1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* NTP adjusted clock multiplier */ 29 u32 mult; 30 /* The shift value of the current clocksource. */ 31 u32 shift; 32 /* Number of clock cycles in one NTP interval. */ 33 cycle_t cycle_interval; 34 /* Number of clock shifted nano seconds in one NTP interval. */ 35 u64 xtime_interval; 36 /* shifted nano seconds left over when rounding cycle_interval */ 37 s64 xtime_remainder; 38 /* Raw nano seconds accumulated per NTP interval. */ 39 u32 raw_interval; 40 41 /* Current CLOCK_REALTIME time in seconds */ 42 u64 xtime_sec; 43 /* Clock shifted nano seconds */ 44 u64 xtime_nsec; 45 46 /* Difference between accumulated time and NTP time in ntp 47 * shifted nano seconds. */ 48 s64 ntp_error; 49 /* Shift conversion between clock shifted nano seconds and 50 * ntp shifted nano seconds. */ 51 u32 ntp_error_shift; 52 53 /* 54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 56 * at zero at system boot time, so wall_to_monotonic will be negative, 57 * however, we will ALWAYS keep the tv_nsec part positive so we can use 58 * the usual normalization. 59 * 60 * wall_to_monotonic is moved after resume from suspend for the 61 * monotonic time not to jump. We need to add total_sleep_time to 62 * wall_to_monotonic to get the real boot based time offset. 63 * 64 * - wall_to_monotonic is no longer the boot time, getboottime must be 65 * used instead. 66 */ 67 struct timespec wall_to_monotonic; 68 /* Offset clock monotonic -> clock realtime */ 69 ktime_t offs_real; 70 /* time spent in suspend */ 71 struct timespec total_sleep_time; 72 /* Offset clock monotonic -> clock boottime */ 73 ktime_t offs_boot; 74 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ 75 struct timespec raw_time; 76 /* Seqlock for all timekeeper values */ 77 seqlock_t lock; 78 }; 79 80 static struct timekeeper timekeeper; 81 82 /* 83 * This read-write spinlock protects us from races in SMP while 84 * playing with xtime. 85 */ 86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 87 88 /* flag for if timekeeping is suspended */ 89 int __read_mostly timekeeping_suspended; 90 91 static inline void tk_normalize_xtime(struct timekeeper *tk) 92 { 93 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) { 94 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift; 95 tk->xtime_sec++; 96 } 97 } 98 99 static struct timespec tk_xtime(struct timekeeper *tk) 100 { 101 struct timespec ts; 102 103 ts.tv_sec = tk->xtime_sec; 104 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift); 105 return ts; 106 } 107 108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts) 109 { 110 tk->xtime_sec = ts->tv_sec; 111 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift; 112 } 113 114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts) 115 { 116 tk->xtime_sec += ts->tv_sec; 117 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift; 118 tk_normalize_xtime(tk); 119 } 120 121 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm) 122 { 123 struct timespec tmp; 124 125 /* 126 * Verify consistency of: offset_real = -wall_to_monotonic 127 * before modifying anything 128 */ 129 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec, 130 -tk->wall_to_monotonic.tv_nsec); 131 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64); 132 tk->wall_to_monotonic = wtm; 133 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 134 tk->offs_real = timespec_to_ktime(tmp); 135 } 136 137 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t) 138 { 139 /* Verify consistency before modifying */ 140 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64); 141 142 tk->total_sleep_time = t; 143 tk->offs_boot = timespec_to_ktime(t); 144 } 145 146 /** 147 * timekeeper_setup_internals - Set up internals to use clocksource clock. 148 * 149 * @clock: Pointer to clocksource. 150 * 151 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 152 * pair and interval request. 153 * 154 * Unless you're the timekeeping code, you should not be using this! 155 */ 156 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 157 { 158 cycle_t interval; 159 u64 tmp, ntpinterval; 160 struct clocksource *old_clock; 161 162 old_clock = tk->clock; 163 tk->clock = clock; 164 clock->cycle_last = clock->read(clock); 165 166 /* Do the ns -> cycle conversion first, using original mult */ 167 tmp = NTP_INTERVAL_LENGTH; 168 tmp <<= clock->shift; 169 ntpinterval = tmp; 170 tmp += clock->mult/2; 171 do_div(tmp, clock->mult); 172 if (tmp == 0) 173 tmp = 1; 174 175 interval = (cycle_t) tmp; 176 tk->cycle_interval = interval; 177 178 /* Go back from cycles -> shifted ns */ 179 tk->xtime_interval = (u64) interval * clock->mult; 180 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 181 tk->raw_interval = 182 ((u64) interval * clock->mult) >> clock->shift; 183 184 /* if changing clocks, convert xtime_nsec shift units */ 185 if (old_clock) { 186 int shift_change = clock->shift - old_clock->shift; 187 if (shift_change < 0) 188 tk->xtime_nsec >>= -shift_change; 189 else 190 tk->xtime_nsec <<= shift_change; 191 } 192 tk->shift = clock->shift; 193 194 tk->ntp_error = 0; 195 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 196 197 /* 198 * The timekeeper keeps its own mult values for the currently 199 * active clocksource. These value will be adjusted via NTP 200 * to counteract clock drifting. 201 */ 202 tk->mult = clock->mult; 203 } 204 205 /* Timekeeper helper functions. */ 206 static inline s64 timekeeping_get_ns(struct timekeeper *tk) 207 { 208 cycle_t cycle_now, cycle_delta; 209 struct clocksource *clock; 210 s64 nsec; 211 212 /* read clocksource: */ 213 clock = tk->clock; 214 cycle_now = clock->read(clock); 215 216 /* calculate the delta since the last update_wall_time: */ 217 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 218 219 nsec = cycle_delta * tk->mult + tk->xtime_nsec; 220 nsec >>= tk->shift; 221 222 /* If arch requires, add in gettimeoffset() */ 223 return nsec + arch_gettimeoffset(); 224 } 225 226 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 227 { 228 cycle_t cycle_now, cycle_delta; 229 struct clocksource *clock; 230 s64 nsec; 231 232 /* read clocksource: */ 233 clock = tk->clock; 234 cycle_now = clock->read(clock); 235 236 /* calculate the delta since the last update_wall_time: */ 237 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 238 239 /* convert delta to nanoseconds. */ 240 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 241 242 /* If arch requires, add in gettimeoffset() */ 243 return nsec + arch_gettimeoffset(); 244 } 245 246 /* must hold write on timekeeper.lock */ 247 static void timekeeping_update(struct timekeeper *tk, bool clearntp) 248 { 249 struct timespec xt; 250 251 if (clearntp) { 252 tk->ntp_error = 0; 253 ntp_clear(); 254 } 255 xt = tk_xtime(tk); 256 update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult); 257 } 258 259 /** 260 * timekeeping_forward_now - update clock to the current time 261 * 262 * Forward the current clock to update its state since the last call to 263 * update_wall_time(). This is useful before significant clock changes, 264 * as it avoids having to deal with this time offset explicitly. 265 */ 266 static void timekeeping_forward_now(struct timekeeper *tk) 267 { 268 cycle_t cycle_now, cycle_delta; 269 struct clocksource *clock; 270 s64 nsec; 271 272 clock = tk->clock; 273 cycle_now = clock->read(clock); 274 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 275 clock->cycle_last = cycle_now; 276 277 tk->xtime_nsec += cycle_delta * tk->mult; 278 279 /* If arch requires, add in gettimeoffset() */ 280 tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift; 281 282 tk_normalize_xtime(tk); 283 284 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 285 timespec_add_ns(&tk->raw_time, nsec); 286 } 287 288 /** 289 * getnstimeofday - Returns the time of day in a timespec 290 * @ts: pointer to the timespec to be set 291 * 292 * Returns the time of day in a timespec. 293 */ 294 void getnstimeofday(struct timespec *ts) 295 { 296 struct timekeeper *tk = &timekeeper; 297 unsigned long seq; 298 s64 nsecs = 0; 299 300 WARN_ON(timekeeping_suspended); 301 302 do { 303 seq = read_seqbegin(&tk->lock); 304 305 ts->tv_sec = tk->xtime_sec; 306 nsecs = timekeeping_get_ns(tk); 307 308 } while (read_seqretry(&tk->lock, seq)); 309 310 ts->tv_nsec = 0; 311 timespec_add_ns(ts, nsecs); 312 } 313 EXPORT_SYMBOL(getnstimeofday); 314 315 ktime_t ktime_get(void) 316 { 317 struct timekeeper *tk = &timekeeper; 318 unsigned int seq; 319 s64 secs, nsecs; 320 321 WARN_ON(timekeeping_suspended); 322 323 do { 324 seq = read_seqbegin(&tk->lock); 325 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 326 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec; 327 328 } while (read_seqretry(&tk->lock, seq)); 329 /* 330 * Use ktime_set/ktime_add_ns to create a proper ktime on 331 * 32-bit architectures without CONFIG_KTIME_SCALAR. 332 */ 333 return ktime_add_ns(ktime_set(secs, 0), nsecs); 334 } 335 EXPORT_SYMBOL_GPL(ktime_get); 336 337 /** 338 * ktime_get_ts - get the monotonic clock in timespec format 339 * @ts: pointer to timespec variable 340 * 341 * The function calculates the monotonic clock from the realtime 342 * clock and the wall_to_monotonic offset and stores the result 343 * in normalized timespec format in the variable pointed to by @ts. 344 */ 345 void ktime_get_ts(struct timespec *ts) 346 { 347 struct timekeeper *tk = &timekeeper; 348 struct timespec tomono; 349 s64 nsec; 350 unsigned int seq; 351 352 WARN_ON(timekeeping_suspended); 353 354 do { 355 seq = read_seqbegin(&tk->lock); 356 ts->tv_sec = tk->xtime_sec; 357 nsec = timekeeping_get_ns(tk); 358 tomono = tk->wall_to_monotonic; 359 360 } while (read_seqretry(&tk->lock, seq)); 361 362 ts->tv_sec += tomono.tv_sec; 363 ts->tv_nsec = 0; 364 timespec_add_ns(ts, nsec + tomono.tv_nsec); 365 } 366 EXPORT_SYMBOL_GPL(ktime_get_ts); 367 368 #ifdef CONFIG_NTP_PPS 369 370 /** 371 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 372 * @ts_raw: pointer to the timespec to be set to raw monotonic time 373 * @ts_real: pointer to the timespec to be set to the time of day 374 * 375 * This function reads both the time of day and raw monotonic time at the 376 * same time atomically and stores the resulting timestamps in timespec 377 * format. 378 */ 379 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 380 { 381 struct timekeeper *tk = &timekeeper; 382 unsigned long seq; 383 s64 nsecs_raw, nsecs_real; 384 385 WARN_ON_ONCE(timekeeping_suspended); 386 387 do { 388 seq = read_seqbegin(&tk->lock); 389 390 *ts_raw = tk->raw_time; 391 ts_real->tv_sec = tk->xtime_sec; 392 ts_real->tv_nsec = 0; 393 394 nsecs_raw = timekeeping_get_ns_raw(tk); 395 nsecs_real = timekeeping_get_ns(tk); 396 397 } while (read_seqretry(&tk->lock, seq)); 398 399 timespec_add_ns(ts_raw, nsecs_raw); 400 timespec_add_ns(ts_real, nsecs_real); 401 } 402 EXPORT_SYMBOL(getnstime_raw_and_real); 403 404 #endif /* CONFIG_NTP_PPS */ 405 406 /** 407 * do_gettimeofday - Returns the time of day in a timeval 408 * @tv: pointer to the timeval to be set 409 * 410 * NOTE: Users should be converted to using getnstimeofday() 411 */ 412 void do_gettimeofday(struct timeval *tv) 413 { 414 struct timespec now; 415 416 getnstimeofday(&now); 417 tv->tv_sec = now.tv_sec; 418 tv->tv_usec = now.tv_nsec/1000; 419 } 420 EXPORT_SYMBOL(do_gettimeofday); 421 422 /** 423 * do_settimeofday - Sets the time of day 424 * @tv: pointer to the timespec variable containing the new time 425 * 426 * Sets the time of day to the new time and update NTP and notify hrtimers 427 */ 428 int do_settimeofday(const struct timespec *tv) 429 { 430 struct timekeeper *tk = &timekeeper; 431 struct timespec ts_delta, xt; 432 unsigned long flags; 433 434 if (!timespec_valid_strict(tv)) 435 return -EINVAL; 436 437 write_seqlock_irqsave(&tk->lock, flags); 438 439 timekeeping_forward_now(tk); 440 441 xt = tk_xtime(tk); 442 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 443 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 444 445 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta)); 446 447 tk_set_xtime(tk, tv); 448 449 timekeeping_update(tk, true); 450 451 write_sequnlock_irqrestore(&tk->lock, flags); 452 453 /* signal hrtimers about time change */ 454 clock_was_set(); 455 456 return 0; 457 } 458 EXPORT_SYMBOL(do_settimeofday); 459 460 /** 461 * timekeeping_inject_offset - Adds or subtracts from the current time. 462 * @tv: pointer to the timespec variable containing the offset 463 * 464 * Adds or subtracts an offset value from the current time. 465 */ 466 int timekeeping_inject_offset(struct timespec *ts) 467 { 468 struct timekeeper *tk = &timekeeper; 469 unsigned long flags; 470 struct timespec tmp; 471 int ret = 0; 472 473 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 474 return -EINVAL; 475 476 write_seqlock_irqsave(&tk->lock, flags); 477 478 timekeeping_forward_now(tk); 479 480 /* Make sure the proposed value is valid */ 481 tmp = timespec_add(tk_xtime(tk), *ts); 482 if (!timespec_valid_strict(&tmp)) { 483 ret = -EINVAL; 484 goto error; 485 } 486 487 tk_xtime_add(tk, ts); 488 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts)); 489 490 error: /* even if we error out, we forwarded the time, so call update */ 491 timekeeping_update(tk, true); 492 493 write_sequnlock_irqrestore(&tk->lock, flags); 494 495 /* signal hrtimers about time change */ 496 clock_was_set(); 497 498 return ret; 499 } 500 EXPORT_SYMBOL(timekeeping_inject_offset); 501 502 /** 503 * change_clocksource - Swaps clocksources if a new one is available 504 * 505 * Accumulates current time interval and initializes new clocksource 506 */ 507 static int change_clocksource(void *data) 508 { 509 struct timekeeper *tk = &timekeeper; 510 struct clocksource *new, *old; 511 unsigned long flags; 512 513 new = (struct clocksource *) data; 514 515 write_seqlock_irqsave(&tk->lock, flags); 516 517 timekeeping_forward_now(tk); 518 if (!new->enable || new->enable(new) == 0) { 519 old = tk->clock; 520 tk_setup_internals(tk, new); 521 if (old->disable) 522 old->disable(old); 523 } 524 timekeeping_update(tk, true); 525 526 write_sequnlock_irqrestore(&tk->lock, flags); 527 528 return 0; 529 } 530 531 /** 532 * timekeeping_notify - Install a new clock source 533 * @clock: pointer to the clock source 534 * 535 * This function is called from clocksource.c after a new, better clock 536 * source has been registered. The caller holds the clocksource_mutex. 537 */ 538 void timekeeping_notify(struct clocksource *clock) 539 { 540 struct timekeeper *tk = &timekeeper; 541 542 if (tk->clock == clock) 543 return; 544 stop_machine(change_clocksource, clock, NULL); 545 tick_clock_notify(); 546 } 547 548 /** 549 * ktime_get_real - get the real (wall-) time in ktime_t format 550 * 551 * returns the time in ktime_t format 552 */ 553 ktime_t ktime_get_real(void) 554 { 555 struct timespec now; 556 557 getnstimeofday(&now); 558 559 return timespec_to_ktime(now); 560 } 561 EXPORT_SYMBOL_GPL(ktime_get_real); 562 563 /** 564 * getrawmonotonic - Returns the raw monotonic time in a timespec 565 * @ts: pointer to the timespec to be set 566 * 567 * Returns the raw monotonic time (completely un-modified by ntp) 568 */ 569 void getrawmonotonic(struct timespec *ts) 570 { 571 struct timekeeper *tk = &timekeeper; 572 unsigned long seq; 573 s64 nsecs; 574 575 do { 576 seq = read_seqbegin(&tk->lock); 577 nsecs = timekeeping_get_ns_raw(tk); 578 *ts = tk->raw_time; 579 580 } while (read_seqretry(&tk->lock, seq)); 581 582 timespec_add_ns(ts, nsecs); 583 } 584 EXPORT_SYMBOL(getrawmonotonic); 585 586 /** 587 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 588 */ 589 int timekeeping_valid_for_hres(void) 590 { 591 struct timekeeper *tk = &timekeeper; 592 unsigned long seq; 593 int ret; 594 595 do { 596 seq = read_seqbegin(&tk->lock); 597 598 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 599 600 } while (read_seqretry(&tk->lock, seq)); 601 602 return ret; 603 } 604 605 /** 606 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 607 */ 608 u64 timekeeping_max_deferment(void) 609 { 610 struct timekeeper *tk = &timekeeper; 611 unsigned long seq; 612 u64 ret; 613 614 do { 615 seq = read_seqbegin(&tk->lock); 616 617 ret = tk->clock->max_idle_ns; 618 619 } while (read_seqretry(&tk->lock, seq)); 620 621 return ret; 622 } 623 624 /** 625 * read_persistent_clock - Return time from the persistent clock. 626 * 627 * Weak dummy function for arches that do not yet support it. 628 * Reads the time from the battery backed persistent clock. 629 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 630 * 631 * XXX - Do be sure to remove it once all arches implement it. 632 */ 633 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 634 { 635 ts->tv_sec = 0; 636 ts->tv_nsec = 0; 637 } 638 639 /** 640 * read_boot_clock - Return time of the system start. 641 * 642 * Weak dummy function for arches that do not yet support it. 643 * Function to read the exact time the system has been started. 644 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 645 * 646 * XXX - Do be sure to remove it once all arches implement it. 647 */ 648 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 649 { 650 ts->tv_sec = 0; 651 ts->tv_nsec = 0; 652 } 653 654 /* 655 * timekeeping_init - Initializes the clocksource and common timekeeping values 656 */ 657 void __init timekeeping_init(void) 658 { 659 struct timekeeper *tk = &timekeeper; 660 struct clocksource *clock; 661 unsigned long flags; 662 struct timespec now, boot, tmp; 663 664 read_persistent_clock(&now); 665 if (!timespec_valid_strict(&now)) { 666 pr_warn("WARNING: Persistent clock returned invalid value!\n" 667 " Check your CMOS/BIOS settings.\n"); 668 now.tv_sec = 0; 669 now.tv_nsec = 0; 670 } 671 672 read_boot_clock(&boot); 673 if (!timespec_valid_strict(&boot)) { 674 pr_warn("WARNING: Boot clock returned invalid value!\n" 675 " Check your CMOS/BIOS settings.\n"); 676 boot.tv_sec = 0; 677 boot.tv_nsec = 0; 678 } 679 680 seqlock_init(&tk->lock); 681 682 ntp_init(); 683 684 write_seqlock_irqsave(&tk->lock, flags); 685 clock = clocksource_default_clock(); 686 if (clock->enable) 687 clock->enable(clock); 688 tk_setup_internals(tk, clock); 689 690 tk_set_xtime(tk, &now); 691 tk->raw_time.tv_sec = 0; 692 tk->raw_time.tv_nsec = 0; 693 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 694 boot = tk_xtime(tk); 695 696 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec); 697 tk_set_wall_to_mono(tk, tmp); 698 699 tmp.tv_sec = 0; 700 tmp.tv_nsec = 0; 701 tk_set_sleep_time(tk, tmp); 702 703 write_sequnlock_irqrestore(&tk->lock, flags); 704 } 705 706 /* time in seconds when suspend began */ 707 static struct timespec timekeeping_suspend_time; 708 709 /** 710 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 711 * @delta: pointer to a timespec delta value 712 * 713 * Takes a timespec offset measuring a suspend interval and properly 714 * adds the sleep offset to the timekeeping variables. 715 */ 716 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 717 struct timespec *delta) 718 { 719 if (!timespec_valid_strict(delta)) { 720 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 721 "sleep delta value!\n"); 722 return; 723 } 724 tk_xtime_add(tk, delta); 725 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta)); 726 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta)); 727 } 728 729 /** 730 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 731 * @delta: pointer to a timespec delta value 732 * 733 * This hook is for architectures that cannot support read_persistent_clock 734 * because their RTC/persistent clock is only accessible when irqs are enabled. 735 * 736 * This function should only be called by rtc_resume(), and allows 737 * a suspend offset to be injected into the timekeeping values. 738 */ 739 void timekeeping_inject_sleeptime(struct timespec *delta) 740 { 741 struct timekeeper *tk = &timekeeper; 742 unsigned long flags; 743 struct timespec ts; 744 745 /* Make sure we don't set the clock twice */ 746 read_persistent_clock(&ts); 747 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) 748 return; 749 750 write_seqlock_irqsave(&tk->lock, flags); 751 752 timekeeping_forward_now(tk); 753 754 __timekeeping_inject_sleeptime(tk, delta); 755 756 timekeeping_update(tk, true); 757 758 write_sequnlock_irqrestore(&tk->lock, flags); 759 760 /* signal hrtimers about time change */ 761 clock_was_set(); 762 } 763 764 /** 765 * timekeeping_resume - Resumes the generic timekeeping subsystem. 766 * 767 * This is for the generic clocksource timekeeping. 768 * xtime/wall_to_monotonic/jiffies/etc are 769 * still managed by arch specific suspend/resume code. 770 */ 771 static void timekeeping_resume(void) 772 { 773 struct timekeeper *tk = &timekeeper; 774 unsigned long flags; 775 struct timespec ts; 776 777 read_persistent_clock(&ts); 778 779 clocksource_resume(); 780 781 write_seqlock_irqsave(&tk->lock, flags); 782 783 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 784 ts = timespec_sub(ts, timekeeping_suspend_time); 785 __timekeeping_inject_sleeptime(tk, &ts); 786 } 787 /* re-base the last cycle value */ 788 tk->clock->cycle_last = tk->clock->read(tk->clock); 789 tk->ntp_error = 0; 790 timekeeping_suspended = 0; 791 timekeeping_update(tk, false); 792 write_sequnlock_irqrestore(&tk->lock, flags); 793 794 touch_softlockup_watchdog(); 795 796 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 797 798 /* Resume hrtimers */ 799 hrtimers_resume(); 800 } 801 802 static int timekeeping_suspend(void) 803 { 804 struct timekeeper *tk = &timekeeper; 805 unsigned long flags; 806 struct timespec delta, delta_delta; 807 static struct timespec old_delta; 808 809 read_persistent_clock(&timekeeping_suspend_time); 810 811 write_seqlock_irqsave(&tk->lock, flags); 812 timekeeping_forward_now(tk); 813 timekeeping_suspended = 1; 814 815 /* 816 * To avoid drift caused by repeated suspend/resumes, 817 * which each can add ~1 second drift error, 818 * try to compensate so the difference in system time 819 * and persistent_clock time stays close to constant. 820 */ 821 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time); 822 delta_delta = timespec_sub(delta, old_delta); 823 if (abs(delta_delta.tv_sec) >= 2) { 824 /* 825 * if delta_delta is too large, assume time correction 826 * has occured and set old_delta to the current delta. 827 */ 828 old_delta = delta; 829 } else { 830 /* Otherwise try to adjust old_system to compensate */ 831 timekeeping_suspend_time = 832 timespec_add(timekeeping_suspend_time, delta_delta); 833 } 834 write_sequnlock_irqrestore(&tk->lock, flags); 835 836 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 837 clocksource_suspend(); 838 839 return 0; 840 } 841 842 /* sysfs resume/suspend bits for timekeeping */ 843 static struct syscore_ops timekeeping_syscore_ops = { 844 .resume = timekeeping_resume, 845 .suspend = timekeeping_suspend, 846 }; 847 848 static int __init timekeeping_init_ops(void) 849 { 850 register_syscore_ops(&timekeeping_syscore_ops); 851 return 0; 852 } 853 854 device_initcall(timekeeping_init_ops); 855 856 /* 857 * If the error is already larger, we look ahead even further 858 * to compensate for late or lost adjustments. 859 */ 860 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk, 861 s64 error, s64 *interval, 862 s64 *offset) 863 { 864 s64 tick_error, i; 865 u32 look_ahead, adj; 866 s32 error2, mult; 867 868 /* 869 * Use the current error value to determine how much to look ahead. 870 * The larger the error the slower we adjust for it to avoid problems 871 * with losing too many ticks, otherwise we would overadjust and 872 * produce an even larger error. The smaller the adjustment the 873 * faster we try to adjust for it, as lost ticks can do less harm 874 * here. This is tuned so that an error of about 1 msec is adjusted 875 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 876 */ 877 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 878 error2 = abs(error2); 879 for (look_ahead = 0; error2 > 0; look_ahead++) 880 error2 >>= 2; 881 882 /* 883 * Now calculate the error in (1 << look_ahead) ticks, but first 884 * remove the single look ahead already included in the error. 885 */ 886 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1); 887 tick_error -= tk->xtime_interval >> 1; 888 error = ((error - tick_error) >> look_ahead) + tick_error; 889 890 /* Finally calculate the adjustment shift value. */ 891 i = *interval; 892 mult = 1; 893 if (error < 0) { 894 error = -error; 895 *interval = -*interval; 896 *offset = -*offset; 897 mult = -1; 898 } 899 for (adj = 0; error > i; adj++) 900 error >>= 1; 901 902 *interval <<= adj; 903 *offset <<= adj; 904 return mult << adj; 905 } 906 907 /* 908 * Adjust the multiplier to reduce the error value, 909 * this is optimized for the most common adjustments of -1,0,1, 910 * for other values we can do a bit more work. 911 */ 912 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 913 { 914 s64 error, interval = tk->cycle_interval; 915 int adj; 916 917 /* 918 * The point of this is to check if the error is greater than half 919 * an interval. 920 * 921 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 922 * 923 * Note we subtract one in the shift, so that error is really error*2. 924 * This "saves" dividing(shifting) interval twice, but keeps the 925 * (error > interval) comparison as still measuring if error is 926 * larger than half an interval. 927 * 928 * Note: It does not "save" on aggravation when reading the code. 929 */ 930 error = tk->ntp_error >> (tk->ntp_error_shift - 1); 931 if (error > interval) { 932 /* 933 * We now divide error by 4(via shift), which checks if 934 * the error is greater than twice the interval. 935 * If it is greater, we need a bigadjust, if its smaller, 936 * we can adjust by 1. 937 */ 938 error >>= 2; 939 /* 940 * XXX - In update_wall_time, we round up to the next 941 * nanosecond, and store the amount rounded up into 942 * the error. This causes the likely below to be unlikely. 943 * 944 * The proper fix is to avoid rounding up by using 945 * the high precision tk->xtime_nsec instead of 946 * xtime.tv_nsec everywhere. Fixing this will take some 947 * time. 948 */ 949 if (likely(error <= interval)) 950 adj = 1; 951 else 952 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 953 } else { 954 if (error < -interval) { 955 /* See comment above, this is just switched for the negative */ 956 error >>= 2; 957 if (likely(error >= -interval)) { 958 adj = -1; 959 interval = -interval; 960 offset = -offset; 961 } else { 962 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 963 } 964 } else { 965 goto out_adjust; 966 } 967 } 968 969 if (unlikely(tk->clock->maxadj && 970 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) { 971 printk_once(KERN_WARNING 972 "Adjusting %s more than 11%% (%ld vs %ld)\n", 973 tk->clock->name, (long)tk->mult + adj, 974 (long)tk->clock->mult + tk->clock->maxadj); 975 } 976 /* 977 * So the following can be confusing. 978 * 979 * To keep things simple, lets assume adj == 1 for now. 980 * 981 * When adj != 1, remember that the interval and offset values 982 * have been appropriately scaled so the math is the same. 983 * 984 * The basic idea here is that we're increasing the multiplier 985 * by one, this causes the xtime_interval to be incremented by 986 * one cycle_interval. This is because: 987 * xtime_interval = cycle_interval * mult 988 * So if mult is being incremented by one: 989 * xtime_interval = cycle_interval * (mult + 1) 990 * Its the same as: 991 * xtime_interval = (cycle_interval * mult) + cycle_interval 992 * Which can be shortened to: 993 * xtime_interval += cycle_interval 994 * 995 * So offset stores the non-accumulated cycles. Thus the current 996 * time (in shifted nanoseconds) is: 997 * now = (offset * adj) + xtime_nsec 998 * Now, even though we're adjusting the clock frequency, we have 999 * to keep time consistent. In other words, we can't jump back 1000 * in time, and we also want to avoid jumping forward in time. 1001 * 1002 * So given the same offset value, we need the time to be the same 1003 * both before and after the freq adjustment. 1004 * now = (offset * adj_1) + xtime_nsec_1 1005 * now = (offset * adj_2) + xtime_nsec_2 1006 * So: 1007 * (offset * adj_1) + xtime_nsec_1 = 1008 * (offset * adj_2) + xtime_nsec_2 1009 * And we know: 1010 * adj_2 = adj_1 + 1 1011 * So: 1012 * (offset * adj_1) + xtime_nsec_1 = 1013 * (offset * (adj_1+1)) + xtime_nsec_2 1014 * (offset * adj_1) + xtime_nsec_1 = 1015 * (offset * adj_1) + offset + xtime_nsec_2 1016 * Canceling the sides: 1017 * xtime_nsec_1 = offset + xtime_nsec_2 1018 * Which gives us: 1019 * xtime_nsec_2 = xtime_nsec_1 - offset 1020 * Which simplfies to: 1021 * xtime_nsec -= offset 1022 * 1023 * XXX - TODO: Doc ntp_error calculation. 1024 */ 1025 tk->mult += adj; 1026 tk->xtime_interval += interval; 1027 tk->xtime_nsec -= offset; 1028 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1029 1030 out_adjust: 1031 /* 1032 * It may be possible that when we entered this function, xtime_nsec 1033 * was very small. Further, if we're slightly speeding the clocksource 1034 * in the code above, its possible the required corrective factor to 1035 * xtime_nsec could cause it to underflow. 1036 * 1037 * Now, since we already accumulated the second, cannot simply roll 1038 * the accumulated second back, since the NTP subsystem has been 1039 * notified via second_overflow. So instead we push xtime_nsec forward 1040 * by the amount we underflowed, and add that amount into the error. 1041 * 1042 * We'll correct this error next time through this function, when 1043 * xtime_nsec is not as small. 1044 */ 1045 if (unlikely((s64)tk->xtime_nsec < 0)) { 1046 s64 neg = -(s64)tk->xtime_nsec; 1047 tk->xtime_nsec = 0; 1048 tk->ntp_error += neg << tk->ntp_error_shift; 1049 } 1050 1051 } 1052 1053 /** 1054 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1055 * 1056 * Helper function that accumulates a the nsecs greater then a second 1057 * from the xtime_nsec field to the xtime_secs field. 1058 * It also calls into the NTP code to handle leapsecond processing. 1059 * 1060 */ 1061 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk) 1062 { 1063 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift; 1064 1065 while (tk->xtime_nsec >= nsecps) { 1066 int leap; 1067 1068 tk->xtime_nsec -= nsecps; 1069 tk->xtime_sec++; 1070 1071 /* Figure out if its a leap sec and apply if needed */ 1072 leap = second_overflow(tk->xtime_sec); 1073 if (unlikely(leap)) { 1074 struct timespec ts; 1075 1076 tk->xtime_sec += leap; 1077 1078 ts.tv_sec = leap; 1079 ts.tv_nsec = 0; 1080 tk_set_wall_to_mono(tk, 1081 timespec_sub(tk->wall_to_monotonic, ts)); 1082 1083 clock_was_set_delayed(); 1084 } 1085 } 1086 } 1087 1088 /** 1089 * logarithmic_accumulation - shifted accumulation of cycles 1090 * 1091 * This functions accumulates a shifted interval of cycles into 1092 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1093 * loop. 1094 * 1095 * Returns the unconsumed cycles. 1096 */ 1097 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1098 u32 shift) 1099 { 1100 u64 raw_nsecs; 1101 1102 /* If the offset is smaller then a shifted interval, do nothing */ 1103 if (offset < tk->cycle_interval<<shift) 1104 return offset; 1105 1106 /* Accumulate one shifted interval */ 1107 offset -= tk->cycle_interval << shift; 1108 tk->clock->cycle_last += tk->cycle_interval << shift; 1109 1110 tk->xtime_nsec += tk->xtime_interval << shift; 1111 accumulate_nsecs_to_secs(tk); 1112 1113 /* Accumulate raw time */ 1114 raw_nsecs = tk->raw_interval << shift; 1115 raw_nsecs += tk->raw_time.tv_nsec; 1116 if (raw_nsecs >= NSEC_PER_SEC) { 1117 u64 raw_secs = raw_nsecs; 1118 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1119 tk->raw_time.tv_sec += raw_secs; 1120 } 1121 tk->raw_time.tv_nsec = raw_nsecs; 1122 1123 /* Accumulate error between NTP and clock interval */ 1124 tk->ntp_error += ntp_tick_length() << shift; 1125 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1126 (tk->ntp_error_shift + shift); 1127 1128 return offset; 1129 } 1130 1131 /** 1132 * update_wall_time - Uses the current clocksource to increment the wall time 1133 * 1134 */ 1135 static void update_wall_time(void) 1136 { 1137 struct clocksource *clock; 1138 struct timekeeper *tk = &timekeeper; 1139 cycle_t offset; 1140 int shift = 0, maxshift; 1141 unsigned long flags; 1142 s64 remainder; 1143 1144 write_seqlock_irqsave(&tk->lock, flags); 1145 1146 /* Make sure we're fully resumed: */ 1147 if (unlikely(timekeeping_suspended)) 1148 goto out; 1149 1150 clock = tk->clock; 1151 1152 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1153 offset = tk->cycle_interval; 1154 #else 1155 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1156 #endif 1157 1158 /* Check if there's really nothing to do */ 1159 if (offset < tk->cycle_interval) 1160 goto out; 1161 1162 /* 1163 * With NO_HZ we may have to accumulate many cycle_intervals 1164 * (think "ticks") worth of time at once. To do this efficiently, 1165 * we calculate the largest doubling multiple of cycle_intervals 1166 * that is smaller than the offset. We then accumulate that 1167 * chunk in one go, and then try to consume the next smaller 1168 * doubled multiple. 1169 */ 1170 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1171 shift = max(0, shift); 1172 /* Bound shift to one less than what overflows tick_length */ 1173 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1174 shift = min(shift, maxshift); 1175 while (offset >= tk->cycle_interval) { 1176 offset = logarithmic_accumulation(tk, offset, shift); 1177 if (offset < tk->cycle_interval<<shift) 1178 shift--; 1179 } 1180 1181 /* correct the clock when NTP error is too big */ 1182 timekeeping_adjust(tk, offset); 1183 1184 1185 /* 1186 * Store only full nanoseconds into xtime_nsec after rounding 1187 * it up and add the remainder to the error difference. 1188 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 1189 * by truncating the remainder in vsyscalls. However, it causes 1190 * additional work to be done in timekeeping_adjust(). Once 1191 * the vsyscall implementations are converted to use xtime_nsec 1192 * (shifted nanoseconds), this can be killed. 1193 */ 1194 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1); 1195 tk->xtime_nsec -= remainder; 1196 tk->xtime_nsec += 1ULL << tk->shift; 1197 tk->ntp_error += remainder << tk->ntp_error_shift; 1198 1199 /* 1200 * Finally, make sure that after the rounding 1201 * xtime_nsec isn't larger than NSEC_PER_SEC 1202 */ 1203 accumulate_nsecs_to_secs(tk); 1204 1205 timekeeping_update(tk, false); 1206 1207 out: 1208 write_sequnlock_irqrestore(&tk->lock, flags); 1209 1210 } 1211 1212 /** 1213 * getboottime - Return the real time of system boot. 1214 * @ts: pointer to the timespec to be set 1215 * 1216 * Returns the wall-time of boot in a timespec. 1217 * 1218 * This is based on the wall_to_monotonic offset and the total suspend 1219 * time. Calls to settimeofday will affect the value returned (which 1220 * basically means that however wrong your real time clock is at boot time, 1221 * you get the right time here). 1222 */ 1223 void getboottime(struct timespec *ts) 1224 { 1225 struct timekeeper *tk = &timekeeper; 1226 struct timespec boottime = { 1227 .tv_sec = tk->wall_to_monotonic.tv_sec + 1228 tk->total_sleep_time.tv_sec, 1229 .tv_nsec = tk->wall_to_monotonic.tv_nsec + 1230 tk->total_sleep_time.tv_nsec 1231 }; 1232 1233 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1234 } 1235 EXPORT_SYMBOL_GPL(getboottime); 1236 1237 /** 1238 * get_monotonic_boottime - Returns monotonic time since boot 1239 * @ts: pointer to the timespec to be set 1240 * 1241 * Returns the monotonic time since boot in a timespec. 1242 * 1243 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1244 * includes the time spent in suspend. 1245 */ 1246 void get_monotonic_boottime(struct timespec *ts) 1247 { 1248 struct timekeeper *tk = &timekeeper; 1249 struct timespec tomono, sleep; 1250 s64 nsec; 1251 unsigned int seq; 1252 1253 WARN_ON(timekeeping_suspended); 1254 1255 do { 1256 seq = read_seqbegin(&tk->lock); 1257 ts->tv_sec = tk->xtime_sec; 1258 nsec = timekeeping_get_ns(tk); 1259 tomono = tk->wall_to_monotonic; 1260 sleep = tk->total_sleep_time; 1261 1262 } while (read_seqretry(&tk->lock, seq)); 1263 1264 ts->tv_sec += tomono.tv_sec + sleep.tv_sec; 1265 ts->tv_nsec = 0; 1266 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec); 1267 } 1268 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1269 1270 /** 1271 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1272 * 1273 * Returns the monotonic time since boot in a ktime 1274 * 1275 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1276 * includes the time spent in suspend. 1277 */ 1278 ktime_t ktime_get_boottime(void) 1279 { 1280 struct timespec ts; 1281 1282 get_monotonic_boottime(&ts); 1283 return timespec_to_ktime(ts); 1284 } 1285 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1286 1287 /** 1288 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1289 * @ts: pointer to the timespec to be converted 1290 */ 1291 void monotonic_to_bootbased(struct timespec *ts) 1292 { 1293 struct timekeeper *tk = &timekeeper; 1294 1295 *ts = timespec_add(*ts, tk->total_sleep_time); 1296 } 1297 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1298 1299 unsigned long get_seconds(void) 1300 { 1301 struct timekeeper *tk = &timekeeper; 1302 1303 return tk->xtime_sec; 1304 } 1305 EXPORT_SYMBOL(get_seconds); 1306 1307 struct timespec __current_kernel_time(void) 1308 { 1309 struct timekeeper *tk = &timekeeper; 1310 1311 return tk_xtime(tk); 1312 } 1313 1314 struct timespec current_kernel_time(void) 1315 { 1316 struct timekeeper *tk = &timekeeper; 1317 struct timespec now; 1318 unsigned long seq; 1319 1320 do { 1321 seq = read_seqbegin(&tk->lock); 1322 1323 now = tk_xtime(tk); 1324 } while (read_seqretry(&tk->lock, seq)); 1325 1326 return now; 1327 } 1328 EXPORT_SYMBOL(current_kernel_time); 1329 1330 struct timespec get_monotonic_coarse(void) 1331 { 1332 struct timekeeper *tk = &timekeeper; 1333 struct timespec now, mono; 1334 unsigned long seq; 1335 1336 do { 1337 seq = read_seqbegin(&tk->lock); 1338 1339 now = tk_xtime(tk); 1340 mono = tk->wall_to_monotonic; 1341 } while (read_seqretry(&tk->lock, seq)); 1342 1343 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1344 now.tv_nsec + mono.tv_nsec); 1345 return now; 1346 } 1347 1348 /* 1349 * The 64-bit jiffies value is not atomic - you MUST NOT read it 1350 * without sampling the sequence number in xtime_lock. 1351 * jiffies is defined in the linker script... 1352 */ 1353 void do_timer(unsigned long ticks) 1354 { 1355 jiffies_64 += ticks; 1356 update_wall_time(); 1357 calc_global_load(ticks); 1358 } 1359 1360 /** 1361 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1362 * and sleep offsets. 1363 * @xtim: pointer to timespec to be set with xtime 1364 * @wtom: pointer to timespec to be set with wall_to_monotonic 1365 * @sleep: pointer to timespec to be set with time in suspend 1366 */ 1367 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1368 struct timespec *wtom, struct timespec *sleep) 1369 { 1370 struct timekeeper *tk = &timekeeper; 1371 unsigned long seq; 1372 1373 do { 1374 seq = read_seqbegin(&tk->lock); 1375 *xtim = tk_xtime(tk); 1376 *wtom = tk->wall_to_monotonic; 1377 *sleep = tk->total_sleep_time; 1378 } while (read_seqretry(&tk->lock, seq)); 1379 } 1380 1381 #ifdef CONFIG_HIGH_RES_TIMERS 1382 /** 1383 * ktime_get_update_offsets - hrtimer helper 1384 * @offs_real: pointer to storage for monotonic -> realtime offset 1385 * @offs_boot: pointer to storage for monotonic -> boottime offset 1386 * 1387 * Returns current monotonic time and updates the offsets 1388 * Called from hrtimer_interupt() or retrigger_next_event() 1389 */ 1390 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot) 1391 { 1392 struct timekeeper *tk = &timekeeper; 1393 ktime_t now; 1394 unsigned int seq; 1395 u64 secs, nsecs; 1396 1397 do { 1398 seq = read_seqbegin(&tk->lock); 1399 1400 secs = tk->xtime_sec; 1401 nsecs = timekeeping_get_ns(tk); 1402 1403 *offs_real = tk->offs_real; 1404 *offs_boot = tk->offs_boot; 1405 } while (read_seqretry(&tk->lock, seq)); 1406 1407 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1408 now = ktime_sub(now, *offs_real); 1409 return now; 1410 } 1411 #endif 1412 1413 /** 1414 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1415 */ 1416 ktime_t ktime_get_monotonic_offset(void) 1417 { 1418 struct timekeeper *tk = &timekeeper; 1419 unsigned long seq; 1420 struct timespec wtom; 1421 1422 do { 1423 seq = read_seqbegin(&tk->lock); 1424 wtom = tk->wall_to_monotonic; 1425 } while (read_seqretry(&tk->lock, seq)); 1426 1427 return timespec_to_ktime(wtom); 1428 } 1429 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1430 1431 /** 1432 * xtime_update() - advances the timekeeping infrastructure 1433 * @ticks: number of ticks, that have elapsed since the last call. 1434 * 1435 * Must be called with interrupts disabled. 1436 */ 1437 void xtime_update(unsigned long ticks) 1438 { 1439 write_seqlock(&xtime_lock); 1440 do_timer(ticks); 1441 write_sequnlock(&xtime_lock); 1442 } 1443