xref: /linux/kernel/time/timekeeping.c (revision 88a8e278ff0b6b461bf39d4ace17384e976a3f3f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 enum timekeeping_adv_mode {
35 	/* Update timekeeper when a tick has passed */
36 	TK_ADV_TICK,
37 
38 	/* Update timekeeper on a direct frequency change */
39 	TK_ADV_FREQ
40 };
41 
42 /*
43  * The most important data for readout fits into a single 64 byte
44  * cache line.
45  */
46 static struct {
47 	seqcount_t		seq;
48 	struct timekeeper	timekeeper;
49 } tk_core ____cacheline_aligned = {
50 	.seq = SEQCNT_ZERO(tk_core.seq),
51 };
52 
53 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
54 static struct timekeeper shadow_timekeeper;
55 
56 /**
57  * struct tk_fast - NMI safe timekeeper
58  * @seq:	Sequence counter for protecting updates. The lowest bit
59  *		is the index for the tk_read_base array
60  * @base:	tk_read_base array. Access is indexed by the lowest bit of
61  *		@seq.
62  *
63  * See @update_fast_timekeeper() below.
64  */
65 struct tk_fast {
66 	seqcount_t		seq;
67 	struct tk_read_base	base[2];
68 };
69 
70 /* Suspend-time cycles value for halted fast timekeeper. */
71 static u64 cycles_at_suspend;
72 
73 static u64 dummy_clock_read(struct clocksource *cs)
74 {
75 	return cycles_at_suspend;
76 }
77 
78 static struct clocksource dummy_clock = {
79 	.read = dummy_clock_read,
80 };
81 
82 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
83 	.base[0] = { .clock = &dummy_clock, },
84 	.base[1] = { .clock = &dummy_clock, },
85 };
86 
87 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
88 	.base[0] = { .clock = &dummy_clock, },
89 	.base[1] = { .clock = &dummy_clock, },
90 };
91 
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94 
95 static inline void tk_normalize_xtime(struct timekeeper *tk)
96 {
97 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
98 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
99 		tk->xtime_sec++;
100 	}
101 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
102 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
103 		tk->raw_sec++;
104 	}
105 }
106 
107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
108 {
109 	struct timespec64 ts;
110 
111 	ts.tv_sec = tk->xtime_sec;
112 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113 	return ts;
114 }
115 
116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
117 {
118 	tk->xtime_sec = ts->tv_sec;
119 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
120 }
121 
122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
123 {
124 	tk->xtime_sec += ts->tv_sec;
125 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
126 	tk_normalize_xtime(tk);
127 }
128 
129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
130 {
131 	struct timespec64 tmp;
132 
133 	/*
134 	 * Verify consistency of: offset_real = -wall_to_monotonic
135 	 * before modifying anything
136 	 */
137 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
138 					-tk->wall_to_monotonic.tv_nsec);
139 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
140 	tk->wall_to_monotonic = wtm;
141 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
142 	tk->offs_real = timespec64_to_ktime(tmp);
143 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
144 }
145 
146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147 {
148 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
149 	/*
150 	 * Timespec representation for VDSO update to avoid 64bit division
151 	 * on every update.
152 	 */
153 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
154 }
155 
156 /*
157  * tk_clock_read - atomic clocksource read() helper
158  *
159  * This helper is necessary to use in the read paths because, while the
160  * seqlock ensures we don't return a bad value while structures are updated,
161  * it doesn't protect from potential crashes. There is the possibility that
162  * the tkr's clocksource may change between the read reference, and the
163  * clock reference passed to the read function.  This can cause crashes if
164  * the wrong clocksource is passed to the wrong read function.
165  * This isn't necessary to use when holding the timekeeper_lock or doing
166  * a read of the fast-timekeeper tkrs (which is protected by its own locking
167  * and update logic).
168  */
169 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
170 {
171 	struct clocksource *clock = READ_ONCE(tkr->clock);
172 
173 	return clock->read(clock);
174 }
175 
176 #ifdef CONFIG_DEBUG_TIMEKEEPING
177 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
178 
179 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
180 {
181 
182 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
183 	const char *name = tk->tkr_mono.clock->name;
184 
185 	if (offset > max_cycles) {
186 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
187 				offset, name, max_cycles);
188 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
189 	} else {
190 		if (offset > (max_cycles >> 1)) {
191 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
192 					offset, name, max_cycles >> 1);
193 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
194 		}
195 	}
196 
197 	if (tk->underflow_seen) {
198 		if (jiffies - tk->last_warning > WARNING_FREQ) {
199 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
200 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
201 			printk_deferred("         Your kernel is probably still fine.\n");
202 			tk->last_warning = jiffies;
203 		}
204 		tk->underflow_seen = 0;
205 	}
206 
207 	if (tk->overflow_seen) {
208 		if (jiffies - tk->last_warning > WARNING_FREQ) {
209 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
210 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
211 			printk_deferred("         Your kernel is probably still fine.\n");
212 			tk->last_warning = jiffies;
213 		}
214 		tk->overflow_seen = 0;
215 	}
216 }
217 
218 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
219 {
220 	struct timekeeper *tk = &tk_core.timekeeper;
221 	u64 now, last, mask, max, delta;
222 	unsigned int seq;
223 
224 	/*
225 	 * Since we're called holding a seqlock, the data may shift
226 	 * under us while we're doing the calculation. This can cause
227 	 * false positives, since we'd note a problem but throw the
228 	 * results away. So nest another seqlock here to atomically
229 	 * grab the points we are checking with.
230 	 */
231 	do {
232 		seq = read_seqcount_begin(&tk_core.seq);
233 		now = tk_clock_read(tkr);
234 		last = tkr->cycle_last;
235 		mask = tkr->mask;
236 		max = tkr->clock->max_cycles;
237 	} while (read_seqcount_retry(&tk_core.seq, seq));
238 
239 	delta = clocksource_delta(now, last, mask);
240 
241 	/*
242 	 * Try to catch underflows by checking if we are seeing small
243 	 * mask-relative negative values.
244 	 */
245 	if (unlikely((~delta & mask) < (mask >> 3))) {
246 		tk->underflow_seen = 1;
247 		delta = 0;
248 	}
249 
250 	/* Cap delta value to the max_cycles values to avoid mult overflows */
251 	if (unlikely(delta > max)) {
252 		tk->overflow_seen = 1;
253 		delta = tkr->clock->max_cycles;
254 	}
255 
256 	return delta;
257 }
258 #else
259 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
260 {
261 }
262 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
263 {
264 	u64 cycle_now, delta;
265 
266 	/* read clocksource */
267 	cycle_now = tk_clock_read(tkr);
268 
269 	/* calculate the delta since the last update_wall_time */
270 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
271 
272 	return delta;
273 }
274 #endif
275 
276 /**
277  * tk_setup_internals - Set up internals to use clocksource clock.
278  *
279  * @tk:		The target timekeeper to setup.
280  * @clock:		Pointer to clocksource.
281  *
282  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
283  * pair and interval request.
284  *
285  * Unless you're the timekeeping code, you should not be using this!
286  */
287 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
288 {
289 	u64 interval;
290 	u64 tmp, ntpinterval;
291 	struct clocksource *old_clock;
292 
293 	++tk->cs_was_changed_seq;
294 	old_clock = tk->tkr_mono.clock;
295 	tk->tkr_mono.clock = clock;
296 	tk->tkr_mono.mask = clock->mask;
297 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
298 
299 	tk->tkr_raw.clock = clock;
300 	tk->tkr_raw.mask = clock->mask;
301 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
302 
303 	/* Do the ns -> cycle conversion first, using original mult */
304 	tmp = NTP_INTERVAL_LENGTH;
305 	tmp <<= clock->shift;
306 	ntpinterval = tmp;
307 	tmp += clock->mult/2;
308 	do_div(tmp, clock->mult);
309 	if (tmp == 0)
310 		tmp = 1;
311 
312 	interval = (u64) tmp;
313 	tk->cycle_interval = interval;
314 
315 	/* Go back from cycles -> shifted ns */
316 	tk->xtime_interval = interval * clock->mult;
317 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
318 	tk->raw_interval = interval * clock->mult;
319 
320 	 /* if changing clocks, convert xtime_nsec shift units */
321 	if (old_clock) {
322 		int shift_change = clock->shift - old_clock->shift;
323 		if (shift_change < 0) {
324 			tk->tkr_mono.xtime_nsec >>= -shift_change;
325 			tk->tkr_raw.xtime_nsec >>= -shift_change;
326 		} else {
327 			tk->tkr_mono.xtime_nsec <<= shift_change;
328 			tk->tkr_raw.xtime_nsec <<= shift_change;
329 		}
330 	}
331 
332 	tk->tkr_mono.shift = clock->shift;
333 	tk->tkr_raw.shift = clock->shift;
334 
335 	tk->ntp_error = 0;
336 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
337 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
338 
339 	/*
340 	 * The timekeeper keeps its own mult values for the currently
341 	 * active clocksource. These value will be adjusted via NTP
342 	 * to counteract clock drifting.
343 	 */
344 	tk->tkr_mono.mult = clock->mult;
345 	tk->tkr_raw.mult = clock->mult;
346 	tk->ntp_err_mult = 0;
347 	tk->skip_second_overflow = 0;
348 }
349 
350 /* Timekeeper helper functions. */
351 
352 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
353 static u32 default_arch_gettimeoffset(void) { return 0; }
354 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
355 #else
356 static inline u32 arch_gettimeoffset(void) { return 0; }
357 #endif
358 
359 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
360 {
361 	u64 nsec;
362 
363 	nsec = delta * tkr->mult + tkr->xtime_nsec;
364 	nsec >>= tkr->shift;
365 
366 	/* If arch requires, add in get_arch_timeoffset() */
367 	return nsec + arch_gettimeoffset();
368 }
369 
370 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
371 {
372 	u64 delta;
373 
374 	delta = timekeeping_get_delta(tkr);
375 	return timekeeping_delta_to_ns(tkr, delta);
376 }
377 
378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
379 {
380 	u64 delta;
381 
382 	/* calculate the delta since the last update_wall_time */
383 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
384 	return timekeeping_delta_to_ns(tkr, delta);
385 }
386 
387 /**
388  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
389  * @tkr: Timekeeping readout base from which we take the update
390  *
391  * We want to use this from any context including NMI and tracing /
392  * instrumenting the timekeeping code itself.
393  *
394  * Employ the latch technique; see @raw_write_seqcount_latch.
395  *
396  * So if a NMI hits the update of base[0] then it will use base[1]
397  * which is still consistent. In the worst case this can result is a
398  * slightly wrong timestamp (a few nanoseconds). See
399  * @ktime_get_mono_fast_ns.
400  */
401 static void update_fast_timekeeper(const struct tk_read_base *tkr,
402 				   struct tk_fast *tkf)
403 {
404 	struct tk_read_base *base = tkf->base;
405 
406 	/* Force readers off to base[1] */
407 	raw_write_seqcount_latch(&tkf->seq);
408 
409 	/* Update base[0] */
410 	memcpy(base, tkr, sizeof(*base));
411 
412 	/* Force readers back to base[0] */
413 	raw_write_seqcount_latch(&tkf->seq);
414 
415 	/* Update base[1] */
416 	memcpy(base + 1, base, sizeof(*base));
417 }
418 
419 /**
420  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
421  *
422  * This timestamp is not guaranteed to be monotonic across an update.
423  * The timestamp is calculated by:
424  *
425  *	now = base_mono + clock_delta * slope
426  *
427  * So if the update lowers the slope, readers who are forced to the
428  * not yet updated second array are still using the old steeper slope.
429  *
430  * tmono
431  * ^
432  * |    o  n
433  * |   o n
434  * |  u
435  * | o
436  * |o
437  * |12345678---> reader order
438  *
439  * o = old slope
440  * u = update
441  * n = new slope
442  *
443  * So reader 6 will observe time going backwards versus reader 5.
444  *
445  * While other CPUs are likely to be able observe that, the only way
446  * for a CPU local observation is when an NMI hits in the middle of
447  * the update. Timestamps taken from that NMI context might be ahead
448  * of the following timestamps. Callers need to be aware of that and
449  * deal with it.
450  */
451 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
452 {
453 	struct tk_read_base *tkr;
454 	unsigned int seq;
455 	u64 now;
456 
457 	do {
458 		seq = raw_read_seqcount_latch(&tkf->seq);
459 		tkr = tkf->base + (seq & 0x01);
460 		now = ktime_to_ns(tkr->base);
461 
462 		now += timekeeping_delta_to_ns(tkr,
463 				clocksource_delta(
464 					tk_clock_read(tkr),
465 					tkr->cycle_last,
466 					tkr->mask));
467 	} while (read_seqcount_retry(&tkf->seq, seq));
468 
469 	return now;
470 }
471 
472 u64 ktime_get_mono_fast_ns(void)
473 {
474 	return __ktime_get_fast_ns(&tk_fast_mono);
475 }
476 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
477 
478 u64 ktime_get_raw_fast_ns(void)
479 {
480 	return __ktime_get_fast_ns(&tk_fast_raw);
481 }
482 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
483 
484 /**
485  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
486  *
487  * To keep it NMI safe since we're accessing from tracing, we're not using a
488  * separate timekeeper with updates to monotonic clock and boot offset
489  * protected with seqlocks. This has the following minor side effects:
490  *
491  * (1) Its possible that a timestamp be taken after the boot offset is updated
492  * but before the timekeeper is updated. If this happens, the new boot offset
493  * is added to the old timekeeping making the clock appear to update slightly
494  * earlier:
495  *    CPU 0                                        CPU 1
496  *    timekeeping_inject_sleeptime64()
497  *    __timekeeping_inject_sleeptime(tk, delta);
498  *                                                 timestamp();
499  *    timekeeping_update(tk, TK_CLEAR_NTP...);
500  *
501  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
502  * partially updated.  Since the tk->offs_boot update is a rare event, this
503  * should be a rare occurrence which postprocessing should be able to handle.
504  */
505 u64 notrace ktime_get_boot_fast_ns(void)
506 {
507 	struct timekeeper *tk = &tk_core.timekeeper;
508 
509 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
510 }
511 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
512 
513 
514 /*
515  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
516  */
517 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
518 {
519 	struct tk_read_base *tkr;
520 	unsigned int seq;
521 	u64 now;
522 
523 	do {
524 		seq = raw_read_seqcount_latch(&tkf->seq);
525 		tkr = tkf->base + (seq & 0x01);
526 		now = ktime_to_ns(tkr->base_real);
527 
528 		now += timekeeping_delta_to_ns(tkr,
529 				clocksource_delta(
530 					tk_clock_read(tkr),
531 					tkr->cycle_last,
532 					tkr->mask));
533 	} while (read_seqcount_retry(&tkf->seq, seq));
534 
535 	return now;
536 }
537 
538 /**
539  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
540  */
541 u64 ktime_get_real_fast_ns(void)
542 {
543 	return __ktime_get_real_fast_ns(&tk_fast_mono);
544 }
545 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
546 
547 /**
548  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
549  * @tk: Timekeeper to snapshot.
550  *
551  * It generally is unsafe to access the clocksource after timekeeping has been
552  * suspended, so take a snapshot of the readout base of @tk and use it as the
553  * fast timekeeper's readout base while suspended.  It will return the same
554  * number of cycles every time until timekeeping is resumed at which time the
555  * proper readout base for the fast timekeeper will be restored automatically.
556  */
557 static void halt_fast_timekeeper(const struct timekeeper *tk)
558 {
559 	static struct tk_read_base tkr_dummy;
560 	const struct tk_read_base *tkr = &tk->tkr_mono;
561 
562 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
563 	cycles_at_suspend = tk_clock_read(tkr);
564 	tkr_dummy.clock = &dummy_clock;
565 	tkr_dummy.base_real = tkr->base + tk->offs_real;
566 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
567 
568 	tkr = &tk->tkr_raw;
569 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
570 	tkr_dummy.clock = &dummy_clock;
571 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
572 }
573 
574 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
575 
576 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
577 {
578 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
579 }
580 
581 /**
582  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
583  */
584 int pvclock_gtod_register_notifier(struct notifier_block *nb)
585 {
586 	struct timekeeper *tk = &tk_core.timekeeper;
587 	unsigned long flags;
588 	int ret;
589 
590 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
591 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
592 	update_pvclock_gtod(tk, true);
593 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
594 
595 	return ret;
596 }
597 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
598 
599 /**
600  * pvclock_gtod_unregister_notifier - unregister a pvclock
601  * timedata update listener
602  */
603 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
604 {
605 	unsigned long flags;
606 	int ret;
607 
608 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
609 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
610 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
611 
612 	return ret;
613 }
614 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
615 
616 /*
617  * tk_update_leap_state - helper to update the next_leap_ktime
618  */
619 static inline void tk_update_leap_state(struct timekeeper *tk)
620 {
621 	tk->next_leap_ktime = ntp_get_next_leap();
622 	if (tk->next_leap_ktime != KTIME_MAX)
623 		/* Convert to monotonic time */
624 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
625 }
626 
627 /*
628  * Update the ktime_t based scalar nsec members of the timekeeper
629  */
630 static inline void tk_update_ktime_data(struct timekeeper *tk)
631 {
632 	u64 seconds;
633 	u32 nsec;
634 
635 	/*
636 	 * The xtime based monotonic readout is:
637 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
638 	 * The ktime based monotonic readout is:
639 	 *	nsec = base_mono + now();
640 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
641 	 */
642 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
643 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
644 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
645 
646 	/*
647 	 * The sum of the nanoseconds portions of xtime and
648 	 * wall_to_monotonic can be greater/equal one second. Take
649 	 * this into account before updating tk->ktime_sec.
650 	 */
651 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
652 	if (nsec >= NSEC_PER_SEC)
653 		seconds++;
654 	tk->ktime_sec = seconds;
655 
656 	/* Update the monotonic raw base */
657 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
658 }
659 
660 /* must hold timekeeper_lock */
661 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
662 {
663 	if (action & TK_CLEAR_NTP) {
664 		tk->ntp_error = 0;
665 		ntp_clear();
666 	}
667 
668 	tk_update_leap_state(tk);
669 	tk_update_ktime_data(tk);
670 
671 	update_vsyscall(tk);
672 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
673 
674 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
675 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
676 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
677 
678 	if (action & TK_CLOCK_WAS_SET)
679 		tk->clock_was_set_seq++;
680 	/*
681 	 * The mirroring of the data to the shadow-timekeeper needs
682 	 * to happen last here to ensure we don't over-write the
683 	 * timekeeper structure on the next update with stale data
684 	 */
685 	if (action & TK_MIRROR)
686 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
687 		       sizeof(tk_core.timekeeper));
688 }
689 
690 /**
691  * timekeeping_forward_now - update clock to the current time
692  *
693  * Forward the current clock to update its state since the last call to
694  * update_wall_time(). This is useful before significant clock changes,
695  * as it avoids having to deal with this time offset explicitly.
696  */
697 static void timekeeping_forward_now(struct timekeeper *tk)
698 {
699 	u64 cycle_now, delta;
700 
701 	cycle_now = tk_clock_read(&tk->tkr_mono);
702 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
703 	tk->tkr_mono.cycle_last = cycle_now;
704 	tk->tkr_raw.cycle_last  = cycle_now;
705 
706 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
707 
708 	/* If arch requires, add in get_arch_timeoffset() */
709 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
710 
711 
712 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
713 
714 	/* If arch requires, add in get_arch_timeoffset() */
715 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
716 
717 	tk_normalize_xtime(tk);
718 }
719 
720 /**
721  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
722  * @ts:		pointer to the timespec to be set
723  *
724  * Returns the time of day in a timespec64 (WARN if suspended).
725  */
726 void ktime_get_real_ts64(struct timespec64 *ts)
727 {
728 	struct timekeeper *tk = &tk_core.timekeeper;
729 	unsigned int seq;
730 	u64 nsecs;
731 
732 	WARN_ON(timekeeping_suspended);
733 
734 	do {
735 		seq = read_seqcount_begin(&tk_core.seq);
736 
737 		ts->tv_sec = tk->xtime_sec;
738 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
739 
740 	} while (read_seqcount_retry(&tk_core.seq, seq));
741 
742 	ts->tv_nsec = 0;
743 	timespec64_add_ns(ts, nsecs);
744 }
745 EXPORT_SYMBOL(ktime_get_real_ts64);
746 
747 ktime_t ktime_get(void)
748 {
749 	struct timekeeper *tk = &tk_core.timekeeper;
750 	unsigned int seq;
751 	ktime_t base;
752 	u64 nsecs;
753 
754 	WARN_ON(timekeeping_suspended);
755 
756 	do {
757 		seq = read_seqcount_begin(&tk_core.seq);
758 		base = tk->tkr_mono.base;
759 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
760 
761 	} while (read_seqcount_retry(&tk_core.seq, seq));
762 
763 	return ktime_add_ns(base, nsecs);
764 }
765 EXPORT_SYMBOL_GPL(ktime_get);
766 
767 u32 ktime_get_resolution_ns(void)
768 {
769 	struct timekeeper *tk = &tk_core.timekeeper;
770 	unsigned int seq;
771 	u32 nsecs;
772 
773 	WARN_ON(timekeeping_suspended);
774 
775 	do {
776 		seq = read_seqcount_begin(&tk_core.seq);
777 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
778 	} while (read_seqcount_retry(&tk_core.seq, seq));
779 
780 	return nsecs;
781 }
782 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
783 
784 static ktime_t *offsets[TK_OFFS_MAX] = {
785 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
786 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
787 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
788 };
789 
790 ktime_t ktime_get_with_offset(enum tk_offsets offs)
791 {
792 	struct timekeeper *tk = &tk_core.timekeeper;
793 	unsigned int seq;
794 	ktime_t base, *offset = offsets[offs];
795 	u64 nsecs;
796 
797 	WARN_ON(timekeeping_suspended);
798 
799 	do {
800 		seq = read_seqcount_begin(&tk_core.seq);
801 		base = ktime_add(tk->tkr_mono.base, *offset);
802 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
803 
804 	} while (read_seqcount_retry(&tk_core.seq, seq));
805 
806 	return ktime_add_ns(base, nsecs);
807 
808 }
809 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
810 
811 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
812 {
813 	struct timekeeper *tk = &tk_core.timekeeper;
814 	unsigned int seq;
815 	ktime_t base, *offset = offsets[offs];
816 	u64 nsecs;
817 
818 	WARN_ON(timekeeping_suspended);
819 
820 	do {
821 		seq = read_seqcount_begin(&tk_core.seq);
822 		base = ktime_add(tk->tkr_mono.base, *offset);
823 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
824 
825 	} while (read_seqcount_retry(&tk_core.seq, seq));
826 
827 	return ktime_add_ns(base, nsecs);
828 }
829 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
830 
831 /**
832  * ktime_mono_to_any() - convert mononotic time to any other time
833  * @tmono:	time to convert.
834  * @offs:	which offset to use
835  */
836 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
837 {
838 	ktime_t *offset = offsets[offs];
839 	unsigned int seq;
840 	ktime_t tconv;
841 
842 	do {
843 		seq = read_seqcount_begin(&tk_core.seq);
844 		tconv = ktime_add(tmono, *offset);
845 	} while (read_seqcount_retry(&tk_core.seq, seq));
846 
847 	return tconv;
848 }
849 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
850 
851 /**
852  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
853  */
854 ktime_t ktime_get_raw(void)
855 {
856 	struct timekeeper *tk = &tk_core.timekeeper;
857 	unsigned int seq;
858 	ktime_t base;
859 	u64 nsecs;
860 
861 	do {
862 		seq = read_seqcount_begin(&tk_core.seq);
863 		base = tk->tkr_raw.base;
864 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
865 
866 	} while (read_seqcount_retry(&tk_core.seq, seq));
867 
868 	return ktime_add_ns(base, nsecs);
869 }
870 EXPORT_SYMBOL_GPL(ktime_get_raw);
871 
872 /**
873  * ktime_get_ts64 - get the monotonic clock in timespec64 format
874  * @ts:		pointer to timespec variable
875  *
876  * The function calculates the monotonic clock from the realtime
877  * clock and the wall_to_monotonic offset and stores the result
878  * in normalized timespec64 format in the variable pointed to by @ts.
879  */
880 void ktime_get_ts64(struct timespec64 *ts)
881 {
882 	struct timekeeper *tk = &tk_core.timekeeper;
883 	struct timespec64 tomono;
884 	unsigned int seq;
885 	u64 nsec;
886 
887 	WARN_ON(timekeeping_suspended);
888 
889 	do {
890 		seq = read_seqcount_begin(&tk_core.seq);
891 		ts->tv_sec = tk->xtime_sec;
892 		nsec = timekeeping_get_ns(&tk->tkr_mono);
893 		tomono = tk->wall_to_monotonic;
894 
895 	} while (read_seqcount_retry(&tk_core.seq, seq));
896 
897 	ts->tv_sec += tomono.tv_sec;
898 	ts->tv_nsec = 0;
899 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
900 }
901 EXPORT_SYMBOL_GPL(ktime_get_ts64);
902 
903 /**
904  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
905  *
906  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
907  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
908  * works on both 32 and 64 bit systems. On 32 bit systems the readout
909  * covers ~136 years of uptime which should be enough to prevent
910  * premature wrap arounds.
911  */
912 time64_t ktime_get_seconds(void)
913 {
914 	struct timekeeper *tk = &tk_core.timekeeper;
915 
916 	WARN_ON(timekeeping_suspended);
917 	return tk->ktime_sec;
918 }
919 EXPORT_SYMBOL_GPL(ktime_get_seconds);
920 
921 /**
922  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
923  *
924  * Returns the wall clock seconds since 1970. This replaces the
925  * get_seconds() interface which is not y2038 safe on 32bit systems.
926  *
927  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
928  * 32bit systems the access must be protected with the sequence
929  * counter to provide "atomic" access to the 64bit tk->xtime_sec
930  * value.
931  */
932 time64_t ktime_get_real_seconds(void)
933 {
934 	struct timekeeper *tk = &tk_core.timekeeper;
935 	time64_t seconds;
936 	unsigned int seq;
937 
938 	if (IS_ENABLED(CONFIG_64BIT))
939 		return tk->xtime_sec;
940 
941 	do {
942 		seq = read_seqcount_begin(&tk_core.seq);
943 		seconds = tk->xtime_sec;
944 
945 	} while (read_seqcount_retry(&tk_core.seq, seq));
946 
947 	return seconds;
948 }
949 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
950 
951 /**
952  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
953  * but without the sequence counter protect. This internal function
954  * is called just when timekeeping lock is already held.
955  */
956 time64_t __ktime_get_real_seconds(void)
957 {
958 	struct timekeeper *tk = &tk_core.timekeeper;
959 
960 	return tk->xtime_sec;
961 }
962 
963 /**
964  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
965  * @systime_snapshot:	pointer to struct receiving the system time snapshot
966  */
967 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
968 {
969 	struct timekeeper *tk = &tk_core.timekeeper;
970 	unsigned int seq;
971 	ktime_t base_raw;
972 	ktime_t base_real;
973 	u64 nsec_raw;
974 	u64 nsec_real;
975 	u64 now;
976 
977 	WARN_ON_ONCE(timekeeping_suspended);
978 
979 	do {
980 		seq = read_seqcount_begin(&tk_core.seq);
981 		now = tk_clock_read(&tk->tkr_mono);
982 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
983 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
984 		base_real = ktime_add(tk->tkr_mono.base,
985 				      tk_core.timekeeper.offs_real);
986 		base_raw = tk->tkr_raw.base;
987 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
988 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
989 	} while (read_seqcount_retry(&tk_core.seq, seq));
990 
991 	systime_snapshot->cycles = now;
992 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
993 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
994 }
995 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
996 
997 /* Scale base by mult/div checking for overflow */
998 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
999 {
1000 	u64 tmp, rem;
1001 
1002 	tmp = div64_u64_rem(*base, div, &rem);
1003 
1004 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1005 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1006 		return -EOVERFLOW;
1007 	tmp *= mult;
1008 
1009 	rem = div64_u64(rem * mult, div);
1010 	*base = tmp + rem;
1011 	return 0;
1012 }
1013 
1014 /**
1015  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1016  * @history:			Snapshot representing start of history
1017  * @partial_history_cycles:	Cycle offset into history (fractional part)
1018  * @total_history_cycles:	Total history length in cycles
1019  * @discontinuity:		True indicates clock was set on history period
1020  * @ts:				Cross timestamp that should be adjusted using
1021  *	partial/total ratio
1022  *
1023  * Helper function used by get_device_system_crosststamp() to correct the
1024  * crosstimestamp corresponding to the start of the current interval to the
1025  * system counter value (timestamp point) provided by the driver. The
1026  * total_history_* quantities are the total history starting at the provided
1027  * reference point and ending at the start of the current interval. The cycle
1028  * count between the driver timestamp point and the start of the current
1029  * interval is partial_history_cycles.
1030  */
1031 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1032 					 u64 partial_history_cycles,
1033 					 u64 total_history_cycles,
1034 					 bool discontinuity,
1035 					 struct system_device_crosststamp *ts)
1036 {
1037 	struct timekeeper *tk = &tk_core.timekeeper;
1038 	u64 corr_raw, corr_real;
1039 	bool interp_forward;
1040 	int ret;
1041 
1042 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1043 		return 0;
1044 
1045 	/* Interpolate shortest distance from beginning or end of history */
1046 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1047 	partial_history_cycles = interp_forward ?
1048 		total_history_cycles - partial_history_cycles :
1049 		partial_history_cycles;
1050 
1051 	/*
1052 	 * Scale the monotonic raw time delta by:
1053 	 *	partial_history_cycles / total_history_cycles
1054 	 */
1055 	corr_raw = (u64)ktime_to_ns(
1056 		ktime_sub(ts->sys_monoraw, history->raw));
1057 	ret = scale64_check_overflow(partial_history_cycles,
1058 				     total_history_cycles, &corr_raw);
1059 	if (ret)
1060 		return ret;
1061 
1062 	/*
1063 	 * If there is a discontinuity in the history, scale monotonic raw
1064 	 *	correction by:
1065 	 *	mult(real)/mult(raw) yielding the realtime correction
1066 	 * Otherwise, calculate the realtime correction similar to monotonic
1067 	 *	raw calculation
1068 	 */
1069 	if (discontinuity) {
1070 		corr_real = mul_u64_u32_div
1071 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1072 	} else {
1073 		corr_real = (u64)ktime_to_ns(
1074 			ktime_sub(ts->sys_realtime, history->real));
1075 		ret = scale64_check_overflow(partial_history_cycles,
1076 					     total_history_cycles, &corr_real);
1077 		if (ret)
1078 			return ret;
1079 	}
1080 
1081 	/* Fixup monotonic raw and real time time values */
1082 	if (interp_forward) {
1083 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1084 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1085 	} else {
1086 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1087 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * cycle_between - true if test occurs chronologically between before and after
1095  */
1096 static bool cycle_between(u64 before, u64 test, u64 after)
1097 {
1098 	if (test > before && test < after)
1099 		return true;
1100 	if (test < before && before > after)
1101 		return true;
1102 	return false;
1103 }
1104 
1105 /**
1106  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1107  * @get_time_fn:	Callback to get simultaneous device time and
1108  *	system counter from the device driver
1109  * @ctx:		Context passed to get_time_fn()
1110  * @history_begin:	Historical reference point used to interpolate system
1111  *	time when counter provided by the driver is before the current interval
1112  * @xtstamp:		Receives simultaneously captured system and device time
1113  *
1114  * Reads a timestamp from a device and correlates it to system time
1115  */
1116 int get_device_system_crosststamp(int (*get_time_fn)
1117 				  (ktime_t *device_time,
1118 				   struct system_counterval_t *sys_counterval,
1119 				   void *ctx),
1120 				  void *ctx,
1121 				  struct system_time_snapshot *history_begin,
1122 				  struct system_device_crosststamp *xtstamp)
1123 {
1124 	struct system_counterval_t system_counterval;
1125 	struct timekeeper *tk = &tk_core.timekeeper;
1126 	u64 cycles, now, interval_start;
1127 	unsigned int clock_was_set_seq = 0;
1128 	ktime_t base_real, base_raw;
1129 	u64 nsec_real, nsec_raw;
1130 	u8 cs_was_changed_seq;
1131 	unsigned int seq;
1132 	bool do_interp;
1133 	int ret;
1134 
1135 	do {
1136 		seq = read_seqcount_begin(&tk_core.seq);
1137 		/*
1138 		 * Try to synchronously capture device time and a system
1139 		 * counter value calling back into the device driver
1140 		 */
1141 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1142 		if (ret)
1143 			return ret;
1144 
1145 		/*
1146 		 * Verify that the clocksource associated with the captured
1147 		 * system counter value is the same as the currently installed
1148 		 * timekeeper clocksource
1149 		 */
1150 		if (tk->tkr_mono.clock != system_counterval.cs)
1151 			return -ENODEV;
1152 		cycles = system_counterval.cycles;
1153 
1154 		/*
1155 		 * Check whether the system counter value provided by the
1156 		 * device driver is on the current timekeeping interval.
1157 		 */
1158 		now = tk_clock_read(&tk->tkr_mono);
1159 		interval_start = tk->tkr_mono.cycle_last;
1160 		if (!cycle_between(interval_start, cycles, now)) {
1161 			clock_was_set_seq = tk->clock_was_set_seq;
1162 			cs_was_changed_seq = tk->cs_was_changed_seq;
1163 			cycles = interval_start;
1164 			do_interp = true;
1165 		} else {
1166 			do_interp = false;
1167 		}
1168 
1169 		base_real = ktime_add(tk->tkr_mono.base,
1170 				      tk_core.timekeeper.offs_real);
1171 		base_raw = tk->tkr_raw.base;
1172 
1173 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1174 						     system_counterval.cycles);
1175 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1176 						    system_counterval.cycles);
1177 	} while (read_seqcount_retry(&tk_core.seq, seq));
1178 
1179 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1180 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1181 
1182 	/*
1183 	 * Interpolate if necessary, adjusting back from the start of the
1184 	 * current interval
1185 	 */
1186 	if (do_interp) {
1187 		u64 partial_history_cycles, total_history_cycles;
1188 		bool discontinuity;
1189 
1190 		/*
1191 		 * Check that the counter value occurs after the provided
1192 		 * history reference and that the history doesn't cross a
1193 		 * clocksource change
1194 		 */
1195 		if (!history_begin ||
1196 		    !cycle_between(history_begin->cycles,
1197 				   system_counterval.cycles, cycles) ||
1198 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1199 			return -EINVAL;
1200 		partial_history_cycles = cycles - system_counterval.cycles;
1201 		total_history_cycles = cycles - history_begin->cycles;
1202 		discontinuity =
1203 			history_begin->clock_was_set_seq != clock_was_set_seq;
1204 
1205 		ret = adjust_historical_crosststamp(history_begin,
1206 						    partial_history_cycles,
1207 						    total_history_cycles,
1208 						    discontinuity, xtstamp);
1209 		if (ret)
1210 			return ret;
1211 	}
1212 
1213 	return 0;
1214 }
1215 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1216 
1217 /**
1218  * do_settimeofday64 - Sets the time of day.
1219  * @ts:     pointer to the timespec64 variable containing the new time
1220  *
1221  * Sets the time of day to the new time and update NTP and notify hrtimers
1222  */
1223 int do_settimeofday64(const struct timespec64 *ts)
1224 {
1225 	struct timekeeper *tk = &tk_core.timekeeper;
1226 	struct timespec64 ts_delta, xt;
1227 	unsigned long flags;
1228 	int ret = 0;
1229 
1230 	if (!timespec64_valid_settod(ts))
1231 		return -EINVAL;
1232 
1233 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1234 	write_seqcount_begin(&tk_core.seq);
1235 
1236 	timekeeping_forward_now(tk);
1237 
1238 	xt = tk_xtime(tk);
1239 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1240 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1241 
1242 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1243 		ret = -EINVAL;
1244 		goto out;
1245 	}
1246 
1247 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1248 
1249 	tk_set_xtime(tk, ts);
1250 out:
1251 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1252 
1253 	write_seqcount_end(&tk_core.seq);
1254 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1255 
1256 	/* signal hrtimers about time change */
1257 	clock_was_set();
1258 
1259 	if (!ret)
1260 		audit_tk_injoffset(ts_delta);
1261 
1262 	return ret;
1263 }
1264 EXPORT_SYMBOL(do_settimeofday64);
1265 
1266 /**
1267  * timekeeping_inject_offset - Adds or subtracts from the current time.
1268  * @tv:		pointer to the timespec variable containing the offset
1269  *
1270  * Adds or subtracts an offset value from the current time.
1271  */
1272 static int timekeeping_inject_offset(const struct timespec64 *ts)
1273 {
1274 	struct timekeeper *tk = &tk_core.timekeeper;
1275 	unsigned long flags;
1276 	struct timespec64 tmp;
1277 	int ret = 0;
1278 
1279 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1280 		return -EINVAL;
1281 
1282 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283 	write_seqcount_begin(&tk_core.seq);
1284 
1285 	timekeeping_forward_now(tk);
1286 
1287 	/* Make sure the proposed value is valid */
1288 	tmp = timespec64_add(tk_xtime(tk), *ts);
1289 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1290 	    !timespec64_valid_settod(&tmp)) {
1291 		ret = -EINVAL;
1292 		goto error;
1293 	}
1294 
1295 	tk_xtime_add(tk, ts);
1296 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1297 
1298 error: /* even if we error out, we forwarded the time, so call update */
1299 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1300 
1301 	write_seqcount_end(&tk_core.seq);
1302 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1303 
1304 	/* signal hrtimers about time change */
1305 	clock_was_set();
1306 
1307 	return ret;
1308 }
1309 
1310 /*
1311  * Indicates if there is an offset between the system clock and the hardware
1312  * clock/persistent clock/rtc.
1313  */
1314 int persistent_clock_is_local;
1315 
1316 /*
1317  * Adjust the time obtained from the CMOS to be UTC time instead of
1318  * local time.
1319  *
1320  * This is ugly, but preferable to the alternatives.  Otherwise we
1321  * would either need to write a program to do it in /etc/rc (and risk
1322  * confusion if the program gets run more than once; it would also be
1323  * hard to make the program warp the clock precisely n hours)  or
1324  * compile in the timezone information into the kernel.  Bad, bad....
1325  *
1326  *						- TYT, 1992-01-01
1327  *
1328  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1329  * as real UNIX machines always do it. This avoids all headaches about
1330  * daylight saving times and warping kernel clocks.
1331  */
1332 void timekeeping_warp_clock(void)
1333 {
1334 	if (sys_tz.tz_minuteswest != 0) {
1335 		struct timespec64 adjust;
1336 
1337 		persistent_clock_is_local = 1;
1338 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1339 		adjust.tv_nsec = 0;
1340 		timekeeping_inject_offset(&adjust);
1341 	}
1342 }
1343 
1344 /**
1345  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1346  *
1347  */
1348 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1349 {
1350 	tk->tai_offset = tai_offset;
1351 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1352 }
1353 
1354 /**
1355  * change_clocksource - Swaps clocksources if a new one is available
1356  *
1357  * Accumulates current time interval and initializes new clocksource
1358  */
1359 static int change_clocksource(void *data)
1360 {
1361 	struct timekeeper *tk = &tk_core.timekeeper;
1362 	struct clocksource *new, *old;
1363 	unsigned long flags;
1364 
1365 	new = (struct clocksource *) data;
1366 
1367 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1368 	write_seqcount_begin(&tk_core.seq);
1369 
1370 	timekeeping_forward_now(tk);
1371 	/*
1372 	 * If the cs is in module, get a module reference. Succeeds
1373 	 * for built-in code (owner == NULL) as well.
1374 	 */
1375 	if (try_module_get(new->owner)) {
1376 		if (!new->enable || new->enable(new) == 0) {
1377 			old = tk->tkr_mono.clock;
1378 			tk_setup_internals(tk, new);
1379 			if (old->disable)
1380 				old->disable(old);
1381 			module_put(old->owner);
1382 		} else {
1383 			module_put(new->owner);
1384 		}
1385 	}
1386 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1387 
1388 	write_seqcount_end(&tk_core.seq);
1389 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1390 
1391 	return 0;
1392 }
1393 
1394 /**
1395  * timekeeping_notify - Install a new clock source
1396  * @clock:		pointer to the clock source
1397  *
1398  * This function is called from clocksource.c after a new, better clock
1399  * source has been registered. The caller holds the clocksource_mutex.
1400  */
1401 int timekeeping_notify(struct clocksource *clock)
1402 {
1403 	struct timekeeper *tk = &tk_core.timekeeper;
1404 
1405 	if (tk->tkr_mono.clock == clock)
1406 		return 0;
1407 	stop_machine(change_clocksource, clock, NULL);
1408 	tick_clock_notify();
1409 	return tk->tkr_mono.clock == clock ? 0 : -1;
1410 }
1411 
1412 /**
1413  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1414  * @ts:		pointer to the timespec64 to be set
1415  *
1416  * Returns the raw monotonic time (completely un-modified by ntp)
1417  */
1418 void ktime_get_raw_ts64(struct timespec64 *ts)
1419 {
1420 	struct timekeeper *tk = &tk_core.timekeeper;
1421 	unsigned int seq;
1422 	u64 nsecs;
1423 
1424 	do {
1425 		seq = read_seqcount_begin(&tk_core.seq);
1426 		ts->tv_sec = tk->raw_sec;
1427 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1428 
1429 	} while (read_seqcount_retry(&tk_core.seq, seq));
1430 
1431 	ts->tv_nsec = 0;
1432 	timespec64_add_ns(ts, nsecs);
1433 }
1434 EXPORT_SYMBOL(ktime_get_raw_ts64);
1435 
1436 
1437 /**
1438  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1439  */
1440 int timekeeping_valid_for_hres(void)
1441 {
1442 	struct timekeeper *tk = &tk_core.timekeeper;
1443 	unsigned int seq;
1444 	int ret;
1445 
1446 	do {
1447 		seq = read_seqcount_begin(&tk_core.seq);
1448 
1449 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1450 
1451 	} while (read_seqcount_retry(&tk_core.seq, seq));
1452 
1453 	return ret;
1454 }
1455 
1456 /**
1457  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1458  */
1459 u64 timekeeping_max_deferment(void)
1460 {
1461 	struct timekeeper *tk = &tk_core.timekeeper;
1462 	unsigned int seq;
1463 	u64 ret;
1464 
1465 	do {
1466 		seq = read_seqcount_begin(&tk_core.seq);
1467 
1468 		ret = tk->tkr_mono.clock->max_idle_ns;
1469 
1470 	} while (read_seqcount_retry(&tk_core.seq, seq));
1471 
1472 	return ret;
1473 }
1474 
1475 /**
1476  * read_persistent_clock64 -  Return time from the persistent clock.
1477  *
1478  * Weak dummy function for arches that do not yet support it.
1479  * Reads the time from the battery backed persistent clock.
1480  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1481  *
1482  *  XXX - Do be sure to remove it once all arches implement it.
1483  */
1484 void __weak read_persistent_clock64(struct timespec64 *ts)
1485 {
1486 	ts->tv_sec = 0;
1487 	ts->tv_nsec = 0;
1488 }
1489 
1490 /**
1491  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1492  *                                        from the boot.
1493  *
1494  * Weak dummy function for arches that do not yet support it.
1495  * wall_time	- current time as returned by persistent clock
1496  * boot_offset	- offset that is defined as wall_time - boot_time
1497  * The default function calculates offset based on the current value of
1498  * local_clock(). This way architectures that support sched_clock() but don't
1499  * support dedicated boot time clock will provide the best estimate of the
1500  * boot time.
1501  */
1502 void __weak __init
1503 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1504 				     struct timespec64 *boot_offset)
1505 {
1506 	read_persistent_clock64(wall_time);
1507 	*boot_offset = ns_to_timespec64(local_clock());
1508 }
1509 
1510 /*
1511  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1512  *
1513  * The flag starts of false and is only set when a suspend reaches
1514  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1515  * timekeeper clocksource is not stopping across suspend and has been
1516  * used to update sleep time. If the timekeeper clocksource has stopped
1517  * then the flag stays true and is used by the RTC resume code to decide
1518  * whether sleeptime must be injected and if so the flag gets false then.
1519  *
1520  * If a suspend fails before reaching timekeeping_resume() then the flag
1521  * stays false and prevents erroneous sleeptime injection.
1522  */
1523 static bool suspend_timing_needed;
1524 
1525 /* Flag for if there is a persistent clock on this platform */
1526 static bool persistent_clock_exists;
1527 
1528 /*
1529  * timekeeping_init - Initializes the clocksource and common timekeeping values
1530  */
1531 void __init timekeeping_init(void)
1532 {
1533 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1534 	struct timekeeper *tk = &tk_core.timekeeper;
1535 	struct clocksource *clock;
1536 	unsigned long flags;
1537 
1538 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1539 	if (timespec64_valid_settod(&wall_time) &&
1540 	    timespec64_to_ns(&wall_time) > 0) {
1541 		persistent_clock_exists = true;
1542 	} else if (timespec64_to_ns(&wall_time) != 0) {
1543 		pr_warn("Persistent clock returned invalid value");
1544 		wall_time = (struct timespec64){0};
1545 	}
1546 
1547 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1548 		boot_offset = (struct timespec64){0};
1549 
1550 	/*
1551 	 * We want set wall_to_mono, so the following is true:
1552 	 * wall time + wall_to_mono = boot time
1553 	 */
1554 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1555 
1556 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1557 	write_seqcount_begin(&tk_core.seq);
1558 	ntp_init();
1559 
1560 	clock = clocksource_default_clock();
1561 	if (clock->enable)
1562 		clock->enable(clock);
1563 	tk_setup_internals(tk, clock);
1564 
1565 	tk_set_xtime(tk, &wall_time);
1566 	tk->raw_sec = 0;
1567 
1568 	tk_set_wall_to_mono(tk, wall_to_mono);
1569 
1570 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1571 
1572 	write_seqcount_end(&tk_core.seq);
1573 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1574 }
1575 
1576 /* time in seconds when suspend began for persistent clock */
1577 static struct timespec64 timekeeping_suspend_time;
1578 
1579 /**
1580  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1581  * @delta: pointer to a timespec delta value
1582  *
1583  * Takes a timespec offset measuring a suspend interval and properly
1584  * adds the sleep offset to the timekeeping variables.
1585  */
1586 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1587 					   const struct timespec64 *delta)
1588 {
1589 	if (!timespec64_valid_strict(delta)) {
1590 		printk_deferred(KERN_WARNING
1591 				"__timekeeping_inject_sleeptime: Invalid "
1592 				"sleep delta value!\n");
1593 		return;
1594 	}
1595 	tk_xtime_add(tk, delta);
1596 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1597 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1598 	tk_debug_account_sleep_time(delta);
1599 }
1600 
1601 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1602 /**
1603  * We have three kinds of time sources to use for sleep time
1604  * injection, the preference order is:
1605  * 1) non-stop clocksource
1606  * 2) persistent clock (ie: RTC accessible when irqs are off)
1607  * 3) RTC
1608  *
1609  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1610  * If system has neither 1) nor 2), 3) will be used finally.
1611  *
1612  *
1613  * If timekeeping has injected sleeptime via either 1) or 2),
1614  * 3) becomes needless, so in this case we don't need to call
1615  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1616  * means.
1617  */
1618 bool timekeeping_rtc_skipresume(void)
1619 {
1620 	return !suspend_timing_needed;
1621 }
1622 
1623 /**
1624  * 1) can be determined whether to use or not only when doing
1625  * timekeeping_resume() which is invoked after rtc_suspend(),
1626  * so we can't skip rtc_suspend() surely if system has 1).
1627  *
1628  * But if system has 2), 2) will definitely be used, so in this
1629  * case we don't need to call rtc_suspend(), and this is what
1630  * timekeeping_rtc_skipsuspend() means.
1631  */
1632 bool timekeeping_rtc_skipsuspend(void)
1633 {
1634 	return persistent_clock_exists;
1635 }
1636 
1637 /**
1638  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1639  * @delta: pointer to a timespec64 delta value
1640  *
1641  * This hook is for architectures that cannot support read_persistent_clock64
1642  * because their RTC/persistent clock is only accessible when irqs are enabled.
1643  * and also don't have an effective nonstop clocksource.
1644  *
1645  * This function should only be called by rtc_resume(), and allows
1646  * a suspend offset to be injected into the timekeeping values.
1647  */
1648 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1649 {
1650 	struct timekeeper *tk = &tk_core.timekeeper;
1651 	unsigned long flags;
1652 
1653 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1654 	write_seqcount_begin(&tk_core.seq);
1655 
1656 	suspend_timing_needed = false;
1657 
1658 	timekeeping_forward_now(tk);
1659 
1660 	__timekeeping_inject_sleeptime(tk, delta);
1661 
1662 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1663 
1664 	write_seqcount_end(&tk_core.seq);
1665 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1666 
1667 	/* signal hrtimers about time change */
1668 	clock_was_set();
1669 }
1670 #endif
1671 
1672 /**
1673  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1674  */
1675 void timekeeping_resume(void)
1676 {
1677 	struct timekeeper *tk = &tk_core.timekeeper;
1678 	struct clocksource *clock = tk->tkr_mono.clock;
1679 	unsigned long flags;
1680 	struct timespec64 ts_new, ts_delta;
1681 	u64 cycle_now, nsec;
1682 	bool inject_sleeptime = false;
1683 
1684 	read_persistent_clock64(&ts_new);
1685 
1686 	clockevents_resume();
1687 	clocksource_resume();
1688 
1689 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1690 	write_seqcount_begin(&tk_core.seq);
1691 
1692 	/*
1693 	 * After system resumes, we need to calculate the suspended time and
1694 	 * compensate it for the OS time. There are 3 sources that could be
1695 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1696 	 * device.
1697 	 *
1698 	 * One specific platform may have 1 or 2 or all of them, and the
1699 	 * preference will be:
1700 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1701 	 * The less preferred source will only be tried if there is no better
1702 	 * usable source. The rtc part is handled separately in rtc core code.
1703 	 */
1704 	cycle_now = tk_clock_read(&tk->tkr_mono);
1705 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1706 	if (nsec > 0) {
1707 		ts_delta = ns_to_timespec64(nsec);
1708 		inject_sleeptime = true;
1709 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1710 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1711 		inject_sleeptime = true;
1712 	}
1713 
1714 	if (inject_sleeptime) {
1715 		suspend_timing_needed = false;
1716 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1717 	}
1718 
1719 	/* Re-base the last cycle value */
1720 	tk->tkr_mono.cycle_last = cycle_now;
1721 	tk->tkr_raw.cycle_last  = cycle_now;
1722 
1723 	tk->ntp_error = 0;
1724 	timekeeping_suspended = 0;
1725 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1726 	write_seqcount_end(&tk_core.seq);
1727 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1728 
1729 	touch_softlockup_watchdog();
1730 
1731 	tick_resume();
1732 	hrtimers_resume();
1733 }
1734 
1735 int timekeeping_suspend(void)
1736 {
1737 	struct timekeeper *tk = &tk_core.timekeeper;
1738 	unsigned long flags;
1739 	struct timespec64		delta, delta_delta;
1740 	static struct timespec64	old_delta;
1741 	struct clocksource *curr_clock;
1742 	u64 cycle_now;
1743 
1744 	read_persistent_clock64(&timekeeping_suspend_time);
1745 
1746 	/*
1747 	 * On some systems the persistent_clock can not be detected at
1748 	 * timekeeping_init by its return value, so if we see a valid
1749 	 * value returned, update the persistent_clock_exists flag.
1750 	 */
1751 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1752 		persistent_clock_exists = true;
1753 
1754 	suspend_timing_needed = true;
1755 
1756 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1757 	write_seqcount_begin(&tk_core.seq);
1758 	timekeeping_forward_now(tk);
1759 	timekeeping_suspended = 1;
1760 
1761 	/*
1762 	 * Since we've called forward_now, cycle_last stores the value
1763 	 * just read from the current clocksource. Save this to potentially
1764 	 * use in suspend timing.
1765 	 */
1766 	curr_clock = tk->tkr_mono.clock;
1767 	cycle_now = tk->tkr_mono.cycle_last;
1768 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1769 
1770 	if (persistent_clock_exists) {
1771 		/*
1772 		 * To avoid drift caused by repeated suspend/resumes,
1773 		 * which each can add ~1 second drift error,
1774 		 * try to compensate so the difference in system time
1775 		 * and persistent_clock time stays close to constant.
1776 		 */
1777 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1778 		delta_delta = timespec64_sub(delta, old_delta);
1779 		if (abs(delta_delta.tv_sec) >= 2) {
1780 			/*
1781 			 * if delta_delta is too large, assume time correction
1782 			 * has occurred and set old_delta to the current delta.
1783 			 */
1784 			old_delta = delta;
1785 		} else {
1786 			/* Otherwise try to adjust old_system to compensate */
1787 			timekeeping_suspend_time =
1788 				timespec64_add(timekeeping_suspend_time, delta_delta);
1789 		}
1790 	}
1791 
1792 	timekeeping_update(tk, TK_MIRROR);
1793 	halt_fast_timekeeper(tk);
1794 	write_seqcount_end(&tk_core.seq);
1795 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1796 
1797 	tick_suspend();
1798 	clocksource_suspend();
1799 	clockevents_suspend();
1800 
1801 	return 0;
1802 }
1803 
1804 /* sysfs resume/suspend bits for timekeeping */
1805 static struct syscore_ops timekeeping_syscore_ops = {
1806 	.resume		= timekeeping_resume,
1807 	.suspend	= timekeeping_suspend,
1808 };
1809 
1810 static int __init timekeeping_init_ops(void)
1811 {
1812 	register_syscore_ops(&timekeeping_syscore_ops);
1813 	return 0;
1814 }
1815 device_initcall(timekeeping_init_ops);
1816 
1817 /*
1818  * Apply a multiplier adjustment to the timekeeper
1819  */
1820 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1821 							 s64 offset,
1822 							 s32 mult_adj)
1823 {
1824 	s64 interval = tk->cycle_interval;
1825 
1826 	if (mult_adj == 0) {
1827 		return;
1828 	} else if (mult_adj == -1) {
1829 		interval = -interval;
1830 		offset = -offset;
1831 	} else if (mult_adj != 1) {
1832 		interval *= mult_adj;
1833 		offset *= mult_adj;
1834 	}
1835 
1836 	/*
1837 	 * So the following can be confusing.
1838 	 *
1839 	 * To keep things simple, lets assume mult_adj == 1 for now.
1840 	 *
1841 	 * When mult_adj != 1, remember that the interval and offset values
1842 	 * have been appropriately scaled so the math is the same.
1843 	 *
1844 	 * The basic idea here is that we're increasing the multiplier
1845 	 * by one, this causes the xtime_interval to be incremented by
1846 	 * one cycle_interval. This is because:
1847 	 *	xtime_interval = cycle_interval * mult
1848 	 * So if mult is being incremented by one:
1849 	 *	xtime_interval = cycle_interval * (mult + 1)
1850 	 * Its the same as:
1851 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1852 	 * Which can be shortened to:
1853 	 *	xtime_interval += cycle_interval
1854 	 *
1855 	 * So offset stores the non-accumulated cycles. Thus the current
1856 	 * time (in shifted nanoseconds) is:
1857 	 *	now = (offset * adj) + xtime_nsec
1858 	 * Now, even though we're adjusting the clock frequency, we have
1859 	 * to keep time consistent. In other words, we can't jump back
1860 	 * in time, and we also want to avoid jumping forward in time.
1861 	 *
1862 	 * So given the same offset value, we need the time to be the same
1863 	 * both before and after the freq adjustment.
1864 	 *	now = (offset * adj_1) + xtime_nsec_1
1865 	 *	now = (offset * adj_2) + xtime_nsec_2
1866 	 * So:
1867 	 *	(offset * adj_1) + xtime_nsec_1 =
1868 	 *		(offset * adj_2) + xtime_nsec_2
1869 	 * And we know:
1870 	 *	adj_2 = adj_1 + 1
1871 	 * So:
1872 	 *	(offset * adj_1) + xtime_nsec_1 =
1873 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1874 	 *	(offset * adj_1) + xtime_nsec_1 =
1875 	 *		(offset * adj_1) + offset + xtime_nsec_2
1876 	 * Canceling the sides:
1877 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1878 	 * Which gives us:
1879 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1880 	 * Which simplfies to:
1881 	 *	xtime_nsec -= offset
1882 	 */
1883 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1884 		/* NTP adjustment caused clocksource mult overflow */
1885 		WARN_ON_ONCE(1);
1886 		return;
1887 	}
1888 
1889 	tk->tkr_mono.mult += mult_adj;
1890 	tk->xtime_interval += interval;
1891 	tk->tkr_mono.xtime_nsec -= offset;
1892 }
1893 
1894 /*
1895  * Adjust the timekeeper's multiplier to the correct frequency
1896  * and also to reduce the accumulated error value.
1897  */
1898 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1899 {
1900 	u32 mult;
1901 
1902 	/*
1903 	 * Determine the multiplier from the current NTP tick length.
1904 	 * Avoid expensive division when the tick length doesn't change.
1905 	 */
1906 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1907 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1908 	} else {
1909 		tk->ntp_tick = ntp_tick_length();
1910 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1911 				 tk->xtime_remainder, tk->cycle_interval);
1912 	}
1913 
1914 	/*
1915 	 * If the clock is behind the NTP time, increase the multiplier by 1
1916 	 * to catch up with it. If it's ahead and there was a remainder in the
1917 	 * tick division, the clock will slow down. Otherwise it will stay
1918 	 * ahead until the tick length changes to a non-divisible value.
1919 	 */
1920 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1921 	mult += tk->ntp_err_mult;
1922 
1923 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1924 
1925 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1926 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1927 			> tk->tkr_mono.clock->maxadj))) {
1928 		printk_once(KERN_WARNING
1929 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1930 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1931 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1932 	}
1933 
1934 	/*
1935 	 * It may be possible that when we entered this function, xtime_nsec
1936 	 * was very small.  Further, if we're slightly speeding the clocksource
1937 	 * in the code above, its possible the required corrective factor to
1938 	 * xtime_nsec could cause it to underflow.
1939 	 *
1940 	 * Now, since we have already accumulated the second and the NTP
1941 	 * subsystem has been notified via second_overflow(), we need to skip
1942 	 * the next update.
1943 	 */
1944 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1945 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1946 							tk->tkr_mono.shift;
1947 		tk->xtime_sec--;
1948 		tk->skip_second_overflow = 1;
1949 	}
1950 }
1951 
1952 /**
1953  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1954  *
1955  * Helper function that accumulates the nsecs greater than a second
1956  * from the xtime_nsec field to the xtime_secs field.
1957  * It also calls into the NTP code to handle leapsecond processing.
1958  *
1959  */
1960 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1961 {
1962 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1963 	unsigned int clock_set = 0;
1964 
1965 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1966 		int leap;
1967 
1968 		tk->tkr_mono.xtime_nsec -= nsecps;
1969 		tk->xtime_sec++;
1970 
1971 		/*
1972 		 * Skip NTP update if this second was accumulated before,
1973 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1974 		 */
1975 		if (unlikely(tk->skip_second_overflow)) {
1976 			tk->skip_second_overflow = 0;
1977 			continue;
1978 		}
1979 
1980 		/* Figure out if its a leap sec and apply if needed */
1981 		leap = second_overflow(tk->xtime_sec);
1982 		if (unlikely(leap)) {
1983 			struct timespec64 ts;
1984 
1985 			tk->xtime_sec += leap;
1986 
1987 			ts.tv_sec = leap;
1988 			ts.tv_nsec = 0;
1989 			tk_set_wall_to_mono(tk,
1990 				timespec64_sub(tk->wall_to_monotonic, ts));
1991 
1992 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1993 
1994 			clock_set = TK_CLOCK_WAS_SET;
1995 		}
1996 	}
1997 	return clock_set;
1998 }
1999 
2000 /**
2001  * logarithmic_accumulation - shifted accumulation of cycles
2002  *
2003  * This functions accumulates a shifted interval of cycles into
2004  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2005  * loop.
2006  *
2007  * Returns the unconsumed cycles.
2008  */
2009 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2010 				    u32 shift, unsigned int *clock_set)
2011 {
2012 	u64 interval = tk->cycle_interval << shift;
2013 	u64 snsec_per_sec;
2014 
2015 	/* If the offset is smaller than a shifted interval, do nothing */
2016 	if (offset < interval)
2017 		return offset;
2018 
2019 	/* Accumulate one shifted interval */
2020 	offset -= interval;
2021 	tk->tkr_mono.cycle_last += interval;
2022 	tk->tkr_raw.cycle_last  += interval;
2023 
2024 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2025 	*clock_set |= accumulate_nsecs_to_secs(tk);
2026 
2027 	/* Accumulate raw time */
2028 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2029 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2030 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2031 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2032 		tk->raw_sec++;
2033 	}
2034 
2035 	/* Accumulate error between NTP and clock interval */
2036 	tk->ntp_error += tk->ntp_tick << shift;
2037 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2038 						(tk->ntp_error_shift + shift);
2039 
2040 	return offset;
2041 }
2042 
2043 /*
2044  * timekeeping_advance - Updates the timekeeper to the current time and
2045  * current NTP tick length
2046  */
2047 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2048 {
2049 	struct timekeeper *real_tk = &tk_core.timekeeper;
2050 	struct timekeeper *tk = &shadow_timekeeper;
2051 	u64 offset;
2052 	int shift = 0, maxshift;
2053 	unsigned int clock_set = 0;
2054 	unsigned long flags;
2055 
2056 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2057 
2058 	/* Make sure we're fully resumed: */
2059 	if (unlikely(timekeeping_suspended))
2060 		goto out;
2061 
2062 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2063 	offset = real_tk->cycle_interval;
2064 
2065 	if (mode != TK_ADV_TICK)
2066 		goto out;
2067 #else
2068 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2069 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2070 
2071 	/* Check if there's really nothing to do */
2072 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2073 		goto out;
2074 #endif
2075 
2076 	/* Do some additional sanity checking */
2077 	timekeeping_check_update(tk, offset);
2078 
2079 	/*
2080 	 * With NO_HZ we may have to accumulate many cycle_intervals
2081 	 * (think "ticks") worth of time at once. To do this efficiently,
2082 	 * we calculate the largest doubling multiple of cycle_intervals
2083 	 * that is smaller than the offset.  We then accumulate that
2084 	 * chunk in one go, and then try to consume the next smaller
2085 	 * doubled multiple.
2086 	 */
2087 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2088 	shift = max(0, shift);
2089 	/* Bound shift to one less than what overflows tick_length */
2090 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2091 	shift = min(shift, maxshift);
2092 	while (offset >= tk->cycle_interval) {
2093 		offset = logarithmic_accumulation(tk, offset, shift,
2094 							&clock_set);
2095 		if (offset < tk->cycle_interval<<shift)
2096 			shift--;
2097 	}
2098 
2099 	/* Adjust the multiplier to correct NTP error */
2100 	timekeeping_adjust(tk, offset);
2101 
2102 	/*
2103 	 * Finally, make sure that after the rounding
2104 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2105 	 */
2106 	clock_set |= accumulate_nsecs_to_secs(tk);
2107 
2108 	write_seqcount_begin(&tk_core.seq);
2109 	/*
2110 	 * Update the real timekeeper.
2111 	 *
2112 	 * We could avoid this memcpy by switching pointers, but that
2113 	 * requires changes to all other timekeeper usage sites as
2114 	 * well, i.e. move the timekeeper pointer getter into the
2115 	 * spinlocked/seqcount protected sections. And we trade this
2116 	 * memcpy under the tk_core.seq against one before we start
2117 	 * updating.
2118 	 */
2119 	timekeeping_update(tk, clock_set);
2120 	memcpy(real_tk, tk, sizeof(*tk));
2121 	/* The memcpy must come last. Do not put anything here! */
2122 	write_seqcount_end(&tk_core.seq);
2123 out:
2124 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2125 	if (clock_set)
2126 		/* Have to call _delayed version, since in irq context*/
2127 		clock_was_set_delayed();
2128 }
2129 
2130 /**
2131  * update_wall_time - Uses the current clocksource to increment the wall time
2132  *
2133  */
2134 void update_wall_time(void)
2135 {
2136 	timekeeping_advance(TK_ADV_TICK);
2137 }
2138 
2139 /**
2140  * getboottime64 - Return the real time of system boot.
2141  * @ts:		pointer to the timespec64 to be set
2142  *
2143  * Returns the wall-time of boot in a timespec64.
2144  *
2145  * This is based on the wall_to_monotonic offset and the total suspend
2146  * time. Calls to settimeofday will affect the value returned (which
2147  * basically means that however wrong your real time clock is at boot time,
2148  * you get the right time here).
2149  */
2150 void getboottime64(struct timespec64 *ts)
2151 {
2152 	struct timekeeper *tk = &tk_core.timekeeper;
2153 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2154 
2155 	*ts = ktime_to_timespec64(t);
2156 }
2157 EXPORT_SYMBOL_GPL(getboottime64);
2158 
2159 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2160 {
2161 	struct timekeeper *tk = &tk_core.timekeeper;
2162 	unsigned int seq;
2163 
2164 	do {
2165 		seq = read_seqcount_begin(&tk_core.seq);
2166 
2167 		*ts = tk_xtime(tk);
2168 	} while (read_seqcount_retry(&tk_core.seq, seq));
2169 }
2170 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2171 
2172 void ktime_get_coarse_ts64(struct timespec64 *ts)
2173 {
2174 	struct timekeeper *tk = &tk_core.timekeeper;
2175 	struct timespec64 now, mono;
2176 	unsigned int seq;
2177 
2178 	do {
2179 		seq = read_seqcount_begin(&tk_core.seq);
2180 
2181 		now = tk_xtime(tk);
2182 		mono = tk->wall_to_monotonic;
2183 	} while (read_seqcount_retry(&tk_core.seq, seq));
2184 
2185 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2186 				now.tv_nsec + mono.tv_nsec);
2187 }
2188 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2189 
2190 /*
2191  * Must hold jiffies_lock
2192  */
2193 void do_timer(unsigned long ticks)
2194 {
2195 	jiffies_64 += ticks;
2196 	calc_global_load(ticks);
2197 }
2198 
2199 /**
2200  * ktime_get_update_offsets_now - hrtimer helper
2201  * @cwsseq:	pointer to check and store the clock was set sequence number
2202  * @offs_real:	pointer to storage for monotonic -> realtime offset
2203  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2204  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2205  *
2206  * Returns current monotonic time and updates the offsets if the
2207  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2208  * different.
2209  *
2210  * Called from hrtimer_interrupt() or retrigger_next_event()
2211  */
2212 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2213 				     ktime_t *offs_boot, ktime_t *offs_tai)
2214 {
2215 	struct timekeeper *tk = &tk_core.timekeeper;
2216 	unsigned int seq;
2217 	ktime_t base;
2218 	u64 nsecs;
2219 
2220 	do {
2221 		seq = read_seqcount_begin(&tk_core.seq);
2222 
2223 		base = tk->tkr_mono.base;
2224 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2225 		base = ktime_add_ns(base, nsecs);
2226 
2227 		if (*cwsseq != tk->clock_was_set_seq) {
2228 			*cwsseq = tk->clock_was_set_seq;
2229 			*offs_real = tk->offs_real;
2230 			*offs_boot = tk->offs_boot;
2231 			*offs_tai = tk->offs_tai;
2232 		}
2233 
2234 		/* Handle leapsecond insertion adjustments */
2235 		if (unlikely(base >= tk->next_leap_ktime))
2236 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2237 
2238 	} while (read_seqcount_retry(&tk_core.seq, seq));
2239 
2240 	return base;
2241 }
2242 
2243 /**
2244  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2245  */
2246 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2247 {
2248 	if (txc->modes & ADJ_ADJTIME) {
2249 		/* singleshot must not be used with any other mode bits */
2250 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2251 			return -EINVAL;
2252 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2253 		    !capable(CAP_SYS_TIME))
2254 			return -EPERM;
2255 	} else {
2256 		/* In order to modify anything, you gotta be super-user! */
2257 		if (txc->modes && !capable(CAP_SYS_TIME))
2258 			return -EPERM;
2259 		/*
2260 		 * if the quartz is off by more than 10% then
2261 		 * something is VERY wrong!
2262 		 */
2263 		if (txc->modes & ADJ_TICK &&
2264 		    (txc->tick <  900000/USER_HZ ||
2265 		     txc->tick > 1100000/USER_HZ))
2266 			return -EINVAL;
2267 	}
2268 
2269 	if (txc->modes & ADJ_SETOFFSET) {
2270 		/* In order to inject time, you gotta be super-user! */
2271 		if (!capable(CAP_SYS_TIME))
2272 			return -EPERM;
2273 
2274 		/*
2275 		 * Validate if a timespec/timeval used to inject a time
2276 		 * offset is valid.  Offsets can be postive or negative, so
2277 		 * we don't check tv_sec. The value of the timeval/timespec
2278 		 * is the sum of its fields,but *NOTE*:
2279 		 * The field tv_usec/tv_nsec must always be non-negative and
2280 		 * we can't have more nanoseconds/microseconds than a second.
2281 		 */
2282 		if (txc->time.tv_usec < 0)
2283 			return -EINVAL;
2284 
2285 		if (txc->modes & ADJ_NANO) {
2286 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2287 				return -EINVAL;
2288 		} else {
2289 			if (txc->time.tv_usec >= USEC_PER_SEC)
2290 				return -EINVAL;
2291 		}
2292 	}
2293 
2294 	/*
2295 	 * Check for potential multiplication overflows that can
2296 	 * only happen on 64-bit systems:
2297 	 */
2298 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2299 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2300 			return -EINVAL;
2301 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2302 			return -EINVAL;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 
2309 /**
2310  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2311  */
2312 int do_adjtimex(struct __kernel_timex *txc)
2313 {
2314 	struct timekeeper *tk = &tk_core.timekeeper;
2315 	struct audit_ntp_data ad;
2316 	unsigned long flags;
2317 	struct timespec64 ts;
2318 	s32 orig_tai, tai;
2319 	int ret;
2320 
2321 	/* Validate the data before disabling interrupts */
2322 	ret = timekeeping_validate_timex(txc);
2323 	if (ret)
2324 		return ret;
2325 
2326 	if (txc->modes & ADJ_SETOFFSET) {
2327 		struct timespec64 delta;
2328 		delta.tv_sec  = txc->time.tv_sec;
2329 		delta.tv_nsec = txc->time.tv_usec;
2330 		if (!(txc->modes & ADJ_NANO))
2331 			delta.tv_nsec *= 1000;
2332 		ret = timekeeping_inject_offset(&delta);
2333 		if (ret)
2334 			return ret;
2335 
2336 		audit_tk_injoffset(delta);
2337 	}
2338 
2339 	audit_ntp_init(&ad);
2340 
2341 	ktime_get_real_ts64(&ts);
2342 
2343 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2344 	write_seqcount_begin(&tk_core.seq);
2345 
2346 	orig_tai = tai = tk->tai_offset;
2347 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2348 
2349 	if (tai != orig_tai) {
2350 		__timekeeping_set_tai_offset(tk, tai);
2351 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2352 	}
2353 	tk_update_leap_state(tk);
2354 
2355 	write_seqcount_end(&tk_core.seq);
2356 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2357 
2358 	audit_ntp_log(&ad);
2359 
2360 	/* Update the multiplier immediately if frequency was set directly */
2361 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2362 		timekeeping_advance(TK_ADV_FREQ);
2363 
2364 	if (tai != orig_tai)
2365 		clock_was_set();
2366 
2367 	ntp_notify_cmos_timer();
2368 
2369 	return ret;
2370 }
2371 
2372 #ifdef CONFIG_NTP_PPS
2373 /**
2374  * hardpps() - Accessor function to NTP __hardpps function
2375  */
2376 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2377 {
2378 	unsigned long flags;
2379 
2380 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2381 	write_seqcount_begin(&tk_core.seq);
2382 
2383 	__hardpps(phase_ts, raw_ts);
2384 
2385 	write_seqcount_end(&tk_core.seq);
2386 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2387 }
2388 EXPORT_SYMBOL(hardpps);
2389 #endif /* CONFIG_NTP_PPS */
2390 
2391 /**
2392  * xtime_update() - advances the timekeeping infrastructure
2393  * @ticks:	number of ticks, that have elapsed since the last call.
2394  *
2395  * Must be called with interrupts disabled.
2396  */
2397 void xtime_update(unsigned long ticks)
2398 {
2399 	raw_spin_lock(&jiffies_lock);
2400 	write_seqcount_begin(&jiffies_seq);
2401 	do_timer(ticks);
2402 	write_seqcount_end(&jiffies_seq);
2403 	raw_spin_unlock(&jiffies_lock);
2404 	update_wall_time();
2405 }
2406