistent_clock -  Return time from the persistent clock.
623  *
624  * Weak dummy function for arches that do not yet support it.
625  * Reads the time from the battery backed persistent clock.
626  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
627  *
628  *  XXX - Do be sure to remove it once all arches implement it.
629  */
630 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
631 {
632 	ts->tv_sec = 0;
633 	ts->tv_nsec = 0;
634 }
635 
636 /**
637  * read_boot_clock -  Return time of the system start.
638  *
639  * Weak dummy function for arches that do not yet support it.
640  * Function to read the exact time the system has been started.
641  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
642  *
643  *  XXX - Do be sure to remove it once all arches implement it.
644  */
645 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
646 {
647 	ts->tv_sec = 0;
648 	ts->tv_nsec = 0;
649 }
650 
651 /*
652  * timekeeping_init - Initializes the clocksource and common timekeeping values
653  */
654 void __init timekeeping_init(void)
655 {
656 	struct timekeeper *tk = &timekeeper;
657 	struct clocksource *clock;
658 	unsigned long flags;
659 	struct timespec now, boot, tmp;
660 
661 	read_persistent_clock(&now);
662 	if (!timespec_valid_strict(&now)) {
663 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
664 			"         Check your CMOS/BIOS settings.\n");
665 		now.tv_sec = 0;
666 		now.tv_nsec = 0;
667 	}
668 
669 	read_boot_clock(&boot);
670 	if (!timespec_valid_strict(&boot)) {
671 		pr_warn("WARNING: Boot clock returned invalid value!\n"
672 			"         Check your CMOS/BIOS settings.\n");
673 		boot.tv_sec = 0;
674 		boot.tv_nsec = 0;
675 	}
676 
677 	seqlock_init(&tk->lock);
678 
679 	ntp_init();
680 
681 	write_seqlock_irqsave(&tk->lock, flags);
682 	clock = clocksource_default_clock();
683 	if (clock->enable)
684 		clock->enable(clock);
685 	tk_setup_internals(tk, clock);
686 
687 	tk_set_xtime(tk, &now);
688 	tk->raw_time.tv_sec = 0;
689 	tk->raw_time.tv_nsec = 0;
690 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
691 		boot = tk_xtime(tk);
692 
693 	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
694 	tk_set_wall_to_mono(tk, tmp);
695 
696 	tmp.tv_sec = 0;
697 	tmp.tv_nsec = 0;
698 	tk_set_sleep_time(tk, tmp);
699 
700 	write_sequnlock_irqrestore(&tk->lock, flags);
701 }
702 
703 /* time in seconds when suspend began */
704 static struct timespec timekeeping_suspend_time;
705 
706 /**
707  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
708  * @delta: pointer to a timespec delta value
709  *
710  * Takes a timespec offset measuring a suspend interval and properly
711  * adds the sleep offset to the timekeeping variables.
712  */
713 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
714 							struct timespec *delta)
715 {
716 	if (!timespec_valid_strict(delta)) {
717 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
718 					"sleep delta value!\n");
719 		return;
720 	}
721 	tk_xtime_add(tk, delta);
722 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
723 	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
724 }
725 
726 /**
727  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
728  * @delta: pointer to a timespec delta value
729  *
730  * This hook is for architectures that cannot support read_persistent_clock
731  * because their RTC/persistent clock is only accessible when irqs are enabled.
732  *
733  * This function should only be called by rtc_resume(), and allows
734  * a suspend offset to be injected into the timekeeping values.
735  */
736 void timekeeping_inject_sleeptime(struct timespec *delta)
737 {
738 	struct timekeeper *tk = &timekeeper;
739 	unsigned long flags;
740 	struct timespec ts;
741 
742 	/* Make sure we don't set the clock twice */
743 	read_persistent_clock(&ts);
744 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
745 		return;
746 
747 	write_seqlock_irqsave(&tk->lock, flags);
748 
749 	timekeeping_forward_now(tk);
750 
751 	__timekeeping_inject_sleeptime(tk, delta);
752 
753 	timekeeping_update(tk, true);
754 
755 	write_sequnlock_irqrestore(&tk->lock, flags);
756 
757 	/* signal hrtimers about time change */
758 	clock_was_set();
759 }
760 
761 /**
762  * timekeeping_resume - Resumes the generic timekeeping subsystem.
763  *
764  * This is for the generic clocksource timekeeping.
765  * xtime/wall_to_monotonic/jiffies/etc are
766  * still managed by arch specific suspend/resume code.
767  */
768 static void timekeeping_resume(void)
769 {
770 	struct timekeeper *tk = &timekeeper;
771 	unsigned long flags;
772 	struct timespec ts;
773 
774 	read_persistent_clock(&ts);
775 
776 	clocksource_resume();
777 
778 	write_seqlock_irqsave(&tk->lock, flags);
779 
780 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
781 		ts = timespec_sub(ts, timekeeping_suspend_time);
782 		__timekeeping_inject_sleeptime(tk, &ts);
783 	}
784 	/* re-base the last cycle value */
785 	tk->clock->cycle_last = tk->clock->read(tk->clock);
786 	tk->ntp_error = 0;
787 	timekeeping_suspended = 0;
788 	timekeeping_update(tk, false);
789 	write_sequnlock_irqrestore(&tk->lock, flags);
790 
791 	touch_softlockup_watchdog();
792 
793 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
794 
795 	/* Resume hrtimers */
796 	hrtimers_resume();
797 }
798 
799 static int timekeeping_suspend(void)
800 {
801 	struct timekeeper *tk = &timekeeper;
802 	unsigned long flags;
803 	struct timespec		delta, delta_delta;
804 	static struct timespec	old_delta;
805 
806 	read_persistent_clock(&timekeeping_suspend_time);
807 
808 	write_seqlock_irqsave(&tk->lock, flags);
809 	timekeeping_forward_now(tk);
810 	timekeeping_suspended = 1;
811 
812 	/*
813 	 * To avoid drift caused by repeated suspend/resumes,
814 	 * which each can add ~1 second drift error,
815 	 * try to compensate so the difference in system time
816 	 * and persistent_clock time stays close to constant.
817 	 */
818 	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
819 	delta_delta = timespec_sub(delta, old_delta);
820 	if (abs(delta_delta.tv_sec)  >= 2) {
821 		/*
822 		 * if delta_delta is too large, assume time correction
823 		 * has occured and set old_delta to the current delta.
824 		 */
825 		old_delta = delta;
826 	} else {
827 		/* Otherwise try to adjust old_system to compensate */
828 		timekeeping_suspend_time =
829 			timespec_add(timekeeping_suspend_time, delta_delta);
830 	}
831 	write_sequnlock_irqrestore(&tk->lock, flags);
832 
833 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
834 	clocksource_suspend();
835 
836 	return 0;
837 }
838 
839 /* sysfs resume/suspend bits for timekeeping */
840 static struct syscore_ops timekeeping_syscore_ops = {
841 	.resume		= timekeeping_resume,
842 	.suspend	= timekeeping_suspend,
843 };
844 
845 static int __init timekeeping_init_ops(void)
846 {
847 	register_syscore_ops(&timekeeping_syscore_ops);
848 	return 0;
849 }
850 
851 device_initcall(timekeeping_init_ops);
852 
853 /*
854  * If the error is already larger, we look ahead even further
855  * to compensate for late or lost adjustments.
856  */
857 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
858 						 s64 error, s64 *interval,
859 						 s64 *offset)
860 {
861 	s64 tick_error, i;
862 	u32 look_ahead, adj;
863 	s32 error2, mult;
864 
865 	/*
866 	 * Use the current error value to determine how much to look ahead.
867 	 * The larger the error the slower we adjust for it to avoid problems
868 	 * with losing too many ticks, otherwise we would overadjust and
869 	 * produce an even larger error.  The smaller the adjustment the
870 	 * faster we try to adjust for it, as lost ticks can do less harm
871 	 * here.  This is tuned so that an error of about 1 msec is adjusted
872 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
873 	 */
874 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
875 	error2 = abs(error2);
876 	for (look_ahead = 0; error2 > 0; look_ahead++)
877 		error2 >>= 2;
878 
879 	/*
880 	 * Now calculate the error in (1 << look_ahead) ticks, but first
881 	 * remove the single look ahead already included in the error.
882 	 */
883 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
884 	tick_error -= tk->xtime_interval >> 1;
885 	error = ((error - tick_error) >> look_ahead) + tick_error;
886 
887 	/* Finally calculate the adjustment shift value.  */
888 	i = *interval;
889 	mult = 1;
890 	if (error < 0) {
891 		error = -error;
892 		*interval = -*interval;
893 		*offset = -*offset;
894 		mult = -1;
895 	}
896 	for (adj = 0; error > i; adj++)
897 		error >>= 1;
898 
899 	*interval <<= adj;
900 	*offset <<= adj;
901 	return mult << adj;
902 }
903 
904 /*
905  * Adjust the multiplier to reduce the error value,
906  * this is optimized for the most common adjustments of -1,0,1,
907  * for other values we can do a bit more work.
908  */
909 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
910 {
911 	s64 error, interval = tk->cycle_interval;
912 	int adj;
913 
914 	/*
915 	 * The point of this is to check if the error is greater than half
916 	 * an interval.
917 	 *
918 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
919 	 *
920 	 * Note we subtract one in the shift, so that error is really error*2.
921 	 * This "saves" dividing(shifting) interval twice, but keeps the
922 	 * (error > interval) comparison as still measuring if error is
923 	 * larger than half an interval.
924 	 *
925 	 * Note: It does not "save" on aggravation when reading the code.
926 	 */
927 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
928 	if (error > interval) {
929 		/*
930 		 * We now divide error by 4(via shift), which checks if
931 		 * the error is greater than twice the interval.
932 		 * If it is greater, we need a bigadjust, if its smaller,
933 		 * we can adjust by 1.
934 		 */
935 		error >>= 2;
936 		/*
937 		 * XXX - In update_wall_time, we round up to the next
938 		 * nanosecond, and store the amount rounded up into
939 		 * the error. This causes the likely below to be unlikely.
940 		 *
941 		 * The proper fix is to avoid rounding up by using
942 		 * the high precision tk->xtime_nsec instead of
943 		 * xtime.tv_nsec everywhere. Fixing this will take some
944 		 * time.
945 		 */
946 		if (likely(error <= interval))
947 			adj = 1;
948 		else
949 			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
950 	} else {
951 		if (error < -interval) {
952 			/* See comment above, this is just switched for the negative */
953 			error >>= 2;
954 			if (likely(error >= -interval)) {
955 				adj = -1;
956 				interval = -interval;
957 				offset = -offset;
958 			} else {
959 				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
960 			}
961 		} else {
962 			goto out_adjust;
963 		}
964 	}
965 
966 	if (unlikely(tk->clock->maxadj &&
967 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
968 		printk_once(KERN_WARNING
969 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
970 			tk->clock->name, (long)tk->mult + adj,
971 			(long)tk->clock->mult + tk->clock->maxadj);
972 	}
973 	/*
974 	 * So the following can be confusing.
975 	 *
976 	 * To keep things simple, lets assume adj == 1 for now.
977 	 *
978 	 * When adj != 1, remember that the interval and offset values
979 	 * have been appropriately scaled so the math is the same.
980 	 *
981 	 * The basic idea here is that we're increasing the multiplier
982 	 * by one, this causes the xtime_interval to be incremented by
983 	 * one cycle_interval. This is because:
984 	 *	xtime_interval = cycle_interval * mult
985 	 * So if mult is being incremented by one:
986 	 *	xtime_interval = cycle_interval * (mult + 1)
987 	 * Its the same as:
988 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
989 	 * Which can be shortened to:
990 	 *	xtime_interval += cycle_interval
991 	 *
992 	 * So offset stores the non-accumulated cycles. Thus the current
993 	 * time (in shifted nanoseconds) is:
994 	 *	now = (offset * adj) + xtime_nsec
995 	 * Now, even though we're adjusting the clock frequency, we have
996 	 * to keep time consistent. In other words, we can't jump back
997 	 * in time, and we also want to avoid jumping forward in time.
998 	 *
999 	 * So given the same offset value, we need the time to be the same
1000 	 * both before and after the freq adjustment.
1001 	 *	now = (offset * adj_1) + xtime_nsec_1
1002 	 *	now = (offset * adj_2) + xtime_nsec_2
1003 	 * So:
1004 	 *	(offset * adj_1) + xtime_nsec_1 =
1005 	 *		(offset * adj_2) + xtime_nsec_2
1006 	 * And we know:
1007 	 *	adj_2 = adj_1 + 1
1008 	 * So:
1009 	 *	(offset * adj_1) + xtime_nsec_1 =
1010 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1011 	 *	(offset * adj_1) + xtime_nsec_1 =
1012 	 *		(offset * adj_1) + offset + xtime_nsec_2
1013 	 * Canceling the sides:
1014 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1015 	 * Which gives us:
1016 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1017 	 * Which simplfies to:
1018 	 *	xtime_nsec -= offset
1019 	 *
1020 	 * XXX - TODO: Doc ntp_error calculation.
1021 	 */
1022 	tk->mult += adj;
1023 	tk->xtime_interval += interval;
1024 	tk->xtime_nsec -= offset;
1025 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1026 
1027 out_adjust:
1028 	/*
1029 	 * It may be possible that when we entered this function, xtime_nsec
1030 	 * was very small.  Further, if we're slightly speeding the clocksource
1031 	 * in the code above, its possible the required corrective factor to
1032 	 * xtime_nsec could cause it to underflow.
1033 	 *
1034 	 * Now, since we already accumulated the second, cannot simply roll
1035 	 * the accumulated second back, since the NTP subsystem has been
1036 	 * notified via second_overflow. So instead we push xtime_nsec forward
1037 	 * by the amount we underflowed, and add that amount into the error.
1038 	 *
1039 	 * We'll correct this error next time through this function, when
1040 	 * xtime_nsec is not as small.
1041 	 */
1042 	if (unlikely((s64)tk->xtime_nsec < 0)) {
1043 		s64 neg = -(s64)tk->xtime_nsec;
1044 		tk->xtime_nsec = 0;
1045 		tk->ntp_error += neg << tk->ntp_error_shift;
1046 	}
1047 
1048 }
1049 
1050 /**
1051  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1052  *
1053  * Helper function that accumulates a the nsecs greater then a second
1054  * from the xtime_nsec field to the xtime_secs field.
1055  * It also calls into the NTP code to handle leapsecond processing.
1056  *
1057  */
1058 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1059 {
1060 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1061 
1062 	while (tk->xtime_nsec >= nsecps) {
1063 		int leap;
1064 
1065 		tk->xtime_nsec -= nsecps;
1066 		tk->xtime_sec++;
1067 
1068 		/* Figure out if its a leap sec and apply if needed */
1069 		leap = second_overflow(tk->xtime_sec);
1070 		if (unlikely(leap)) {
1071 			struct timespec ts;
1072 
1073 			tk->xtime_sec += leap;
1074 
1075 			ts.tv_sec = leap;
1076 			ts.tv_nsec = 0;
1077 			tk_set_wall_to_mono(tk,
1078 				timespec_sub(tk->wall_to_monotonic, ts));
1079 
1080 			clock_was_set_delayed();
1081 		}
1082 	}
1083 }
1084 
1085 /**
1086  * logarithmic_accumulation - shifted accumulation of cycles
1087  *
1088  * This functions accumulates a shifted interval of cycles into
1089  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1090  * loop.
1091  *
1092  * Returns the unconsumed cycles.
1093  */
1094 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1095 						u32 shift)
1096 {
1097 	u64 raw_nsecs;
1098 
1099 	/* If the offset is smaller then a shifted interval, do nothing */
1100 	if (offset < tk->cycle_interval<<shift)
1101 		return offset;
1102 
1103 	/* Accumulate one shifted interval */
1104 	offset -= tk->cycle_interval << shift;
1105 	tk->clock->cycle_last += tk->cycle_interval << shift;
1106 
1107 	tk->xtime_nsec += tk->xtime_interval << shift;
1108 	accumulate_nsecs_to_secs(tk);
1109 
1110 	/* Accumulate raw time */
1111 	raw_nsecs = tk->raw_interval << shift;
1112 	raw_nsecs += tk->raw_time.tv_nsec;
1113 	if (raw_nsecs >= NSEC_PER_SEC) {
1114 		u64 raw_secs = raw_nsecs;
1115 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1116 		tk->raw_time.tv_sec += raw_secs;
1117 	}
1118 	tk->raw_time.tv_nsec = raw_nsecs;
1119 
1120 	/* Accumulate error between NTP and clock interval */
1121 	tk->ntp_error += ntp_tick_length() << shift;
1122 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1123 						(tk->ntp_error_shift + shift);
1124 
1125 	return offset;
1126 }
1127 
1128 /**
1129  * update_wall_time - Uses the current clocksource to increment the wall time
1130  *
1131  */
1132 static void update_wall_time(void)
1133 {
1134 	struct clocksource *clock;
1135 	struct timekeeper *tk = &timekeeper;
1136 	cycle_t offset;
1137 	int shift = 0, maxshift;
1138 	unsigned long flags;
1139 	s64 remainder;
1140 
1141 	write_seqlock_irqsave(&tk->lock, flags);
1142 
1143 	/* Make sure we're fully resumed: */
1144 	if (unlikely(timekeeping_suspended))
1145 		goto out;
1146 
1147 	clock = tk->clock;
1148 
1149 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1150 	offset = tk->cycle_interval;
1151 #else
1152 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1153 #endif
1154 
1155 	/* Check if there's really nothing to do */
1156 	if (offset < tk->cycle_interval)
1157 		goto out;
1158 
1159 	/*
1160 	 * With NO_HZ we may have to accumulate many cycle_intervals
1161 	 * (think "ticks") worth of time at once. To do this efficiently,
1162 	 * we calculate the largest doubling multiple of cycle_intervals
1163 	 * that is smaller than the offset.  We then accumulate that
1164 	 * chunk in one go, and then try to consume the next smaller
1165 	 * doubled multiple.
1166 	 */
1167 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1168 	shift = max(0, shift);
1169 	/* Bound shift to one less than what overflows tick_length */
1170 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1171 	shift = min(shift, maxshift);
1172 	while (offset >= tk->cycle_interval) {
1173 		offset = logarithmic_accumulation(tk, offset, shift);
1174 		if (offset < tk->cycle_interval<<shift)
1175 			shift--;
1176 	}
1177 
1178 	/* correct the clock when NTP error is too big */
1179 	timekeeping_adjust(tk, offset);
1180 
1181 
1182 	/*
1183 	* Store only full nanoseconds into xtime_nsec after rounding
1184 	* it up and add the remainder to the error difference.
1185 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1186 	* by truncating the remainder in vsyscalls. However, it causes
1187 	* additional work to be done in timekeeping_adjust(). Once
1188 	* the vsyscall implementations are converted to use xtime_nsec
1189 	* (shifted nanoseconds), this can be killed.
1190 	*/
1191 	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1192 	tk->xtime_nsec -= remainder;
1193 	tk->xtime_nsec += 1ULL << tk->shift;
1194 	tk->ntp_error += remainder << tk->ntp_error_shift;
1195 
1196 	/*
1197 	 * Finally, make sure that after the rounding
1198 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1199 	 */
1200 	accumulate_nsecs_to_secs(tk);
1201 
1202 	timekeeping_update(tk, false);
1203 
1204 out:
1205 	write_sequnlock_irqrestore(&tk->lock, flags);
1206 
1207 }
1208 
1209 /**
1210  * getboottime - Return the real time of system boot.
1211  * @ts:		pointer to the timespec to be set
1212  *
1213  * Returns the wall-time of boot in a timespec.
1214  *
1215  * This is based on the wall_to_monotonic offset and the total suspend
1216  * time. Calls to settimeofday will affect the value returned (which
1217  * basically means that however wrong your real time clock is at boot time,
1218  * you get the right time here).
1219  */
1220 void getboottime(struct timespec *ts)
1221 {
1222 	struct timekeeper *tk = &timekeeper;
1223 	struct timespec boottime = {
1224 		.tv_sec = tk->wall_to_monotonic.tv_sec +
1225 				tk->total_sleep_time.tv_sec,
1226 		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
1227 				tk->total_sleep_time.tv_nsec
1228 	};
1229 
1230 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1231 }
1232 EXPORT_SYMBOL_GPL(getboottime);
1233 
1234 /**
1235  * get_monotonic_boottime - Returns monotonic time since boot
1236  * @ts:		pointer to the timespec to be set
1237  *
1238  * Returns the monotonic time since boot in a timespec.
1239  *
1240  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1241  * includes the time spent in suspend.
1242  */
1243 void get_monotonic_boottime(struct timespec *ts)
1244 {
1245 	struct timekeeper *tk = &timekeeper;
1246 	struct timespec tomono, sleep;
1247 	unsigned int seq;
1248 
1249 	WARN_ON(timekeeping_suspended);
1250 
1251 	do {
1252 		seq = read_seqbegin(&tk->lock);
1253 		ts->tv_sec = tk->xtime_sec;
1254 		ts->tv_nsec = timekeeping_get_ns(tk);
1255 		tomono = tk->wall_to_monotonic;
1256 		sleep = tk->total_sleep_time;
1257 
1258 	} while (read_seqretry(&tk->lock, seq));
1259 
1260 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1261 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1262 }
1263 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1264 
1265 /**
1266  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1267  *
1268  * Returns the monotonic time since boot in a ktime
1269  *
1270  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1271  * includes the time spent in suspend.
1272  */
1273 ktime_t ktime_get_boottime(void)
1274 {
1275 	struct timespec ts;
1276 
1277 	get_monotonic_boottime(&ts);
1278 	return timespec_to_ktime(ts);
1279 }
1280 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1281 
1282 /**
1283  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1284  * @ts:		pointer to the timespec to be converted
1285  */
1286 void monotonic_to_bootbased(struct timespec *ts)
1287 {
1288 	struct timekeeper *tk = &timekeeper;
1289 
1290 	*ts = timespec_add(*ts, tk->total_sleep_time);
1291 }
1292 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1293 
1294 unsigned long get_seconds(void)
1295 {
1296 	struct timekeeper *tk = &timekeeper;
1297 
1298 	return tk->xtime_sec;
1299 }
1300 EXPORT_SYMBOL(get_seconds);
1301 
1302 struct timespec __current_kernel_time(void)
1303 {
1304 	struct timekeeper *tk = &timekeeper;
1305 
1306 	return tk_xtime(tk);
1307 }
1308 
1309 struct timespec current_kernel_time(void)
1310 {
1311 	struct timekeeper *tk = &timekeeper;
1312 	struct timespec now;
1313 	unsigned long seq;
1314 
1315 	do {
1316 		seq = read_seqbegin(&tk->lock);
1317 
1318 		now = tk_xtime(tk);
1319 	} while (read_seqretry(&tk->lock, seq));
1320 
1321 	return now;
1322 }
1323 EXPORT_SYMBOL(current_kernel_time);
1324 
1325 struct timespec get_monotonic_coarse(void)
1326 {
1327 	struct timekeeper *tk = &timekeeper;
1328 	struct timespec now, mono;
1329 	unsigned long seq;
1330 
1331 	do {
1332 		seq = read_seqbegin(&tk->lock);
1333 
1334 		now = tk_xtime(tk);
1335 		mono = tk->wall_to_monotonic;
1336 	} while (read_seqretry(&tk->lock, seq));
1337 
1338 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1339 				now.tv_nsec + mono.tv_nsec);
1340 	return now;
1341 }
1342 
1343 /*
1344  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1345  * without sampling the sequence number in xtime_lock.
1346  * jiffies is defined in the linker script...
1347  */
1348 void do_timer(unsigned long ticks)
1349 {
1350 	jiffies_64 += ticks;
1351 	update_wall_time();
1352 	calc_global_load(ticks);
1353 }
1354 
1355 /**
1356  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1357  *    and sleep offsets.
1358  * @xtim:	pointer to timespec to be set with xtime
1359  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1360  * @sleep:	pointer to timespec to be set with time in suspend
1361  */
1362 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1363 				struct timespec *wtom, struct timespec *sleep)
1364 {
1365 	struct timekeeper *tk = &timekeeper;
1366 	unsigned long seq;
1367 
1368 	do {
1369 		seq = read_seqbegin(&tk->lock);
1370 		*xtim = tk_xtime(tk);
1371 		*wtom = tk->wall_to_monotonic;
1372 		*sleep = tk->total_sleep_time;
1373 	} while (read_seqretry(&tk->lock, seq));
1374 }
1375 
1376 #ifdef CONFIG_HIGH_RES_TIMERS
1377 /**
1378  * ktime_get_update_offsets - hrtimer helper
1379  * @offs_real:	pointer to storage for monotonic -> realtime offset
1380  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1381  *
1382  * Returns current monotonic time and updates the offsets
1383  * Called from hrtimer_interupt() or retrigger_next_event()
1384  */
1385 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1386 {
1387 	struct timekeeper *tk = &timekeeper;
1388 	ktime_t now;
1389 	unsigned int seq;
1390 	u64 secs, nsecs;
1391 
1392 	do {
1393 		seq = read_seqbegin(&tk->lock);
1394 
1395 		secs = tk->xtime_sec;
1396 		nsecs = timekeeping_get_ns(tk);
1397 
1398 		*offs_real = tk->offs_real;
1399 		*offs_boot = tk->offs_boot;
1400 	} while (read_seqretry(&tk->lock, seq));
1401 
1402 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1403 	now = ktime_sub(now, *offs_real);
1404 	return now;
1405 }
1406 #endif
1407 
1408 /**
1409  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1410  */
1411 ktime_t ktime_get_monotonic_offset(void)
1412 {
1413 	struct timekeeper *tk = &timekeeper;
1414 	unsigned long seq;
1415 	struct timespec wtom;
1416 
1417 	do {
1418 		seq = read_seqbegin(&tk->lock);
1419 		wtom = tk->wall_to_monotonic;
1420 	} while (read_seqretry(&tk->lock, seq));
1421 
1422 	return timespec_to_ktime(wtom);
1423 }
1424 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1425 
1426 /**
1427  * xtime_update() - advances the timekeeping infrastructure
1428  * @ticks:	number of ticks, that have elapsed since the last call.
1429  *
1430  * Must be called with interrupts disabled.
1431  */
1432 void xtime_update(unsigned long ticks)
1433 {
1434 	write_seqlock(&xtime_lock);
1435 	do_timer(ticks);
1436 	write_sequnlock(&xtime_lock);
1437 }
1438