xref: /linux/kernel/time/timekeeping.c (revision 8b6aaf65d3b001ec9b5dcba0992b3b68cbf6057f)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65 
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68 
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 		tk->xtime_sec++;
74 	}
75 }
76 
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 	struct timespec64 ts;
80 
81 	ts.tv_sec = tk->xtime_sec;
82 	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 	return ts;
84 }
85 
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 	tk->xtime_sec = ts->tv_sec;
89 	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91 
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 	tk->xtime_sec += ts->tv_sec;
95 	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96 	tk_normalize_xtime(tk);
97 }
98 
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 	struct timespec64 tmp;
102 
103 	/*
104 	 * Verify consistency of: offset_real = -wall_to_monotonic
105 	 * before modifying anything
106 	 */
107 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 					-tk->wall_to_monotonic.tv_nsec);
109 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110 	tk->wall_to_monotonic = wtm;
111 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 	tk->offs_real = timespec64_to_ktime(tmp);
113 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115 
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120 
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:		The target timekeeper to setup.
125  * @clock:		Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134 	cycle_t interval;
135 	u64 tmp, ntpinterval;
136 	struct clocksource *old_clock;
137 
138 	old_clock = tk->tkr.clock;
139 	tk->tkr.clock = clock;
140 	tk->tkr.read = clock->read;
141 	tk->tkr.mask = clock->mask;
142 	tk->tkr.cycle_last = tk->tkr.read(clock);
143 
144 	/* Do the ns -> cycle conversion first, using original mult */
145 	tmp = NTP_INTERVAL_LENGTH;
146 	tmp <<= clock->shift;
147 	ntpinterval = tmp;
148 	tmp += clock->mult/2;
149 	do_div(tmp, clock->mult);
150 	if (tmp == 0)
151 		tmp = 1;
152 
153 	interval = (cycle_t) tmp;
154 	tk->cycle_interval = interval;
155 
156 	/* Go back from cycles -> shifted ns */
157 	tk->xtime_interval = (u64) interval * clock->mult;
158 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 	tk->raw_interval =
160 		((u64) interval * clock->mult) >> clock->shift;
161 
162 	 /* if changing clocks, convert xtime_nsec shift units */
163 	if (old_clock) {
164 		int shift_change = clock->shift - old_clock->shift;
165 		if (shift_change < 0)
166 			tk->tkr.xtime_nsec >>= -shift_change;
167 		else
168 			tk->tkr.xtime_nsec <<= shift_change;
169 	}
170 	tk->tkr.shift = clock->shift;
171 
172 	tk->ntp_error = 0;
173 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 
176 	/*
177 	 * The timekeeper keeps its own mult values for the currently
178 	 * active clocksource. These value will be adjusted via NTP
179 	 * to counteract clock drifting.
180 	 */
181 	tk->tkr.mult = clock->mult;
182 	tk->ntp_err_mult = 0;
183 }
184 
185 /* Timekeeper helper functions. */
186 
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193 
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196 	cycle_t cycle_now, delta;
197 	s64 nsec;
198 
199 	/* read clocksource: */
200 	cycle_now = tkr->read(tkr->clock);
201 
202 	/* calculate the delta since the last update_wall_time: */
203 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204 
205 	nsec = delta * tkr->mult + tkr->xtime_nsec;
206 	nsec >>= tkr->shift;
207 
208 	/* If arch requires, add in get_arch_timeoffset() */
209 	return nsec + arch_gettimeoffset();
210 }
211 
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214 	struct clocksource *clock = tk->tkr.clock;
215 	cycle_t cycle_now, delta;
216 	s64 nsec;
217 
218 	/* read clocksource: */
219 	cycle_now = tk->tkr.read(clock);
220 
221 	/* calculate the delta since the last update_wall_time: */
222 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223 
224 	/* convert delta to nanoseconds. */
225 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226 
227 	/* If arch requires, add in get_arch_timeoffset() */
228 	return nsec + arch_gettimeoffset();
229 }
230 
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tk:		The timekeeper from which we take the update
234  * @tkf:	The fast timekeeper to update
235  * @tbase:	The time base for the fast timekeeper (mono/raw)
236  *
237  * We want to use this from any context including NMI and tracing /
238  * instrumenting the timekeeping code itself.
239  *
240  * So we handle this differently than the other timekeeping accessor
241  * functions which retry when the sequence count has changed. The
242  * update side does:
243  *
244  * smp_wmb();	<- Ensure that the last base[1] update is visible
245  * tkf->seq++;
246  * smp_wmb();	<- Ensure that the seqcount update is visible
247  * update(tkf->base[0], tk);
248  * smp_wmb();	<- Ensure that the base[0] update is visible
249  * tkf->seq++;
250  * smp_wmb();	<- Ensure that the seqcount update is visible
251  * update(tkf->base[1], tk);
252  *
253  * The reader side does:
254  *
255  * do {
256  *	seq = tkf->seq;
257  *	smp_rmb();
258  *	idx = seq & 0x01;
259  *	now = now(tkf->base[idx]);
260  *	smp_rmb();
261  * } while (seq != tkf->seq)
262  *
263  * As long as we update base[0] readers are forced off to
264  * base[1]. Once base[0] is updated readers are redirected to base[0]
265  * and the base[1] update takes place.
266  *
267  * So if a NMI hits the update of base[0] then it will use base[1]
268  * which is still consistent. In the worst case this can result is a
269  * slightly wrong timestamp (a few nanoseconds). See
270  * @ktime_get_mono_fast_ns.
271  */
272 static void update_fast_timekeeper(struct timekeeper *tk)
273 {
274 	struct tk_read_base *base = tk_fast_mono.base;
275 
276 	/* Force readers off to base[1] */
277 	raw_write_seqcount_latch(&tk_fast_mono.seq);
278 
279 	/* Update base[0] */
280 	memcpy(base, &tk->tkr, sizeof(*base));
281 
282 	/* Force readers back to base[0] */
283 	raw_write_seqcount_latch(&tk_fast_mono.seq);
284 
285 	/* Update base[1] */
286 	memcpy(base + 1, base, sizeof(*base));
287 }
288 
289 /**
290  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291  *
292  * This timestamp is not guaranteed to be monotonic across an update.
293  * The timestamp is calculated by:
294  *
295  *	now = base_mono + clock_delta * slope
296  *
297  * So if the update lowers the slope, readers who are forced to the
298  * not yet updated second array are still using the old steeper slope.
299  *
300  * tmono
301  * ^
302  * |    o  n
303  * |   o n
304  * |  u
305  * | o
306  * |o
307  * |12345678---> reader order
308  *
309  * o = old slope
310  * u = update
311  * n = new slope
312  *
313  * So reader 6 will observe time going backwards versus reader 5.
314  *
315  * While other CPUs are likely to be able observe that, the only way
316  * for a CPU local observation is when an NMI hits in the middle of
317  * the update. Timestamps taken from that NMI context might be ahead
318  * of the following timestamps. Callers need to be aware of that and
319  * deal with it.
320  */
321 u64 notrace ktime_get_mono_fast_ns(void)
322 {
323 	struct tk_read_base *tkr;
324 	unsigned int seq;
325 	u64 now;
326 
327 	do {
328 		seq = raw_read_seqcount(&tk_fast_mono.seq);
329 		tkr = tk_fast_mono.base + (seq & 0x01);
330 		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331 
332 	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 	return now;
334 }
335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336 
337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338 
339 static inline void update_vsyscall(struct timekeeper *tk)
340 {
341 	struct timespec xt;
342 
343 	xt = timespec64_to_timespec(tk_xtime(tk));
344 	update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->tkr.clock, tk->tkr.mult,
345 			    tk->tkr.cycle_last);
346 }
347 
348 static inline void old_vsyscall_fixup(struct timekeeper *tk)
349 {
350 	s64 remainder;
351 
352 	/*
353 	* Store only full nanoseconds into xtime_nsec after rounding
354 	* it up and add the remainder to the error difference.
355 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
356 	* by truncating the remainder in vsyscalls. However, it causes
357 	* additional work to be done in timekeeping_adjust(). Once
358 	* the vsyscall implementations are converted to use xtime_nsec
359 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
360 	* users are removed, this can be killed.
361 	*/
362 	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
363 	tk->tkr.xtime_nsec -= remainder;
364 	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
365 	tk->ntp_error += remainder << tk->ntp_error_shift;
366 	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
367 }
368 #else
369 #define old_vsyscall_fixup(tk)
370 #endif
371 
372 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
373 
374 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
375 {
376 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
377 }
378 
379 /**
380  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
381  */
382 int pvclock_gtod_register_notifier(struct notifier_block *nb)
383 {
384 	struct timekeeper *tk = &tk_core.timekeeper;
385 	unsigned long flags;
386 	int ret;
387 
388 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
389 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
390 	update_pvclock_gtod(tk, true);
391 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
392 
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
396 
397 /**
398  * pvclock_gtod_unregister_notifier - unregister a pvclock
399  * timedata update listener
400  */
401 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
402 {
403 	unsigned long flags;
404 	int ret;
405 
406 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
407 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
408 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
409 
410 	return ret;
411 }
412 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
413 
414 /*
415  * Update the ktime_t based scalar nsec members of the timekeeper
416  */
417 static inline void tk_update_ktime_data(struct timekeeper *tk)
418 {
419 	s64 nsec;
420 
421 	/*
422 	 * The xtime based monotonic readout is:
423 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
424 	 * The ktime based monotonic readout is:
425 	 *	nsec = base_mono + now();
426 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
427 	 */
428 	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
429 	nsec *= NSEC_PER_SEC;
430 	nsec += tk->wall_to_monotonic.tv_nsec;
431 	tk->tkr.base_mono = ns_to_ktime(nsec);
432 
433 	/* Update the monotonic raw base */
434 	tk->base_raw = timespec64_to_ktime(tk->raw_time);
435 }
436 
437 /* must hold timekeeper_lock */
438 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
439 {
440 	if (action & TK_CLEAR_NTP) {
441 		tk->ntp_error = 0;
442 		ntp_clear();
443 	}
444 	update_vsyscall(tk);
445 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
446 
447 	tk_update_ktime_data(tk);
448 
449 	if (action & TK_MIRROR)
450 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
451 		       sizeof(tk_core.timekeeper));
452 
453 	update_fast_timekeeper(tk);
454 }
455 
456 /**
457  * timekeeping_forward_now - update clock to the current time
458  *
459  * Forward the current clock to update its state since the last call to
460  * update_wall_time(). This is useful before significant clock changes,
461  * as it avoids having to deal with this time offset explicitly.
462  */
463 static void timekeeping_forward_now(struct timekeeper *tk)
464 {
465 	struct clocksource *clock = tk->tkr.clock;
466 	cycle_t cycle_now, delta;
467 	s64 nsec;
468 
469 	cycle_now = tk->tkr.read(clock);
470 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
471 	tk->tkr.cycle_last = cycle_now;
472 
473 	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
474 
475 	/* If arch requires, add in get_arch_timeoffset() */
476 	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
477 
478 	tk_normalize_xtime(tk);
479 
480 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
481 	timespec64_add_ns(&tk->raw_time, nsec);
482 }
483 
484 /**
485  * __getnstimeofday64 - Returns the time of day in a timespec64.
486  * @ts:		pointer to the timespec to be set
487  *
488  * Updates the time of day in the timespec.
489  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
490  */
491 int __getnstimeofday64(struct timespec64 *ts)
492 {
493 	struct timekeeper *tk = &tk_core.timekeeper;
494 	unsigned long seq;
495 	s64 nsecs = 0;
496 
497 	do {
498 		seq = read_seqcount_begin(&tk_core.seq);
499 
500 		ts->tv_sec = tk->xtime_sec;
501 		nsecs = timekeeping_get_ns(&tk->tkr);
502 
503 	} while (read_seqcount_retry(&tk_core.seq, seq));
504 
505 	ts->tv_nsec = 0;
506 	timespec64_add_ns(ts, nsecs);
507 
508 	/*
509 	 * Do not bail out early, in case there were callers still using
510 	 * the value, even in the face of the WARN_ON.
511 	 */
512 	if (unlikely(timekeeping_suspended))
513 		return -EAGAIN;
514 	return 0;
515 }
516 EXPORT_SYMBOL(__getnstimeofday64);
517 
518 /**
519  * getnstimeofday64 - Returns the time of day in a timespec64.
520  * @ts:		pointer to the timespec to be set
521  *
522  * Returns the time of day in a timespec (WARN if suspended).
523  */
524 void getnstimeofday64(struct timespec64 *ts)
525 {
526 	WARN_ON(__getnstimeofday64(ts));
527 }
528 EXPORT_SYMBOL(getnstimeofday64);
529 
530 ktime_t ktime_get(void)
531 {
532 	struct timekeeper *tk = &tk_core.timekeeper;
533 	unsigned int seq;
534 	ktime_t base;
535 	s64 nsecs;
536 
537 	WARN_ON(timekeeping_suspended);
538 
539 	do {
540 		seq = read_seqcount_begin(&tk_core.seq);
541 		base = tk->tkr.base_mono;
542 		nsecs = timekeeping_get_ns(&tk->tkr);
543 
544 	} while (read_seqcount_retry(&tk_core.seq, seq));
545 
546 	return ktime_add_ns(base, nsecs);
547 }
548 EXPORT_SYMBOL_GPL(ktime_get);
549 
550 static ktime_t *offsets[TK_OFFS_MAX] = {
551 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
552 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
553 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
554 };
555 
556 ktime_t ktime_get_with_offset(enum tk_offsets offs)
557 {
558 	struct timekeeper *tk = &tk_core.timekeeper;
559 	unsigned int seq;
560 	ktime_t base, *offset = offsets[offs];
561 	s64 nsecs;
562 
563 	WARN_ON(timekeeping_suspended);
564 
565 	do {
566 		seq = read_seqcount_begin(&tk_core.seq);
567 		base = ktime_add(tk->tkr.base_mono, *offset);
568 		nsecs = timekeeping_get_ns(&tk->tkr);
569 
570 	} while (read_seqcount_retry(&tk_core.seq, seq));
571 
572 	return ktime_add_ns(base, nsecs);
573 
574 }
575 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
576 
577 /**
578  * ktime_mono_to_any() - convert mononotic time to any other time
579  * @tmono:	time to convert.
580  * @offs:	which offset to use
581  */
582 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
583 {
584 	ktime_t *offset = offsets[offs];
585 	unsigned long seq;
586 	ktime_t tconv;
587 
588 	do {
589 		seq = read_seqcount_begin(&tk_core.seq);
590 		tconv = ktime_add(tmono, *offset);
591 	} while (read_seqcount_retry(&tk_core.seq, seq));
592 
593 	return tconv;
594 }
595 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
596 
597 /**
598  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
599  */
600 ktime_t ktime_get_raw(void)
601 {
602 	struct timekeeper *tk = &tk_core.timekeeper;
603 	unsigned int seq;
604 	ktime_t base;
605 	s64 nsecs;
606 
607 	do {
608 		seq = read_seqcount_begin(&tk_core.seq);
609 		base = tk->base_raw;
610 		nsecs = timekeeping_get_ns_raw(tk);
611 
612 	} while (read_seqcount_retry(&tk_core.seq, seq));
613 
614 	return ktime_add_ns(base, nsecs);
615 }
616 EXPORT_SYMBOL_GPL(ktime_get_raw);
617 
618 /**
619  * ktime_get_ts64 - get the monotonic clock in timespec64 format
620  * @ts:		pointer to timespec variable
621  *
622  * The function calculates the monotonic clock from the realtime
623  * clock and the wall_to_monotonic offset and stores the result
624  * in normalized timespec format in the variable pointed to by @ts.
625  */
626 void ktime_get_ts64(struct timespec64 *ts)
627 {
628 	struct timekeeper *tk = &tk_core.timekeeper;
629 	struct timespec64 tomono;
630 	s64 nsec;
631 	unsigned int seq;
632 
633 	WARN_ON(timekeeping_suspended);
634 
635 	do {
636 		seq = read_seqcount_begin(&tk_core.seq);
637 		ts->tv_sec = tk->xtime_sec;
638 		nsec = timekeeping_get_ns(&tk->tkr);
639 		tomono = tk->wall_to_monotonic;
640 
641 	} while (read_seqcount_retry(&tk_core.seq, seq));
642 
643 	ts->tv_sec += tomono.tv_sec;
644 	ts->tv_nsec = 0;
645 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
646 }
647 EXPORT_SYMBOL_GPL(ktime_get_ts64);
648 
649 #ifdef CONFIG_NTP_PPS
650 
651 /**
652  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
653  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
654  * @ts_real:	pointer to the timespec to be set to the time of day
655  *
656  * This function reads both the time of day and raw monotonic time at the
657  * same time atomically and stores the resulting timestamps in timespec
658  * format.
659  */
660 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
661 {
662 	struct timekeeper *tk = &tk_core.timekeeper;
663 	unsigned long seq;
664 	s64 nsecs_raw, nsecs_real;
665 
666 	WARN_ON_ONCE(timekeeping_suspended);
667 
668 	do {
669 		seq = read_seqcount_begin(&tk_core.seq);
670 
671 		*ts_raw = timespec64_to_timespec(tk->raw_time);
672 		ts_real->tv_sec = tk->xtime_sec;
673 		ts_real->tv_nsec = 0;
674 
675 		nsecs_raw = timekeeping_get_ns_raw(tk);
676 		nsecs_real = timekeeping_get_ns(&tk->tkr);
677 
678 	} while (read_seqcount_retry(&tk_core.seq, seq));
679 
680 	timespec_add_ns(ts_raw, nsecs_raw);
681 	timespec_add_ns(ts_real, nsecs_real);
682 }
683 EXPORT_SYMBOL(getnstime_raw_and_real);
684 
685 #endif /* CONFIG_NTP_PPS */
686 
687 /**
688  * do_gettimeofday - Returns the time of day in a timeval
689  * @tv:		pointer to the timeval to be set
690  *
691  * NOTE: Users should be converted to using getnstimeofday()
692  */
693 void do_gettimeofday(struct timeval *tv)
694 {
695 	struct timespec64 now;
696 
697 	getnstimeofday64(&now);
698 	tv->tv_sec = now.tv_sec;
699 	tv->tv_usec = now.tv_nsec/1000;
700 }
701 EXPORT_SYMBOL(do_gettimeofday);
702 
703 /**
704  * do_settimeofday - Sets the time of day
705  * @tv:		pointer to the timespec variable containing the new time
706  *
707  * Sets the time of day to the new time and update NTP and notify hrtimers
708  */
709 int do_settimeofday(const struct timespec *tv)
710 {
711 	struct timekeeper *tk = &tk_core.timekeeper;
712 	struct timespec64 ts_delta, xt, tmp;
713 	unsigned long flags;
714 
715 	if (!timespec_valid_strict(tv))
716 		return -EINVAL;
717 
718 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
719 	write_seqcount_begin(&tk_core.seq);
720 
721 	timekeeping_forward_now(tk);
722 
723 	xt = tk_xtime(tk);
724 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
725 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
726 
727 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
728 
729 	tmp = timespec_to_timespec64(*tv);
730 	tk_set_xtime(tk, &tmp);
731 
732 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
733 
734 	write_seqcount_end(&tk_core.seq);
735 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
736 
737 	/* signal hrtimers about time change */
738 	clock_was_set();
739 
740 	return 0;
741 }
742 EXPORT_SYMBOL(do_settimeofday);
743 
744 /**
745  * timekeeping_inject_offset - Adds or subtracts from the current time.
746  * @tv:		pointer to the timespec variable containing the offset
747  *
748  * Adds or subtracts an offset value from the current time.
749  */
750 int timekeeping_inject_offset(struct timespec *ts)
751 {
752 	struct timekeeper *tk = &tk_core.timekeeper;
753 	unsigned long flags;
754 	struct timespec64 ts64, tmp;
755 	int ret = 0;
756 
757 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
758 		return -EINVAL;
759 
760 	ts64 = timespec_to_timespec64(*ts);
761 
762 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
763 	write_seqcount_begin(&tk_core.seq);
764 
765 	timekeeping_forward_now(tk);
766 
767 	/* Make sure the proposed value is valid */
768 	tmp = timespec64_add(tk_xtime(tk),  ts64);
769 	if (!timespec64_valid_strict(&tmp)) {
770 		ret = -EINVAL;
771 		goto error;
772 	}
773 
774 	tk_xtime_add(tk, &ts64);
775 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
776 
777 error: /* even if we error out, we forwarded the time, so call update */
778 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
779 
780 	write_seqcount_end(&tk_core.seq);
781 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
782 
783 	/* signal hrtimers about time change */
784 	clock_was_set();
785 
786 	return ret;
787 }
788 EXPORT_SYMBOL(timekeeping_inject_offset);
789 
790 
791 /**
792  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
793  *
794  */
795 s32 timekeeping_get_tai_offset(void)
796 {
797 	struct timekeeper *tk = &tk_core.timekeeper;
798 	unsigned int seq;
799 	s32 ret;
800 
801 	do {
802 		seq = read_seqcount_begin(&tk_core.seq);
803 		ret = tk->tai_offset;
804 	} while (read_seqcount_retry(&tk_core.seq, seq));
805 
806 	return ret;
807 }
808 
809 /**
810  * __timekeeping_set_tai_offset - Lock free worker function
811  *
812  */
813 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
814 {
815 	tk->tai_offset = tai_offset;
816 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
817 }
818 
819 /**
820  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
821  *
822  */
823 void timekeeping_set_tai_offset(s32 tai_offset)
824 {
825 	struct timekeeper *tk = &tk_core.timekeeper;
826 	unsigned long flags;
827 
828 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
829 	write_seqcount_begin(&tk_core.seq);
830 	__timekeeping_set_tai_offset(tk, tai_offset);
831 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
832 	write_seqcount_end(&tk_core.seq);
833 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
834 	clock_was_set();
835 }
836 
837 /**
838  * change_clocksource - Swaps clocksources if a new one is available
839  *
840  * Accumulates current time interval and initializes new clocksource
841  */
842 static int change_clocksource(void *data)
843 {
844 	struct timekeeper *tk = &tk_core.timekeeper;
845 	struct clocksource *new, *old;
846 	unsigned long flags;
847 
848 	new = (struct clocksource *) data;
849 
850 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
851 	write_seqcount_begin(&tk_core.seq);
852 
853 	timekeeping_forward_now(tk);
854 	/*
855 	 * If the cs is in module, get a module reference. Succeeds
856 	 * for built-in code (owner == NULL) as well.
857 	 */
858 	if (try_module_get(new->owner)) {
859 		if (!new->enable || new->enable(new) == 0) {
860 			old = tk->tkr.clock;
861 			tk_setup_internals(tk, new);
862 			if (old->disable)
863 				old->disable(old);
864 			module_put(old->owner);
865 		} else {
866 			module_put(new->owner);
867 		}
868 	}
869 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
870 
871 	write_seqcount_end(&tk_core.seq);
872 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
873 
874 	return 0;
875 }
876 
877 /**
878  * timekeeping_notify - Install a new clock source
879  * @clock:		pointer to the clock source
880  *
881  * This function is called from clocksource.c after a new, better clock
882  * source has been registered. The caller holds the clocksource_mutex.
883  */
884 int timekeeping_notify(struct clocksource *clock)
885 {
886 	struct timekeeper *tk = &tk_core.timekeeper;
887 
888 	if (tk->tkr.clock == clock)
889 		return 0;
890 	stop_machine(change_clocksource, clock, NULL);
891 	tick_clock_notify();
892 	return tk->tkr.clock == clock ? 0 : -1;
893 }
894 
895 /**
896  * getrawmonotonic - Returns the raw monotonic time in a timespec
897  * @ts:		pointer to the timespec to be set
898  *
899  * Returns the raw monotonic time (completely un-modified by ntp)
900  */
901 void getrawmonotonic(struct timespec *ts)
902 {
903 	struct timekeeper *tk = &tk_core.timekeeper;
904 	struct timespec64 ts64;
905 	unsigned long seq;
906 	s64 nsecs;
907 
908 	do {
909 		seq = read_seqcount_begin(&tk_core.seq);
910 		nsecs = timekeeping_get_ns_raw(tk);
911 		ts64 = tk->raw_time;
912 
913 	} while (read_seqcount_retry(&tk_core.seq, seq));
914 
915 	timespec64_add_ns(&ts64, nsecs);
916 	*ts = timespec64_to_timespec(ts64);
917 }
918 EXPORT_SYMBOL(getrawmonotonic);
919 
920 /**
921  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
922  */
923 int timekeeping_valid_for_hres(void)
924 {
925 	struct timekeeper *tk = &tk_core.timekeeper;
926 	unsigned long seq;
927 	int ret;
928 
929 	do {
930 		seq = read_seqcount_begin(&tk_core.seq);
931 
932 		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
933 
934 	} while (read_seqcount_retry(&tk_core.seq, seq));
935 
936 	return ret;
937 }
938 
939 /**
940  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
941  */
942 u64 timekeeping_max_deferment(void)
943 {
944 	struct timekeeper *tk = &tk_core.timekeeper;
945 	unsigned long seq;
946 	u64 ret;
947 
948 	do {
949 		seq = read_seqcount_begin(&tk_core.seq);
950 
951 		ret = tk->tkr.clock->max_idle_ns;
952 
953 	} while (read_seqcount_retry(&tk_core.seq, seq));
954 
955 	return ret;
956 }
957 
958 /**
959  * read_persistent_clock -  Return time from the persistent clock.
960  *
961  * Weak dummy function for arches that do not yet support it.
962  * Reads the time from the battery backed persistent clock.
963  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
964  *
965  *  XXX - Do be sure to remove it once all arches implement it.
966  */
967 void __weak read_persistent_clock(struct timespec *ts)
968 {
969 	ts->tv_sec = 0;
970 	ts->tv_nsec = 0;
971 }
972 
973 /**
974  * read_boot_clock -  Return time of the system start.
975  *
976  * Weak dummy function for arches that do not yet support it.
977  * Function to read the exact time the system has been started.
978  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
979  *
980  *  XXX - Do be sure to remove it once all arches implement it.
981  */
982 void __weak read_boot_clock(struct timespec *ts)
983 {
984 	ts->tv_sec = 0;
985 	ts->tv_nsec = 0;
986 }
987 
988 /*
989  * timekeeping_init - Initializes the clocksource and common timekeeping values
990  */
991 void __init timekeeping_init(void)
992 {
993 	struct timekeeper *tk = &tk_core.timekeeper;
994 	struct clocksource *clock;
995 	unsigned long flags;
996 	struct timespec64 now, boot, tmp;
997 	struct timespec ts;
998 
999 	read_persistent_clock(&ts);
1000 	now = timespec_to_timespec64(ts);
1001 	if (!timespec64_valid_strict(&now)) {
1002 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1003 			"         Check your CMOS/BIOS settings.\n");
1004 		now.tv_sec = 0;
1005 		now.tv_nsec = 0;
1006 	} else if (now.tv_sec || now.tv_nsec)
1007 		persistent_clock_exist = true;
1008 
1009 	read_boot_clock(&ts);
1010 	boot = timespec_to_timespec64(ts);
1011 	if (!timespec64_valid_strict(&boot)) {
1012 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1013 			"         Check your CMOS/BIOS settings.\n");
1014 		boot.tv_sec = 0;
1015 		boot.tv_nsec = 0;
1016 	}
1017 
1018 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1019 	write_seqcount_begin(&tk_core.seq);
1020 	ntp_init();
1021 
1022 	clock = clocksource_default_clock();
1023 	if (clock->enable)
1024 		clock->enable(clock);
1025 	tk_setup_internals(tk, clock);
1026 
1027 	tk_set_xtime(tk, &now);
1028 	tk->raw_time.tv_sec = 0;
1029 	tk->raw_time.tv_nsec = 0;
1030 	tk->base_raw.tv64 = 0;
1031 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1032 		boot = tk_xtime(tk);
1033 
1034 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1035 	tk_set_wall_to_mono(tk, tmp);
1036 
1037 	timekeeping_update(tk, TK_MIRROR);
1038 
1039 	write_seqcount_end(&tk_core.seq);
1040 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1041 }
1042 
1043 /* time in seconds when suspend began */
1044 static struct timespec64 timekeeping_suspend_time;
1045 
1046 /**
1047  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1048  * @delta: pointer to a timespec delta value
1049  *
1050  * Takes a timespec offset measuring a suspend interval and properly
1051  * adds the sleep offset to the timekeeping variables.
1052  */
1053 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1054 					   struct timespec64 *delta)
1055 {
1056 	if (!timespec64_valid_strict(delta)) {
1057 		printk_deferred(KERN_WARNING
1058 				"__timekeeping_inject_sleeptime: Invalid "
1059 				"sleep delta value!\n");
1060 		return;
1061 	}
1062 	tk_xtime_add(tk, delta);
1063 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1064 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1065 	tk_debug_account_sleep_time(delta);
1066 }
1067 
1068 /**
1069  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1070  * @delta: pointer to a timespec delta value
1071  *
1072  * This hook is for architectures that cannot support read_persistent_clock
1073  * because their RTC/persistent clock is only accessible when irqs are enabled.
1074  *
1075  * This function should only be called by rtc_resume(), and allows
1076  * a suspend offset to be injected into the timekeeping values.
1077  */
1078 void timekeeping_inject_sleeptime(struct timespec *delta)
1079 {
1080 	struct timekeeper *tk = &tk_core.timekeeper;
1081 	struct timespec64 tmp;
1082 	unsigned long flags;
1083 
1084 	/*
1085 	 * Make sure we don't set the clock twice, as timekeeping_resume()
1086 	 * already did it
1087 	 */
1088 	if (has_persistent_clock())
1089 		return;
1090 
1091 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1092 	write_seqcount_begin(&tk_core.seq);
1093 
1094 	timekeeping_forward_now(tk);
1095 
1096 	tmp = timespec_to_timespec64(*delta);
1097 	__timekeeping_inject_sleeptime(tk, &tmp);
1098 
1099 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1100 
1101 	write_seqcount_end(&tk_core.seq);
1102 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1103 
1104 	/* signal hrtimers about time change */
1105 	clock_was_set();
1106 }
1107 
1108 /**
1109  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1110  *
1111  * This is for the generic clocksource timekeeping.
1112  * xtime/wall_to_monotonic/jiffies/etc are
1113  * still managed by arch specific suspend/resume code.
1114  */
1115 static void timekeeping_resume(void)
1116 {
1117 	struct timekeeper *tk = &tk_core.timekeeper;
1118 	struct clocksource *clock = tk->tkr.clock;
1119 	unsigned long flags;
1120 	struct timespec64 ts_new, ts_delta;
1121 	struct timespec tmp;
1122 	cycle_t cycle_now, cycle_delta;
1123 	bool suspendtime_found = false;
1124 
1125 	read_persistent_clock(&tmp);
1126 	ts_new = timespec_to_timespec64(tmp);
1127 
1128 	clockevents_resume();
1129 	clocksource_resume();
1130 
1131 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1132 	write_seqcount_begin(&tk_core.seq);
1133 
1134 	/*
1135 	 * After system resumes, we need to calculate the suspended time and
1136 	 * compensate it for the OS time. There are 3 sources that could be
1137 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1138 	 * device.
1139 	 *
1140 	 * One specific platform may have 1 or 2 or all of them, and the
1141 	 * preference will be:
1142 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1143 	 * The less preferred source will only be tried if there is no better
1144 	 * usable source. The rtc part is handled separately in rtc core code.
1145 	 */
1146 	cycle_now = tk->tkr.read(clock);
1147 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1148 		cycle_now > tk->tkr.cycle_last) {
1149 		u64 num, max = ULLONG_MAX;
1150 		u32 mult = clock->mult;
1151 		u32 shift = clock->shift;
1152 		s64 nsec = 0;
1153 
1154 		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1155 						tk->tkr.mask);
1156 
1157 		/*
1158 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1159 		 * suspended time is too long. In that case we need do the
1160 		 * 64 bits math carefully
1161 		 */
1162 		do_div(max, mult);
1163 		if (cycle_delta > max) {
1164 			num = div64_u64(cycle_delta, max);
1165 			nsec = (((u64) max * mult) >> shift) * num;
1166 			cycle_delta -= num * max;
1167 		}
1168 		nsec += ((u64) cycle_delta * mult) >> shift;
1169 
1170 		ts_delta = ns_to_timespec64(nsec);
1171 		suspendtime_found = true;
1172 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1173 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1174 		suspendtime_found = true;
1175 	}
1176 
1177 	if (suspendtime_found)
1178 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1179 
1180 	/* Re-base the last cycle value */
1181 	tk->tkr.cycle_last = cycle_now;
1182 	tk->ntp_error = 0;
1183 	timekeeping_suspended = 0;
1184 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1185 	write_seqcount_end(&tk_core.seq);
1186 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1187 
1188 	touch_softlockup_watchdog();
1189 
1190 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1191 
1192 	/* Resume hrtimers */
1193 	hrtimers_resume();
1194 }
1195 
1196 static int timekeeping_suspend(void)
1197 {
1198 	struct timekeeper *tk = &tk_core.timekeeper;
1199 	unsigned long flags;
1200 	struct timespec64		delta, delta_delta;
1201 	static struct timespec64	old_delta;
1202 	struct timespec tmp;
1203 
1204 	read_persistent_clock(&tmp);
1205 	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1206 
1207 	/*
1208 	 * On some systems the persistent_clock can not be detected at
1209 	 * timekeeping_init by its return value, so if we see a valid
1210 	 * value returned, update the persistent_clock_exists flag.
1211 	 */
1212 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1213 		persistent_clock_exist = true;
1214 
1215 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1216 	write_seqcount_begin(&tk_core.seq);
1217 	timekeeping_forward_now(tk);
1218 	timekeeping_suspended = 1;
1219 
1220 	/*
1221 	 * To avoid drift caused by repeated suspend/resumes,
1222 	 * which each can add ~1 second drift error,
1223 	 * try to compensate so the difference in system time
1224 	 * and persistent_clock time stays close to constant.
1225 	 */
1226 	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1227 	delta_delta = timespec64_sub(delta, old_delta);
1228 	if (abs(delta_delta.tv_sec)  >= 2) {
1229 		/*
1230 		 * if delta_delta is too large, assume time correction
1231 		 * has occured and set old_delta to the current delta.
1232 		 */
1233 		old_delta = delta;
1234 	} else {
1235 		/* Otherwise try to adjust old_system to compensate */
1236 		timekeeping_suspend_time =
1237 			timespec64_add(timekeeping_suspend_time, delta_delta);
1238 	}
1239 
1240 	timekeeping_update(tk, TK_MIRROR);
1241 	write_seqcount_end(&tk_core.seq);
1242 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1243 
1244 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1245 	clocksource_suspend();
1246 	clockevents_suspend();
1247 
1248 	return 0;
1249 }
1250 
1251 /* sysfs resume/suspend bits for timekeeping */
1252 static struct syscore_ops timekeeping_syscore_ops = {
1253 	.resume		= timekeeping_resume,
1254 	.suspend	= timekeeping_suspend,
1255 };
1256 
1257 static int __init timekeeping_init_ops(void)
1258 {
1259 	register_syscore_ops(&timekeeping_syscore_ops);
1260 	return 0;
1261 }
1262 device_initcall(timekeeping_init_ops);
1263 
1264 /*
1265  * Apply a multiplier adjustment to the timekeeper
1266  */
1267 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1268 							 s64 offset,
1269 							 bool negative,
1270 							 int adj_scale)
1271 {
1272 	s64 interval = tk->cycle_interval;
1273 	s32 mult_adj = 1;
1274 
1275 	if (negative) {
1276 		mult_adj = -mult_adj;
1277 		interval = -interval;
1278 		offset  = -offset;
1279 	}
1280 	mult_adj <<= adj_scale;
1281 	interval <<= adj_scale;
1282 	offset <<= adj_scale;
1283 
1284 	/*
1285 	 * So the following can be confusing.
1286 	 *
1287 	 * To keep things simple, lets assume mult_adj == 1 for now.
1288 	 *
1289 	 * When mult_adj != 1, remember that the interval and offset values
1290 	 * have been appropriately scaled so the math is the same.
1291 	 *
1292 	 * The basic idea here is that we're increasing the multiplier
1293 	 * by one, this causes the xtime_interval to be incremented by
1294 	 * one cycle_interval. This is because:
1295 	 *	xtime_interval = cycle_interval * mult
1296 	 * So if mult is being incremented by one:
1297 	 *	xtime_interval = cycle_interval * (mult + 1)
1298 	 * Its the same as:
1299 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1300 	 * Which can be shortened to:
1301 	 *	xtime_interval += cycle_interval
1302 	 *
1303 	 * So offset stores the non-accumulated cycles. Thus the current
1304 	 * time (in shifted nanoseconds) is:
1305 	 *	now = (offset * adj) + xtime_nsec
1306 	 * Now, even though we're adjusting the clock frequency, we have
1307 	 * to keep time consistent. In other words, we can't jump back
1308 	 * in time, and we also want to avoid jumping forward in time.
1309 	 *
1310 	 * So given the same offset value, we need the time to be the same
1311 	 * both before and after the freq adjustment.
1312 	 *	now = (offset * adj_1) + xtime_nsec_1
1313 	 *	now = (offset * adj_2) + xtime_nsec_2
1314 	 * So:
1315 	 *	(offset * adj_1) + xtime_nsec_1 =
1316 	 *		(offset * adj_2) + xtime_nsec_2
1317 	 * And we know:
1318 	 *	adj_2 = adj_1 + 1
1319 	 * So:
1320 	 *	(offset * adj_1) + xtime_nsec_1 =
1321 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1322 	 *	(offset * adj_1) + xtime_nsec_1 =
1323 	 *		(offset * adj_1) + offset + xtime_nsec_2
1324 	 * Canceling the sides:
1325 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1326 	 * Which gives us:
1327 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1328 	 * Which simplfies to:
1329 	 *	xtime_nsec -= offset
1330 	 *
1331 	 * XXX - TODO: Doc ntp_error calculation.
1332 	 */
1333 	tk->tkr.mult += mult_adj;
1334 	tk->xtime_interval += interval;
1335 	tk->tkr.xtime_nsec -= offset;
1336 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1337 }
1338 
1339 /*
1340  * Calculate the multiplier adjustment needed to match the frequency
1341  * specified by NTP
1342  */
1343 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1344 							s64 offset)
1345 {
1346 	s64 interval = tk->cycle_interval;
1347 	s64 xinterval = tk->xtime_interval;
1348 	s64 tick_error;
1349 	bool negative;
1350 	u32 adj;
1351 
1352 	/* Remove any current error adj from freq calculation */
1353 	if (tk->ntp_err_mult)
1354 		xinterval -= tk->cycle_interval;
1355 
1356 	tk->ntp_tick = ntp_tick_length();
1357 
1358 	/* Calculate current error per tick */
1359 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1360 	tick_error -= (xinterval + tk->xtime_remainder);
1361 
1362 	/* Don't worry about correcting it if its small */
1363 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1364 		return;
1365 
1366 	/* preserve the direction of correction */
1367 	negative = (tick_error < 0);
1368 
1369 	/* Sort out the magnitude of the correction */
1370 	tick_error = abs(tick_error);
1371 	for (adj = 0; tick_error > interval; adj++)
1372 		tick_error >>= 1;
1373 
1374 	/* scale the corrections */
1375 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1376 }
1377 
1378 /*
1379  * Adjust the timekeeper's multiplier to the correct frequency
1380  * and also to reduce the accumulated error value.
1381  */
1382 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1383 {
1384 	/* Correct for the current frequency error */
1385 	timekeeping_freqadjust(tk, offset);
1386 
1387 	/* Next make a small adjustment to fix any cumulative error */
1388 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1389 		tk->ntp_err_mult = 1;
1390 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1391 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1392 		/* Undo any existing error adjustment */
1393 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1394 		tk->ntp_err_mult = 0;
1395 	}
1396 
1397 	if (unlikely(tk->tkr.clock->maxadj &&
1398 		(tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1399 		printk_once(KERN_WARNING
1400 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1401 			tk->tkr.clock->name, (long)tk->tkr.mult,
1402 			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1403 	}
1404 
1405 	/*
1406 	 * It may be possible that when we entered this function, xtime_nsec
1407 	 * was very small.  Further, if we're slightly speeding the clocksource
1408 	 * in the code above, its possible the required corrective factor to
1409 	 * xtime_nsec could cause it to underflow.
1410 	 *
1411 	 * Now, since we already accumulated the second, cannot simply roll
1412 	 * the accumulated second back, since the NTP subsystem has been
1413 	 * notified via second_overflow. So instead we push xtime_nsec forward
1414 	 * by the amount we underflowed, and add that amount into the error.
1415 	 *
1416 	 * We'll correct this error next time through this function, when
1417 	 * xtime_nsec is not as small.
1418 	 */
1419 	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1420 		s64 neg = -(s64)tk->tkr.xtime_nsec;
1421 		tk->tkr.xtime_nsec = 0;
1422 		tk->ntp_error += neg << tk->ntp_error_shift;
1423 	}
1424 }
1425 
1426 /**
1427  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1428  *
1429  * Helper function that accumulates a the nsecs greater then a second
1430  * from the xtime_nsec field to the xtime_secs field.
1431  * It also calls into the NTP code to handle leapsecond processing.
1432  *
1433  */
1434 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1435 {
1436 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1437 	unsigned int clock_set = 0;
1438 
1439 	while (tk->tkr.xtime_nsec >= nsecps) {
1440 		int leap;
1441 
1442 		tk->tkr.xtime_nsec -= nsecps;
1443 		tk->xtime_sec++;
1444 
1445 		/* Figure out if its a leap sec and apply if needed */
1446 		leap = second_overflow(tk->xtime_sec);
1447 		if (unlikely(leap)) {
1448 			struct timespec64 ts;
1449 
1450 			tk->xtime_sec += leap;
1451 
1452 			ts.tv_sec = leap;
1453 			ts.tv_nsec = 0;
1454 			tk_set_wall_to_mono(tk,
1455 				timespec64_sub(tk->wall_to_monotonic, ts));
1456 
1457 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1458 
1459 			clock_set = TK_CLOCK_WAS_SET;
1460 		}
1461 	}
1462 	return clock_set;
1463 }
1464 
1465 /**
1466  * logarithmic_accumulation - shifted accumulation of cycles
1467  *
1468  * This functions accumulates a shifted interval of cycles into
1469  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1470  * loop.
1471  *
1472  * Returns the unconsumed cycles.
1473  */
1474 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1475 						u32 shift,
1476 						unsigned int *clock_set)
1477 {
1478 	cycle_t interval = tk->cycle_interval << shift;
1479 	u64 raw_nsecs;
1480 
1481 	/* If the offset is smaller then a shifted interval, do nothing */
1482 	if (offset < interval)
1483 		return offset;
1484 
1485 	/* Accumulate one shifted interval */
1486 	offset -= interval;
1487 	tk->tkr.cycle_last += interval;
1488 
1489 	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1490 	*clock_set |= accumulate_nsecs_to_secs(tk);
1491 
1492 	/* Accumulate raw time */
1493 	raw_nsecs = (u64)tk->raw_interval << shift;
1494 	raw_nsecs += tk->raw_time.tv_nsec;
1495 	if (raw_nsecs >= NSEC_PER_SEC) {
1496 		u64 raw_secs = raw_nsecs;
1497 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1498 		tk->raw_time.tv_sec += raw_secs;
1499 	}
1500 	tk->raw_time.tv_nsec = raw_nsecs;
1501 
1502 	/* Accumulate error between NTP and clock interval */
1503 	tk->ntp_error += tk->ntp_tick << shift;
1504 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1505 						(tk->ntp_error_shift + shift);
1506 
1507 	return offset;
1508 }
1509 
1510 /**
1511  * update_wall_time - Uses the current clocksource to increment the wall time
1512  *
1513  */
1514 void update_wall_time(void)
1515 {
1516 	struct timekeeper *real_tk = &tk_core.timekeeper;
1517 	struct timekeeper *tk = &shadow_timekeeper;
1518 	cycle_t offset;
1519 	int shift = 0, maxshift;
1520 	unsigned int clock_set = 0;
1521 	unsigned long flags;
1522 
1523 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1524 
1525 	/* Make sure we're fully resumed: */
1526 	if (unlikely(timekeeping_suspended))
1527 		goto out;
1528 
1529 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1530 	offset = real_tk->cycle_interval;
1531 #else
1532 	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1533 				   tk->tkr.cycle_last, tk->tkr.mask);
1534 #endif
1535 
1536 	/* Check if there's really nothing to do */
1537 	if (offset < real_tk->cycle_interval)
1538 		goto out;
1539 
1540 	/*
1541 	 * With NO_HZ we may have to accumulate many cycle_intervals
1542 	 * (think "ticks") worth of time at once. To do this efficiently,
1543 	 * we calculate the largest doubling multiple of cycle_intervals
1544 	 * that is smaller than the offset.  We then accumulate that
1545 	 * chunk in one go, and then try to consume the next smaller
1546 	 * doubled multiple.
1547 	 */
1548 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1549 	shift = max(0, shift);
1550 	/* Bound shift to one less than what overflows tick_length */
1551 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1552 	shift = min(shift, maxshift);
1553 	while (offset >= tk->cycle_interval) {
1554 		offset = logarithmic_accumulation(tk, offset, shift,
1555 							&clock_set);
1556 		if (offset < tk->cycle_interval<<shift)
1557 			shift--;
1558 	}
1559 
1560 	/* correct the clock when NTP error is too big */
1561 	timekeeping_adjust(tk, offset);
1562 
1563 	/*
1564 	 * XXX This can be killed once everyone converts
1565 	 * to the new update_vsyscall.
1566 	 */
1567 	old_vsyscall_fixup(tk);
1568 
1569 	/*
1570 	 * Finally, make sure that after the rounding
1571 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1572 	 */
1573 	clock_set |= accumulate_nsecs_to_secs(tk);
1574 
1575 	write_seqcount_begin(&tk_core.seq);
1576 	/*
1577 	 * Update the real timekeeper.
1578 	 *
1579 	 * We could avoid this memcpy by switching pointers, but that
1580 	 * requires changes to all other timekeeper usage sites as
1581 	 * well, i.e. move the timekeeper pointer getter into the
1582 	 * spinlocked/seqcount protected sections. And we trade this
1583 	 * memcpy under the tk_core.seq against one before we start
1584 	 * updating.
1585 	 */
1586 	memcpy(real_tk, tk, sizeof(*tk));
1587 	timekeeping_update(real_tk, clock_set);
1588 	write_seqcount_end(&tk_core.seq);
1589 out:
1590 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1591 	if (clock_set)
1592 		/* Have to call _delayed version, since in irq context*/
1593 		clock_was_set_delayed();
1594 }
1595 
1596 /**
1597  * getboottime - Return the real time of system boot.
1598  * @ts:		pointer to the timespec to be set
1599  *
1600  * Returns the wall-time of boot in a timespec.
1601  *
1602  * This is based on the wall_to_monotonic offset and the total suspend
1603  * time. Calls to settimeofday will affect the value returned (which
1604  * basically means that however wrong your real time clock is at boot time,
1605  * you get the right time here).
1606  */
1607 void getboottime(struct timespec *ts)
1608 {
1609 	struct timekeeper *tk = &tk_core.timekeeper;
1610 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1611 
1612 	*ts = ktime_to_timespec(t);
1613 }
1614 EXPORT_SYMBOL_GPL(getboottime);
1615 
1616 unsigned long get_seconds(void)
1617 {
1618 	struct timekeeper *tk = &tk_core.timekeeper;
1619 
1620 	return tk->xtime_sec;
1621 }
1622 EXPORT_SYMBOL(get_seconds);
1623 
1624 struct timespec __current_kernel_time(void)
1625 {
1626 	struct timekeeper *tk = &tk_core.timekeeper;
1627 
1628 	return timespec64_to_timespec(tk_xtime(tk));
1629 }
1630 
1631 struct timespec current_kernel_time(void)
1632 {
1633 	struct timekeeper *tk = &tk_core.timekeeper;
1634 	struct timespec64 now;
1635 	unsigned long seq;
1636 
1637 	do {
1638 		seq = read_seqcount_begin(&tk_core.seq);
1639 
1640 		now = tk_xtime(tk);
1641 	} while (read_seqcount_retry(&tk_core.seq, seq));
1642 
1643 	return timespec64_to_timespec(now);
1644 }
1645 EXPORT_SYMBOL(current_kernel_time);
1646 
1647 struct timespec get_monotonic_coarse(void)
1648 {
1649 	struct timekeeper *tk = &tk_core.timekeeper;
1650 	struct timespec64 now, mono;
1651 	unsigned long seq;
1652 
1653 	do {
1654 		seq = read_seqcount_begin(&tk_core.seq);
1655 
1656 		now = tk_xtime(tk);
1657 		mono = tk->wall_to_monotonic;
1658 	} while (read_seqcount_retry(&tk_core.seq, seq));
1659 
1660 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1661 				now.tv_nsec + mono.tv_nsec);
1662 
1663 	return timespec64_to_timespec(now);
1664 }
1665 
1666 /*
1667  * Must hold jiffies_lock
1668  */
1669 void do_timer(unsigned long ticks)
1670 {
1671 	jiffies_64 += ticks;
1672 	calc_global_load(ticks);
1673 }
1674 
1675 /**
1676  * ktime_get_update_offsets_tick - hrtimer helper
1677  * @offs_real:	pointer to storage for monotonic -> realtime offset
1678  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1679  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1680  *
1681  * Returns monotonic time at last tick and various offsets
1682  */
1683 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1684 							ktime_t *offs_tai)
1685 {
1686 	struct timekeeper *tk = &tk_core.timekeeper;
1687 	unsigned int seq;
1688 	ktime_t base;
1689 	u64 nsecs;
1690 
1691 	do {
1692 		seq = read_seqcount_begin(&tk_core.seq);
1693 
1694 		base = tk->tkr.base_mono;
1695 		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1696 
1697 		*offs_real = tk->offs_real;
1698 		*offs_boot = tk->offs_boot;
1699 		*offs_tai = tk->offs_tai;
1700 	} while (read_seqcount_retry(&tk_core.seq, seq));
1701 
1702 	return ktime_add_ns(base, nsecs);
1703 }
1704 
1705 #ifdef CONFIG_HIGH_RES_TIMERS
1706 /**
1707  * ktime_get_update_offsets_now - hrtimer helper
1708  * @offs_real:	pointer to storage for monotonic -> realtime offset
1709  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1710  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1711  *
1712  * Returns current monotonic time and updates the offsets
1713  * Called from hrtimer_interrupt() or retrigger_next_event()
1714  */
1715 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1716 							ktime_t *offs_tai)
1717 {
1718 	struct timekeeper *tk = &tk_core.timekeeper;
1719 	unsigned int seq;
1720 	ktime_t base;
1721 	u64 nsecs;
1722 
1723 	do {
1724 		seq = read_seqcount_begin(&tk_core.seq);
1725 
1726 		base = tk->tkr.base_mono;
1727 		nsecs = timekeeping_get_ns(&tk->tkr);
1728 
1729 		*offs_real = tk->offs_real;
1730 		*offs_boot = tk->offs_boot;
1731 		*offs_tai = tk->offs_tai;
1732 	} while (read_seqcount_retry(&tk_core.seq, seq));
1733 
1734 	return ktime_add_ns(base, nsecs);
1735 }
1736 #endif
1737 
1738 /**
1739  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1740  */
1741 int do_adjtimex(struct timex *txc)
1742 {
1743 	struct timekeeper *tk = &tk_core.timekeeper;
1744 	unsigned long flags;
1745 	struct timespec64 ts;
1746 	s32 orig_tai, tai;
1747 	int ret;
1748 
1749 	/* Validate the data before disabling interrupts */
1750 	ret = ntp_validate_timex(txc);
1751 	if (ret)
1752 		return ret;
1753 
1754 	if (txc->modes & ADJ_SETOFFSET) {
1755 		struct timespec delta;
1756 		delta.tv_sec  = txc->time.tv_sec;
1757 		delta.tv_nsec = txc->time.tv_usec;
1758 		if (!(txc->modes & ADJ_NANO))
1759 			delta.tv_nsec *= 1000;
1760 		ret = timekeeping_inject_offset(&delta);
1761 		if (ret)
1762 			return ret;
1763 	}
1764 
1765 	getnstimeofday64(&ts);
1766 
1767 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1768 	write_seqcount_begin(&tk_core.seq);
1769 
1770 	orig_tai = tai = tk->tai_offset;
1771 	ret = __do_adjtimex(txc, &ts, &tai);
1772 
1773 	if (tai != orig_tai) {
1774 		__timekeeping_set_tai_offset(tk, tai);
1775 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1776 	}
1777 	write_seqcount_end(&tk_core.seq);
1778 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1779 
1780 	if (tai != orig_tai)
1781 		clock_was_set();
1782 
1783 	ntp_notify_cmos_timer();
1784 
1785 	return ret;
1786 }
1787 
1788 #ifdef CONFIG_NTP_PPS
1789 /**
1790  * hardpps() - Accessor function to NTP __hardpps function
1791  */
1792 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1793 {
1794 	unsigned long flags;
1795 
1796 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1797 	write_seqcount_begin(&tk_core.seq);
1798 
1799 	__hardpps(phase_ts, raw_ts);
1800 
1801 	write_seqcount_end(&tk_core.seq);
1802 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1803 }
1804 EXPORT_SYMBOL(hardpps);
1805 #endif
1806 
1807 /**
1808  * xtime_update() - advances the timekeeping infrastructure
1809  * @ticks:	number of ticks, that have elapsed since the last call.
1810  *
1811  * Must be called with interrupts disabled.
1812  */
1813 void xtime_update(unsigned long ticks)
1814 {
1815 	write_seqlock(&jiffies_lock);
1816 	do_timer(ticks);
1817 	write_sequnlock(&jiffies_lock);
1818 	update_wall_time();
1819 }
1820