xref: /linux/kernel/time/timekeeping.c (revision 9429ec96c2718c0d1e3317cf60a87a0405223814)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource	*clock;
28 	/* NTP adjusted clock multiplier */
29 	u32			mult;
30 	/* The shift value of the current clocksource. */
31 	u32			shift;
32 	/* Number of clock cycles in one NTP interval. */
33 	cycle_t			cycle_interval;
34 	/* Number of clock shifted nano seconds in one NTP interval. */
35 	u64			xtime_interval;
36 	/* shifted nano seconds left over when rounding cycle_interval */
37 	s64			xtime_remainder;
38 	/* Raw nano seconds accumulated per NTP interval. */
39 	u32			raw_interval;
40 
41 	/* Current CLOCK_REALTIME time in seconds */
42 	u64			xtime_sec;
43 	/* Clock shifted nano seconds */
44 	u64			xtime_nsec;
45 
46 	/* Difference between accumulated time and NTP time in ntp
47 	 * shifted nano seconds. */
48 	s64			ntp_error;
49 	/* Shift conversion between clock shifted nano seconds and
50 	 * ntp shifted nano seconds. */
51 	u32			ntp_error_shift;
52 
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec		wall_to_monotonic;
68 	/* Offset clock monotonic -> clock realtime */
69 	ktime_t			offs_real;
70 	/* time spent in suspend */
71 	struct timespec		total_sleep_time;
72 	/* Offset clock monotonic -> clock boottime */
73 	ktime_t			offs_boot;
74 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
75 	struct timespec		raw_time;
76 	/* Seqlock for all timekeeper values */
77 	seqlock_t		lock;
78 };
79 
80 static struct timekeeper timekeeper;
81 
82 /*
83  * This read-write spinlock protects us from races in SMP while
84  * playing with xtime.
85  */
86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
87 
88 /* flag for if timekeeping is suspended */
89 int __read_mostly timekeeping_suspended;
90 
91 static inline void tk_normalize_xtime(struct timekeeper *tk)
92 {
93 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
94 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
95 		tk->xtime_sec++;
96 	}
97 }
98 
99 static struct timespec tk_xtime(struct timekeeper *tk)
100 {
101 	struct timespec ts;
102 
103 	ts.tv_sec = tk->xtime_sec;
104 	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
105 	return ts;
106 }
107 
108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
109 {
110 	tk->xtime_sec = ts->tv_sec;
111 	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
112 }
113 
114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
115 {
116 	tk->xtime_sec += ts->tv_sec;
117 	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
118 	tk_normalize_xtime(tk);
119 }
120 
121 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
122 {
123 	struct timespec tmp;
124 
125 	/*
126 	 * Verify consistency of: offset_real = -wall_to_monotonic
127 	 * before modifying anything
128 	 */
129 	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
130 					-tk->wall_to_monotonic.tv_nsec);
131 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
132 	tk->wall_to_monotonic = wtm;
133 	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
134 	tk->offs_real = timespec_to_ktime(tmp);
135 }
136 
137 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
138 {
139 	/* Verify consistency before modifying */
140 	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
141 
142 	tk->total_sleep_time	= t;
143 	tk->offs_boot		= timespec_to_ktime(t);
144 }
145 
146 /**
147  * timekeeper_setup_internals - Set up internals to use clocksource clock.
148  *
149  * @clock:		Pointer to clocksource.
150  *
151  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
152  * pair and interval request.
153  *
154  * Unless you're the timekeeping code, you should not be using this!
155  */
156 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
157 {
158 	cycle_t interval;
159 	u64 tmp, ntpinterval;
160 	struct clocksource *old_clock;
161 
162 	old_clock = tk->clock;
163 	tk->clock = clock;
164 	clock->cycle_last = clock->read(clock);
165 
166 	/* Do the ns -> cycle conversion first, using original mult */
167 	tmp = NTP_INTERVAL_LENGTH;
168 	tmp <<= clock->shift;
169 	ntpinterval = tmp;
170 	tmp += clock->mult/2;
171 	do_div(tmp, clock->mult);
172 	if (tmp == 0)
173 		tmp = 1;
174 
175 	interval = (cycle_t) tmp;
176 	tk->cycle_interval = interval;
177 
178 	/* Go back from cycles -> shifted ns */
179 	tk->xtime_interval = (u64) interval * clock->mult;
180 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
181 	tk->raw_interval =
182 		((u64) interval * clock->mult) >> clock->shift;
183 
184 	 /* if changing clocks, convert xtime_nsec shift units */
185 	if (old_clock) {
186 		int shift_change = clock->shift - old_clock->shift;
187 		if (shift_change < 0)
188 			tk->xtime_nsec >>= -shift_change;
189 		else
190 			tk->xtime_nsec <<= shift_change;
191 	}
192 	tk->shift = clock->shift;
193 
194 	tk->ntp_error = 0;
195 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
196 
197 	/*
198 	 * The timekeeper keeps its own mult values for the currently
199 	 * active clocksource. These value will be adjusted via NTP
200 	 * to counteract clock drifting.
201 	 */
202 	tk->mult = clock->mult;
203 }
204 
205 /* Timekeeper helper functions. */
206 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
207 {
208 	cycle_t cycle_now, cycle_delta;
209 	struct clocksource *clock;
210 	s64 nsec;
211 
212 	/* read clocksource: */
213 	clock = tk->clock;
214 	cycle_now = clock->read(clock);
215 
216 	/* calculate the delta since the last update_wall_time: */
217 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
218 
219 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
220 	nsec >>= tk->shift;
221 
222 	/* If arch requires, add in gettimeoffset() */
223 	return nsec + arch_gettimeoffset();
224 }
225 
226 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
227 {
228 	cycle_t cycle_now, cycle_delta;
229 	struct clocksource *clock;
230 	s64 nsec;
231 
232 	/* read clocksource: */
233 	clock = tk->clock;
234 	cycle_now = clock->read(clock);
235 
236 	/* calculate the delta since the last update_wall_time: */
237 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
238 
239 	/* convert delta to nanoseconds. */
240 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
241 
242 	/* If arch requires, add in gettimeoffset() */
243 	return nsec + arch_gettimeoffset();
244 }
245 
246 /* must hold write on timekeeper.lock */
247 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
248 {
249 	struct timespec xt;
250 
251 	if (clearntp) {
252 		tk->ntp_error = 0;
253 		ntp_clear();
254 	}
255 	xt = tk_xtime(tk);
256 	update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
257 }
258 
259 /**
260  * timekeeping_forward_now - update clock to the current time
261  *
262  * Forward the current clock to update its state since the last call to
263  * update_wall_time(). This is useful before significant clock changes,
264  * as it avoids having to deal with this time offset explicitly.
265  */
266 static void timekeeping_forward_now(struct timekeeper *tk)
267 {
268 	cycle_t cycle_now, cycle_delta;
269 	struct clocksource *clock;
270 	s64 nsec;
271 
272 	clock = tk->clock;
273 	cycle_now = clock->read(clock);
274 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
275 	clock->cycle_last = cycle_now;
276 
277 	tk->xtime_nsec += cycle_delta * tk->mult;
278 
279 	/* If arch requires, add in gettimeoffset() */
280 	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
281 
282 	tk_normalize_xtime(tk);
283 
284 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
285 	timespec_add_ns(&tk->raw_time, nsec);
286 }
287 
288 /**
289  * getnstimeofday - Returns the time of day in a timespec
290  * @ts:		pointer to the timespec to be set
291  *
292  * Returns the time of day in a timespec.
293  */
294 void getnstimeofday(struct timespec *ts)
295 {
296 	struct timekeeper *tk = &timekeeper;
297 	unsigned long seq;
298 	s64 nsecs = 0;
299 
300 	WARN_ON(timekeeping_suspended);
301 
302 	do {
303 		seq = read_seqbegin(&tk->lock);
304 
305 		ts->tv_sec = tk->xtime_sec;
306 		nsecs = timekeeping_get_ns(tk);
307 
308 	} while (read_seqretry(&tk->lock, seq));
309 
310 	ts->tv_nsec = 0;
311 	timespec_add_ns(ts, nsecs);
312 }
313 EXPORT_SYMBOL(getnstimeofday);
314 
315 ktime_t ktime_get(void)
316 {
317 	struct timekeeper *tk = &timekeeper;
318 	unsigned int seq;
319 	s64 secs, nsecs;
320 
321 	WARN_ON(timekeeping_suspended);
322 
323 	do {
324 		seq = read_seqbegin(&tk->lock);
325 		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
326 		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
327 
328 	} while (read_seqretry(&tk->lock, seq));
329 	/*
330 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
331 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
332 	 */
333 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
334 }
335 EXPORT_SYMBOL_GPL(ktime_get);
336 
337 /**
338  * ktime_get_ts - get the monotonic clock in timespec format
339  * @ts:		pointer to timespec variable
340  *
341  * The function calculates the monotonic clock from the realtime
342  * clock and the wall_to_monotonic offset and stores the result
343  * in normalized timespec format in the variable pointed to by @ts.
344  */
345 void ktime_get_ts(struct timespec *ts)
346 {
347 	struct timekeeper *tk = &timekeeper;
348 	struct timespec tomono;
349 	s64 nsec;
350 	unsigned int seq;
351 
352 	WARN_ON(timekeeping_suspended);
353 
354 	do {
355 		seq = read_seqbegin(&tk->lock);
356 		ts->tv_sec = tk->xtime_sec;
357 		nsec = timekeeping_get_ns(tk);
358 		tomono = tk->wall_to_monotonic;
359 
360 	} while (read_seqretry(&tk->lock, seq));
361 
362 	ts->tv_sec += tomono.tv_sec;
363 	ts->tv_nsec = 0;
364 	timespec_add_ns(ts, nsec + tomono.tv_nsec);
365 }
366 EXPORT_SYMBOL_GPL(ktime_get_ts);
367 
368 #ifdef CONFIG_NTP_PPS
369 
370 /**
371  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
372  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
373  * @ts_real:	pointer to the timespec to be set to the time of day
374  *
375  * This function reads both the time of day and raw monotonic time at the
376  * same time atomically and stores the resulting timestamps in timespec
377  * format.
378  */
379 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
380 {
381 	struct timekeeper *tk = &timekeeper;
382 	unsigned long seq;
383 	s64 nsecs_raw, nsecs_real;
384 
385 	WARN_ON_ONCE(timekeeping_suspended);
386 
387 	do {
388 		seq = read_seqbegin(&tk->lock);
389 
390 		*ts_raw = tk->raw_time;
391 		ts_real->tv_sec = tk->xtime_sec;
392 		ts_real->tv_nsec = 0;
393 
394 		nsecs_raw = timekeeping_get_ns_raw(tk);
395 		nsecs_real = timekeeping_get_ns(tk);
396 
397 	} while (read_seqretry(&tk->lock, seq));
398 
399 	timespec_add_ns(ts_raw, nsecs_raw);
400 	timespec_add_ns(ts_real, nsecs_real);
401 }
402 EXPORT_SYMBOL(getnstime_raw_and_real);
403 
404 #endif /* CONFIG_NTP_PPS */
405 
406 /**
407  * do_gettimeofday - Returns the time of day in a timeval
408  * @tv:		pointer to the timeval to be set
409  *
410  * NOTE: Users should be converted to using getnstimeofday()
411  */
412 void do_gettimeofday(struct timeval *tv)
413 {
414 	struct timespec now;
415 
416 	getnstimeofday(&now);
417 	tv->tv_sec = now.tv_sec;
418 	tv->tv_usec = now.tv_nsec/1000;
419 }
420 EXPORT_SYMBOL(do_gettimeofday);
421 
422 /**
423  * do_settimeofday - Sets the time of day
424  * @tv:		pointer to the timespec variable containing the new time
425  *
426  * Sets the time of day to the new time and update NTP and notify hrtimers
427  */
428 int do_settimeofday(const struct timespec *tv)
429 {
430 	struct timekeeper *tk = &timekeeper;
431 	struct timespec ts_delta, xt;
432 	unsigned long flags;
433 
434 	if (!timespec_valid_strict(tv))
435 		return -EINVAL;
436 
437 	write_seqlock_irqsave(&tk->lock, flags);
438 
439 	timekeeping_forward_now(tk);
440 
441 	xt = tk_xtime(tk);
442 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
443 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
444 
445 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
446 
447 	tk_set_xtime(tk, tv);
448 
449 	timekeeping_update(tk, true);
450 
451 	write_sequnlock_irqrestore(&tk->lock, flags);
452 
453 	/* signal hrtimers about time change */
454 	clock_was_set();
455 
456 	return 0;
457 }
458 EXPORT_SYMBOL(do_settimeofday);
459 
460 /**
461  * timekeeping_inject_offset - Adds or subtracts from the current time.
462  * @tv:		pointer to the timespec variable containing the offset
463  *
464  * Adds or subtracts an offset value from the current time.
465  */
466 int timekeeping_inject_offset(struct timespec *ts)
467 {
468 	struct timekeeper *tk = &timekeeper;
469 	unsigned long flags;
470 	struct timespec tmp;
471 	int ret = 0;
472 
473 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
474 		return -EINVAL;
475 
476 	write_seqlock_irqsave(&tk->lock, flags);
477 
478 	timekeeping_forward_now(tk);
479 
480 	/* Make sure the proposed value is valid */
481 	tmp = timespec_add(tk_xtime(tk),  *ts);
482 	if (!timespec_valid_strict(&tmp)) {
483 		ret = -EINVAL;
484 		goto error;
485 	}
486 
487 	tk_xtime_add(tk, ts);
488 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
489 
490 error: /* even if we error out, we forwarded the time, so call update */
491 	timekeeping_update(tk, true);
492 
493 	write_sequnlock_irqrestore(&tk->lock, flags);
494 
495 	/* signal hrtimers about time change */
496 	clock_was_set();
497 
498 	return ret;
499 }
500 EXPORT_SYMBOL(timekeeping_inject_offset);
501 
502 /**
503  * change_clocksource - Swaps clocksources if a new one is available
504  *
505  * Accumulates current time interval and initializes new clocksource
506  */
507 static int change_clocksource(void *data)
508 {
509 	struct timekeeper *tk = &timekeeper;
510 	struct clocksource *new, *old;
511 	unsigned long flags;
512 
513 	new = (struct clocksource *) data;
514 
515 	write_seqlock_irqsave(&tk->lock, flags);
516 
517 	timekeeping_forward_now(tk);
518 	if (!new->enable || new->enable(new) == 0) {
519 		old = tk->clock;
520 		tk_setup_internals(tk, new);
521 		if (old->disable)
522 			old->disable(old);
523 	}
524 	timekeeping_update(tk, true);
525 
526 	write_sequnlock_irqrestore(&tk->lock, flags);
527 
528 	return 0;
529 }
530 
531 /**
532  * timekeeping_notify - Install a new clock source
533  * @clock:		pointer to the clock source
534  *
535  * This function is called from clocksource.c after a new, better clock
536  * source has been registered. The caller holds the clocksource_mutex.
537  */
538 void timekeeping_notify(struct clocksource *clock)
539 {
540 	struct timekeeper *tk = &timekeeper;
541 
542 	if (tk->clock == clock)
543 		return;
544 	stop_machine(change_clocksource, clock, NULL);
545 	tick_clock_notify();
546 }
547 
548 /**
549  * ktime_get_real - get the real (wall-) time in ktime_t format
550  *
551  * returns the time in ktime_t format
552  */
553 ktime_t ktime_get_real(void)
554 {
555 	struct timespec now;
556 
557 	getnstimeofday(&now);
558 
559 	return timespec_to_ktime(now);
560 }
561 EXPORT_SYMBOL_GPL(ktime_get_real);
562 
563 /**
564  * getrawmonotonic - Returns the raw monotonic time in a timespec
565  * @ts:		pointer to the timespec to be set
566  *
567  * Returns the raw monotonic time (completely un-modified by ntp)
568  */
569 void getrawmonotonic(struct timespec *ts)
570 {
571 	struct timekeeper *tk = &timekeeper;
572 	unsigned long seq;
573 	s64 nsecs;
574 
575 	do {
576 		seq = read_seqbegin(&tk->lock);
577 		nsecs = timekeeping_get_ns_raw(tk);
578 		*ts = tk->raw_time;
579 
580 	} while (read_seqretry(&tk->lock, seq));
581 
582 	timespec_add_ns(ts, nsecs);
583 }
584 EXPORT_SYMBOL(getrawmonotonic);
585 
586 /**
587  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
588  */
589 int timekeeping_valid_for_hres(void)
590 {
591 	struct timekeeper *tk = &timekeeper;
592 	unsigned long seq;
593 	int ret;
594 
595 	do {
596 		seq = read_seqbegin(&tk->lock);
597 
598 		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
599 
600 	} while (read_seqretry(&tk->lock, seq));
601 
602 	return ret;
603 }
604 
605 /**
606  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
607  */
608 u64 timekeeping_max_deferment(void)
609 {
610 	struct timekeeper *tk = &timekeeper;
611 	unsigned long seq;
612 	u64 ret;
613 
614 	do {
615 		seq = read_seqbegin(&tk->lock);
616 
617 		ret = tk->clock->max_idle_ns;
618 
619 	} while (read_seqretry(&tk->lock, seq));
620 
621 	return ret;
622 }
623 
624 /**
625  * read_persistent_clock -  Return time from the persistent clock.
626  *
627  * Weak dummy function for arches that do not yet support it.
628  * Reads the time from the battery backed persistent clock.
629  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
630  *
631  *  XXX - Do be sure to remove it once all arches implement it.
632  */
633 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
634 {
635 	ts->tv_sec = 0;
636 	ts->tv_nsec = 0;
637 }
638 
639 /**
640  * read_boot_clock -  Return time of the system start.
641  *
642  * Weak dummy function for arches that do not yet support it.
643  * Function to read the exact time the system has been started.
644  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
645  *
646  *  XXX - Do be sure to remove it once all arches implement it.
647  */
648 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
649 {
650 	ts->tv_sec = 0;
651 	ts->tv_nsec = 0;
652 }
653 
654 /*
655  * timekeeping_init - Initializes the clocksource and common timekeeping values
656  */
657 void __init timekeeping_init(void)
658 {
659 	struct timekeeper *tk = &timekeeper;
660 	struct clocksource *clock;
661 	unsigned long flags;
662 	struct timespec now, boot, tmp;
663 
664 	read_persistent_clock(&now);
665 	if (!timespec_valid_strict(&now)) {
666 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
667 			"         Check your CMOS/BIOS settings.\n");
668 		now.tv_sec = 0;
669 		now.tv_nsec = 0;
670 	}
671 
672 	read_boot_clock(&boot);
673 	if (!timespec_valid_strict(&boot)) {
674 		pr_warn("WARNING: Boot clock returned invalid value!\n"
675 			"         Check your CMOS/BIOS settings.\n");
676 		boot.tv_sec = 0;
677 		boot.tv_nsec = 0;
678 	}
679 
680 	seqlock_init(&tk->lock);
681 
682 	ntp_init();
683 
684 	write_seqlock_irqsave(&tk->lock, flags);
685 	clock = clocksource_default_clock();
686 	if (clock->enable)
687 		clock->enable(clock);
688 	tk_setup_internals(tk, clock);
689 
690 	tk_set_xtime(tk, &now);
691 	tk->raw_time.tv_sec = 0;
692 	tk->raw_time.tv_nsec = 0;
693 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
694 		boot = tk_xtime(tk);
695 
696 	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
697 	tk_set_wall_to_mono(tk, tmp);
698 
699 	tmp.tv_sec = 0;
700 	tmp.tv_nsec = 0;
701 	tk_set_sleep_time(tk, tmp);
702 
703 	write_sequnlock_irqrestore(&tk->lock, flags);
704 }
705 
706 /* time in seconds when suspend began */
707 static struct timespec timekeeping_suspend_time;
708 
709 /**
710  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
711  * @delta: pointer to a timespec delta value
712  *
713  * Takes a timespec offset measuring a suspend interval and properly
714  * adds the sleep offset to the timekeeping variables.
715  */
716 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
717 							struct timespec *delta)
718 {
719 	if (!timespec_valid_strict(delta)) {
720 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
721 					"sleep delta value!\n");
722 		return;
723 	}
724 	tk_xtime_add(tk, delta);
725 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
726 	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
727 }
728 
729 /**
730  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
731  * @delta: pointer to a timespec delta value
732  *
733  * This hook is for architectures that cannot support read_persistent_clock
734  * because their RTC/persistent clock is only accessible when irqs are enabled.
735  *
736  * This function should only be called by rtc_resume(), and allows
737  * a suspend offset to be injected into the timekeeping values.
738  */
739 void timekeeping_inject_sleeptime(struct timespec *delta)
740 {
741 	struct timekeeper *tk = &timekeeper;
742 	unsigned long flags;
743 	struct timespec ts;
744 
745 	/* Make sure we don't set the clock twice */
746 	read_persistent_clock(&ts);
747 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
748 		return;
749 
750 	write_seqlock_irqsave(&tk->lock, flags);
751 
752 	timekeeping_forward_now(tk);
753 
754 	__timekeeping_inject_sleeptime(tk, delta);
755 
756 	timekeeping_update(tk, true);
757 
758 	write_sequnlock_irqrestore(&tk->lock, flags);
759 
760 	/* signal hrtimers about time change */
761 	clock_was_set();
762 }
763 
764 /**
765  * timekeeping_resume - Resumes the generic timekeeping subsystem.
766  *
767  * This is for the generic clocksource timekeeping.
768  * xtime/wall_to_monotonic/jiffies/etc are
769  * still managed by arch specific suspend/resume code.
770  */
771 static void timekeeping_resume(void)
772 {
773 	struct timekeeper *tk = &timekeeper;
774 	unsigned long flags;
775 	struct timespec ts;
776 
777 	read_persistent_clock(&ts);
778 
779 	clocksource_resume();
780 
781 	write_seqlock_irqsave(&tk->lock, flags);
782 
783 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
784 		ts = timespec_sub(ts, timekeeping_suspend_time);
785 		__timekeeping_inject_sleeptime(tk, &ts);
786 	}
787 	/* re-base the last cycle value */
788 	tk->clock->cycle_last = tk->clock->read(tk->clock);
789 	tk->ntp_error = 0;
790 	timekeeping_suspended = 0;
791 	timekeeping_update(tk, false);
792 	write_sequnlock_irqrestore(&tk->lock, flags);
793 
794 	touch_softlockup_watchdog();
795 
796 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
797 
798 	/* Resume hrtimers */
799 	hrtimers_resume();
800 }
801 
802 static int timekeeping_suspend(void)
803 {
804 	struct timekeeper *tk = &timekeeper;
805 	unsigned long flags;
806 	struct timespec		delta, delta_delta;
807 	static struct timespec	old_delta;
808 
809 	read_persistent_clock(&timekeeping_suspend_time);
810 
811 	write_seqlock_irqsave(&tk->lock, flags);
812 	timekeeping_forward_now(tk);
813 	timekeeping_suspended = 1;
814 
815 	/*
816 	 * To avoid drift caused by repeated suspend/resumes,
817 	 * which each can add ~1 second drift error,
818 	 * try to compensate so the difference in system time
819 	 * and persistent_clock time stays close to constant.
820 	 */
821 	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
822 	delta_delta = timespec_sub(delta, old_delta);
823 	if (abs(delta_delta.tv_sec)  >= 2) {
824 		/*
825 		 * if delta_delta is too large, assume time correction
826 		 * has occured and set old_delta to the current delta.
827 		 */
828 		old_delta = delta;
829 	} else {
830 		/* Otherwise try to adjust old_system to compensate */
831 		timekeeping_suspend_time =
832 			timespec_add(timekeeping_suspend_time, delta_delta);
833 	}
834 	write_sequnlock_irqrestore(&tk->lock, flags);
835 
836 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
837 	clocksource_suspend();
838 
839 	return 0;
840 }
841 
842 /* sysfs resume/suspend bits for timekeeping */
843 static struct syscore_ops timekeeping_syscore_ops = {
844 	.resume		= timekeeping_resume,
845 	.suspend	= timekeeping_suspend,
846 };
847 
848 static int __init timekeeping_init_ops(void)
849 {
850 	register_syscore_ops(&timekeeping_syscore_ops);
851 	return 0;
852 }
853 
854 device_initcall(timekeeping_init_ops);
855 
856 /*
857  * If the error is already larger, we look ahead even further
858  * to compensate for late or lost adjustments.
859  */
860 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
861 						 s64 error, s64 *interval,
862 						 s64 *offset)
863 {
864 	s64 tick_error, i;
865 	u32 look_ahead, adj;
866 	s32 error2, mult;
867 
868 	/*
869 	 * Use the current error value to determine how much to look ahead.
870 	 * The larger the error the slower we adjust for it to avoid problems
871 	 * with losing too many ticks, otherwise we would overadjust and
872 	 * produce an even larger error.  The smaller the adjustment the
873 	 * faster we try to adjust for it, as lost ticks can do less harm
874 	 * here.  This is tuned so that an error of about 1 msec is adjusted
875 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
876 	 */
877 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
878 	error2 = abs(error2);
879 	for (look_ahead = 0; error2 > 0; look_ahead++)
880 		error2 >>= 2;
881 
882 	/*
883 	 * Now calculate the error in (1 << look_ahead) ticks, but first
884 	 * remove the single look ahead already included in the error.
885 	 */
886 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
887 	tick_error -= tk->xtime_interval >> 1;
888 	error = ((error - tick_error) >> look_ahead) + tick_error;
889 
890 	/* Finally calculate the adjustment shift value.  */
891 	i = *interval;
892 	mult = 1;
893 	if (error < 0) {
894 		error = -error;
895 		*interval = -*interval;
896 		*offset = -*offset;
897 		mult = -1;
898 	}
899 	for (adj = 0; error > i; adj++)
900 		error >>= 1;
901 
902 	*interval <<= adj;
903 	*offset <<= adj;
904 	return mult << adj;
905 }
906 
907 /*
908  * Adjust the multiplier to reduce the error value,
909  * this is optimized for the most common adjustments of -1,0,1,
910  * for other values we can do a bit more work.
911  */
912 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
913 {
914 	s64 error, interval = tk->cycle_interval;
915 	int adj;
916 
917 	/*
918 	 * The point of this is to check if the error is greater than half
919 	 * an interval.
920 	 *
921 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
922 	 *
923 	 * Note we subtract one in the shift, so that error is really error*2.
924 	 * This "saves" dividing(shifting) interval twice, but keeps the
925 	 * (error > interval) comparison as still measuring if error is
926 	 * larger than half an interval.
927 	 *
928 	 * Note: It does not "save" on aggravation when reading the code.
929 	 */
930 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
931 	if (error > interval) {
932 		/*
933 		 * We now divide error by 4(via shift), which checks if
934 		 * the error is greater than twice the interval.
935 		 * If it is greater, we need a bigadjust, if its smaller,
936 		 * we can adjust by 1.
937 		 */
938 		error >>= 2;
939 		/*
940 		 * XXX - In update_wall_time, we round up to the next
941 		 * nanosecond, and store the amount rounded up into
942 		 * the error. This causes the likely below to be unlikely.
943 		 *
944 		 * The proper fix is to avoid rounding up by using
945 		 * the high precision tk->xtime_nsec instead of
946 		 * xtime.tv_nsec everywhere. Fixing this will take some
947 		 * time.
948 		 */
949 		if (likely(error <= interval))
950 			adj = 1;
951 		else
952 			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
953 	} else {
954 		if (error < -interval) {
955 			/* See comment above, this is just switched for the negative */
956 			error >>= 2;
957 			if (likely(error >= -interval)) {
958 				adj = -1;
959 				interval = -interval;
960 				offset = -offset;
961 			} else {
962 				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
963 			}
964 		} else {
965 			goto out_adjust;
966 		}
967 	}
968 
969 	if (unlikely(tk->clock->maxadj &&
970 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
971 		printk_once(KERN_WARNING
972 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
973 			tk->clock->name, (long)tk->mult + adj,
974 			(long)tk->clock->mult + tk->clock->maxadj);
975 	}
976 	/*
977 	 * So the following can be confusing.
978 	 *
979 	 * To keep things simple, lets assume adj == 1 for now.
980 	 *
981 	 * When adj != 1, remember that the interval and offset values
982 	 * have been appropriately scaled so the math is the same.
983 	 *
984 	 * The basic idea here is that we're increasing the multiplier
985 	 * by one, this causes the xtime_interval to be incremented by
986 	 * one cycle_interval. This is because:
987 	 *	xtime_interval = cycle_interval * mult
988 	 * So if mult is being incremented by one:
989 	 *	xtime_interval = cycle_interval * (mult + 1)
990 	 * Its the same as:
991 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
992 	 * Which can be shortened to:
993 	 *	xtime_interval += cycle_interval
994 	 *
995 	 * So offset stores the non-accumulated cycles. Thus the current
996 	 * time (in shifted nanoseconds) is:
997 	 *	now = (offset * adj) + xtime_nsec
998 	 * Now, even though we're adjusting the clock frequency, we have
999 	 * to keep time consistent. In other words, we can't jump back
1000 	 * in time, and we also want to avoid jumping forward in time.
1001 	 *
1002 	 * So given the same offset value, we need the time to be the same
1003 	 * both before and after the freq adjustment.
1004 	 *	now = (offset * adj_1) + xtime_nsec_1
1005 	 *	now = (offset * adj_2) + xtime_nsec_2
1006 	 * So:
1007 	 *	(offset * adj_1) + xtime_nsec_1 =
1008 	 *		(offset * adj_2) + xtime_nsec_2
1009 	 * And we know:
1010 	 *	adj_2 = adj_1 + 1
1011 	 * So:
1012 	 *	(offset * adj_1) + xtime_nsec_1 =
1013 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1014 	 *	(offset * adj_1) + xtime_nsec_1 =
1015 	 *		(offset * adj_1) + offset + xtime_nsec_2
1016 	 * Canceling the sides:
1017 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1018 	 * Which gives us:
1019 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1020 	 * Which simplfies to:
1021 	 *	xtime_nsec -= offset
1022 	 *
1023 	 * XXX - TODO: Doc ntp_error calculation.
1024 	 */
1025 	tk->mult += adj;
1026 	tk->xtime_interval += interval;
1027 	tk->xtime_nsec -= offset;
1028 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1029 
1030 out_adjust:
1031 	/*
1032 	 * It may be possible that when we entered this function, xtime_nsec
1033 	 * was very small.  Further, if we're slightly speeding the clocksource
1034 	 * in the code above, its possible the required corrective factor to
1035 	 * xtime_nsec could cause it to underflow.
1036 	 *
1037 	 * Now, since we already accumulated the second, cannot simply roll
1038 	 * the accumulated second back, since the NTP subsystem has been
1039 	 * notified via second_overflow. So instead we push xtime_nsec forward
1040 	 * by the amount we underflowed, and add that amount into the error.
1041 	 *
1042 	 * We'll correct this error next time through this function, when
1043 	 * xtime_nsec is not as small.
1044 	 */
1045 	if (unlikely((s64)tk->xtime_nsec < 0)) {
1046 		s64 neg = -(s64)tk->xtime_nsec;
1047 		tk->xtime_nsec = 0;
1048 		tk->ntp_error += neg << tk->ntp_error_shift;
1049 	}
1050 
1051 }
1052 
1053 /**
1054  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1055  *
1056  * Helper function that accumulates a the nsecs greater then a second
1057  * from the xtime_nsec field to the xtime_secs field.
1058  * It also calls into the NTP code to handle leapsecond processing.
1059  *
1060  */
1061 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1062 {
1063 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1064 
1065 	while (tk->xtime_nsec >= nsecps) {
1066 		int leap;
1067 
1068 		tk->xtime_nsec -= nsecps;
1069 		tk->xtime_sec++;
1070 
1071 		/* Figure out if its a leap sec and apply if needed */
1072 		leap = second_overflow(tk->xtime_sec);
1073 		if (unlikely(leap)) {
1074 			struct timespec ts;
1075 
1076 			tk->xtime_sec += leap;
1077 
1078 			ts.tv_sec = leap;
1079 			ts.tv_nsec = 0;
1080 			tk_set_wall_to_mono(tk,
1081 				timespec_sub(tk->wall_to_monotonic, ts));
1082 
1083 			clock_was_set_delayed();
1084 		}
1085 	}
1086 }
1087 
1088 /**
1089  * logarithmic_accumulation - shifted accumulation of cycles
1090  *
1091  * This functions accumulates a shifted interval of cycles into
1092  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1093  * loop.
1094  *
1095  * Returns the unconsumed cycles.
1096  */
1097 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1098 						u32 shift)
1099 {
1100 	u64 raw_nsecs;
1101 
1102 	/* If the offset is smaller then a shifted interval, do nothing */
1103 	if (offset < tk->cycle_interval<<shift)
1104 		return offset;
1105 
1106 	/* Accumulate one shifted interval */
1107 	offset -= tk->cycle_interval << shift;
1108 	tk->clock->cycle_last += tk->cycle_interval << shift;
1109 
1110 	tk->xtime_nsec += tk->xtime_interval << shift;
1111 	accumulate_nsecs_to_secs(tk);
1112 
1113 	/* Accumulate raw time */
1114 	raw_nsecs = tk->raw_interval << shift;
1115 	raw_nsecs += tk->raw_time.tv_nsec;
1116 	if (raw_nsecs >= NSEC_PER_SEC) {
1117 		u64 raw_secs = raw_nsecs;
1118 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1119 		tk->raw_time.tv_sec += raw_secs;
1120 	}
1121 	tk->raw_time.tv_nsec = raw_nsecs;
1122 
1123 	/* Accumulate error between NTP and clock interval */
1124 	tk->ntp_error += ntp_tick_length() << shift;
1125 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1126 						(tk->ntp_error_shift + shift);
1127 
1128 	return offset;
1129 }
1130 
1131 /**
1132  * update_wall_time - Uses the current clocksource to increment the wall time
1133  *
1134  */
1135 static void update_wall_time(void)
1136 {
1137 	struct clocksource *clock;
1138 	struct timekeeper *tk = &timekeeper;
1139 	cycle_t offset;
1140 	int shift = 0, maxshift;
1141 	unsigned long flags;
1142 	s64 remainder;
1143 
1144 	write_seqlock_irqsave(&tk->lock, flags);
1145 
1146 	/* Make sure we're fully resumed: */
1147 	if (unlikely(timekeeping_suspended))
1148 		goto out;
1149 
1150 	clock = tk->clock;
1151 
1152 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1153 	offset = tk->cycle_interval;
1154 #else
1155 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1156 #endif
1157 
1158 	/* Check if there's really nothing to do */
1159 	if (offset < tk->cycle_interval)
1160 		goto out;
1161 
1162 	/*
1163 	 * With NO_HZ we may have to accumulate many cycle_intervals
1164 	 * (think "ticks") worth of time at once. To do this efficiently,
1165 	 * we calculate the largest doubling multiple of cycle_intervals
1166 	 * that is smaller than the offset.  We then accumulate that
1167 	 * chunk in one go, and then try to consume the next smaller
1168 	 * doubled multiple.
1169 	 */
1170 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1171 	shift = max(0, shift);
1172 	/* Bound shift to one less than what overflows tick_length */
1173 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1174 	shift = min(shift, maxshift);
1175 	while (offset >= tk->cycle_interval) {
1176 		offset = logarithmic_accumulation(tk, offset, shift);
1177 		if (offset < tk->cycle_interval<<shift)
1178 			shift--;
1179 	}
1180 
1181 	/* correct the clock when NTP error is too big */
1182 	timekeeping_adjust(tk, offset);
1183 
1184 
1185 	/*
1186 	* Store only full nanoseconds into xtime_nsec after rounding
1187 	* it up and add the remainder to the error difference.
1188 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1189 	* by truncating the remainder in vsyscalls. However, it causes
1190 	* additional work to be done in timekeeping_adjust(). Once
1191 	* the vsyscall implementations are converted to use xtime_nsec
1192 	* (shifted nanoseconds), this can be killed.
1193 	*/
1194 	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1195 	tk->xtime_nsec -= remainder;
1196 	tk->xtime_nsec += 1ULL << tk->shift;
1197 	tk->ntp_error += remainder << tk->ntp_error_shift;
1198 
1199 	/*
1200 	 * Finally, make sure that after the rounding
1201 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1202 	 */
1203 	accumulate_nsecs_to_secs(tk);
1204 
1205 	timekeeping_update(tk, false);
1206 
1207 out:
1208 	write_sequnlock_irqrestore(&tk->lock, flags);
1209 
1210 }
1211 
1212 /**
1213  * getboottime - Return the real time of system boot.
1214  * @ts:		pointer to the timespec to be set
1215  *
1216  * Returns the wall-time of boot in a timespec.
1217  *
1218  * This is based on the wall_to_monotonic offset and the total suspend
1219  * time. Calls to settimeofday will affect the value returned (which
1220  * basically means that however wrong your real time clock is at boot time,
1221  * you get the right time here).
1222  */
1223 void getboottime(struct timespec *ts)
1224 {
1225 	struct timekeeper *tk = &timekeeper;
1226 	struct timespec boottime = {
1227 		.tv_sec = tk->wall_to_monotonic.tv_sec +
1228 				tk->total_sleep_time.tv_sec,
1229 		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
1230 				tk->total_sleep_time.tv_nsec
1231 	};
1232 
1233 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1234 }
1235 EXPORT_SYMBOL_GPL(getboottime);
1236 
1237 /**
1238  * get_monotonic_boottime - Returns monotonic time since boot
1239  * @ts:		pointer to the timespec to be set
1240  *
1241  * Returns the monotonic time since boot in a timespec.
1242  *
1243  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1244  * includes the time spent in suspend.
1245  */
1246 void get_monotonic_boottime(struct timespec *ts)
1247 {
1248 	struct timekeeper *tk = &timekeeper;
1249 	struct timespec tomono, sleep;
1250 	s64 nsec;
1251 	unsigned int seq;
1252 
1253 	WARN_ON(timekeeping_suspended);
1254 
1255 	do {
1256 		seq = read_seqbegin(&tk->lock);
1257 		ts->tv_sec = tk->xtime_sec;
1258 		nsec = timekeeping_get_ns(tk);
1259 		tomono = tk->wall_to_monotonic;
1260 		sleep = tk->total_sleep_time;
1261 
1262 	} while (read_seqretry(&tk->lock, seq));
1263 
1264 	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1265 	ts->tv_nsec = 0;
1266 	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1267 }
1268 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1269 
1270 /**
1271  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1272  *
1273  * Returns the monotonic time since boot in a ktime
1274  *
1275  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1276  * includes the time spent in suspend.
1277  */
1278 ktime_t ktime_get_boottime(void)
1279 {
1280 	struct timespec ts;
1281 
1282 	get_monotonic_boottime(&ts);
1283 	return timespec_to_ktime(ts);
1284 }
1285 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1286 
1287 /**
1288  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1289  * @ts:		pointer to the timespec to be converted
1290  */
1291 void monotonic_to_bootbased(struct timespec *ts)
1292 {
1293 	struct timekeeper *tk = &timekeeper;
1294 
1295 	*ts = timespec_add(*ts, tk->total_sleep_time);
1296 }
1297 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1298 
1299 unsigned long get_seconds(void)
1300 {
1301 	struct timekeeper *tk = &timekeeper;
1302 
1303 	return tk->xtime_sec;
1304 }
1305 EXPORT_SYMBOL(get_seconds);
1306 
1307 struct timespec __current_kernel_time(void)
1308 {
1309 	struct timekeeper *tk = &timekeeper;
1310 
1311 	return tk_xtime(tk);
1312 }
1313 
1314 struct timespec current_kernel_time(void)
1315 {
1316 	struct timekeeper *tk = &timekeeper;
1317 	struct timespec now;
1318 	unsigned long seq;
1319 
1320 	do {
1321 		seq = read_seqbegin(&tk->lock);
1322 
1323 		now = tk_xtime(tk);
1324 	} while (read_seqretry(&tk->lock, seq));
1325 
1326 	return now;
1327 }
1328 EXPORT_SYMBOL(current_kernel_time);
1329 
1330 struct timespec get_monotonic_coarse(void)
1331 {
1332 	struct timekeeper *tk = &timekeeper;
1333 	struct timespec now, mono;
1334 	unsigned long seq;
1335 
1336 	do {
1337 		seq = read_seqbegin(&tk->lock);
1338 
1339 		now = tk_xtime(tk);
1340 		mono = tk->wall_to_monotonic;
1341 	} while (read_seqretry(&tk->lock, seq));
1342 
1343 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1344 				now.tv_nsec + mono.tv_nsec);
1345 	return now;
1346 }
1347 
1348 /*
1349  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1350  * without sampling the sequence number in xtime_lock.
1351  * jiffies is defined in the linker script...
1352  */
1353 void do_timer(unsigned long ticks)
1354 {
1355 	jiffies_64 += ticks;
1356 	update_wall_time();
1357 	calc_global_load(ticks);
1358 }
1359 
1360 /**
1361  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1362  *    and sleep offsets.
1363  * @xtim:	pointer to timespec to be set with xtime
1364  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1365  * @sleep:	pointer to timespec to be set with time in suspend
1366  */
1367 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1368 				struct timespec *wtom, struct timespec *sleep)
1369 {
1370 	struct timekeeper *tk = &timekeeper;
1371 	unsigned long seq;
1372 
1373 	do {
1374 		seq = read_seqbegin(&tk->lock);
1375 		*xtim = tk_xtime(tk);
1376 		*wtom = tk->wall_to_monotonic;
1377 		*sleep = tk->total_sleep_time;
1378 	} while (read_seqretry(&tk->lock, seq));
1379 }
1380 
1381 #ifdef CONFIG_HIGH_RES_TIMERS
1382 /**
1383  * ktime_get_update_offsets - hrtimer helper
1384  * @offs_real:	pointer to storage for monotonic -> realtime offset
1385  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1386  *
1387  * Returns current monotonic time and updates the offsets
1388  * Called from hrtimer_interupt() or retrigger_next_event()
1389  */
1390 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1391 {
1392 	struct timekeeper *tk = &timekeeper;
1393 	ktime_t now;
1394 	unsigned int seq;
1395 	u64 secs, nsecs;
1396 
1397 	do {
1398 		seq = read_seqbegin(&tk->lock);
1399 
1400 		secs = tk->xtime_sec;
1401 		nsecs = timekeeping_get_ns(tk);
1402 
1403 		*offs_real = tk->offs_real;
1404 		*offs_boot = tk->offs_boot;
1405 	} while (read_seqretry(&tk->lock, seq));
1406 
1407 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1408 	now = ktime_sub(now, *offs_real);
1409 	return now;
1410 }
1411 #endif
1412 
1413 /**
1414  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1415  */
1416 ktime_t ktime_get_monotonic_offset(void)
1417 {
1418 	struct timekeeper *tk = &timekeeper;
1419 	unsigned long seq;
1420 	struct timespec wtom;
1421 
1422 	do {
1423 		seq = read_seqbegin(&tk->lock);
1424 		wtom = tk->wall_to_monotonic;
1425 	} while (read_seqretry(&tk->lock, seq));
1426 
1427 	return timespec_to_ktime(wtom);
1428 }
1429 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1430 
1431 /**
1432  * xtime_update() - advances the timekeeping infrastructure
1433  * @ticks:	number of ticks, that have elapsed since the last call.
1434  *
1435  * Must be called with interrupts disabled.
1436  */
1437 void xtime_update(unsigned long ticks)
1438 {
1439 	write_seqlock(&xtime_lock);
1440 	do_timer(ticks);
1441 	write_sequnlock(&xtime_lock);
1442 }
1443