1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* NTP adjusted clock multiplier */ 29 u32 mult; 30 /* The shift value of the current clocksource. */ 31 u32 shift; 32 /* Number of clock cycles in one NTP interval. */ 33 cycle_t cycle_interval; 34 /* Number of clock shifted nano seconds in one NTP interval. */ 35 u64 xtime_interval; 36 /* shifted nano seconds left over when rounding cycle_interval */ 37 s64 xtime_remainder; 38 /* Raw nano seconds accumulated per NTP interval. */ 39 u32 raw_interval; 40 41 /* Current CLOCK_REALTIME time in seconds */ 42 u64 xtime_sec; 43 /* Clock shifted nano seconds */ 44 u64 xtime_nsec; 45 46 /* Difference between accumulated time and NTP time in ntp 47 * shifted nano seconds. */ 48 s64 ntp_error; 49 /* Shift conversion between clock shifted nano seconds and 50 * ntp shifted nano seconds. */ 51 u32 ntp_error_shift; 52 53 /* 54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 56 * at zero at system boot time, so wall_to_monotonic will be negative, 57 * however, we will ALWAYS keep the tv_nsec part positive so we can use 58 * the usual normalization. 59 * 60 * wall_to_monotonic is moved after resume from suspend for the 61 * monotonic time not to jump. We need to add total_sleep_time to 62 * wall_to_monotonic to get the real boot based time offset. 63 * 64 * - wall_to_monotonic is no longer the boot time, getboottime must be 65 * used instead. 66 */ 67 struct timespec wall_to_monotonic; 68 /* Offset clock monotonic -> clock realtime */ 69 ktime_t offs_real; 70 /* time spent in suspend */ 71 struct timespec total_sleep_time; 72 /* Offset clock monotonic -> clock boottime */ 73 ktime_t offs_boot; 74 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ 75 struct timespec raw_time; 76 /* Seqlock for all timekeeper values */ 77 seqlock_t lock; 78 }; 79 80 static struct timekeeper timekeeper; 81 82 /* 83 * This read-write spinlock protects us from races in SMP while 84 * playing with xtime. 85 */ 86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 87 88 /* flag for if timekeeping is suspended */ 89 int __read_mostly timekeeping_suspended; 90 91 static inline void tk_normalize_xtime(struct timekeeper *tk) 92 { 93 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) { 94 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift; 95 tk->xtime_sec++; 96 } 97 } 98 99 static struct timespec tk_xtime(struct timekeeper *tk) 100 { 101 struct timespec ts; 102 103 ts.tv_sec = tk->xtime_sec; 104 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift); 105 return ts; 106 } 107 108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts) 109 { 110 tk->xtime_sec = ts->tv_sec; 111 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift; 112 } 113 114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts) 115 { 116 tk->xtime_sec += ts->tv_sec; 117 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift; 118 tk_normalize_xtime(tk); 119 } 120 121 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm) 122 { 123 struct timespec tmp; 124 125 /* 126 * Verify consistency of: offset_real = -wall_to_monotonic 127 * before modifying anything 128 */ 129 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec, 130 -tk->wall_to_monotonic.tv_nsec); 131 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64); 132 tk->wall_to_monotonic = wtm; 133 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 134 tk->offs_real = timespec_to_ktime(tmp); 135 } 136 137 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t) 138 { 139 /* Verify consistency before modifying */ 140 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64); 141 142 tk->total_sleep_time = t; 143 tk->offs_boot = timespec_to_ktime(t); 144 } 145 146 /** 147 * timekeeper_setup_internals - Set up internals to use clocksource clock. 148 * 149 * @clock: Pointer to clocksource. 150 * 151 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 152 * pair and interval request. 153 * 154 * Unless you're the timekeeping code, you should not be using this! 155 */ 156 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 157 { 158 cycle_t interval; 159 u64 tmp, ntpinterval; 160 struct clocksource *old_clock; 161 162 old_clock = tk->clock; 163 tk->clock = clock; 164 clock->cycle_last = clock->read(clock); 165 166 /* Do the ns -> cycle conversion first, using original mult */ 167 tmp = NTP_INTERVAL_LENGTH; 168 tmp <<= clock->shift; 169 ntpinterval = tmp; 170 tmp += clock->mult/2; 171 do_div(tmp, clock->mult); 172 if (tmp == 0) 173 tmp = 1; 174 175 interval = (cycle_t) tmp; 176 tk->cycle_interval = interval; 177 178 /* Go back from cycles -> shifted ns */ 179 tk->xtime_interval = (u64) interval * clock->mult; 180 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 181 tk->raw_interval = 182 ((u64) interval * clock->mult) >> clock->shift; 183 184 /* if changing clocks, convert xtime_nsec shift units */ 185 if (old_clock) { 186 int shift_change = clock->shift - old_clock->shift; 187 if (shift_change < 0) 188 tk->xtime_nsec >>= -shift_change; 189 else 190 tk->xtime_nsec <<= shift_change; 191 } 192 tk->shift = clock->shift; 193 194 tk->ntp_error = 0; 195 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 196 197 /* 198 * The timekeeper keeps its own mult values for the currently 199 * active clocksource. These value will be adjusted via NTP 200 * to counteract clock drifting. 201 */ 202 tk->mult = clock->mult; 203 } 204 205 /* Timekeeper helper functions. */ 206 static inline s64 timekeeping_get_ns(struct timekeeper *tk) 207 { 208 cycle_t cycle_now, cycle_delta; 209 struct clocksource *clock; 210 s64 nsec; 211 212 /* read clocksource: */ 213 clock = tk->clock; 214 cycle_now = clock->read(clock); 215 216 /* calculate the delta since the last update_wall_time: */ 217 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 218 219 nsec = cycle_delta * tk->mult + tk->xtime_nsec; 220 nsec >>= tk->shift; 221 222 /* If arch requires, add in gettimeoffset() */ 223 return nsec + arch_gettimeoffset(); 224 } 225 226 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 227 { 228 cycle_t cycle_now, cycle_delta; 229 struct clocksource *clock; 230 s64 nsec; 231 232 /* read clocksource: */ 233 clock = tk->clock; 234 cycle_now = clock->read(clock); 235 236 /* calculate the delta since the last update_wall_time: */ 237 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 238 239 /* convert delta to nanoseconds. */ 240 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 241 242 /* If arch requires, add in gettimeoffset() */ 243 return nsec + arch_gettimeoffset(); 244 } 245 246 /* must hold write on timekeeper.lock */ 247 static void timekeeping_update(struct timekeeper *tk, bool clearntp) 248 { 249 struct timespec xt; 250 251 if (clearntp) { 252 tk->ntp_error = 0; 253 ntp_clear(); 254 } 255 xt = tk_xtime(tk); 256 update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult); 257 } 258 259 /** 260 * timekeeping_forward_now - update clock to the current time 261 * 262 * Forward the current clock to update its state since the last call to 263 * update_wall_time(). This is useful before significant clock changes, 264 * as it avoids having to deal with this time offset explicitly. 265 */ 266 static void timekeeping_forward_now(struct timekeeper *tk) 267 { 268 cycle_t cycle_now, cycle_delta; 269 struct clocksource *clock; 270 s64 nsec; 271 272 clock = tk->clock; 273 cycle_now = clock->read(clock); 274 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 275 clock->cycle_last = cycle_now; 276 277 tk->xtime_nsec += cycle_delta * tk->mult; 278 279 /* If arch requires, add in gettimeoffset() */ 280 tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift; 281 282 tk_normalize_xtime(tk); 283 284 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 285 timespec_add_ns(&tk->raw_time, nsec); 286 } 287 288 /** 289 * getnstimeofday - Returns the time of day in a timespec 290 * @ts: pointer to the timespec to be set 291 * 292 * Returns the time of day in a timespec. 293 */ 294 void getnstimeofday(struct timespec *ts) 295 { 296 struct timekeeper *tk = &timekeeper; 297 unsigned long seq; 298 s64 nsecs = 0; 299 300 WARN_ON(timekeeping_suspended); 301 302 do { 303 seq = read_seqbegin(&tk->lock); 304 305 ts->tv_sec = tk->xtime_sec; 306 ts->tv_nsec = timekeeping_get_ns(tk); 307 308 } while (read_seqretry(&tk->lock, seq)); 309 310 timespec_add_ns(ts, nsecs); 311 } 312 EXPORT_SYMBOL(getnstimeofday); 313 314 ktime_t ktime_get(void) 315 { 316 struct timekeeper *tk = &timekeeper; 317 unsigned int seq; 318 s64 secs, nsecs; 319 320 WARN_ON(timekeeping_suspended); 321 322 do { 323 seq = read_seqbegin(&tk->lock); 324 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 325 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec; 326 327 } while (read_seqretry(&tk->lock, seq)); 328 /* 329 * Use ktime_set/ktime_add_ns to create a proper ktime on 330 * 32-bit architectures without CONFIG_KTIME_SCALAR. 331 */ 332 return ktime_add_ns(ktime_set(secs, 0), nsecs); 333 } 334 EXPORT_SYMBOL_GPL(ktime_get); 335 336 /** 337 * ktime_get_ts - get the monotonic clock in timespec format 338 * @ts: pointer to timespec variable 339 * 340 * The function calculates the monotonic clock from the realtime 341 * clock and the wall_to_monotonic offset and stores the result 342 * in normalized timespec format in the variable pointed to by @ts. 343 */ 344 void ktime_get_ts(struct timespec *ts) 345 { 346 struct timekeeper *tk = &timekeeper; 347 struct timespec tomono; 348 unsigned int seq; 349 350 WARN_ON(timekeeping_suspended); 351 352 do { 353 seq = read_seqbegin(&tk->lock); 354 ts->tv_sec = tk->xtime_sec; 355 ts->tv_nsec = timekeeping_get_ns(tk); 356 tomono = tk->wall_to_monotonic; 357 358 } while (read_seqretry(&tk->lock, seq)); 359 360 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 361 ts->tv_nsec + tomono.tv_nsec); 362 } 363 EXPORT_SYMBOL_GPL(ktime_get_ts); 364 365 #ifdef CONFIG_NTP_PPS 366 367 /** 368 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 369 * @ts_raw: pointer to the timespec to be set to raw monotonic time 370 * @ts_real: pointer to the timespec to be set to the time of day 371 * 372 * This function reads both the time of day and raw monotonic time at the 373 * same time atomically and stores the resulting timestamps in timespec 374 * format. 375 */ 376 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 377 { 378 struct timekeeper *tk = &timekeeper; 379 unsigned long seq; 380 s64 nsecs_raw, nsecs_real; 381 382 WARN_ON_ONCE(timekeeping_suspended); 383 384 do { 385 seq = read_seqbegin(&tk->lock); 386 387 *ts_raw = tk->raw_time; 388 ts_real->tv_sec = tk->xtime_sec; 389 ts_real->tv_nsec = 0; 390 391 nsecs_raw = timekeeping_get_ns_raw(tk); 392 nsecs_real = timekeeping_get_ns(tk); 393 394 } while (read_seqretry(&tk->lock, seq)); 395 396 timespec_add_ns(ts_raw, nsecs_raw); 397 timespec_add_ns(ts_real, nsecs_real); 398 } 399 EXPORT_SYMBOL(getnstime_raw_and_real); 400 401 #endif /* CONFIG_NTP_PPS */ 402 403 /** 404 * do_gettimeofday - Returns the time of day in a timeval 405 * @tv: pointer to the timeval to be set 406 * 407 * NOTE: Users should be converted to using getnstimeofday() 408 */ 409 void do_gettimeofday(struct timeval *tv) 410 { 411 struct timespec now; 412 413 getnstimeofday(&now); 414 tv->tv_sec = now.tv_sec; 415 tv->tv_usec = now.tv_nsec/1000; 416 } 417 EXPORT_SYMBOL(do_gettimeofday); 418 419 /** 420 * do_settimeofday - Sets the time of day 421 * @tv: pointer to the timespec variable containing the new time 422 * 423 * Sets the time of day to the new time and update NTP and notify hrtimers 424 */ 425 int do_settimeofday(const struct timespec *tv) 426 { 427 struct timekeeper *tk = &timekeeper; 428 struct timespec ts_delta, xt; 429 unsigned long flags; 430 431 if (!timespec_valid_strict(tv)) 432 return -EINVAL; 433 434 write_seqlock_irqsave(&tk->lock, flags); 435 436 timekeeping_forward_now(tk); 437 438 xt = tk_xtime(tk); 439 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 440 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 441 442 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta)); 443 444 tk_set_xtime(tk, tv); 445 446 timekeeping_update(tk, true); 447 448 write_sequnlock_irqrestore(&tk->lock, flags); 449 450 /* signal hrtimers about time change */ 451 clock_was_set(); 452 453 return 0; 454 } 455 EXPORT_SYMBOL(do_settimeofday); 456 457 /** 458 * timekeeping_inject_offset - Adds or subtracts from the current time. 459 * @tv: pointer to the timespec variable containing the offset 460 * 461 * Adds or subtracts an offset value from the current time. 462 */ 463 int timekeeping_inject_offset(struct timespec *ts) 464 { 465 struct timekeeper *tk = &timekeeper; 466 unsigned long flags; 467 struct timespec tmp; 468 int ret = 0; 469 470 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 471 return -EINVAL; 472 473 write_seqlock_irqsave(&tk->lock, flags); 474 475 timekeeping_forward_now(tk); 476 477 /* Make sure the proposed value is valid */ 478 tmp = timespec_add(tk_xtime(tk), *ts); 479 if (!timespec_valid_strict(&tmp)) { 480 ret = -EINVAL; 481 goto error; 482 } 483 484 tk_xtime_add(tk, ts); 485 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts)); 486 487 error: /* even if we error out, we forwarded the time, so call update */ 488 timekeeping_update(tk, true); 489 490 write_sequnlock_irqrestore(&tk->lock, flags); 491 492 /* signal hrtimers about time change */ 493 clock_was_set(); 494 495 return ret; 496 } 497 EXPORT_SYMBOL(timekeeping_inject_offset); 498 499 /** 500 * change_clocksource - Swaps clocksources if a new one is available 501 * 502 * Accumulates current time interval and initializes new clocksource 503 */ 504 static int change_clocksource(void *data) 505 { 506 struct timekeeper *tk = &timekeeper; 507 struct clocksource *new, *old; 508 unsigned long flags; 509 510 new = (struct clocksource *) data; 511 512 write_seqlock_irqsave(&tk->lock, flags); 513 514 timekeeping_forward_now(tk); 515 if (!new->enable || new->enable(new) == 0) { 516 old = tk->clock; 517 tk_setup_internals(tk, new); 518 if (old->disable) 519 old->disable(old); 520 } 521 timekeeping_update(tk, true); 522 523 write_sequnlock_irqrestore(&tk->lock, flags); 524 525 return 0; 526 } 527 528 /** 529 * timekeeping_notify - Install a new clock source 530 * @clock: pointer to the clock source 531 * 532 * This function is called from clocksource.c after a new, better clock 533 * source has been registered. The caller holds the clocksource_mutex. 534 */ 535 void timekeeping_notify(struct clocksource *clock) 536 { 537 struct timekeeper *tk = &timekeeper; 538 539 if (tk->clock == clock) 540 return; 541 stop_machine(change_clocksource, clock, NULL); 542 tick_clock_notify(); 543 } 544 545 /** 546 * ktime_get_real - get the real (wall-) time in ktime_t format 547 * 548 * returns the time in ktime_t format 549 */ 550 ktime_t ktime_get_real(void) 551 { 552 struct timespec now; 553 554 getnstimeofday(&now); 555 556 return timespec_to_ktime(now); 557 } 558 EXPORT_SYMBOL_GPL(ktime_get_real); 559 560 /** 561 * getrawmonotonic - Returns the raw monotonic time in a timespec 562 * @ts: pointer to the timespec to be set 563 * 564 * Returns the raw monotonic time (completely un-modified by ntp) 565 */ 566 void getrawmonotonic(struct timespec *ts) 567 { 568 struct timekeeper *tk = &timekeeper; 569 unsigned long seq; 570 s64 nsecs; 571 572 do { 573 seq = read_seqbegin(&tk->lock); 574 nsecs = timekeeping_get_ns_raw(tk); 575 *ts = tk->raw_time; 576 577 } while (read_seqretry(&tk->lock, seq)); 578 579 timespec_add_ns(ts, nsecs); 580 } 581 EXPORT_SYMBOL(getrawmonotonic); 582 583 /** 584 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 585 */ 586 int timekeeping_valid_for_hres(void) 587 { 588 struct timekeeper *tk = &timekeeper; 589 unsigned long seq; 590 int ret; 591 592 do { 593 seq = read_seqbegin(&tk->lock); 594 595 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 596 597 } while (read_seqretry(&tk->lock, seq)); 598 599 return ret; 600 } 601 602 /** 603 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 604 */ 605 u64 timekeeping_max_deferment(void) 606 { 607 struct timekeeper *tk = &timekeeper; 608 unsigned long seq; 609 u64 ret; 610 611 do { 612 seq = read_seqbegin(&tk->lock); 613 614 ret = tk->clock->max_idle_ns; 615 616 } while (read_seqretry(&tk->lock, seq)); 617 618 return ret; 619 } 620 621 /** 622 * read_persistent_clock - Return time from the persistent clock. 623 * 624 * Weak dummy function for arches that do not yet support it. 625 * Reads the time from the battery backed persistent clock. 626 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 627 * 628 * XXX - Do be sure to remove it once all arches implement it. 629 */ 630 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 631 { 632 ts->tv_sec = 0; 633 ts->tv_nsec = 0; 634 } 635 636 /** 637 * read_boot_clock - Return time of the system start. 638 * 639 * Weak dummy function for arches that do not yet support it. 640 * Function to read the exact time the system has been started. 641 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 642 * 643 * XXX - Do be sure to remove it once all arches implement it. 644 */ 645 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 646 { 647 ts->tv_sec = 0; 648 ts->tv_nsec = 0; 649 } 650 651 /* 652 * timekeeping_init - Initializes the clocksource and common timekeeping values 653 */ 654 void __init timekeeping_init(void) 655 { 656 struct timekeeper *tk = &timekeeper; 657 struct clocksource *clock; 658 unsigned long flags; 659 struct timespec now, boot, tmp; 660 661 read_persistent_clock(&now); 662 if (!timespec_valid_strict(&now)) { 663 pr_warn("WARNING: Persistent clock returned invalid value!\n" 664 " Check your CMOS/BIOS settings.\n"); 665 now.tv_sec = 0; 666 now.tv_nsec = 0; 667 } 668 669 read_boot_clock(&boot); 670 if (!timespec_valid_strict(&boot)) { 671 pr_warn("WARNING: Boot clock returned invalid value!\n" 672 " Check your CMOS/BIOS settings.\n"); 673 boot.tv_sec = 0; 674 boot.tv_nsec = 0; 675 } 676 677 seqlock_init(&tk->lock); 678 679 ntp_init(); 680 681 write_seqlock_irqsave(&tk->lock, flags); 682 clock = clocksource_default_clock(); 683 if (clock->enable) 684 clock->enable(clock); 685 tk_setup_internals(tk, clock); 686 687 tk_set_xtime(tk, &now); 688 tk->raw_time.tv_sec = 0; 689 tk->raw_time.tv_nsec = 0; 690 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 691 boot = tk_xtime(tk); 692 693 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec); 694 tk_set_wall_to_mono(tk, tmp); 695 696 tmp.tv_sec = 0; 697 tmp.tv_nsec = 0; 698 tk_set_sleep_time(tk, tmp); 699 700 write_sequnlock_irqrestore(&tk->lock, flags); 701 } 702 703 /* time in seconds when suspend began */ 704 static struct timespec timekeeping_suspend_time; 705 706 /** 707 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 708 * @delta: pointer to a timespec delta value 709 * 710 * Takes a timespec offset measuring a suspend interval and properly 711 * adds the sleep offset to the timekeeping variables. 712 */ 713 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 714 struct timespec *delta) 715 { 716 if (!timespec_valid_strict(delta)) { 717 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 718 "sleep delta value!\n"); 719 return; 720 } 721 tk_xtime_add(tk, delta); 722 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta)); 723 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta)); 724 } 725 726 /** 727 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 728 * @delta: pointer to a timespec delta value 729 * 730 * This hook is for architectures that cannot support read_persistent_clock 731 * because their RTC/persistent clock is only accessible when irqs are enabled. 732 * 733 * This function should only be called by rtc_resume(), and allows 734 * a suspend offset to be injected into the timekeeping values. 735 */ 736 void timekeeping_inject_sleeptime(struct timespec *delta) 737 { 738 struct timekeeper *tk = &timekeeper; 739 unsigned long flags; 740 struct timespec ts; 741 742 /* Make sure we don't set the clock twice */ 743 read_persistent_clock(&ts); 744 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) 745 return; 746 747 write_seqlock_irqsave(&tk->lock, flags); 748 749 timekeeping_forward_now(tk); 750 751 __timekeeping_inject_sleeptime(tk, delta); 752 753 timekeeping_update(tk, true); 754 755 write_sequnlock_irqrestore(&tk->lock, flags); 756 757 /* signal hrtimers about time change */ 758 clock_was_set(); 759 } 760 761 /** 762 * timekeeping_resume - Resumes the generic timekeeping subsystem. 763 * 764 * This is for the generic clocksource timekeeping. 765 * xtime/wall_to_monotonic/jiffies/etc are 766 * still managed by arch specific suspend/resume code. 767 */ 768 static void timekeeping_resume(void) 769 { 770 struct timekeeper *tk = &timekeeper; 771 unsigned long flags; 772 struct timespec ts; 773 774 read_persistent_clock(&ts); 775 776 clocksource_resume(); 777 778 write_seqlock_irqsave(&tk->lock, flags); 779 780 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 781 ts = timespec_sub(ts, timekeeping_suspend_time); 782 __timekeeping_inject_sleeptime(tk, &ts); 783 } 784 /* re-base the last cycle value */ 785 tk->clock->cycle_last = tk->clock->read(tk->clock); 786 tk->ntp_error = 0; 787 timekeeping_suspended = 0; 788 timekeeping_update(tk, false); 789 write_sequnlock_irqrestore(&tk->lock, flags); 790 791 touch_softlockup_watchdog(); 792 793 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 794 795 /* Resume hrtimers */ 796 hrtimers_resume(); 797 } 798 799 static int timekeeping_suspend(void) 800 { 801 struct timekeeper *tk = &timekeeper; 802 unsigned long flags; 803 struct timespec delta, delta_delta; 804 static struct timespec old_delta; 805 806 read_persistent_clock(&timekeeping_suspend_time); 807 808 write_seqlock_irqsave(&tk->lock, flags); 809 timekeeping_forward_now(tk); 810 timekeeping_suspended = 1; 811 812 /* 813 * To avoid drift caused by repeated suspend/resumes, 814 * which each can add ~1 second drift error, 815 * try to compensate so the difference in system time 816 * and persistent_clock time stays close to constant. 817 */ 818 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time); 819 delta_delta = timespec_sub(delta, old_delta); 820 if (abs(delta_delta.tv_sec) >= 2) { 821 /* 822 * if delta_delta is too large, assume time correction 823 * has occured and set old_delta to the current delta. 824 */ 825 old_delta = delta; 826 } else { 827 /* Otherwise try to adjust old_system to compensate */ 828 timekeeping_suspend_time = 829 timespec_add(timekeeping_suspend_time, delta_delta); 830 } 831 write_sequnlock_irqrestore(&tk->lock, flags); 832 833 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 834 clocksource_suspend(); 835 836 return 0; 837 } 838 839 /* sysfs resume/suspend bits for timekeeping */ 840 static struct syscore_ops timekeeping_syscore_ops = { 841 .resume = timekeeping_resume, 842 .suspend = timekeeping_suspend, 843 }; 844 845 static int __init timekeeping_init_ops(void) 846 { 847 register_syscore_ops(&timekeeping_syscore_ops); 848 return 0; 849 } 850 851 device_initcall(timekeeping_init_ops); 852 853 /* 854 * If the error is already larger, we look ahead even further 855 * to compensate for late or lost adjustments. 856 */ 857 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk, 858 s64 error, s64 *interval, 859 s64 *offset) 860 { 861 s64 tick_error, i; 862 u32 look_ahead, adj; 863 s32 error2, mult; 864 865 /* 866 * Use the current error value to determine how much to look ahead. 867 * The larger the error the slower we adjust for it to avoid problems 868 * with losing too many ticks, otherwise we would overadjust and 869 * produce an even larger error. The smaller the adjustment the 870 * faster we try to adjust for it, as lost ticks can do less harm 871 * here. This is tuned so that an error of about 1 msec is adjusted 872 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 873 */ 874 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 875 error2 = abs(error2); 876 for (look_ahead = 0; error2 > 0; look_ahead++) 877 error2 >>= 2; 878 879 /* 880 * Now calculate the error in (1 << look_ahead) ticks, but first 881 * remove the single look ahead already included in the error. 882 */ 883 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1); 884 tick_error -= tk->xtime_interval >> 1; 885 error = ((error - tick_error) >> look_ahead) + tick_error; 886 887 /* Finally calculate the adjustment shift value. */ 888 i = *interval; 889 mult = 1; 890 if (error < 0) { 891 error = -error; 892 *interval = -*interval; 893 *offset = -*offset; 894 mult = -1; 895 } 896 for (adj = 0; error > i; adj++) 897 error >>= 1; 898 899 *interval <<= adj; 900 *offset <<= adj; 901 return mult << adj; 902 } 903 904 /* 905 * Adjust the multiplier to reduce the error value, 906 * this is optimized for the most common adjustments of -1,0,1, 907 * for other values we can do a bit more work. 908 */ 909 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 910 { 911 s64 error, interval = tk->cycle_interval; 912 int adj; 913 914 /* 915 * The point of this is to check if the error is greater than half 916 * an interval. 917 * 918 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 919 * 920 * Note we subtract one in the shift, so that error is really error*2. 921 * This "saves" dividing(shifting) interval twice, but keeps the 922 * (error > interval) comparison as still measuring if error is 923 * larger than half an interval. 924 * 925 * Note: It does not "save" on aggravation when reading the code. 926 */ 927 error = tk->ntp_error >> (tk->ntp_error_shift - 1); 928 if (error > interval) { 929 /* 930 * We now divide error by 4(via shift), which checks if 931 * the error is greater than twice the interval. 932 * If it is greater, we need a bigadjust, if its smaller, 933 * we can adjust by 1. 934 */ 935 error >>= 2; 936 /* 937 * XXX - In update_wall_time, we round up to the next 938 * nanosecond, and store the amount rounded up into 939 * the error. This causes the likely below to be unlikely. 940 * 941 * The proper fix is to avoid rounding up by using 942 * the high precision tk->xtime_nsec instead of 943 * xtime.tv_nsec everywhere. Fixing this will take some 944 * time. 945 */ 946 if (likely(error <= interval)) 947 adj = 1; 948 else 949 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 950 } else { 951 if (error < -interval) { 952 /* See comment above, this is just switched for the negative */ 953 error >>= 2; 954 if (likely(error >= -interval)) { 955 adj = -1; 956 interval = -interval; 957 offset = -offset; 958 } else { 959 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 960 } 961 } else { 962 goto out_adjust; 963 } 964 } 965 966 if (unlikely(tk->clock->maxadj && 967 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) { 968 printk_once(KERN_WARNING 969 "Adjusting %s more than 11%% (%ld vs %ld)\n", 970 tk->clock->name, (long)tk->mult + adj, 971 (long)tk->clock->mult + tk->clock->maxadj); 972 } 973 /* 974 * So the following can be confusing. 975 * 976 * To keep things simple, lets assume adj == 1 for now. 977 * 978 * When adj != 1, remember that the interval and offset values 979 * have been appropriately scaled so the math is the same. 980 * 981 * The basic idea here is that we're increasing the multiplier 982 * by one, this causes the xtime_interval to be incremented by 983 * one cycle_interval. This is because: 984 * xtime_interval = cycle_interval * mult 985 * So if mult is being incremented by one: 986 * xtime_interval = cycle_interval * (mult + 1) 987 * Its the same as: 988 * xtime_interval = (cycle_interval * mult) + cycle_interval 989 * Which can be shortened to: 990 * xtime_interval += cycle_interval 991 * 992 * So offset stores the non-accumulated cycles. Thus the current 993 * time (in shifted nanoseconds) is: 994 * now = (offset * adj) + xtime_nsec 995 * Now, even though we're adjusting the clock frequency, we have 996 * to keep time consistent. In other words, we can't jump back 997 * in time, and we also want to avoid jumping forward in time. 998 * 999 * So given the same offset value, we need the time to be the same 1000 * both before and after the freq adjustment. 1001 * now = (offset * adj_1) + xtime_nsec_1 1002 * now = (offset * adj_2) + xtime_nsec_2 1003 * So: 1004 * (offset * adj_1) + xtime_nsec_1 = 1005 * (offset * adj_2) + xtime_nsec_2 1006 * And we know: 1007 * adj_2 = adj_1 + 1 1008 * So: 1009 * (offset * adj_1) + xtime_nsec_1 = 1010 * (offset * (adj_1+1)) + xtime_nsec_2 1011 * (offset * adj_1) + xtime_nsec_1 = 1012 * (offset * adj_1) + offset + xtime_nsec_2 1013 * Canceling the sides: 1014 * xtime_nsec_1 = offset + xtime_nsec_2 1015 * Which gives us: 1016 * xtime_nsec_2 = xtime_nsec_1 - offset 1017 * Which simplfies to: 1018 * xtime_nsec -= offset 1019 * 1020 * XXX - TODO: Doc ntp_error calculation. 1021 */ 1022 tk->mult += adj; 1023 tk->xtime_interval += interval; 1024 tk->xtime_nsec -= offset; 1025 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1026 1027 out_adjust: 1028 /* 1029 * It may be possible that when we entered this function, xtime_nsec 1030 * was very small. Further, if we're slightly speeding the clocksource 1031 * in the code above, its possible the required corrective factor to 1032 * xtime_nsec could cause it to underflow. 1033 * 1034 * Now, since we already accumulated the second, cannot simply roll 1035 * the accumulated second back, since the NTP subsystem has been 1036 * notified via second_overflow. So instead we push xtime_nsec forward 1037 * by the amount we underflowed, and add that amount into the error. 1038 * 1039 * We'll correct this error next time through this function, when 1040 * xtime_nsec is not as small. 1041 */ 1042 if (unlikely((s64)tk->xtime_nsec < 0)) { 1043 s64 neg = -(s64)tk->xtime_nsec; 1044 tk->xtime_nsec = 0; 1045 tk->ntp_error += neg << tk->ntp_error_shift; 1046 } 1047 1048 } 1049 1050 /** 1051 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1052 * 1053 * Helper function that accumulates a the nsecs greater then a second 1054 * from the xtime_nsec field to the xtime_secs field. 1055 * It also calls into the NTP code to handle leapsecond processing. 1056 * 1057 */ 1058 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk) 1059 { 1060 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift; 1061 1062 while (tk->xtime_nsec >= nsecps) { 1063 int leap; 1064 1065 tk->xtime_nsec -= nsecps; 1066 tk->xtime_sec++; 1067 1068 /* Figure out if its a leap sec and apply if needed */ 1069 leap = second_overflow(tk->xtime_sec); 1070 if (unlikely(leap)) { 1071 struct timespec ts; 1072 1073 tk->xtime_sec += leap; 1074 1075 ts.tv_sec = leap; 1076 ts.tv_nsec = 0; 1077 tk_set_wall_to_mono(tk, 1078 timespec_sub(tk->wall_to_monotonic, ts)); 1079 1080 clock_was_set_delayed(); 1081 } 1082 } 1083 } 1084 1085 /** 1086 * logarithmic_accumulation - shifted accumulation of cycles 1087 * 1088 * This functions accumulates a shifted interval of cycles into 1089 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1090 * loop. 1091 * 1092 * Returns the unconsumed cycles. 1093 */ 1094 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1095 u32 shift) 1096 { 1097 u64 raw_nsecs; 1098 1099 /* If the offset is smaller then a shifted interval, do nothing */ 1100 if (offset < tk->cycle_interval<<shift) 1101 return offset; 1102 1103 /* Accumulate one shifted interval */ 1104 offset -= tk->cycle_interval << shift; 1105 tk->clock->cycle_last += tk->cycle_interval << shift; 1106 1107 tk->xtime_nsec += tk->xtime_interval << shift; 1108 accumulate_nsecs_to_secs(tk); 1109 1110 /* Accumulate raw time */ 1111 raw_nsecs = tk->raw_interval << shift; 1112 raw_nsecs += tk->raw_time.tv_nsec; 1113 if (raw_nsecs >= NSEC_PER_SEC) { 1114 u64 raw_secs = raw_nsecs; 1115 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1116 tk->raw_time.tv_sec += raw_secs; 1117 } 1118 tk->raw_time.tv_nsec = raw_nsecs; 1119 1120 /* Accumulate error between NTP and clock interval */ 1121 tk->ntp_error += ntp_tick_length() << shift; 1122 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1123 (tk->ntp_error_shift + shift); 1124 1125 return offset; 1126 } 1127 1128 /** 1129 * update_wall_time - Uses the current clocksource to increment the wall time 1130 * 1131 */ 1132 static void update_wall_time(void) 1133 { 1134 struct clocksource *clock; 1135 struct timekeeper *tk = &timekeeper; 1136 cycle_t offset; 1137 int shift = 0, maxshift; 1138 unsigned long flags; 1139 s64 remainder; 1140 1141 write_seqlock_irqsave(&tk->lock, flags); 1142 1143 /* Make sure we're fully resumed: */ 1144 if (unlikely(timekeeping_suspended)) 1145 goto out; 1146 1147 clock = tk->clock; 1148 1149 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1150 offset = tk->cycle_interval; 1151 #else 1152 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1153 #endif 1154 1155 /* Check if there's really nothing to do */ 1156 if (offset < tk->cycle_interval) 1157 goto out; 1158 1159 /* 1160 * With NO_HZ we may have to accumulate many cycle_intervals 1161 * (think "ticks") worth of time at once. To do this efficiently, 1162 * we calculate the largest doubling multiple of cycle_intervals 1163 * that is smaller than the offset. We then accumulate that 1164 * chunk in one go, and then try to consume the next smaller 1165 * doubled multiple. 1166 */ 1167 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1168 shift = max(0, shift); 1169 /* Bound shift to one less than what overflows tick_length */ 1170 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1171 shift = min(shift, maxshift); 1172 while (offset >= tk->cycle_interval) { 1173 offset = logarithmic_accumulation(tk, offset, shift); 1174 if (offset < tk->cycle_interval<<shift) 1175 shift--; 1176 } 1177 1178 /* correct the clock when NTP error is too big */ 1179 timekeeping_adjust(tk, offset); 1180 1181 1182 /* 1183 * Store only full nanoseconds into xtime_nsec after rounding 1184 * it up and add the remainder to the error difference. 1185 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 1186 * by truncating the remainder in vsyscalls. However, it causes 1187 * additional work to be done in timekeeping_adjust(). Once 1188 * the vsyscall implementations are converted to use xtime_nsec 1189 * (shifted nanoseconds), this can be killed. 1190 */ 1191 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1); 1192 tk->xtime_nsec -= remainder; 1193 tk->xtime_nsec += 1ULL << tk->shift; 1194 tk->ntp_error += remainder << tk->ntp_error_shift; 1195 1196 /* 1197 * Finally, make sure that after the rounding 1198 * xtime_nsec isn't larger than NSEC_PER_SEC 1199 */ 1200 accumulate_nsecs_to_secs(tk); 1201 1202 timekeeping_update(tk, false); 1203 1204 out: 1205 write_sequnlock_irqrestore(&tk->lock, flags); 1206 1207 } 1208 1209 /** 1210 * getboottime - Return the real time of system boot. 1211 * @ts: pointer to the timespec to be set 1212 * 1213 * Returns the wall-time of boot in a timespec. 1214 * 1215 * This is based on the wall_to_monotonic offset and the total suspend 1216 * time. Calls to settimeofday will affect the value returned (which 1217 * basically means that however wrong your real time clock is at boot time, 1218 * you get the right time here). 1219 */ 1220 void getboottime(struct timespec *ts) 1221 { 1222 struct timekeeper *tk = &timekeeper; 1223 struct timespec boottime = { 1224 .tv_sec = tk->wall_to_monotonic.tv_sec + 1225 tk->total_sleep_time.tv_sec, 1226 .tv_nsec = tk->wall_to_monotonic.tv_nsec + 1227 tk->total_sleep_time.tv_nsec 1228 }; 1229 1230 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1231 } 1232 EXPORT_SYMBOL_GPL(getboottime); 1233 1234 /** 1235 * get_monotonic_boottime - Returns monotonic time since boot 1236 * @ts: pointer to the timespec to be set 1237 * 1238 * Returns the monotonic time since boot in a timespec. 1239 * 1240 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1241 * includes the time spent in suspend. 1242 */ 1243 void get_monotonic_boottime(struct timespec *ts) 1244 { 1245 struct timekeeper *tk = &timekeeper; 1246 struct timespec tomono, sleep; 1247 unsigned int seq; 1248 1249 WARN_ON(timekeeping_suspended); 1250 1251 do { 1252 seq = read_seqbegin(&tk->lock); 1253 ts->tv_sec = tk->xtime_sec; 1254 ts->tv_nsec = timekeeping_get_ns(tk); 1255 tomono = tk->wall_to_monotonic; 1256 sleep = tk->total_sleep_time; 1257 1258 } while (read_seqretry(&tk->lock, seq)); 1259 1260 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, 1261 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec); 1262 } 1263 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1264 1265 /** 1266 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1267 * 1268 * Returns the monotonic time since boot in a ktime 1269 * 1270 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1271 * includes the time spent in suspend. 1272 */ 1273 ktime_t ktime_get_boottime(void) 1274 { 1275 struct timespec ts; 1276 1277 get_monotonic_boottime(&ts); 1278 return timespec_to_ktime(ts); 1279 } 1280 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1281 1282 /** 1283 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1284 * @ts: pointer to the timespec to be converted 1285 */ 1286 void monotonic_to_bootbased(struct timespec *ts) 1287 { 1288 struct timekeeper *tk = &timekeeper; 1289 1290 *ts = timespec_add(*ts, tk->total_sleep_time); 1291 } 1292 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1293 1294 unsigned long get_seconds(void) 1295 { 1296 struct timekeeper *tk = &timekeeper; 1297 1298 return tk->xtime_sec; 1299 } 1300 EXPORT_SYMBOL(get_seconds); 1301 1302 struct timespec __current_kernel_time(void) 1303 { 1304 struct timekeeper *tk = &timekeeper; 1305 1306 return tk_xtime(tk); 1307 } 1308 1309 struct timespec current_kernel_time(void) 1310 { 1311 struct timekeeper *tk = &timekeeper; 1312 struct timespec now; 1313 unsigned long seq; 1314 1315 do { 1316 seq = read_seqbegin(&tk->lock); 1317 1318 now = tk_xtime(tk); 1319 } while (read_seqretry(&tk->lock, seq)); 1320 1321 return now; 1322 } 1323 EXPORT_SYMBOL(current_kernel_time); 1324 1325 struct timespec get_monotonic_coarse(void) 1326 { 1327 struct timekeeper *tk = &timekeeper; 1328 struct timespec now, mono; 1329 unsigned long seq; 1330 1331 do { 1332 seq = read_seqbegin(&tk->lock); 1333 1334 now = tk_xtime(tk); 1335 mono = tk->wall_to_monotonic; 1336 } while (read_seqretry(&tk->lock, seq)); 1337 1338 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1339 now.tv_nsec + mono.tv_nsec); 1340 return now; 1341 } 1342 1343 /* 1344 * The 64-bit jiffies value is not atomic - you MUST NOT read it 1345 * without sampling the sequence number in xtime_lock. 1346 * jiffies is defined in the linker script... 1347 */ 1348 void do_timer(unsigned long ticks) 1349 { 1350 jiffies_64 += ticks; 1351 update_wall_time(); 1352 calc_global_load(ticks); 1353 } 1354 1355 /** 1356 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1357 * and sleep offsets. 1358 * @xtim: pointer to timespec to be set with xtime 1359 * @wtom: pointer to timespec to be set with wall_to_monotonic 1360 * @sleep: pointer to timespec to be set with time in suspend 1361 */ 1362 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1363 struct timespec *wtom, struct timespec *sleep) 1364 { 1365 struct timekeeper *tk = &timekeeper; 1366 unsigned long seq; 1367 1368 do { 1369 seq = read_seqbegin(&tk->lock); 1370 *xtim = tk_xtime(tk); 1371 *wtom = tk->wall_to_monotonic; 1372 *sleep = tk->total_sleep_time; 1373 } while (read_seqretry(&tk->lock, seq)); 1374 } 1375 1376 #ifdef CONFIG_HIGH_RES_TIMERS 1377 /** 1378 * ktime_get_update_offsets - hrtimer helper 1379 * @offs_real: pointer to storage for monotonic -> realtime offset 1380 * @offs_boot: pointer to storage for monotonic -> boottime offset 1381 * 1382 * Returns current monotonic time and updates the offsets 1383 * Called from hrtimer_interupt() or retrigger_next_event() 1384 */ 1385 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot) 1386 { 1387 struct timekeeper *tk = &timekeeper; 1388 ktime_t now; 1389 unsigned int seq; 1390 u64 secs, nsecs; 1391 1392 do { 1393 seq = read_seqbegin(&tk->lock); 1394 1395 secs = tk->xtime_sec; 1396 nsecs = timekeeping_get_ns(tk); 1397 1398 *offs_real = tk->offs_real; 1399 *offs_boot = tk->offs_boot; 1400 } while (read_seqretry(&tk->lock, seq)); 1401 1402 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1403 now = ktime_sub(now, *offs_real); 1404 return now; 1405 } 1406 #endif 1407 1408 /** 1409 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1410 */ 1411 ktime_t ktime_get_monotonic_offset(void) 1412 { 1413 struct timekeeper *tk = &timekeeper; 1414 unsigned long seq; 1415 struct timespec wtom; 1416 1417 do { 1418 seq = read_seqbegin(&tk->lock); 1419 wtom = tk->wall_to_monotonic; 1420 } while (read_seqretry(&tk->lock, seq)); 1421 1422 return timespec_to_ktime(wtom); 1423 } 1424 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1425 1426 /** 1427 * xtime_update() - advances the timekeeping infrastructure 1428 * @ticks: number of ticks, that have elapsed since the last call. 1429 * 1430 * Must be called with interrupts disabled. 1431 */ 1432 void xtime_update(unsigned long ticks) 1433 { 1434 write_seqlock(&xtime_lock); 1435 do_timer(ticks); 1436 write_sequnlock(&xtime_lock); 1437 } 1438