xref: /linux/kernel/time/timekeeping.c (revision 800fb3ddee2c50918d651fbd70515f1e38857305)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource	*clock;
28 	/* NTP adjusted clock multiplier */
29 	u32			mult;
30 	/* The shift value of the current clocksource. */
31 	u32			shift;
32 	/* Number of clock cycles in one NTP interval. */
33 	cycle_t			cycle_interval;
34 	/* Number of clock shifted nano seconds in one NTP interval. */
35 	u64			xtime_interval;
36 	/* shifted nano seconds left over when rounding cycle_interval */
37 	s64			xtime_remainder;
38 	/* Raw nano seconds accumulated per NTP interval. */
39 	u32			raw_interval;
40 
41 	/* Current CLOCK_REALTIME time in seconds */
42 	u64			xtime_sec;
43 	/* Clock shifted nano seconds */
44 	u64			xtime_nsec;
45 
46 	/* Difference between accumulated time and NTP time in ntp
47 	 * shifted nano seconds. */
48 	s64			ntp_error;
49 	/* Shift conversion between clock shifted nano seconds and
50 	 * ntp shifted nano seconds. */
51 	u32			ntp_error_shift;
52 
53 	/*
54 	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
56 	 * at zero at system boot time, so wall_to_monotonic will be negative,
57 	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 	 * the usual normalization.
59 	 *
60 	 * wall_to_monotonic is moved after resume from suspend for the
61 	 * monotonic time not to jump. We need to add total_sleep_time to
62 	 * wall_to_monotonic to get the real boot based time offset.
63 	 *
64 	 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 	 * used instead.
66 	 */
67 	struct timespec		wall_to_monotonic;
68 	/* Offset clock monotonic -> clock realtime */
69 	ktime_t			offs_real;
70 	/* time spent in suspend */
71 	struct timespec		total_sleep_time;
72 	/* Offset clock monotonic -> clock boottime */
73 	ktime_t			offs_boot;
74 	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
75 	struct timespec		raw_time;
76 	/* Seqlock for all timekeeper values */
77 	seqlock_t		lock;
78 };
79 
80 static struct timekeeper timekeeper;
81 
82 /*
83  * This read-write spinlock protects us from races in SMP while
84  * playing with xtime.
85  */
86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
87 
88 /* flag for if timekeeping is suspended */
89 int __read_mostly timekeeping_suspended;
90 
91 static inline void tk_normalize_xtime(struct timekeeper *tk)
92 {
93 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
94 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
95 		tk->xtime_sec++;
96 	}
97 }
98 
99 static struct timespec tk_xtime(struct timekeeper *tk)
100 {
101 	struct timespec ts;
102 
103 	ts.tv_sec = tk->xtime_sec;
104 	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
105 	return ts;
106 }
107 
108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
109 {
110 	tk->xtime_sec = ts->tv_sec;
111 	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
112 }
113 
114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
115 {
116 	tk->xtime_sec += ts->tv_sec;
117 	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
118 }
119 
120 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
121 {
122 	struct timespec tmp;
123 
124 	/*
125 	 * Verify consistency of: offset_real = -wall_to_monotonic
126 	 * before modifying anything
127 	 */
128 	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
129 					-tk->wall_to_monotonic.tv_nsec);
130 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
131 	tk->wall_to_monotonic = wtm;
132 	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
133 	tk->offs_real = timespec_to_ktime(tmp);
134 }
135 
136 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
137 {
138 	/* Verify consistency before modifying */
139 	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
140 
141 	tk->total_sleep_time	= t;
142 	tk->offs_boot		= timespec_to_ktime(t);
143 }
144 
145 /**
146  * timekeeper_setup_internals - Set up internals to use clocksource clock.
147  *
148  * @clock:		Pointer to clocksource.
149  *
150  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
151  * pair and interval request.
152  *
153  * Unless you're the timekeeping code, you should not be using this!
154  */
155 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
156 {
157 	cycle_t interval;
158 	u64 tmp, ntpinterval;
159 	struct clocksource *old_clock;
160 
161 	old_clock = tk->clock;
162 	tk->clock = clock;
163 	clock->cycle_last = clock->read(clock);
164 
165 	/* Do the ns -> cycle conversion first, using original mult */
166 	tmp = NTP_INTERVAL_LENGTH;
167 	tmp <<= clock->shift;
168 	ntpinterval = tmp;
169 	tmp += clock->mult/2;
170 	do_div(tmp, clock->mult);
171 	if (tmp == 0)
172 		tmp = 1;
173 
174 	interval = (cycle_t) tmp;
175 	tk->cycle_interval = interval;
176 
177 	/* Go back from cycles -> shifted ns */
178 	tk->xtime_interval = (u64) interval * clock->mult;
179 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
180 	tk->raw_interval =
181 		((u64) interval * clock->mult) >> clock->shift;
182 
183 	 /* if changing clocks, convert xtime_nsec shift units */
184 	if (old_clock) {
185 		int shift_change = clock->shift - old_clock->shift;
186 		if (shift_change < 0)
187 			tk->xtime_nsec >>= -shift_change;
188 		else
189 			tk->xtime_nsec <<= shift_change;
190 	}
191 	tk->shift = clock->shift;
192 
193 	tk->ntp_error = 0;
194 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
195 
196 	/*
197 	 * The timekeeper keeps its own mult values for the currently
198 	 * active clocksource. These value will be adjusted via NTP
199 	 * to counteract clock drifting.
200 	 */
201 	tk->mult = clock->mult;
202 }
203 
204 /* Timekeeper helper functions. */
205 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
206 {
207 	cycle_t cycle_now, cycle_delta;
208 	struct clocksource *clock;
209 	s64 nsec;
210 
211 	/* read clocksource: */
212 	clock = tk->clock;
213 	cycle_now = clock->read(clock);
214 
215 	/* calculate the delta since the last update_wall_time: */
216 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
217 
218 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
219 	nsec >>= tk->shift;
220 
221 	/* If arch requires, add in gettimeoffset() */
222 	return nsec + arch_gettimeoffset();
223 }
224 
225 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
226 {
227 	cycle_t cycle_now, cycle_delta;
228 	struct clocksource *clock;
229 	s64 nsec;
230 
231 	/* read clocksource: */
232 	clock = tk->clock;
233 	cycle_now = clock->read(clock);
234 
235 	/* calculate the delta since the last update_wall_time: */
236 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
237 
238 	/* convert delta to nanoseconds. */
239 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
240 
241 	/* If arch requires, add in gettimeoffset() */
242 	return nsec + arch_gettimeoffset();
243 }
244 
245 /* must hold write on timekeeper.lock */
246 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
247 {
248 	struct timespec xt;
249 
250 	if (clearntp) {
251 		tk->ntp_error = 0;
252 		ntp_clear();
253 	}
254 	xt = tk_xtime(tk);
255 	update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
256 }
257 
258 /**
259  * timekeeping_forward_now - update clock to the current time
260  *
261  * Forward the current clock to update its state since the last call to
262  * update_wall_time(). This is useful before significant clock changes,
263  * as it avoids having to deal with this time offset explicitly.
264  */
265 static void timekeeping_forward_now(struct timekeeper *tk)
266 {
267 	cycle_t cycle_now, cycle_delta;
268 	struct clocksource *clock;
269 	s64 nsec;
270 
271 	clock = tk->clock;
272 	cycle_now = clock->read(clock);
273 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
274 	clock->cycle_last = cycle_now;
275 
276 	tk->xtime_nsec += cycle_delta * tk->mult;
277 
278 	/* If arch requires, add in gettimeoffset() */
279 	tk->xtime_nsec += arch_gettimeoffset() << tk->shift;
280 
281 	tk_normalize_xtime(tk);
282 
283 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
284 	timespec_add_ns(&tk->raw_time, nsec);
285 }
286 
287 /**
288  * getnstimeofday - Returns the time of day in a timespec
289  * @ts:		pointer to the timespec to be set
290  *
291  * Returns the time of day in a timespec.
292  */
293 void getnstimeofday(struct timespec *ts)
294 {
295 	struct timekeeper *tk = &timekeeper;
296 	unsigned long seq;
297 	s64 nsecs = 0;
298 
299 	WARN_ON(timekeeping_suspended);
300 
301 	do {
302 		seq = read_seqbegin(&tk->lock);
303 
304 		ts->tv_sec = tk->xtime_sec;
305 		ts->tv_nsec = timekeeping_get_ns(tk);
306 
307 	} while (read_seqretry(&tk->lock, seq));
308 
309 	timespec_add_ns(ts, nsecs);
310 }
311 EXPORT_SYMBOL(getnstimeofday);
312 
313 ktime_t ktime_get(void)
314 {
315 	struct timekeeper *tk = &timekeeper;
316 	unsigned int seq;
317 	s64 secs, nsecs;
318 
319 	WARN_ON(timekeeping_suspended);
320 
321 	do {
322 		seq = read_seqbegin(&tk->lock);
323 		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
324 		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
325 
326 	} while (read_seqretry(&tk->lock, seq));
327 	/*
328 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
329 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
330 	 */
331 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
332 }
333 EXPORT_SYMBOL_GPL(ktime_get);
334 
335 /**
336  * ktime_get_ts - get the monotonic clock in timespec format
337  * @ts:		pointer to timespec variable
338  *
339  * The function calculates the monotonic clock from the realtime
340  * clock and the wall_to_monotonic offset and stores the result
341  * in normalized timespec format in the variable pointed to by @ts.
342  */
343 void ktime_get_ts(struct timespec *ts)
344 {
345 	struct timekeeper *tk = &timekeeper;
346 	struct timespec tomono;
347 	unsigned int seq;
348 
349 	WARN_ON(timekeeping_suspended);
350 
351 	do {
352 		seq = read_seqbegin(&tk->lock);
353 		ts->tv_sec = tk->xtime_sec;
354 		ts->tv_nsec = timekeeping_get_ns(tk);
355 		tomono = tk->wall_to_monotonic;
356 
357 	} while (read_seqretry(&tk->lock, seq));
358 
359 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
360 				ts->tv_nsec + tomono.tv_nsec);
361 }
362 EXPORT_SYMBOL_GPL(ktime_get_ts);
363 
364 #ifdef CONFIG_NTP_PPS
365 
366 /**
367  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
368  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
369  * @ts_real:	pointer to the timespec to be set to the time of day
370  *
371  * This function reads both the time of day and raw monotonic time at the
372  * same time atomically and stores the resulting timestamps in timespec
373  * format.
374  */
375 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
376 {
377 	struct timekeeper *tk = &timekeeper;
378 	unsigned long seq;
379 	s64 nsecs_raw, nsecs_real;
380 
381 	WARN_ON_ONCE(timekeeping_suspended);
382 
383 	do {
384 		seq = read_seqbegin(&tk->lock);
385 
386 		*ts_raw = tk->raw_time;
387 		ts_real->tv_sec = tk->xtime_sec;
388 		ts_real->tv_nsec = 0;
389 
390 		nsecs_raw = timekeeping_get_ns_raw(tk);
391 		nsecs_real = timekeeping_get_ns(tk);
392 
393 	} while (read_seqretry(&tk->lock, seq));
394 
395 	timespec_add_ns(ts_raw, nsecs_raw);
396 	timespec_add_ns(ts_real, nsecs_real);
397 }
398 EXPORT_SYMBOL(getnstime_raw_and_real);
399 
400 #endif /* CONFIG_NTP_PPS */
401 
402 /**
403  * do_gettimeofday - Returns the time of day in a timeval
404  * @tv:		pointer to the timeval to be set
405  *
406  * NOTE: Users should be converted to using getnstimeofday()
407  */
408 void do_gettimeofday(struct timeval *tv)
409 {
410 	struct timespec now;
411 
412 	getnstimeofday(&now);
413 	tv->tv_sec = now.tv_sec;
414 	tv->tv_usec = now.tv_nsec/1000;
415 }
416 EXPORT_SYMBOL(do_gettimeofday);
417 
418 /**
419  * do_settimeofday - Sets the time of day
420  * @tv:		pointer to the timespec variable containing the new time
421  *
422  * Sets the time of day to the new time and update NTP and notify hrtimers
423  */
424 int do_settimeofday(const struct timespec *tv)
425 {
426 	struct timekeeper *tk = &timekeeper;
427 	struct timespec ts_delta, xt;
428 	unsigned long flags;
429 
430 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
431 		return -EINVAL;
432 
433 	write_seqlock_irqsave(&tk->lock, flags);
434 
435 	timekeeping_forward_now(tk);
436 
437 	xt = tk_xtime(tk);
438 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
439 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
440 
441 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
442 
443 	tk_set_xtime(tk, tv);
444 
445 	timekeeping_update(tk, true);
446 
447 	write_sequnlock_irqrestore(&tk->lock, flags);
448 
449 	/* signal hrtimers about time change */
450 	clock_was_set();
451 
452 	return 0;
453 }
454 EXPORT_SYMBOL(do_settimeofday);
455 
456 /**
457  * timekeeping_inject_offset - Adds or subtracts from the current time.
458  * @tv:		pointer to the timespec variable containing the offset
459  *
460  * Adds or subtracts an offset value from the current time.
461  */
462 int timekeeping_inject_offset(struct timespec *ts)
463 {
464 	struct timekeeper *tk = &timekeeper;
465 	unsigned long flags;
466 
467 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
468 		return -EINVAL;
469 
470 	write_seqlock_irqsave(&tk->lock, flags);
471 
472 	timekeeping_forward_now(tk);
473 
474 
475 	tk_xtime_add(tk, ts);
476 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
477 
478 	timekeeping_update(tk, true);
479 
480 	write_sequnlock_irqrestore(&tk->lock, flags);
481 
482 	/* signal hrtimers about time change */
483 	clock_was_set();
484 
485 	return 0;
486 }
487 EXPORT_SYMBOL(timekeeping_inject_offset);
488 
489 /**
490  * change_clocksource - Swaps clocksources if a new one is available
491  *
492  * Accumulates current time interval and initializes new clocksource
493  */
494 static int change_clocksource(void *data)
495 {
496 	struct timekeeper *tk = &timekeeper;
497 	struct clocksource *new, *old;
498 	unsigned long flags;
499 
500 	new = (struct clocksource *) data;
501 
502 	write_seqlock_irqsave(&tk->lock, flags);
503 
504 	timekeeping_forward_now(tk);
505 	if (!new->enable || new->enable(new) == 0) {
506 		old = tk->clock;
507 		tk_setup_internals(tk, new);
508 		if (old->disable)
509 			old->disable(old);
510 	}
511 	timekeeping_update(tk, true);
512 
513 	write_sequnlock_irqrestore(&tk->lock, flags);
514 
515 	return 0;
516 }
517 
518 /**
519  * timekeeping_notify - Install a new clock source
520  * @clock:		pointer to the clock source
521  *
522  * This function is called from clocksource.c after a new, better clock
523  * source has been registered. The caller holds the clocksource_mutex.
524  */
525 void timekeeping_notify(struct clocksource *clock)
526 {
527 	struct timekeeper *tk = &timekeeper;
528 
529 	if (tk->clock == clock)
530 		return;
531 	stop_machine(change_clocksource, clock, NULL);
532 	tick_clock_notify();
533 }
534 
535 /**
536  * ktime_get_real - get the real (wall-) time in ktime_t format
537  *
538  * returns the time in ktime_t format
539  */
540 ktime_t ktime_get_real(void)
541 {
542 	struct timespec now;
543 
544 	getnstimeofday(&now);
545 
546 	return timespec_to_ktime(now);
547 }
548 EXPORT_SYMBOL_GPL(ktime_get_real);
549 
550 /**
551  * getrawmonotonic - Returns the raw monotonic time in a timespec
552  * @ts:		pointer to the timespec to be set
553  *
554  * Returns the raw monotonic time (completely un-modified by ntp)
555  */
556 void getrawmonotonic(struct timespec *ts)
557 {
558 	struct timekeeper *tk = &timekeeper;
559 	unsigned long seq;
560 	s64 nsecs;
561 
562 	do {
563 		seq = read_seqbegin(&tk->lock);
564 		nsecs = timekeeping_get_ns_raw(tk);
565 		*ts = tk->raw_time;
566 
567 	} while (read_seqretry(&tk->lock, seq));
568 
569 	timespec_add_ns(ts, nsecs);
570 }
571 EXPORT_SYMBOL(getrawmonotonic);
572 
573 /**
574  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
575  */
576 int timekeeping_valid_for_hres(void)
577 {
578 	struct timekeeper *tk = &timekeeper;
579 	unsigned long seq;
580 	int ret;
581 
582 	do {
583 		seq = read_seqbegin(&tk->lock);
584 
585 		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
586 
587 	} while (read_seqretry(&tk->lock, seq));
588 
589 	return ret;
590 }
591 
592 /**
593  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
594  */
595 u64 timekeeping_max_deferment(void)
596 {
597 	struct timekeeper *tk = &timekeeper;
598 	unsigned long seq;
599 	u64 ret;
600 
601 	do {
602 		seq = read_seqbegin(&tk->lock);
603 
604 		ret = tk->clock->max_idle_ns;
605 
606 	} while (read_seqretry(&tk->lock, seq));
607 
608 	return ret;
609 }
610 
611 /**
612  * read_persistent_clock -  Return time from the persistent clock.
613  *
614  * Weak dummy function for arches that do not yet support it.
615  * Reads the time from the battery backed persistent clock.
616  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
617  *
618  *  XXX - Do be sure to remove it once all arches implement it.
619  */
620 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
621 {
622 	ts->tv_sec = 0;
623 	ts->tv_nsec = 0;
624 }
625 
626 /**
627  * read_boot_clock -  Return time of the system start.
628  *
629  * Weak dummy function for arches that do not yet support it.
630  * Function to read the exact time the system has been started.
631  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
632  *
633  *  XXX - Do be sure to remove it once all arches implement it.
634  */
635 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
636 {
637 	ts->tv_sec = 0;
638 	ts->tv_nsec = 0;
639 }
640 
641 /*
642  * timekeeping_init - Initializes the clocksource and common timekeeping values
643  */
644 void __init timekeeping_init(void)
645 {
646 	struct timekeeper *tk = &timekeeper;
647 	struct clocksource *clock;
648 	unsigned long flags;
649 	struct timespec now, boot, tmp;
650 
651 	read_persistent_clock(&now);
652 	read_boot_clock(&boot);
653 
654 	seqlock_init(&tk->lock);
655 
656 	ntp_init();
657 
658 	write_seqlock_irqsave(&tk->lock, flags);
659 	clock = clocksource_default_clock();
660 	if (clock->enable)
661 		clock->enable(clock);
662 	tk_setup_internals(tk, clock);
663 
664 	tk_set_xtime(tk, &now);
665 	tk->raw_time.tv_sec = 0;
666 	tk->raw_time.tv_nsec = 0;
667 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
668 		boot = tk_xtime(tk);
669 
670 	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
671 	tk_set_wall_to_mono(tk, tmp);
672 
673 	tmp.tv_sec = 0;
674 	tmp.tv_nsec = 0;
675 	tk_set_sleep_time(tk, tmp);
676 
677 	write_sequnlock_irqrestore(&tk->lock, flags);
678 }
679 
680 /* time in seconds when suspend began */
681 static struct timespec timekeeping_suspend_time;
682 
683 /**
684  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
685  * @delta: pointer to a timespec delta value
686  *
687  * Takes a timespec offset measuring a suspend interval and properly
688  * adds the sleep offset to the timekeeping variables.
689  */
690 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
691 							struct timespec *delta)
692 {
693 	if (!timespec_valid(delta)) {
694 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
695 					"sleep delta value!\n");
696 		return;
697 	}
698 	tk_xtime_add(tk, delta);
699 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
700 	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
701 }
702 
703 /**
704  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
705  * @delta: pointer to a timespec delta value
706  *
707  * This hook is for architectures that cannot support read_persistent_clock
708  * because their RTC/persistent clock is only accessible when irqs are enabled.
709  *
710  * This function should only be called by rtc_resume(), and allows
711  * a suspend offset to be injected into the timekeeping values.
712  */
713 void timekeeping_inject_sleeptime(struct timespec *delta)
714 {
715 	struct timekeeper *tk = &timekeeper;
716 	unsigned long flags;
717 	struct timespec ts;
718 
719 	/* Make sure we don't set the clock twice */
720 	read_persistent_clock(&ts);
721 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
722 		return;
723 
724 	write_seqlock_irqsave(&tk->lock, flags);
725 
726 	timekeeping_forward_now(tk);
727 
728 	__timekeeping_inject_sleeptime(tk, delta);
729 
730 	timekeeping_update(tk, true);
731 
732 	write_sequnlock_irqrestore(&tk->lock, flags);
733 
734 	/* signal hrtimers about time change */
735 	clock_was_set();
736 }
737 
738 /**
739  * timekeeping_resume - Resumes the generic timekeeping subsystem.
740  *
741  * This is for the generic clocksource timekeeping.
742  * xtime/wall_to_monotonic/jiffies/etc are
743  * still managed by arch specific suspend/resume code.
744  */
745 static void timekeeping_resume(void)
746 {
747 	struct timekeeper *tk = &timekeeper;
748 	unsigned long flags;
749 	struct timespec ts;
750 
751 	read_persistent_clock(&ts);
752 
753 	clocksource_resume();
754 
755 	write_seqlock_irqsave(&tk->lock, flags);
756 
757 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
758 		ts = timespec_sub(ts, timekeeping_suspend_time);
759 		__timekeeping_inject_sleeptime(tk, &ts);
760 	}
761 	/* re-base the last cycle value */
762 	tk->clock->cycle_last = tk->clock->read(tk->clock);
763 	tk->ntp_error = 0;
764 	timekeeping_suspended = 0;
765 	timekeeping_update(tk, false);
766 	write_sequnlock_irqrestore(&tk->lock, flags);
767 
768 	touch_softlockup_watchdog();
769 
770 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
771 
772 	/* Resume hrtimers */
773 	hrtimers_resume();
774 }
775 
776 static int timekeeping_suspend(void)
777 {
778 	struct timekeeper *tk = &timekeeper;
779 	unsigned long flags;
780 	struct timespec		delta, delta_delta;
781 	static struct timespec	old_delta;
782 
783 	read_persistent_clock(&timekeeping_suspend_time);
784 
785 	write_seqlock_irqsave(&tk->lock, flags);
786 	timekeeping_forward_now(tk);
787 	timekeeping_suspended = 1;
788 
789 	/*
790 	 * To avoid drift caused by repeated suspend/resumes,
791 	 * which each can add ~1 second drift error,
792 	 * try to compensate so the difference in system time
793 	 * and persistent_clock time stays close to constant.
794 	 */
795 	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
796 	delta_delta = timespec_sub(delta, old_delta);
797 	if (abs(delta_delta.tv_sec)  >= 2) {
798 		/*
799 		 * if delta_delta is too large, assume time correction
800 		 * has occured and set old_delta to the current delta.
801 		 */
802 		old_delta = delta;
803 	} else {
804 		/* Otherwise try to adjust old_system to compensate */
805 		timekeeping_suspend_time =
806 			timespec_add(timekeeping_suspend_time, delta_delta);
807 	}
808 	write_sequnlock_irqrestore(&tk->lock, flags);
809 
810 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
811 	clocksource_suspend();
812 
813 	return 0;
814 }
815 
816 /* sysfs resume/suspend bits for timekeeping */
817 static struct syscore_ops timekeeping_syscore_ops = {
818 	.resume		= timekeeping_resume,
819 	.suspend	= timekeeping_suspend,
820 };
821 
822 static int __init timekeeping_init_ops(void)
823 {
824 	register_syscore_ops(&timekeeping_syscore_ops);
825 	return 0;
826 }
827 
828 device_initcall(timekeeping_init_ops);
829 
830 /*
831  * If the error is already larger, we look ahead even further
832  * to compensate for late or lost adjustments.
833  */
834 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
835 						 s64 error, s64 *interval,
836 						 s64 *offset)
837 {
838 	s64 tick_error, i;
839 	u32 look_ahead, adj;
840 	s32 error2, mult;
841 
842 	/*
843 	 * Use the current error value to determine how much to look ahead.
844 	 * The larger the error the slower we adjust for it to avoid problems
845 	 * with losing too many ticks, otherwise we would overadjust and
846 	 * produce an even larger error.  The smaller the adjustment the
847 	 * faster we try to adjust for it, as lost ticks can do less harm
848 	 * here.  This is tuned so that an error of about 1 msec is adjusted
849 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
850 	 */
851 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
852 	error2 = abs(error2);
853 	for (look_ahead = 0; error2 > 0; look_ahead++)
854 		error2 >>= 2;
855 
856 	/*
857 	 * Now calculate the error in (1 << look_ahead) ticks, but first
858 	 * remove the single look ahead already included in the error.
859 	 */
860 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
861 	tick_error -= tk->xtime_interval >> 1;
862 	error = ((error - tick_error) >> look_ahead) + tick_error;
863 
864 	/* Finally calculate the adjustment shift value.  */
865 	i = *interval;
866 	mult = 1;
867 	if (error < 0) {
868 		error = -error;
869 		*interval = -*interval;
870 		*offset = -*offset;
871 		mult = -1;
872 	}
873 	for (adj = 0; error > i; adj++)
874 		error >>= 1;
875 
876 	*interval <<= adj;
877 	*offset <<= adj;
878 	return mult << adj;
879 }
880 
881 /*
882  * Adjust the multiplier to reduce the error value,
883  * this is optimized for the most common adjustments of -1,0,1,
884  * for other values we can do a bit more work.
885  */
886 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
887 {
888 	s64 error, interval = tk->cycle_interval;
889 	int adj;
890 
891 	/*
892 	 * The point of this is to check if the error is greater than half
893 	 * an interval.
894 	 *
895 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
896 	 *
897 	 * Note we subtract one in the shift, so that error is really error*2.
898 	 * This "saves" dividing(shifting) interval twice, but keeps the
899 	 * (error > interval) comparison as still measuring if error is
900 	 * larger than half an interval.
901 	 *
902 	 * Note: It does not "save" on aggravation when reading the code.
903 	 */
904 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
905 	if (error > interval) {
906 		/*
907 		 * We now divide error by 4(via shift), which checks if
908 		 * the error is greater than twice the interval.
909 		 * If it is greater, we need a bigadjust, if its smaller,
910 		 * we can adjust by 1.
911 		 */
912 		error >>= 2;
913 		/*
914 		 * XXX - In update_wall_time, we round up to the next
915 		 * nanosecond, and store the amount rounded up into
916 		 * the error. This causes the likely below to be unlikely.
917 		 *
918 		 * The proper fix is to avoid rounding up by using
919 		 * the high precision tk->xtime_nsec instead of
920 		 * xtime.tv_nsec everywhere. Fixing this will take some
921 		 * time.
922 		 */
923 		if (likely(error <= interval))
924 			adj = 1;
925 		else
926 			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
927 	} else {
928 		if (error < -interval) {
929 			/* See comment above, this is just switched for the negative */
930 			error >>= 2;
931 			if (likely(error >= -interval)) {
932 				adj = -1;
933 				interval = -interval;
934 				offset = -offset;
935 			} else {
936 				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
937 			}
938 		} else {
939 			goto out_adjust;
940 		}
941 	}
942 
943 	if (unlikely(tk->clock->maxadj &&
944 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
945 		printk_once(KERN_WARNING
946 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
947 			tk->clock->name, (long)tk->mult + adj,
948 			(long)tk->clock->mult + tk->clock->maxadj);
949 	}
950 	/*
951 	 * So the following can be confusing.
952 	 *
953 	 * To keep things simple, lets assume adj == 1 for now.
954 	 *
955 	 * When adj != 1, remember that the interval and offset values
956 	 * have been appropriately scaled so the math is the same.
957 	 *
958 	 * The basic idea here is that we're increasing the multiplier
959 	 * by one, this causes the xtime_interval to be incremented by
960 	 * one cycle_interval. This is because:
961 	 *	xtime_interval = cycle_interval * mult
962 	 * So if mult is being incremented by one:
963 	 *	xtime_interval = cycle_interval * (mult + 1)
964 	 * Its the same as:
965 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
966 	 * Which can be shortened to:
967 	 *	xtime_interval += cycle_interval
968 	 *
969 	 * So offset stores the non-accumulated cycles. Thus the current
970 	 * time (in shifted nanoseconds) is:
971 	 *	now = (offset * adj) + xtime_nsec
972 	 * Now, even though we're adjusting the clock frequency, we have
973 	 * to keep time consistent. In other words, we can't jump back
974 	 * in time, and we also want to avoid jumping forward in time.
975 	 *
976 	 * So given the same offset value, we need the time to be the same
977 	 * both before and after the freq adjustment.
978 	 *	now = (offset * adj_1) + xtime_nsec_1
979 	 *	now = (offset * adj_2) + xtime_nsec_2
980 	 * So:
981 	 *	(offset * adj_1) + xtime_nsec_1 =
982 	 *		(offset * adj_2) + xtime_nsec_2
983 	 * And we know:
984 	 *	adj_2 = adj_1 + 1
985 	 * So:
986 	 *	(offset * adj_1) + xtime_nsec_1 =
987 	 *		(offset * (adj_1+1)) + xtime_nsec_2
988 	 *	(offset * adj_1) + xtime_nsec_1 =
989 	 *		(offset * adj_1) + offset + xtime_nsec_2
990 	 * Canceling the sides:
991 	 *	xtime_nsec_1 = offset + xtime_nsec_2
992 	 * Which gives us:
993 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
994 	 * Which simplfies to:
995 	 *	xtime_nsec -= offset
996 	 *
997 	 * XXX - TODO: Doc ntp_error calculation.
998 	 */
999 	tk->mult += adj;
1000 	tk->xtime_interval += interval;
1001 	tk->xtime_nsec -= offset;
1002 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1003 
1004 out_adjust:
1005 	/*
1006 	 * It may be possible that when we entered this function, xtime_nsec
1007 	 * was very small.  Further, if we're slightly speeding the clocksource
1008 	 * in the code above, its possible the required corrective factor to
1009 	 * xtime_nsec could cause it to underflow.
1010 	 *
1011 	 * Now, since we already accumulated the second, cannot simply roll
1012 	 * the accumulated second back, since the NTP subsystem has been
1013 	 * notified via second_overflow. So instead we push xtime_nsec forward
1014 	 * by the amount we underflowed, and add that amount into the error.
1015 	 *
1016 	 * We'll correct this error next time through this function, when
1017 	 * xtime_nsec is not as small.
1018 	 */
1019 	if (unlikely((s64)tk->xtime_nsec < 0)) {
1020 		s64 neg = -(s64)tk->xtime_nsec;
1021 		tk->xtime_nsec = 0;
1022 		tk->ntp_error += neg << tk->ntp_error_shift;
1023 	}
1024 
1025 }
1026 
1027 /**
1028  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1029  *
1030  * Helper function that accumulates a the nsecs greater then a second
1031  * from the xtime_nsec field to the xtime_secs field.
1032  * It also calls into the NTP code to handle leapsecond processing.
1033  *
1034  */
1035 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1036 {
1037 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1038 
1039 	while (tk->xtime_nsec >= nsecps) {
1040 		int leap;
1041 
1042 		tk->xtime_nsec -= nsecps;
1043 		tk->xtime_sec++;
1044 
1045 		/* Figure out if its a leap sec and apply if needed */
1046 		leap = second_overflow(tk->xtime_sec);
1047 		if (unlikely(leap)) {
1048 			struct timespec ts;
1049 
1050 			tk->xtime_sec += leap;
1051 
1052 			ts.tv_sec = leap;
1053 			ts.tv_nsec = 0;
1054 			tk_set_wall_to_mono(tk,
1055 				timespec_sub(tk->wall_to_monotonic, ts));
1056 
1057 			clock_was_set_delayed();
1058 		}
1059 	}
1060 }
1061 
1062 /**
1063  * logarithmic_accumulation - shifted accumulation of cycles
1064  *
1065  * This functions accumulates a shifted interval of cycles into
1066  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1067  * loop.
1068  *
1069  * Returns the unconsumed cycles.
1070  */
1071 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1072 						u32 shift)
1073 {
1074 	u64 raw_nsecs;
1075 
1076 	/* If the offset is smaller then a shifted interval, do nothing */
1077 	if (offset < tk->cycle_interval<<shift)
1078 		return offset;
1079 
1080 	/* Accumulate one shifted interval */
1081 	offset -= tk->cycle_interval << shift;
1082 	tk->clock->cycle_last += tk->cycle_interval << shift;
1083 
1084 	tk->xtime_nsec += tk->xtime_interval << shift;
1085 	accumulate_nsecs_to_secs(tk);
1086 
1087 	/* Accumulate raw time */
1088 	raw_nsecs = tk->raw_interval << shift;
1089 	raw_nsecs += tk->raw_time.tv_nsec;
1090 	if (raw_nsecs >= NSEC_PER_SEC) {
1091 		u64 raw_secs = raw_nsecs;
1092 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1093 		tk->raw_time.tv_sec += raw_secs;
1094 	}
1095 	tk->raw_time.tv_nsec = raw_nsecs;
1096 
1097 	/* Accumulate error between NTP and clock interval */
1098 	tk->ntp_error += ntp_tick_length() << shift;
1099 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1100 						(tk->ntp_error_shift + shift);
1101 
1102 	return offset;
1103 }
1104 
1105 /**
1106  * update_wall_time - Uses the current clocksource to increment the wall time
1107  *
1108  */
1109 static void update_wall_time(void)
1110 {
1111 	struct clocksource *clock;
1112 	struct timekeeper *tk = &timekeeper;
1113 	cycle_t offset;
1114 	int shift = 0, maxshift;
1115 	unsigned long flags;
1116 	s64 remainder;
1117 
1118 	write_seqlock_irqsave(&tk->lock, flags);
1119 
1120 	/* Make sure we're fully resumed: */
1121 	if (unlikely(timekeeping_suspended))
1122 		goto out;
1123 
1124 	clock = tk->clock;
1125 
1126 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1127 	offset = tk->cycle_interval;
1128 #else
1129 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1130 #endif
1131 
1132 	/*
1133 	 * With NO_HZ we may have to accumulate many cycle_intervals
1134 	 * (think "ticks") worth of time at once. To do this efficiently,
1135 	 * we calculate the largest doubling multiple of cycle_intervals
1136 	 * that is smaller than the offset.  We then accumulate that
1137 	 * chunk in one go, and then try to consume the next smaller
1138 	 * doubled multiple.
1139 	 */
1140 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1141 	shift = max(0, shift);
1142 	/* Bound shift to one less than what overflows tick_length */
1143 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1144 	shift = min(shift, maxshift);
1145 	while (offset >= tk->cycle_interval) {
1146 		offset = logarithmic_accumulation(tk, offset, shift);
1147 		if (offset < tk->cycle_interval<<shift)
1148 			shift--;
1149 	}
1150 
1151 	/* correct the clock when NTP error is too big */
1152 	timekeeping_adjust(tk, offset);
1153 
1154 
1155 	/*
1156 	* Store only full nanoseconds into xtime_nsec after rounding
1157 	* it up and add the remainder to the error difference.
1158 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1159 	* by truncating the remainder in vsyscalls. However, it causes
1160 	* additional work to be done in timekeeping_adjust(). Once
1161 	* the vsyscall implementations are converted to use xtime_nsec
1162 	* (shifted nanoseconds), this can be killed.
1163 	*/
1164 	remainder = tk->xtime_nsec & ((1 << tk->shift) - 1);
1165 	tk->xtime_nsec -= remainder;
1166 	tk->xtime_nsec += 1 << tk->shift;
1167 	tk->ntp_error += remainder << tk->ntp_error_shift;
1168 
1169 	/*
1170 	 * Finally, make sure that after the rounding
1171 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1172 	 */
1173 	accumulate_nsecs_to_secs(tk);
1174 
1175 	timekeeping_update(tk, false);
1176 
1177 out:
1178 	write_sequnlock_irqrestore(&tk->lock, flags);
1179 
1180 }
1181 
1182 /**
1183  * getboottime - Return the real time of system boot.
1184  * @ts:		pointer to the timespec to be set
1185  *
1186  * Returns the wall-time of boot in a timespec.
1187  *
1188  * This is based on the wall_to_monotonic offset and the total suspend
1189  * time. Calls to settimeofday will affect the value returned (which
1190  * basically means that however wrong your real time clock is at boot time,
1191  * you get the right time here).
1192  */
1193 void getboottime(struct timespec *ts)
1194 {
1195 	struct timekeeper *tk = &timekeeper;
1196 	struct timespec boottime = {
1197 		.tv_sec = tk->wall_to_monotonic.tv_sec +
1198 				tk->total_sleep_time.tv_sec,
1199 		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
1200 				tk->total_sleep_time.tv_nsec
1201 	};
1202 
1203 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1204 }
1205 EXPORT_SYMBOL_GPL(getboottime);
1206 
1207 /**
1208  * get_monotonic_boottime - Returns monotonic time since boot
1209  * @ts:		pointer to the timespec to be set
1210  *
1211  * Returns the monotonic time since boot in a timespec.
1212  *
1213  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1214  * includes the time spent in suspend.
1215  */
1216 void get_monotonic_boottime(struct timespec *ts)
1217 {
1218 	struct timekeeper *tk = &timekeeper;
1219 	struct timespec tomono, sleep;
1220 	unsigned int seq;
1221 
1222 	WARN_ON(timekeeping_suspended);
1223 
1224 	do {
1225 		seq = read_seqbegin(&tk->lock);
1226 		ts->tv_sec = tk->xtime_sec;
1227 		ts->tv_nsec = timekeeping_get_ns(tk);
1228 		tomono = tk->wall_to_monotonic;
1229 		sleep = tk->total_sleep_time;
1230 
1231 	} while (read_seqretry(&tk->lock, seq));
1232 
1233 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1234 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1235 }
1236 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1237 
1238 /**
1239  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1240  *
1241  * Returns the monotonic time since boot in a ktime
1242  *
1243  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1244  * includes the time spent in suspend.
1245  */
1246 ktime_t ktime_get_boottime(void)
1247 {
1248 	struct timespec ts;
1249 
1250 	get_monotonic_boottime(&ts);
1251 	return timespec_to_ktime(ts);
1252 }
1253 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1254 
1255 /**
1256  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1257  * @ts:		pointer to the timespec to be converted
1258  */
1259 void monotonic_to_bootbased(struct timespec *ts)
1260 {
1261 	struct timekeeper *tk = &timekeeper;
1262 
1263 	*ts = timespec_add(*ts, tk->total_sleep_time);
1264 }
1265 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1266 
1267 unsigned long get_seconds(void)
1268 {
1269 	struct timekeeper *tk = &timekeeper;
1270 
1271 	return tk->xtime_sec;
1272 }
1273 EXPORT_SYMBOL(get_seconds);
1274 
1275 struct timespec __current_kernel_time(void)
1276 {
1277 	struct timekeeper *tk = &timekeeper;
1278 
1279 	return tk_xtime(tk);
1280 }
1281 
1282 struct timespec current_kernel_time(void)
1283 {
1284 	struct timekeeper *tk = &timekeeper;
1285 	struct timespec now;
1286 	unsigned long seq;
1287 
1288 	do {
1289 		seq = read_seqbegin(&tk->lock);
1290 
1291 		now = tk_xtime(tk);
1292 	} while (read_seqretry(&tk->lock, seq));
1293 
1294 	return now;
1295 }
1296 EXPORT_SYMBOL(current_kernel_time);
1297 
1298 struct timespec get_monotonic_coarse(void)
1299 {
1300 	struct timekeeper *tk = &timekeeper;
1301 	struct timespec now, mono;
1302 	unsigned long seq;
1303 
1304 	do {
1305 		seq = read_seqbegin(&tk->lock);
1306 
1307 		now = tk_xtime(tk);
1308 		mono = tk->wall_to_monotonic;
1309 	} while (read_seqretry(&tk->lock, seq));
1310 
1311 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1312 				now.tv_nsec + mono.tv_nsec);
1313 	return now;
1314 }
1315 
1316 /*
1317  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1318  * without sampling the sequence number in xtime_lock.
1319  * jiffies is defined in the linker script...
1320  */
1321 void do_timer(unsigned long ticks)
1322 {
1323 	jiffies_64 += ticks;
1324 	update_wall_time();
1325 	calc_global_load(ticks);
1326 }
1327 
1328 /**
1329  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1330  *    and sleep offsets.
1331  * @xtim:	pointer to timespec to be set with xtime
1332  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1333  * @sleep:	pointer to timespec to be set with time in suspend
1334  */
1335 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1336 				struct timespec *wtom, struct timespec *sleep)
1337 {
1338 	struct timekeeper *tk = &timekeeper;
1339 	unsigned long seq;
1340 
1341 	do {
1342 		seq = read_seqbegin(&tk->lock);
1343 		*xtim = tk_xtime(tk);
1344 		*wtom = tk->wall_to_monotonic;
1345 		*sleep = tk->total_sleep_time;
1346 	} while (read_seqretry(&tk->lock, seq));
1347 }
1348 
1349 #ifdef CONFIG_HIGH_RES_TIMERS
1350 /**
1351  * ktime_get_update_offsets - hrtimer helper
1352  * @offs_real:	pointer to storage for monotonic -> realtime offset
1353  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1354  *
1355  * Returns current monotonic time and updates the offsets
1356  * Called from hrtimer_interupt() or retrigger_next_event()
1357  */
1358 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1359 {
1360 	struct timekeeper *tk = &timekeeper;
1361 	ktime_t now;
1362 	unsigned int seq;
1363 	u64 secs, nsecs;
1364 
1365 	do {
1366 		seq = read_seqbegin(&tk->lock);
1367 
1368 		secs = tk->xtime_sec;
1369 		nsecs = timekeeping_get_ns(tk);
1370 
1371 		*offs_real = tk->offs_real;
1372 		*offs_boot = tk->offs_boot;
1373 	} while (read_seqretry(&tk->lock, seq));
1374 
1375 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1376 	now = ktime_sub(now, *offs_real);
1377 	return now;
1378 }
1379 #endif
1380 
1381 /**
1382  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1383  */
1384 ktime_t ktime_get_monotonic_offset(void)
1385 {
1386 	struct timekeeper *tk = &timekeeper;
1387 	unsigned long seq;
1388 	struct timespec wtom;
1389 
1390 	do {
1391 		seq = read_seqbegin(&tk->lock);
1392 		wtom = tk->wall_to_monotonic;
1393 	} while (read_seqretry(&tk->lock, seq));
1394 
1395 	return timespec_to_ktime(wtom);
1396 }
1397 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1398 
1399 /**
1400  * xtime_update() - advances the timekeeping infrastructure
1401  * @ticks:	number of ticks, that have elapsed since the last call.
1402  *
1403  * Must be called with interrupts disabled.
1404  */
1405 void xtime_update(unsigned long ticks)
1406 {
1407 	write_seqlock(&xtime_lock);
1408 	do_timer(ticks);
1409 	write_sequnlock(&xtime_lock);
1410 }
1411