1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sched.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/clocksource.h> 19 #include <linux/jiffies.h> 20 #include <linux/time.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 24 /* Structure holding internal timekeeping values. */ 25 struct timekeeper { 26 /* Current clocksource used for timekeeping. */ 27 struct clocksource *clock; 28 /* NTP adjusted clock multiplier */ 29 u32 mult; 30 /* The shift value of the current clocksource. */ 31 u32 shift; 32 /* Number of clock cycles in one NTP interval. */ 33 cycle_t cycle_interval; 34 /* Number of clock shifted nano seconds in one NTP interval. */ 35 u64 xtime_interval; 36 /* shifted nano seconds left over when rounding cycle_interval */ 37 s64 xtime_remainder; 38 /* Raw nano seconds accumulated per NTP interval. */ 39 u32 raw_interval; 40 41 /* Current CLOCK_REALTIME time in seconds */ 42 u64 xtime_sec; 43 /* Clock shifted nano seconds */ 44 u64 xtime_nsec; 45 46 /* Difference between accumulated time and NTP time in ntp 47 * shifted nano seconds. */ 48 s64 ntp_error; 49 /* Shift conversion between clock shifted nano seconds and 50 * ntp shifted nano seconds. */ 51 u32 ntp_error_shift; 52 53 /* 54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 56 * at zero at system boot time, so wall_to_monotonic will be negative, 57 * however, we will ALWAYS keep the tv_nsec part positive so we can use 58 * the usual normalization. 59 * 60 * wall_to_monotonic is moved after resume from suspend for the 61 * monotonic time not to jump. We need to add total_sleep_time to 62 * wall_to_monotonic to get the real boot based time offset. 63 * 64 * - wall_to_monotonic is no longer the boot time, getboottime must be 65 * used instead. 66 */ 67 struct timespec wall_to_monotonic; 68 /* Offset clock monotonic -> clock realtime */ 69 ktime_t offs_real; 70 /* time spent in suspend */ 71 struct timespec total_sleep_time; 72 /* Offset clock monotonic -> clock boottime */ 73 ktime_t offs_boot; 74 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ 75 struct timespec raw_time; 76 /* Seqlock for all timekeeper values */ 77 seqlock_t lock; 78 }; 79 80 static struct timekeeper timekeeper; 81 82 /* 83 * This read-write spinlock protects us from races in SMP while 84 * playing with xtime. 85 */ 86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 87 88 /* flag for if timekeeping is suspended */ 89 int __read_mostly timekeeping_suspended; 90 91 static inline void tk_normalize_xtime(struct timekeeper *tk) 92 { 93 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) { 94 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift; 95 tk->xtime_sec++; 96 } 97 } 98 99 static struct timespec tk_xtime(struct timekeeper *tk) 100 { 101 struct timespec ts; 102 103 ts.tv_sec = tk->xtime_sec; 104 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift); 105 return ts; 106 } 107 108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts) 109 { 110 tk->xtime_sec = ts->tv_sec; 111 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift; 112 } 113 114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts) 115 { 116 tk->xtime_sec += ts->tv_sec; 117 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift; 118 } 119 120 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm) 121 { 122 struct timespec tmp; 123 124 /* 125 * Verify consistency of: offset_real = -wall_to_monotonic 126 * before modifying anything 127 */ 128 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec, 129 -tk->wall_to_monotonic.tv_nsec); 130 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64); 131 tk->wall_to_monotonic = wtm; 132 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 133 tk->offs_real = timespec_to_ktime(tmp); 134 } 135 136 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t) 137 { 138 /* Verify consistency before modifying */ 139 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64); 140 141 tk->total_sleep_time = t; 142 tk->offs_boot = timespec_to_ktime(t); 143 } 144 145 /** 146 * timekeeper_setup_internals - Set up internals to use clocksource clock. 147 * 148 * @clock: Pointer to clocksource. 149 * 150 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 151 * pair and interval request. 152 * 153 * Unless you're the timekeeping code, you should not be using this! 154 */ 155 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 156 { 157 cycle_t interval; 158 u64 tmp, ntpinterval; 159 struct clocksource *old_clock; 160 161 old_clock = tk->clock; 162 tk->clock = clock; 163 clock->cycle_last = clock->read(clock); 164 165 /* Do the ns -> cycle conversion first, using original mult */ 166 tmp = NTP_INTERVAL_LENGTH; 167 tmp <<= clock->shift; 168 ntpinterval = tmp; 169 tmp += clock->mult/2; 170 do_div(tmp, clock->mult); 171 if (tmp == 0) 172 tmp = 1; 173 174 interval = (cycle_t) tmp; 175 tk->cycle_interval = interval; 176 177 /* Go back from cycles -> shifted ns */ 178 tk->xtime_interval = (u64) interval * clock->mult; 179 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 180 tk->raw_interval = 181 ((u64) interval * clock->mult) >> clock->shift; 182 183 /* if changing clocks, convert xtime_nsec shift units */ 184 if (old_clock) { 185 int shift_change = clock->shift - old_clock->shift; 186 if (shift_change < 0) 187 tk->xtime_nsec >>= -shift_change; 188 else 189 tk->xtime_nsec <<= shift_change; 190 } 191 tk->shift = clock->shift; 192 193 tk->ntp_error = 0; 194 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 195 196 /* 197 * The timekeeper keeps its own mult values for the currently 198 * active clocksource. These value will be adjusted via NTP 199 * to counteract clock drifting. 200 */ 201 tk->mult = clock->mult; 202 } 203 204 /* Timekeeper helper functions. */ 205 static inline s64 timekeeping_get_ns(struct timekeeper *tk) 206 { 207 cycle_t cycle_now, cycle_delta; 208 struct clocksource *clock; 209 s64 nsec; 210 211 /* read clocksource: */ 212 clock = tk->clock; 213 cycle_now = clock->read(clock); 214 215 /* calculate the delta since the last update_wall_time: */ 216 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 217 218 nsec = cycle_delta * tk->mult + tk->xtime_nsec; 219 nsec >>= tk->shift; 220 221 /* If arch requires, add in gettimeoffset() */ 222 return nsec + arch_gettimeoffset(); 223 } 224 225 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 226 { 227 cycle_t cycle_now, cycle_delta; 228 struct clocksource *clock; 229 s64 nsec; 230 231 /* read clocksource: */ 232 clock = tk->clock; 233 cycle_now = clock->read(clock); 234 235 /* calculate the delta since the last update_wall_time: */ 236 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 237 238 /* convert delta to nanoseconds. */ 239 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 240 241 /* If arch requires, add in gettimeoffset() */ 242 return nsec + arch_gettimeoffset(); 243 } 244 245 /* must hold write on timekeeper.lock */ 246 static void timekeeping_update(struct timekeeper *tk, bool clearntp) 247 { 248 struct timespec xt; 249 250 if (clearntp) { 251 tk->ntp_error = 0; 252 ntp_clear(); 253 } 254 xt = tk_xtime(tk); 255 update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult); 256 } 257 258 /** 259 * timekeeping_forward_now - update clock to the current time 260 * 261 * Forward the current clock to update its state since the last call to 262 * update_wall_time(). This is useful before significant clock changes, 263 * as it avoids having to deal with this time offset explicitly. 264 */ 265 static void timekeeping_forward_now(struct timekeeper *tk) 266 { 267 cycle_t cycle_now, cycle_delta; 268 struct clocksource *clock; 269 s64 nsec; 270 271 clock = tk->clock; 272 cycle_now = clock->read(clock); 273 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 274 clock->cycle_last = cycle_now; 275 276 tk->xtime_nsec += cycle_delta * tk->mult; 277 278 /* If arch requires, add in gettimeoffset() */ 279 tk->xtime_nsec += arch_gettimeoffset() << tk->shift; 280 281 tk_normalize_xtime(tk); 282 283 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 284 timespec_add_ns(&tk->raw_time, nsec); 285 } 286 287 /** 288 * getnstimeofday - Returns the time of day in a timespec 289 * @ts: pointer to the timespec to be set 290 * 291 * Returns the time of day in a timespec. 292 */ 293 void getnstimeofday(struct timespec *ts) 294 { 295 struct timekeeper *tk = &timekeeper; 296 unsigned long seq; 297 s64 nsecs = 0; 298 299 WARN_ON(timekeeping_suspended); 300 301 do { 302 seq = read_seqbegin(&tk->lock); 303 304 ts->tv_sec = tk->xtime_sec; 305 ts->tv_nsec = timekeeping_get_ns(tk); 306 307 } while (read_seqretry(&tk->lock, seq)); 308 309 timespec_add_ns(ts, nsecs); 310 } 311 EXPORT_SYMBOL(getnstimeofday); 312 313 ktime_t ktime_get(void) 314 { 315 struct timekeeper *tk = &timekeeper; 316 unsigned int seq; 317 s64 secs, nsecs; 318 319 WARN_ON(timekeeping_suspended); 320 321 do { 322 seq = read_seqbegin(&tk->lock); 323 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 324 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec; 325 326 } while (read_seqretry(&tk->lock, seq)); 327 /* 328 * Use ktime_set/ktime_add_ns to create a proper ktime on 329 * 32-bit architectures without CONFIG_KTIME_SCALAR. 330 */ 331 return ktime_add_ns(ktime_set(secs, 0), nsecs); 332 } 333 EXPORT_SYMBOL_GPL(ktime_get); 334 335 /** 336 * ktime_get_ts - get the monotonic clock in timespec format 337 * @ts: pointer to timespec variable 338 * 339 * The function calculates the monotonic clock from the realtime 340 * clock and the wall_to_monotonic offset and stores the result 341 * in normalized timespec format in the variable pointed to by @ts. 342 */ 343 void ktime_get_ts(struct timespec *ts) 344 { 345 struct timekeeper *tk = &timekeeper; 346 struct timespec tomono; 347 unsigned int seq; 348 349 WARN_ON(timekeeping_suspended); 350 351 do { 352 seq = read_seqbegin(&tk->lock); 353 ts->tv_sec = tk->xtime_sec; 354 ts->tv_nsec = timekeeping_get_ns(tk); 355 tomono = tk->wall_to_monotonic; 356 357 } while (read_seqretry(&tk->lock, seq)); 358 359 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 360 ts->tv_nsec + tomono.tv_nsec); 361 } 362 EXPORT_SYMBOL_GPL(ktime_get_ts); 363 364 #ifdef CONFIG_NTP_PPS 365 366 /** 367 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 368 * @ts_raw: pointer to the timespec to be set to raw monotonic time 369 * @ts_real: pointer to the timespec to be set to the time of day 370 * 371 * This function reads both the time of day and raw monotonic time at the 372 * same time atomically and stores the resulting timestamps in timespec 373 * format. 374 */ 375 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 376 { 377 struct timekeeper *tk = &timekeeper; 378 unsigned long seq; 379 s64 nsecs_raw, nsecs_real; 380 381 WARN_ON_ONCE(timekeeping_suspended); 382 383 do { 384 seq = read_seqbegin(&tk->lock); 385 386 *ts_raw = tk->raw_time; 387 ts_real->tv_sec = tk->xtime_sec; 388 ts_real->tv_nsec = 0; 389 390 nsecs_raw = timekeeping_get_ns_raw(tk); 391 nsecs_real = timekeeping_get_ns(tk); 392 393 } while (read_seqretry(&tk->lock, seq)); 394 395 timespec_add_ns(ts_raw, nsecs_raw); 396 timespec_add_ns(ts_real, nsecs_real); 397 } 398 EXPORT_SYMBOL(getnstime_raw_and_real); 399 400 #endif /* CONFIG_NTP_PPS */ 401 402 /** 403 * do_gettimeofday - Returns the time of day in a timeval 404 * @tv: pointer to the timeval to be set 405 * 406 * NOTE: Users should be converted to using getnstimeofday() 407 */ 408 void do_gettimeofday(struct timeval *tv) 409 { 410 struct timespec now; 411 412 getnstimeofday(&now); 413 tv->tv_sec = now.tv_sec; 414 tv->tv_usec = now.tv_nsec/1000; 415 } 416 EXPORT_SYMBOL(do_gettimeofday); 417 418 /** 419 * do_settimeofday - Sets the time of day 420 * @tv: pointer to the timespec variable containing the new time 421 * 422 * Sets the time of day to the new time and update NTP and notify hrtimers 423 */ 424 int do_settimeofday(const struct timespec *tv) 425 { 426 struct timekeeper *tk = &timekeeper; 427 struct timespec ts_delta, xt; 428 unsigned long flags; 429 430 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 431 return -EINVAL; 432 433 write_seqlock_irqsave(&tk->lock, flags); 434 435 timekeeping_forward_now(tk); 436 437 xt = tk_xtime(tk); 438 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 439 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 440 441 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta)); 442 443 tk_set_xtime(tk, tv); 444 445 timekeeping_update(tk, true); 446 447 write_sequnlock_irqrestore(&tk->lock, flags); 448 449 /* signal hrtimers about time change */ 450 clock_was_set(); 451 452 return 0; 453 } 454 EXPORT_SYMBOL(do_settimeofday); 455 456 /** 457 * timekeeping_inject_offset - Adds or subtracts from the current time. 458 * @tv: pointer to the timespec variable containing the offset 459 * 460 * Adds or subtracts an offset value from the current time. 461 */ 462 int timekeeping_inject_offset(struct timespec *ts) 463 { 464 struct timekeeper *tk = &timekeeper; 465 unsigned long flags; 466 467 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 468 return -EINVAL; 469 470 write_seqlock_irqsave(&tk->lock, flags); 471 472 timekeeping_forward_now(tk); 473 474 475 tk_xtime_add(tk, ts); 476 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts)); 477 478 timekeeping_update(tk, true); 479 480 write_sequnlock_irqrestore(&tk->lock, flags); 481 482 /* signal hrtimers about time change */ 483 clock_was_set(); 484 485 return 0; 486 } 487 EXPORT_SYMBOL(timekeeping_inject_offset); 488 489 /** 490 * change_clocksource - Swaps clocksources if a new one is available 491 * 492 * Accumulates current time interval and initializes new clocksource 493 */ 494 static int change_clocksource(void *data) 495 { 496 struct timekeeper *tk = &timekeeper; 497 struct clocksource *new, *old; 498 unsigned long flags; 499 500 new = (struct clocksource *) data; 501 502 write_seqlock_irqsave(&tk->lock, flags); 503 504 timekeeping_forward_now(tk); 505 if (!new->enable || new->enable(new) == 0) { 506 old = tk->clock; 507 tk_setup_internals(tk, new); 508 if (old->disable) 509 old->disable(old); 510 } 511 timekeeping_update(tk, true); 512 513 write_sequnlock_irqrestore(&tk->lock, flags); 514 515 return 0; 516 } 517 518 /** 519 * timekeeping_notify - Install a new clock source 520 * @clock: pointer to the clock source 521 * 522 * This function is called from clocksource.c after a new, better clock 523 * source has been registered. The caller holds the clocksource_mutex. 524 */ 525 void timekeeping_notify(struct clocksource *clock) 526 { 527 struct timekeeper *tk = &timekeeper; 528 529 if (tk->clock == clock) 530 return; 531 stop_machine(change_clocksource, clock, NULL); 532 tick_clock_notify(); 533 } 534 535 /** 536 * ktime_get_real - get the real (wall-) time in ktime_t format 537 * 538 * returns the time in ktime_t format 539 */ 540 ktime_t ktime_get_real(void) 541 { 542 struct timespec now; 543 544 getnstimeofday(&now); 545 546 return timespec_to_ktime(now); 547 } 548 EXPORT_SYMBOL_GPL(ktime_get_real); 549 550 /** 551 * getrawmonotonic - Returns the raw monotonic time in a timespec 552 * @ts: pointer to the timespec to be set 553 * 554 * Returns the raw monotonic time (completely un-modified by ntp) 555 */ 556 void getrawmonotonic(struct timespec *ts) 557 { 558 struct timekeeper *tk = &timekeeper; 559 unsigned long seq; 560 s64 nsecs; 561 562 do { 563 seq = read_seqbegin(&tk->lock); 564 nsecs = timekeeping_get_ns_raw(tk); 565 *ts = tk->raw_time; 566 567 } while (read_seqretry(&tk->lock, seq)); 568 569 timespec_add_ns(ts, nsecs); 570 } 571 EXPORT_SYMBOL(getrawmonotonic); 572 573 /** 574 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 575 */ 576 int timekeeping_valid_for_hres(void) 577 { 578 struct timekeeper *tk = &timekeeper; 579 unsigned long seq; 580 int ret; 581 582 do { 583 seq = read_seqbegin(&tk->lock); 584 585 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 586 587 } while (read_seqretry(&tk->lock, seq)); 588 589 return ret; 590 } 591 592 /** 593 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 594 */ 595 u64 timekeeping_max_deferment(void) 596 { 597 struct timekeeper *tk = &timekeeper; 598 unsigned long seq; 599 u64 ret; 600 601 do { 602 seq = read_seqbegin(&tk->lock); 603 604 ret = tk->clock->max_idle_ns; 605 606 } while (read_seqretry(&tk->lock, seq)); 607 608 return ret; 609 } 610 611 /** 612 * read_persistent_clock - Return time from the persistent clock. 613 * 614 * Weak dummy function for arches that do not yet support it. 615 * Reads the time from the battery backed persistent clock. 616 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 617 * 618 * XXX - Do be sure to remove it once all arches implement it. 619 */ 620 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 621 { 622 ts->tv_sec = 0; 623 ts->tv_nsec = 0; 624 } 625 626 /** 627 * read_boot_clock - Return time of the system start. 628 * 629 * Weak dummy function for arches that do not yet support it. 630 * Function to read the exact time the system has been started. 631 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 632 * 633 * XXX - Do be sure to remove it once all arches implement it. 634 */ 635 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 636 { 637 ts->tv_sec = 0; 638 ts->tv_nsec = 0; 639 } 640 641 /* 642 * timekeeping_init - Initializes the clocksource and common timekeeping values 643 */ 644 void __init timekeeping_init(void) 645 { 646 struct timekeeper *tk = &timekeeper; 647 struct clocksource *clock; 648 unsigned long flags; 649 struct timespec now, boot, tmp; 650 651 read_persistent_clock(&now); 652 read_boot_clock(&boot); 653 654 seqlock_init(&tk->lock); 655 656 ntp_init(); 657 658 write_seqlock_irqsave(&tk->lock, flags); 659 clock = clocksource_default_clock(); 660 if (clock->enable) 661 clock->enable(clock); 662 tk_setup_internals(tk, clock); 663 664 tk_set_xtime(tk, &now); 665 tk->raw_time.tv_sec = 0; 666 tk->raw_time.tv_nsec = 0; 667 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 668 boot = tk_xtime(tk); 669 670 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec); 671 tk_set_wall_to_mono(tk, tmp); 672 673 tmp.tv_sec = 0; 674 tmp.tv_nsec = 0; 675 tk_set_sleep_time(tk, tmp); 676 677 write_sequnlock_irqrestore(&tk->lock, flags); 678 } 679 680 /* time in seconds when suspend began */ 681 static struct timespec timekeeping_suspend_time; 682 683 /** 684 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 685 * @delta: pointer to a timespec delta value 686 * 687 * Takes a timespec offset measuring a suspend interval and properly 688 * adds the sleep offset to the timekeeping variables. 689 */ 690 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 691 struct timespec *delta) 692 { 693 if (!timespec_valid(delta)) { 694 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 695 "sleep delta value!\n"); 696 return; 697 } 698 tk_xtime_add(tk, delta); 699 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta)); 700 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta)); 701 } 702 703 /** 704 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 705 * @delta: pointer to a timespec delta value 706 * 707 * This hook is for architectures that cannot support read_persistent_clock 708 * because their RTC/persistent clock is only accessible when irqs are enabled. 709 * 710 * This function should only be called by rtc_resume(), and allows 711 * a suspend offset to be injected into the timekeeping values. 712 */ 713 void timekeeping_inject_sleeptime(struct timespec *delta) 714 { 715 struct timekeeper *tk = &timekeeper; 716 unsigned long flags; 717 struct timespec ts; 718 719 /* Make sure we don't set the clock twice */ 720 read_persistent_clock(&ts); 721 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) 722 return; 723 724 write_seqlock_irqsave(&tk->lock, flags); 725 726 timekeeping_forward_now(tk); 727 728 __timekeeping_inject_sleeptime(tk, delta); 729 730 timekeeping_update(tk, true); 731 732 write_sequnlock_irqrestore(&tk->lock, flags); 733 734 /* signal hrtimers about time change */ 735 clock_was_set(); 736 } 737 738 /** 739 * timekeeping_resume - Resumes the generic timekeeping subsystem. 740 * 741 * This is for the generic clocksource timekeeping. 742 * xtime/wall_to_monotonic/jiffies/etc are 743 * still managed by arch specific suspend/resume code. 744 */ 745 static void timekeeping_resume(void) 746 { 747 struct timekeeper *tk = &timekeeper; 748 unsigned long flags; 749 struct timespec ts; 750 751 read_persistent_clock(&ts); 752 753 clocksource_resume(); 754 755 write_seqlock_irqsave(&tk->lock, flags); 756 757 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 758 ts = timespec_sub(ts, timekeeping_suspend_time); 759 __timekeeping_inject_sleeptime(tk, &ts); 760 } 761 /* re-base the last cycle value */ 762 tk->clock->cycle_last = tk->clock->read(tk->clock); 763 tk->ntp_error = 0; 764 timekeeping_suspended = 0; 765 timekeeping_update(tk, false); 766 write_sequnlock_irqrestore(&tk->lock, flags); 767 768 touch_softlockup_watchdog(); 769 770 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 771 772 /* Resume hrtimers */ 773 hrtimers_resume(); 774 } 775 776 static int timekeeping_suspend(void) 777 { 778 struct timekeeper *tk = &timekeeper; 779 unsigned long flags; 780 struct timespec delta, delta_delta; 781 static struct timespec old_delta; 782 783 read_persistent_clock(&timekeeping_suspend_time); 784 785 write_seqlock_irqsave(&tk->lock, flags); 786 timekeeping_forward_now(tk); 787 timekeeping_suspended = 1; 788 789 /* 790 * To avoid drift caused by repeated suspend/resumes, 791 * which each can add ~1 second drift error, 792 * try to compensate so the difference in system time 793 * and persistent_clock time stays close to constant. 794 */ 795 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time); 796 delta_delta = timespec_sub(delta, old_delta); 797 if (abs(delta_delta.tv_sec) >= 2) { 798 /* 799 * if delta_delta is too large, assume time correction 800 * has occured and set old_delta to the current delta. 801 */ 802 old_delta = delta; 803 } else { 804 /* Otherwise try to adjust old_system to compensate */ 805 timekeeping_suspend_time = 806 timespec_add(timekeeping_suspend_time, delta_delta); 807 } 808 write_sequnlock_irqrestore(&tk->lock, flags); 809 810 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 811 clocksource_suspend(); 812 813 return 0; 814 } 815 816 /* sysfs resume/suspend bits for timekeeping */ 817 static struct syscore_ops timekeeping_syscore_ops = { 818 .resume = timekeeping_resume, 819 .suspend = timekeeping_suspend, 820 }; 821 822 static int __init timekeeping_init_ops(void) 823 { 824 register_syscore_ops(&timekeeping_syscore_ops); 825 return 0; 826 } 827 828 device_initcall(timekeeping_init_ops); 829 830 /* 831 * If the error is already larger, we look ahead even further 832 * to compensate for late or lost adjustments. 833 */ 834 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk, 835 s64 error, s64 *interval, 836 s64 *offset) 837 { 838 s64 tick_error, i; 839 u32 look_ahead, adj; 840 s32 error2, mult; 841 842 /* 843 * Use the current error value to determine how much to look ahead. 844 * The larger the error the slower we adjust for it to avoid problems 845 * with losing too many ticks, otherwise we would overadjust and 846 * produce an even larger error. The smaller the adjustment the 847 * faster we try to adjust for it, as lost ticks can do less harm 848 * here. This is tuned so that an error of about 1 msec is adjusted 849 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 850 */ 851 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 852 error2 = abs(error2); 853 for (look_ahead = 0; error2 > 0; look_ahead++) 854 error2 >>= 2; 855 856 /* 857 * Now calculate the error in (1 << look_ahead) ticks, but first 858 * remove the single look ahead already included in the error. 859 */ 860 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1); 861 tick_error -= tk->xtime_interval >> 1; 862 error = ((error - tick_error) >> look_ahead) + tick_error; 863 864 /* Finally calculate the adjustment shift value. */ 865 i = *interval; 866 mult = 1; 867 if (error < 0) { 868 error = -error; 869 *interval = -*interval; 870 *offset = -*offset; 871 mult = -1; 872 } 873 for (adj = 0; error > i; adj++) 874 error >>= 1; 875 876 *interval <<= adj; 877 *offset <<= adj; 878 return mult << adj; 879 } 880 881 /* 882 * Adjust the multiplier to reduce the error value, 883 * this is optimized for the most common adjustments of -1,0,1, 884 * for other values we can do a bit more work. 885 */ 886 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 887 { 888 s64 error, interval = tk->cycle_interval; 889 int adj; 890 891 /* 892 * The point of this is to check if the error is greater than half 893 * an interval. 894 * 895 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 896 * 897 * Note we subtract one in the shift, so that error is really error*2. 898 * This "saves" dividing(shifting) interval twice, but keeps the 899 * (error > interval) comparison as still measuring if error is 900 * larger than half an interval. 901 * 902 * Note: It does not "save" on aggravation when reading the code. 903 */ 904 error = tk->ntp_error >> (tk->ntp_error_shift - 1); 905 if (error > interval) { 906 /* 907 * We now divide error by 4(via shift), which checks if 908 * the error is greater than twice the interval. 909 * If it is greater, we need a bigadjust, if its smaller, 910 * we can adjust by 1. 911 */ 912 error >>= 2; 913 /* 914 * XXX - In update_wall_time, we round up to the next 915 * nanosecond, and store the amount rounded up into 916 * the error. This causes the likely below to be unlikely. 917 * 918 * The proper fix is to avoid rounding up by using 919 * the high precision tk->xtime_nsec instead of 920 * xtime.tv_nsec everywhere. Fixing this will take some 921 * time. 922 */ 923 if (likely(error <= interval)) 924 adj = 1; 925 else 926 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 927 } else { 928 if (error < -interval) { 929 /* See comment above, this is just switched for the negative */ 930 error >>= 2; 931 if (likely(error >= -interval)) { 932 adj = -1; 933 interval = -interval; 934 offset = -offset; 935 } else { 936 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 937 } 938 } else { 939 goto out_adjust; 940 } 941 } 942 943 if (unlikely(tk->clock->maxadj && 944 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) { 945 printk_once(KERN_WARNING 946 "Adjusting %s more than 11%% (%ld vs %ld)\n", 947 tk->clock->name, (long)tk->mult + adj, 948 (long)tk->clock->mult + tk->clock->maxadj); 949 } 950 /* 951 * So the following can be confusing. 952 * 953 * To keep things simple, lets assume adj == 1 for now. 954 * 955 * When adj != 1, remember that the interval and offset values 956 * have been appropriately scaled so the math is the same. 957 * 958 * The basic idea here is that we're increasing the multiplier 959 * by one, this causes the xtime_interval to be incremented by 960 * one cycle_interval. This is because: 961 * xtime_interval = cycle_interval * mult 962 * So if mult is being incremented by one: 963 * xtime_interval = cycle_interval * (mult + 1) 964 * Its the same as: 965 * xtime_interval = (cycle_interval * mult) + cycle_interval 966 * Which can be shortened to: 967 * xtime_interval += cycle_interval 968 * 969 * So offset stores the non-accumulated cycles. Thus the current 970 * time (in shifted nanoseconds) is: 971 * now = (offset * adj) + xtime_nsec 972 * Now, even though we're adjusting the clock frequency, we have 973 * to keep time consistent. In other words, we can't jump back 974 * in time, and we also want to avoid jumping forward in time. 975 * 976 * So given the same offset value, we need the time to be the same 977 * both before and after the freq adjustment. 978 * now = (offset * adj_1) + xtime_nsec_1 979 * now = (offset * adj_2) + xtime_nsec_2 980 * So: 981 * (offset * adj_1) + xtime_nsec_1 = 982 * (offset * adj_2) + xtime_nsec_2 983 * And we know: 984 * adj_2 = adj_1 + 1 985 * So: 986 * (offset * adj_1) + xtime_nsec_1 = 987 * (offset * (adj_1+1)) + xtime_nsec_2 988 * (offset * adj_1) + xtime_nsec_1 = 989 * (offset * adj_1) + offset + xtime_nsec_2 990 * Canceling the sides: 991 * xtime_nsec_1 = offset + xtime_nsec_2 992 * Which gives us: 993 * xtime_nsec_2 = xtime_nsec_1 - offset 994 * Which simplfies to: 995 * xtime_nsec -= offset 996 * 997 * XXX - TODO: Doc ntp_error calculation. 998 */ 999 tk->mult += adj; 1000 tk->xtime_interval += interval; 1001 tk->xtime_nsec -= offset; 1002 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1003 1004 out_adjust: 1005 /* 1006 * It may be possible that when we entered this function, xtime_nsec 1007 * was very small. Further, if we're slightly speeding the clocksource 1008 * in the code above, its possible the required corrective factor to 1009 * xtime_nsec could cause it to underflow. 1010 * 1011 * Now, since we already accumulated the second, cannot simply roll 1012 * the accumulated second back, since the NTP subsystem has been 1013 * notified via second_overflow. So instead we push xtime_nsec forward 1014 * by the amount we underflowed, and add that amount into the error. 1015 * 1016 * We'll correct this error next time through this function, when 1017 * xtime_nsec is not as small. 1018 */ 1019 if (unlikely((s64)tk->xtime_nsec < 0)) { 1020 s64 neg = -(s64)tk->xtime_nsec; 1021 tk->xtime_nsec = 0; 1022 tk->ntp_error += neg << tk->ntp_error_shift; 1023 } 1024 1025 } 1026 1027 /** 1028 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1029 * 1030 * Helper function that accumulates a the nsecs greater then a second 1031 * from the xtime_nsec field to the xtime_secs field. 1032 * It also calls into the NTP code to handle leapsecond processing. 1033 * 1034 */ 1035 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk) 1036 { 1037 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift; 1038 1039 while (tk->xtime_nsec >= nsecps) { 1040 int leap; 1041 1042 tk->xtime_nsec -= nsecps; 1043 tk->xtime_sec++; 1044 1045 /* Figure out if its a leap sec and apply if needed */ 1046 leap = second_overflow(tk->xtime_sec); 1047 if (unlikely(leap)) { 1048 struct timespec ts; 1049 1050 tk->xtime_sec += leap; 1051 1052 ts.tv_sec = leap; 1053 ts.tv_nsec = 0; 1054 tk_set_wall_to_mono(tk, 1055 timespec_sub(tk->wall_to_monotonic, ts)); 1056 1057 clock_was_set_delayed(); 1058 } 1059 } 1060 } 1061 1062 /** 1063 * logarithmic_accumulation - shifted accumulation of cycles 1064 * 1065 * This functions accumulates a shifted interval of cycles into 1066 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1067 * loop. 1068 * 1069 * Returns the unconsumed cycles. 1070 */ 1071 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1072 u32 shift) 1073 { 1074 u64 raw_nsecs; 1075 1076 /* If the offset is smaller then a shifted interval, do nothing */ 1077 if (offset < tk->cycle_interval<<shift) 1078 return offset; 1079 1080 /* Accumulate one shifted interval */ 1081 offset -= tk->cycle_interval << shift; 1082 tk->clock->cycle_last += tk->cycle_interval << shift; 1083 1084 tk->xtime_nsec += tk->xtime_interval << shift; 1085 accumulate_nsecs_to_secs(tk); 1086 1087 /* Accumulate raw time */ 1088 raw_nsecs = tk->raw_interval << shift; 1089 raw_nsecs += tk->raw_time.tv_nsec; 1090 if (raw_nsecs >= NSEC_PER_SEC) { 1091 u64 raw_secs = raw_nsecs; 1092 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1093 tk->raw_time.tv_sec += raw_secs; 1094 } 1095 tk->raw_time.tv_nsec = raw_nsecs; 1096 1097 /* Accumulate error between NTP and clock interval */ 1098 tk->ntp_error += ntp_tick_length() << shift; 1099 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1100 (tk->ntp_error_shift + shift); 1101 1102 return offset; 1103 } 1104 1105 /** 1106 * update_wall_time - Uses the current clocksource to increment the wall time 1107 * 1108 */ 1109 static void update_wall_time(void) 1110 { 1111 struct clocksource *clock; 1112 struct timekeeper *tk = &timekeeper; 1113 cycle_t offset; 1114 int shift = 0, maxshift; 1115 unsigned long flags; 1116 s64 remainder; 1117 1118 write_seqlock_irqsave(&tk->lock, flags); 1119 1120 /* Make sure we're fully resumed: */ 1121 if (unlikely(timekeeping_suspended)) 1122 goto out; 1123 1124 clock = tk->clock; 1125 1126 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1127 offset = tk->cycle_interval; 1128 #else 1129 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1130 #endif 1131 1132 /* 1133 * With NO_HZ we may have to accumulate many cycle_intervals 1134 * (think "ticks") worth of time at once. To do this efficiently, 1135 * we calculate the largest doubling multiple of cycle_intervals 1136 * that is smaller than the offset. We then accumulate that 1137 * chunk in one go, and then try to consume the next smaller 1138 * doubled multiple. 1139 */ 1140 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1141 shift = max(0, shift); 1142 /* Bound shift to one less than what overflows tick_length */ 1143 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1144 shift = min(shift, maxshift); 1145 while (offset >= tk->cycle_interval) { 1146 offset = logarithmic_accumulation(tk, offset, shift); 1147 if (offset < tk->cycle_interval<<shift) 1148 shift--; 1149 } 1150 1151 /* correct the clock when NTP error is too big */ 1152 timekeeping_adjust(tk, offset); 1153 1154 1155 /* 1156 * Store only full nanoseconds into xtime_nsec after rounding 1157 * it up and add the remainder to the error difference. 1158 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 1159 * by truncating the remainder in vsyscalls. However, it causes 1160 * additional work to be done in timekeeping_adjust(). Once 1161 * the vsyscall implementations are converted to use xtime_nsec 1162 * (shifted nanoseconds), this can be killed. 1163 */ 1164 remainder = tk->xtime_nsec & ((1 << tk->shift) - 1); 1165 tk->xtime_nsec -= remainder; 1166 tk->xtime_nsec += 1 << tk->shift; 1167 tk->ntp_error += remainder << tk->ntp_error_shift; 1168 1169 /* 1170 * Finally, make sure that after the rounding 1171 * xtime_nsec isn't larger than NSEC_PER_SEC 1172 */ 1173 accumulate_nsecs_to_secs(tk); 1174 1175 timekeeping_update(tk, false); 1176 1177 out: 1178 write_sequnlock_irqrestore(&tk->lock, flags); 1179 1180 } 1181 1182 /** 1183 * getboottime - Return the real time of system boot. 1184 * @ts: pointer to the timespec to be set 1185 * 1186 * Returns the wall-time of boot in a timespec. 1187 * 1188 * This is based on the wall_to_monotonic offset and the total suspend 1189 * time. Calls to settimeofday will affect the value returned (which 1190 * basically means that however wrong your real time clock is at boot time, 1191 * you get the right time here). 1192 */ 1193 void getboottime(struct timespec *ts) 1194 { 1195 struct timekeeper *tk = &timekeeper; 1196 struct timespec boottime = { 1197 .tv_sec = tk->wall_to_monotonic.tv_sec + 1198 tk->total_sleep_time.tv_sec, 1199 .tv_nsec = tk->wall_to_monotonic.tv_nsec + 1200 tk->total_sleep_time.tv_nsec 1201 }; 1202 1203 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1204 } 1205 EXPORT_SYMBOL_GPL(getboottime); 1206 1207 /** 1208 * get_monotonic_boottime - Returns monotonic time since boot 1209 * @ts: pointer to the timespec to be set 1210 * 1211 * Returns the monotonic time since boot in a timespec. 1212 * 1213 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1214 * includes the time spent in suspend. 1215 */ 1216 void get_monotonic_boottime(struct timespec *ts) 1217 { 1218 struct timekeeper *tk = &timekeeper; 1219 struct timespec tomono, sleep; 1220 unsigned int seq; 1221 1222 WARN_ON(timekeeping_suspended); 1223 1224 do { 1225 seq = read_seqbegin(&tk->lock); 1226 ts->tv_sec = tk->xtime_sec; 1227 ts->tv_nsec = timekeeping_get_ns(tk); 1228 tomono = tk->wall_to_monotonic; 1229 sleep = tk->total_sleep_time; 1230 1231 } while (read_seqretry(&tk->lock, seq)); 1232 1233 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, 1234 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec); 1235 } 1236 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1237 1238 /** 1239 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1240 * 1241 * Returns the monotonic time since boot in a ktime 1242 * 1243 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1244 * includes the time spent in suspend. 1245 */ 1246 ktime_t ktime_get_boottime(void) 1247 { 1248 struct timespec ts; 1249 1250 get_monotonic_boottime(&ts); 1251 return timespec_to_ktime(ts); 1252 } 1253 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1254 1255 /** 1256 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1257 * @ts: pointer to the timespec to be converted 1258 */ 1259 void monotonic_to_bootbased(struct timespec *ts) 1260 { 1261 struct timekeeper *tk = &timekeeper; 1262 1263 *ts = timespec_add(*ts, tk->total_sleep_time); 1264 } 1265 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1266 1267 unsigned long get_seconds(void) 1268 { 1269 struct timekeeper *tk = &timekeeper; 1270 1271 return tk->xtime_sec; 1272 } 1273 EXPORT_SYMBOL(get_seconds); 1274 1275 struct timespec __current_kernel_time(void) 1276 { 1277 struct timekeeper *tk = &timekeeper; 1278 1279 return tk_xtime(tk); 1280 } 1281 1282 struct timespec current_kernel_time(void) 1283 { 1284 struct timekeeper *tk = &timekeeper; 1285 struct timespec now; 1286 unsigned long seq; 1287 1288 do { 1289 seq = read_seqbegin(&tk->lock); 1290 1291 now = tk_xtime(tk); 1292 } while (read_seqretry(&tk->lock, seq)); 1293 1294 return now; 1295 } 1296 EXPORT_SYMBOL(current_kernel_time); 1297 1298 struct timespec get_monotonic_coarse(void) 1299 { 1300 struct timekeeper *tk = &timekeeper; 1301 struct timespec now, mono; 1302 unsigned long seq; 1303 1304 do { 1305 seq = read_seqbegin(&tk->lock); 1306 1307 now = tk_xtime(tk); 1308 mono = tk->wall_to_monotonic; 1309 } while (read_seqretry(&tk->lock, seq)); 1310 1311 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1312 now.tv_nsec + mono.tv_nsec); 1313 return now; 1314 } 1315 1316 /* 1317 * The 64-bit jiffies value is not atomic - you MUST NOT read it 1318 * without sampling the sequence number in xtime_lock. 1319 * jiffies is defined in the linker script... 1320 */ 1321 void do_timer(unsigned long ticks) 1322 { 1323 jiffies_64 += ticks; 1324 update_wall_time(); 1325 calc_global_load(ticks); 1326 } 1327 1328 /** 1329 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1330 * and sleep offsets. 1331 * @xtim: pointer to timespec to be set with xtime 1332 * @wtom: pointer to timespec to be set with wall_to_monotonic 1333 * @sleep: pointer to timespec to be set with time in suspend 1334 */ 1335 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1336 struct timespec *wtom, struct timespec *sleep) 1337 { 1338 struct timekeeper *tk = &timekeeper; 1339 unsigned long seq; 1340 1341 do { 1342 seq = read_seqbegin(&tk->lock); 1343 *xtim = tk_xtime(tk); 1344 *wtom = tk->wall_to_monotonic; 1345 *sleep = tk->total_sleep_time; 1346 } while (read_seqretry(&tk->lock, seq)); 1347 } 1348 1349 #ifdef CONFIG_HIGH_RES_TIMERS 1350 /** 1351 * ktime_get_update_offsets - hrtimer helper 1352 * @offs_real: pointer to storage for monotonic -> realtime offset 1353 * @offs_boot: pointer to storage for monotonic -> boottime offset 1354 * 1355 * Returns current monotonic time and updates the offsets 1356 * Called from hrtimer_interupt() or retrigger_next_event() 1357 */ 1358 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot) 1359 { 1360 struct timekeeper *tk = &timekeeper; 1361 ktime_t now; 1362 unsigned int seq; 1363 u64 secs, nsecs; 1364 1365 do { 1366 seq = read_seqbegin(&tk->lock); 1367 1368 secs = tk->xtime_sec; 1369 nsecs = timekeeping_get_ns(tk); 1370 1371 *offs_real = tk->offs_real; 1372 *offs_boot = tk->offs_boot; 1373 } while (read_seqretry(&tk->lock, seq)); 1374 1375 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1376 now = ktime_sub(now, *offs_real); 1377 return now; 1378 } 1379 #endif 1380 1381 /** 1382 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1383 */ 1384 ktime_t ktime_get_monotonic_offset(void) 1385 { 1386 struct timekeeper *tk = &timekeeper; 1387 unsigned long seq; 1388 struct timespec wtom; 1389 1390 do { 1391 seq = read_seqbegin(&tk->lock); 1392 wtom = tk->wall_to_monotonic; 1393 } while (read_seqretry(&tk->lock, seq)); 1394 1395 return timespec_to_ktime(wtom); 1396 } 1397 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1398 1399 /** 1400 * xtime_update() - advances the timekeeping infrastructure 1401 * @ticks: number of ticks, that have elapsed since the last call. 1402 * 1403 * Must be called with interrupts disabled. 1404 */ 1405 void xtime_update(unsigned long ticks) 1406 { 1407 write_seqlock(&xtime_lock); 1408 do_timer(ticks); 1409 write_sequnlock(&xtime_lock); 1410 } 1411