1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_CLOCK_WAS_SET (1 << 1) 34 35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 36 37 enum timekeeping_adv_mode { 38 /* Update timekeeper when a tick has passed */ 39 TK_ADV_TICK, 40 41 /* Update timekeeper on a direct frequency change */ 42 TK_ADV_FREQ 43 }; 44 45 /* 46 * The most important data for readout fits into a single 64 byte 47 * cache line. 48 */ 49 struct tk_data { 50 seqcount_raw_spinlock_t seq; 51 struct timekeeper timekeeper; 52 struct timekeeper shadow_timekeeper; 53 raw_spinlock_t lock; 54 } ____cacheline_aligned; 55 56 static struct tk_data tk_core; 57 58 /* flag for if timekeeping is suspended */ 59 int __read_mostly timekeeping_suspended; 60 61 /** 62 * struct tk_fast - NMI safe timekeeper 63 * @seq: Sequence counter for protecting updates. The lowest bit 64 * is the index for the tk_read_base array 65 * @base: tk_read_base array. Access is indexed by the lowest bit of 66 * @seq. 67 * 68 * See @update_fast_timekeeper() below. 69 */ 70 struct tk_fast { 71 seqcount_latch_t seq; 72 struct tk_read_base base[2]; 73 }; 74 75 /* Suspend-time cycles value for halted fast timekeeper. */ 76 static u64 cycles_at_suspend; 77 78 static u64 dummy_clock_read(struct clocksource *cs) 79 { 80 if (timekeeping_suspended) 81 return cycles_at_suspend; 82 return local_clock(); 83 } 84 85 static struct clocksource dummy_clock = { 86 .read = dummy_clock_read, 87 }; 88 89 /* 90 * Boot time initialization which allows local_clock() to be utilized 91 * during early boot when clocksources are not available. local_clock() 92 * returns nanoseconds already so no conversion is required, hence mult=1 93 * and shift=0. When the first proper clocksource is installed then 94 * the fast time keepers are updated with the correct values. 95 */ 96 #define FAST_TK_INIT \ 97 { \ 98 .clock = &dummy_clock, \ 99 .mask = CLOCKSOURCE_MASK(64), \ 100 .mult = 1, \ 101 .shift = 0, \ 102 } 103 104 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 106 .base[0] = FAST_TK_INIT, 107 .base[1] = FAST_TK_INIT, 108 }; 109 110 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 112 .base[0] = FAST_TK_INIT, 113 .base[1] = FAST_TK_INIT, 114 }; 115 116 unsigned long timekeeper_lock_irqsave(void) 117 { 118 unsigned long flags; 119 120 raw_spin_lock_irqsave(&tk_core.lock, flags); 121 return flags; 122 } 123 124 void timekeeper_unlock_irqrestore(unsigned long flags) 125 { 126 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 127 } 128 129 /* 130 * Multigrain timestamps require tracking the latest fine-grained timestamp 131 * that has been issued, and never returning a coarse-grained timestamp that is 132 * earlier than that value. 133 * 134 * mg_floor represents the latest fine-grained time that has been handed out as 135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 136 * converted to a realtime clock value on an as-needed basis. 137 * 138 * Maintaining mg_floor ensures the multigrain interfaces never issue a 139 * timestamp earlier than one that has been previously issued. 140 * 141 * The exception to this rule is when there is a backward realtime clock jump. If 142 * such an event occurs, a timestamp can appear to be earlier than a previous one. 143 */ 144 static __cacheline_aligned_in_smp atomic64_t mg_floor; 145 146 static inline void tk_normalize_xtime(struct timekeeper *tk) 147 { 148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 150 tk->xtime_sec++; 151 } 152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 154 tk->raw_sec++; 155 } 156 } 157 158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 159 { 160 struct timespec64 ts; 161 162 ts.tv_sec = tk->xtime_sec; 163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 164 return ts; 165 } 166 167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 168 { 169 tk->xtime_sec = ts->tv_sec; 170 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 171 } 172 173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 174 { 175 tk->xtime_sec += ts->tv_sec; 176 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 177 tk_normalize_xtime(tk); 178 } 179 180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 181 { 182 struct timespec64 tmp; 183 184 /* 185 * Verify consistency of: offset_real = -wall_to_monotonic 186 * before modifying anything 187 */ 188 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 189 -tk->wall_to_monotonic.tv_nsec); 190 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 191 tk->wall_to_monotonic = wtm; 192 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 193 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 194 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 195 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 196 } 197 198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 199 { 200 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 201 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 202 /* 203 * Timespec representation for VDSO update to avoid 64bit division 204 * on every update. 205 */ 206 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 207 } 208 209 /* 210 * tk_clock_read - atomic clocksource read() helper 211 * 212 * This helper is necessary to use in the read paths because, while the 213 * seqcount ensures we don't return a bad value while structures are updated, 214 * it doesn't protect from potential crashes. There is the possibility that 215 * the tkr's clocksource may change between the read reference, and the 216 * clock reference passed to the read function. This can cause crashes if 217 * the wrong clocksource is passed to the wrong read function. 218 * This isn't necessary to use when holding the tk_core.lock or doing 219 * a read of the fast-timekeeper tkrs (which is protected by its own locking 220 * and update logic). 221 */ 222 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 223 { 224 struct clocksource *clock = READ_ONCE(tkr->clock); 225 226 return clock->read(clock); 227 } 228 229 /** 230 * tk_setup_internals - Set up internals to use clocksource clock. 231 * 232 * @tk: The target timekeeper to setup. 233 * @clock: Pointer to clocksource. 234 * 235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 236 * pair and interval request. 237 * 238 * Unless you're the timekeeping code, you should not be using this! 239 */ 240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 241 { 242 u64 interval; 243 u64 tmp, ntpinterval; 244 struct clocksource *old_clock; 245 246 ++tk->cs_was_changed_seq; 247 old_clock = tk->tkr_mono.clock; 248 tk->tkr_mono.clock = clock; 249 tk->tkr_mono.mask = clock->mask; 250 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 251 252 tk->tkr_raw.clock = clock; 253 tk->tkr_raw.mask = clock->mask; 254 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 255 256 /* Do the ns -> cycle conversion first, using original mult */ 257 tmp = NTP_INTERVAL_LENGTH; 258 tmp <<= clock->shift; 259 ntpinterval = tmp; 260 tmp += clock->mult/2; 261 do_div(tmp, clock->mult); 262 if (tmp == 0) 263 tmp = 1; 264 265 interval = (u64) tmp; 266 tk->cycle_interval = interval; 267 268 /* Go back from cycles -> shifted ns */ 269 tk->xtime_interval = interval * clock->mult; 270 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 271 tk->raw_interval = interval * clock->mult; 272 273 /* if changing clocks, convert xtime_nsec shift units */ 274 if (old_clock) { 275 int shift_change = clock->shift - old_clock->shift; 276 if (shift_change < 0) { 277 tk->tkr_mono.xtime_nsec >>= -shift_change; 278 tk->tkr_raw.xtime_nsec >>= -shift_change; 279 } else { 280 tk->tkr_mono.xtime_nsec <<= shift_change; 281 tk->tkr_raw.xtime_nsec <<= shift_change; 282 } 283 } 284 285 tk->tkr_mono.shift = clock->shift; 286 tk->tkr_raw.shift = clock->shift; 287 288 tk->ntp_error = 0; 289 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 290 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 291 292 /* 293 * The timekeeper keeps its own mult values for the currently 294 * active clocksource. These value will be adjusted via NTP 295 * to counteract clock drifting. 296 */ 297 tk->tkr_mono.mult = clock->mult; 298 tk->tkr_raw.mult = clock->mult; 299 tk->ntp_err_mult = 0; 300 tk->skip_second_overflow = 0; 301 } 302 303 /* Timekeeper helper functions. */ 304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 305 { 306 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 307 } 308 309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 310 { 311 /* Calculate the delta since the last update_wall_time() */ 312 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 313 314 /* 315 * This detects both negative motion and the case where the delta 316 * overflows the multiplication with tkr->mult. 317 */ 318 if (unlikely(delta > tkr->clock->max_cycles)) { 319 /* 320 * Handle clocksource inconsistency between CPUs to prevent 321 * time from going backwards by checking for the MSB of the 322 * mask being set in the delta. 323 */ 324 if (delta & ~(mask >> 1)) 325 return tkr->xtime_nsec >> tkr->shift; 326 327 return delta_to_ns_safe(tkr, delta); 328 } 329 330 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 331 } 332 333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 334 { 335 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 336 } 337 338 /** 339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 340 * @tkr: Timekeeping readout base from which we take the update 341 * @tkf: Pointer to NMI safe timekeeper 342 * 343 * We want to use this from any context including NMI and tracing / 344 * instrumenting the timekeeping code itself. 345 * 346 * Employ the latch technique; see @write_seqcount_latch. 347 * 348 * So if a NMI hits the update of base[0] then it will use base[1] 349 * which is still consistent. In the worst case this can result is a 350 * slightly wrong timestamp (a few nanoseconds). See 351 * @ktime_get_mono_fast_ns. 352 */ 353 static void update_fast_timekeeper(const struct tk_read_base *tkr, 354 struct tk_fast *tkf) 355 { 356 struct tk_read_base *base = tkf->base; 357 358 /* Force readers off to base[1] */ 359 write_seqcount_latch_begin(&tkf->seq); 360 361 /* Update base[0] */ 362 memcpy(base, tkr, sizeof(*base)); 363 364 /* Force readers back to base[0] */ 365 write_seqcount_latch(&tkf->seq); 366 367 /* Update base[1] */ 368 memcpy(base + 1, base, sizeof(*base)); 369 370 write_seqcount_latch_end(&tkf->seq); 371 } 372 373 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 374 { 375 struct tk_read_base *tkr; 376 unsigned int seq; 377 u64 now; 378 379 do { 380 seq = read_seqcount_latch(&tkf->seq); 381 tkr = tkf->base + (seq & 0x01); 382 now = ktime_to_ns(tkr->base); 383 now += timekeeping_get_ns(tkr); 384 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 385 386 return now; 387 } 388 389 /** 390 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 391 * 392 * This timestamp is not guaranteed to be monotonic across an update. 393 * The timestamp is calculated by: 394 * 395 * now = base_mono + clock_delta * slope 396 * 397 * So if the update lowers the slope, readers who are forced to the 398 * not yet updated second array are still using the old steeper slope. 399 * 400 * tmono 401 * ^ 402 * | o n 403 * | o n 404 * | u 405 * | o 406 * |o 407 * |12345678---> reader order 408 * 409 * o = old slope 410 * u = update 411 * n = new slope 412 * 413 * So reader 6 will observe time going backwards versus reader 5. 414 * 415 * While other CPUs are likely to be able to observe that, the only way 416 * for a CPU local observation is when an NMI hits in the middle of 417 * the update. Timestamps taken from that NMI context might be ahead 418 * of the following timestamps. Callers need to be aware of that and 419 * deal with it. 420 */ 421 u64 notrace ktime_get_mono_fast_ns(void) 422 { 423 return __ktime_get_fast_ns(&tk_fast_mono); 424 } 425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 426 427 /** 428 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 429 * 430 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 431 * conversion factor is not affected by NTP/PTP correction. 432 */ 433 u64 notrace ktime_get_raw_fast_ns(void) 434 { 435 return __ktime_get_fast_ns(&tk_fast_raw); 436 } 437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 438 439 /** 440 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 441 * 442 * To keep it NMI safe since we're accessing from tracing, we're not using a 443 * separate timekeeper with updates to monotonic clock and boot offset 444 * protected with seqcounts. This has the following minor side effects: 445 * 446 * (1) Its possible that a timestamp be taken after the boot offset is updated 447 * but before the timekeeper is updated. If this happens, the new boot offset 448 * is added to the old timekeeping making the clock appear to update slightly 449 * earlier: 450 * CPU 0 CPU 1 451 * timekeeping_inject_sleeptime64() 452 * __timekeeping_inject_sleeptime(tk, delta); 453 * timestamp(); 454 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 455 * 456 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 457 * partially updated. Since the tk->offs_boot update is a rare event, this 458 * should be a rare occurrence which postprocessing should be able to handle. 459 * 460 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 461 * apply as well. 462 */ 463 u64 notrace ktime_get_boot_fast_ns(void) 464 { 465 struct timekeeper *tk = &tk_core.timekeeper; 466 467 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 468 } 469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 470 471 /** 472 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 473 * 474 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 475 * mono time and the TAI offset are not read atomically which may yield wrong 476 * readouts. However, an update of the TAI offset is an rare event e.g., caused 477 * by settime or adjtimex with an offset. The user of this function has to deal 478 * with the possibility of wrong timestamps in post processing. 479 */ 480 u64 notrace ktime_get_tai_fast_ns(void) 481 { 482 struct timekeeper *tk = &tk_core.timekeeper; 483 484 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 485 } 486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 487 488 /** 489 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 490 * 491 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 492 */ 493 u64 ktime_get_real_fast_ns(void) 494 { 495 struct tk_fast *tkf = &tk_fast_mono; 496 struct tk_read_base *tkr; 497 u64 baser, delta; 498 unsigned int seq; 499 500 do { 501 seq = raw_read_seqcount_latch(&tkf->seq); 502 tkr = tkf->base + (seq & 0x01); 503 baser = ktime_to_ns(tkr->base_real); 504 delta = timekeeping_get_ns(tkr); 505 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 506 507 return baser + delta; 508 } 509 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 510 511 /** 512 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 513 * @tk: Timekeeper to snapshot. 514 * 515 * It generally is unsafe to access the clocksource after timekeeping has been 516 * suspended, so take a snapshot of the readout base of @tk and use it as the 517 * fast timekeeper's readout base while suspended. It will return the same 518 * number of cycles every time until timekeeping is resumed at which time the 519 * proper readout base for the fast timekeeper will be restored automatically. 520 */ 521 static void halt_fast_timekeeper(const struct timekeeper *tk) 522 { 523 static struct tk_read_base tkr_dummy; 524 const struct tk_read_base *tkr = &tk->tkr_mono; 525 526 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 527 cycles_at_suspend = tk_clock_read(tkr); 528 tkr_dummy.clock = &dummy_clock; 529 tkr_dummy.base_real = tkr->base + tk->offs_real; 530 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 531 532 tkr = &tk->tkr_raw; 533 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 534 tkr_dummy.clock = &dummy_clock; 535 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 536 } 537 538 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 539 540 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 541 { 542 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 543 } 544 545 /** 546 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 547 * @nb: Pointer to the notifier block to register 548 */ 549 int pvclock_gtod_register_notifier(struct notifier_block *nb) 550 { 551 struct timekeeper *tk = &tk_core.timekeeper; 552 int ret; 553 554 guard(raw_spinlock_irqsave)(&tk_core.lock); 555 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 556 update_pvclock_gtod(tk, true); 557 558 return ret; 559 } 560 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 561 562 /** 563 * pvclock_gtod_unregister_notifier - unregister a pvclock 564 * timedata update listener 565 * @nb: Pointer to the notifier block to unregister 566 */ 567 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 568 { 569 guard(raw_spinlock_irqsave)(&tk_core.lock); 570 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 571 } 572 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 573 574 /* 575 * tk_update_leap_state - helper to update the next_leap_ktime 576 */ 577 static inline void tk_update_leap_state(struct timekeeper *tk) 578 { 579 tk->next_leap_ktime = ntp_get_next_leap(); 580 if (tk->next_leap_ktime != KTIME_MAX) 581 /* Convert to monotonic time */ 582 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 583 } 584 585 /* 586 * Leap state update for both shadow and the real timekeeper 587 * Separate to spare a full memcpy() of the timekeeper. 588 */ 589 static void tk_update_leap_state_all(struct tk_data *tkd) 590 { 591 write_seqcount_begin(&tkd->seq); 592 tk_update_leap_state(&tkd->shadow_timekeeper); 593 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 594 write_seqcount_end(&tkd->seq); 595 } 596 597 /* 598 * Update the ktime_t based scalar nsec members of the timekeeper 599 */ 600 static inline void tk_update_ktime_data(struct timekeeper *tk) 601 { 602 u64 seconds; 603 u32 nsec; 604 605 /* 606 * The xtime based monotonic readout is: 607 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 608 * The ktime based monotonic readout is: 609 * nsec = base_mono + now(); 610 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 611 */ 612 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 613 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 614 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 615 616 /* 617 * The sum of the nanoseconds portions of xtime and 618 * wall_to_monotonic can be greater/equal one second. Take 619 * this into account before updating tk->ktime_sec. 620 */ 621 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 622 if (nsec >= NSEC_PER_SEC) 623 seconds++; 624 tk->ktime_sec = seconds; 625 626 /* Update the monotonic raw base */ 627 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 628 } 629 630 /* 631 * Restore the shadow timekeeper from the real timekeeper. 632 */ 633 static void timekeeping_restore_shadow(struct tk_data *tkd) 634 { 635 lockdep_assert_held(&tkd->lock); 636 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 637 } 638 639 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 640 { 641 struct timekeeper *tk = &tk_core.shadow_timekeeper; 642 643 lockdep_assert_held(&tkd->lock); 644 645 /* 646 * Block out readers before running the updates below because that 647 * updates VDSO and other time related infrastructure. Not blocking 648 * the readers might let a reader see time going backwards when 649 * reading from the VDSO after the VDSO update and then reading in 650 * the kernel from the timekeeper before that got updated. 651 */ 652 write_seqcount_begin(&tkd->seq); 653 654 if (action & TK_CLEAR_NTP) { 655 tk->ntp_error = 0; 656 ntp_clear(); 657 } 658 659 tk_update_leap_state(tk); 660 tk_update_ktime_data(tk); 661 662 update_vsyscall(tk); 663 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 664 665 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 666 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 667 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 668 669 if (action & TK_CLOCK_WAS_SET) 670 tk->clock_was_set_seq++; 671 672 /* 673 * Update the real timekeeper. 674 * 675 * We could avoid this memcpy() by switching pointers, but that has 676 * the downside that the reader side does not longer benefit from 677 * the cacheline optimized data layout of the timekeeper and requires 678 * another indirection. 679 */ 680 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 681 write_seqcount_end(&tkd->seq); 682 } 683 684 /** 685 * timekeeping_forward_now - update clock to the current time 686 * @tk: Pointer to the timekeeper to update 687 * 688 * Forward the current clock to update its state since the last call to 689 * update_wall_time(). This is useful before significant clock changes, 690 * as it avoids having to deal with this time offset explicitly. 691 */ 692 static void timekeeping_forward_now(struct timekeeper *tk) 693 { 694 u64 cycle_now, delta; 695 696 cycle_now = tk_clock_read(&tk->tkr_mono); 697 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 698 tk->tkr_mono.clock->max_raw_delta); 699 tk->tkr_mono.cycle_last = cycle_now; 700 tk->tkr_raw.cycle_last = cycle_now; 701 702 while (delta > 0) { 703 u64 max = tk->tkr_mono.clock->max_cycles; 704 u64 incr = delta < max ? delta : max; 705 706 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 707 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 708 tk_normalize_xtime(tk); 709 delta -= incr; 710 } 711 } 712 713 /** 714 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 715 * @ts: pointer to the timespec to be set 716 * 717 * Returns the time of day in a timespec64 (WARN if suspended). 718 */ 719 void ktime_get_real_ts64(struct timespec64 *ts) 720 { 721 struct timekeeper *tk = &tk_core.timekeeper; 722 unsigned int seq; 723 u64 nsecs; 724 725 WARN_ON(timekeeping_suspended); 726 727 do { 728 seq = read_seqcount_begin(&tk_core.seq); 729 730 ts->tv_sec = tk->xtime_sec; 731 nsecs = timekeeping_get_ns(&tk->tkr_mono); 732 733 } while (read_seqcount_retry(&tk_core.seq, seq)); 734 735 ts->tv_nsec = 0; 736 timespec64_add_ns(ts, nsecs); 737 } 738 EXPORT_SYMBOL(ktime_get_real_ts64); 739 740 ktime_t ktime_get(void) 741 { 742 struct timekeeper *tk = &tk_core.timekeeper; 743 unsigned int seq; 744 ktime_t base; 745 u64 nsecs; 746 747 WARN_ON(timekeeping_suspended); 748 749 do { 750 seq = read_seqcount_begin(&tk_core.seq); 751 base = tk->tkr_mono.base; 752 nsecs = timekeeping_get_ns(&tk->tkr_mono); 753 754 } while (read_seqcount_retry(&tk_core.seq, seq)); 755 756 return ktime_add_ns(base, nsecs); 757 } 758 EXPORT_SYMBOL_GPL(ktime_get); 759 760 u32 ktime_get_resolution_ns(void) 761 { 762 struct timekeeper *tk = &tk_core.timekeeper; 763 unsigned int seq; 764 u32 nsecs; 765 766 WARN_ON(timekeeping_suspended); 767 768 do { 769 seq = read_seqcount_begin(&tk_core.seq); 770 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 771 } while (read_seqcount_retry(&tk_core.seq, seq)); 772 773 return nsecs; 774 } 775 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 776 777 static ktime_t *offsets[TK_OFFS_MAX] = { 778 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 779 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 780 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 781 }; 782 783 ktime_t ktime_get_with_offset(enum tk_offsets offs) 784 { 785 struct timekeeper *tk = &tk_core.timekeeper; 786 unsigned int seq; 787 ktime_t base, *offset = offsets[offs]; 788 u64 nsecs; 789 790 WARN_ON(timekeeping_suspended); 791 792 do { 793 seq = read_seqcount_begin(&tk_core.seq); 794 base = ktime_add(tk->tkr_mono.base, *offset); 795 nsecs = timekeeping_get_ns(&tk->tkr_mono); 796 797 } while (read_seqcount_retry(&tk_core.seq, seq)); 798 799 return ktime_add_ns(base, nsecs); 800 801 } 802 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 803 804 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 805 { 806 struct timekeeper *tk = &tk_core.timekeeper; 807 unsigned int seq; 808 ktime_t base, *offset = offsets[offs]; 809 u64 nsecs; 810 811 WARN_ON(timekeeping_suspended); 812 813 do { 814 seq = read_seqcount_begin(&tk_core.seq); 815 base = ktime_add(tk->tkr_mono.base, *offset); 816 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 817 818 } while (read_seqcount_retry(&tk_core.seq, seq)); 819 820 return ktime_add_ns(base, nsecs); 821 } 822 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 823 824 /** 825 * ktime_mono_to_any() - convert monotonic time to any other time 826 * @tmono: time to convert. 827 * @offs: which offset to use 828 */ 829 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 830 { 831 ktime_t *offset = offsets[offs]; 832 unsigned int seq; 833 ktime_t tconv; 834 835 if (IS_ENABLED(CONFIG_64BIT)) { 836 /* 837 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 838 * tk_update_sleep_time(). 839 */ 840 return ktime_add(tmono, READ_ONCE(*offset)); 841 } 842 843 do { 844 seq = read_seqcount_begin(&tk_core.seq); 845 tconv = ktime_add(tmono, *offset); 846 } while (read_seqcount_retry(&tk_core.seq, seq)); 847 848 return tconv; 849 } 850 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 851 852 /** 853 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 854 */ 855 ktime_t ktime_get_raw(void) 856 { 857 struct timekeeper *tk = &tk_core.timekeeper; 858 unsigned int seq; 859 ktime_t base; 860 u64 nsecs; 861 862 do { 863 seq = read_seqcount_begin(&tk_core.seq); 864 base = tk->tkr_raw.base; 865 nsecs = timekeeping_get_ns(&tk->tkr_raw); 866 867 } while (read_seqcount_retry(&tk_core.seq, seq)); 868 869 return ktime_add_ns(base, nsecs); 870 } 871 EXPORT_SYMBOL_GPL(ktime_get_raw); 872 873 /** 874 * ktime_get_ts64 - get the monotonic clock in timespec64 format 875 * @ts: pointer to timespec variable 876 * 877 * The function calculates the monotonic clock from the realtime 878 * clock and the wall_to_monotonic offset and stores the result 879 * in normalized timespec64 format in the variable pointed to by @ts. 880 */ 881 void ktime_get_ts64(struct timespec64 *ts) 882 { 883 struct timekeeper *tk = &tk_core.timekeeper; 884 struct timespec64 tomono; 885 unsigned int seq; 886 u64 nsec; 887 888 WARN_ON(timekeeping_suspended); 889 890 do { 891 seq = read_seqcount_begin(&tk_core.seq); 892 ts->tv_sec = tk->xtime_sec; 893 nsec = timekeeping_get_ns(&tk->tkr_mono); 894 tomono = tk->wall_to_monotonic; 895 896 } while (read_seqcount_retry(&tk_core.seq, seq)); 897 898 ts->tv_sec += tomono.tv_sec; 899 ts->tv_nsec = 0; 900 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 901 } 902 EXPORT_SYMBOL_GPL(ktime_get_ts64); 903 904 /** 905 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 906 * 907 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 908 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 909 * works on both 32 and 64 bit systems. On 32 bit systems the readout 910 * covers ~136 years of uptime which should be enough to prevent 911 * premature wrap arounds. 912 */ 913 time64_t ktime_get_seconds(void) 914 { 915 struct timekeeper *tk = &tk_core.timekeeper; 916 917 WARN_ON(timekeeping_suspended); 918 return tk->ktime_sec; 919 } 920 EXPORT_SYMBOL_GPL(ktime_get_seconds); 921 922 /** 923 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 924 * 925 * Returns the wall clock seconds since 1970. 926 * 927 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 928 * 32bit systems the access must be protected with the sequence 929 * counter to provide "atomic" access to the 64bit tk->xtime_sec 930 * value. 931 */ 932 time64_t ktime_get_real_seconds(void) 933 { 934 struct timekeeper *tk = &tk_core.timekeeper; 935 time64_t seconds; 936 unsigned int seq; 937 938 if (IS_ENABLED(CONFIG_64BIT)) 939 return tk->xtime_sec; 940 941 do { 942 seq = read_seqcount_begin(&tk_core.seq); 943 seconds = tk->xtime_sec; 944 945 } while (read_seqcount_retry(&tk_core.seq, seq)); 946 947 return seconds; 948 } 949 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 950 951 /** 952 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 953 * but without the sequence counter protect. This internal function 954 * is called just when timekeeping lock is already held. 955 */ 956 noinstr time64_t __ktime_get_real_seconds(void) 957 { 958 struct timekeeper *tk = &tk_core.timekeeper; 959 960 return tk->xtime_sec; 961 } 962 963 /** 964 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 965 * @systime_snapshot: pointer to struct receiving the system time snapshot 966 */ 967 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 968 { 969 struct timekeeper *tk = &tk_core.timekeeper; 970 unsigned int seq; 971 ktime_t base_raw; 972 ktime_t base_real; 973 ktime_t base_boot; 974 u64 nsec_raw; 975 u64 nsec_real; 976 u64 now; 977 978 WARN_ON_ONCE(timekeeping_suspended); 979 980 do { 981 seq = read_seqcount_begin(&tk_core.seq); 982 now = tk_clock_read(&tk->tkr_mono); 983 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 984 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 985 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 986 base_real = ktime_add(tk->tkr_mono.base, 987 tk_core.timekeeper.offs_real); 988 base_boot = ktime_add(tk->tkr_mono.base, 989 tk_core.timekeeper.offs_boot); 990 base_raw = tk->tkr_raw.base; 991 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 992 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 993 } while (read_seqcount_retry(&tk_core.seq, seq)); 994 995 systime_snapshot->cycles = now; 996 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 997 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 998 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 999 } 1000 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1001 1002 /* Scale base by mult/div checking for overflow */ 1003 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1004 { 1005 u64 tmp, rem; 1006 1007 tmp = div64_u64_rem(*base, div, &rem); 1008 1009 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1010 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1011 return -EOVERFLOW; 1012 tmp *= mult; 1013 1014 rem = div64_u64(rem * mult, div); 1015 *base = tmp + rem; 1016 return 0; 1017 } 1018 1019 /** 1020 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1021 * @history: Snapshot representing start of history 1022 * @partial_history_cycles: Cycle offset into history (fractional part) 1023 * @total_history_cycles: Total history length in cycles 1024 * @discontinuity: True indicates clock was set on history period 1025 * @ts: Cross timestamp that should be adjusted using 1026 * partial/total ratio 1027 * 1028 * Helper function used by get_device_system_crosststamp() to correct the 1029 * crosstimestamp corresponding to the start of the current interval to the 1030 * system counter value (timestamp point) provided by the driver. The 1031 * total_history_* quantities are the total history starting at the provided 1032 * reference point and ending at the start of the current interval. The cycle 1033 * count between the driver timestamp point and the start of the current 1034 * interval is partial_history_cycles. 1035 */ 1036 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1037 u64 partial_history_cycles, 1038 u64 total_history_cycles, 1039 bool discontinuity, 1040 struct system_device_crosststamp *ts) 1041 { 1042 struct timekeeper *tk = &tk_core.timekeeper; 1043 u64 corr_raw, corr_real; 1044 bool interp_forward; 1045 int ret; 1046 1047 if (total_history_cycles == 0 || partial_history_cycles == 0) 1048 return 0; 1049 1050 /* Interpolate shortest distance from beginning or end of history */ 1051 interp_forward = partial_history_cycles > total_history_cycles / 2; 1052 partial_history_cycles = interp_forward ? 1053 total_history_cycles - partial_history_cycles : 1054 partial_history_cycles; 1055 1056 /* 1057 * Scale the monotonic raw time delta by: 1058 * partial_history_cycles / total_history_cycles 1059 */ 1060 corr_raw = (u64)ktime_to_ns( 1061 ktime_sub(ts->sys_monoraw, history->raw)); 1062 ret = scale64_check_overflow(partial_history_cycles, 1063 total_history_cycles, &corr_raw); 1064 if (ret) 1065 return ret; 1066 1067 /* 1068 * If there is a discontinuity in the history, scale monotonic raw 1069 * correction by: 1070 * mult(real)/mult(raw) yielding the realtime correction 1071 * Otherwise, calculate the realtime correction similar to monotonic 1072 * raw calculation 1073 */ 1074 if (discontinuity) { 1075 corr_real = mul_u64_u32_div 1076 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1077 } else { 1078 corr_real = (u64)ktime_to_ns( 1079 ktime_sub(ts->sys_realtime, history->real)); 1080 ret = scale64_check_overflow(partial_history_cycles, 1081 total_history_cycles, &corr_real); 1082 if (ret) 1083 return ret; 1084 } 1085 1086 /* Fixup monotonic raw and real time time values */ 1087 if (interp_forward) { 1088 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1089 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1090 } else { 1091 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1092 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1093 } 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * timestamp_in_interval - true if ts is chronologically in [start, end] 1100 * 1101 * True if ts occurs chronologically at or after start, and before or at end. 1102 */ 1103 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1104 { 1105 if (ts >= start && ts <= end) 1106 return true; 1107 if (start > end && (ts >= start || ts <= end)) 1108 return true; 1109 return false; 1110 } 1111 1112 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1113 { 1114 u64 rem, res; 1115 1116 if (!numerator || !denominator) 1117 return false; 1118 1119 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1120 *val = res + div_u64(rem * numerator, denominator); 1121 return true; 1122 } 1123 1124 static bool convert_base_to_cs(struct system_counterval_t *scv) 1125 { 1126 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1127 struct clocksource_base *base; 1128 u32 num, den; 1129 1130 /* The timestamp was taken from the time keeper clock source */ 1131 if (cs->id == scv->cs_id) 1132 return true; 1133 1134 /* 1135 * Check whether cs_id matches the base clock. Prevent the compiler from 1136 * re-evaluating @base as the clocksource might change concurrently. 1137 */ 1138 base = READ_ONCE(cs->base); 1139 if (!base || base->id != scv->cs_id) 1140 return false; 1141 1142 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1143 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1144 1145 if (!convert_clock(&scv->cycles, num, den)) 1146 return false; 1147 1148 scv->cycles += base->offset; 1149 return true; 1150 } 1151 1152 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1153 { 1154 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1155 struct clocksource_base *base; 1156 1157 /* 1158 * Check whether base_id matches the base clock. Prevent the compiler from 1159 * re-evaluating @base as the clocksource might change concurrently. 1160 */ 1161 base = READ_ONCE(cs->base); 1162 if (!base || base->id != base_id) 1163 return false; 1164 1165 *cycles -= base->offset; 1166 if (!convert_clock(cycles, base->denominator, base->numerator)) 1167 return false; 1168 return true; 1169 } 1170 1171 static bool convert_ns_to_cs(u64 *delta) 1172 { 1173 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1174 1175 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1176 return false; 1177 1178 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1179 return true; 1180 } 1181 1182 /** 1183 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1184 * @treal: CLOCK_REALTIME timestamp to convert 1185 * @base_id: base clocksource id 1186 * @cycles: pointer to store the converted base clock timestamp 1187 * 1188 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1189 * 1190 * Return: true if the conversion is successful, false otherwise. 1191 */ 1192 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1193 { 1194 struct timekeeper *tk = &tk_core.timekeeper; 1195 unsigned int seq; 1196 u64 delta; 1197 1198 do { 1199 seq = read_seqcount_begin(&tk_core.seq); 1200 if ((u64)treal < tk->tkr_mono.base_real) 1201 return false; 1202 delta = (u64)treal - tk->tkr_mono.base_real; 1203 if (!convert_ns_to_cs(&delta)) 1204 return false; 1205 *cycles = tk->tkr_mono.cycle_last + delta; 1206 if (!convert_cs_to_base(cycles, base_id)) 1207 return false; 1208 } while (read_seqcount_retry(&tk_core.seq, seq)); 1209 1210 return true; 1211 } 1212 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1213 1214 /** 1215 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1216 * @get_time_fn: Callback to get simultaneous device time and 1217 * system counter from the device driver 1218 * @ctx: Context passed to get_time_fn() 1219 * @history_begin: Historical reference point used to interpolate system 1220 * time when counter provided by the driver is before the current interval 1221 * @xtstamp: Receives simultaneously captured system and device time 1222 * 1223 * Reads a timestamp from a device and correlates it to system time 1224 */ 1225 int get_device_system_crosststamp(int (*get_time_fn) 1226 (ktime_t *device_time, 1227 struct system_counterval_t *sys_counterval, 1228 void *ctx), 1229 void *ctx, 1230 struct system_time_snapshot *history_begin, 1231 struct system_device_crosststamp *xtstamp) 1232 { 1233 struct system_counterval_t system_counterval; 1234 struct timekeeper *tk = &tk_core.timekeeper; 1235 u64 cycles, now, interval_start; 1236 unsigned int clock_was_set_seq = 0; 1237 ktime_t base_real, base_raw; 1238 u64 nsec_real, nsec_raw; 1239 u8 cs_was_changed_seq; 1240 unsigned int seq; 1241 bool do_interp; 1242 int ret; 1243 1244 do { 1245 seq = read_seqcount_begin(&tk_core.seq); 1246 /* 1247 * Try to synchronously capture device time and a system 1248 * counter value calling back into the device driver 1249 */ 1250 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1251 if (ret) 1252 return ret; 1253 1254 /* 1255 * Verify that the clocksource ID associated with the captured 1256 * system counter value is the same as for the currently 1257 * installed timekeeper clocksource 1258 */ 1259 if (system_counterval.cs_id == CSID_GENERIC || 1260 !convert_base_to_cs(&system_counterval)) 1261 return -ENODEV; 1262 cycles = system_counterval.cycles; 1263 1264 /* 1265 * Check whether the system counter value provided by the 1266 * device driver is on the current timekeeping interval. 1267 */ 1268 now = tk_clock_read(&tk->tkr_mono); 1269 interval_start = tk->tkr_mono.cycle_last; 1270 if (!timestamp_in_interval(interval_start, now, cycles)) { 1271 clock_was_set_seq = tk->clock_was_set_seq; 1272 cs_was_changed_seq = tk->cs_was_changed_seq; 1273 cycles = interval_start; 1274 do_interp = true; 1275 } else { 1276 do_interp = false; 1277 } 1278 1279 base_real = ktime_add(tk->tkr_mono.base, 1280 tk_core.timekeeper.offs_real); 1281 base_raw = tk->tkr_raw.base; 1282 1283 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1284 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1285 } while (read_seqcount_retry(&tk_core.seq, seq)); 1286 1287 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1288 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1289 1290 /* 1291 * Interpolate if necessary, adjusting back from the start of the 1292 * current interval 1293 */ 1294 if (do_interp) { 1295 u64 partial_history_cycles, total_history_cycles; 1296 bool discontinuity; 1297 1298 /* 1299 * Check that the counter value is not before the provided 1300 * history reference and that the history doesn't cross a 1301 * clocksource change 1302 */ 1303 if (!history_begin || 1304 !timestamp_in_interval(history_begin->cycles, 1305 cycles, system_counterval.cycles) || 1306 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1307 return -EINVAL; 1308 partial_history_cycles = cycles - system_counterval.cycles; 1309 total_history_cycles = cycles - history_begin->cycles; 1310 discontinuity = 1311 history_begin->clock_was_set_seq != clock_was_set_seq; 1312 1313 ret = adjust_historical_crosststamp(history_begin, 1314 partial_history_cycles, 1315 total_history_cycles, 1316 discontinuity, xtstamp); 1317 if (ret) 1318 return ret; 1319 } 1320 1321 return 0; 1322 } 1323 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1324 1325 /** 1326 * timekeeping_clocksource_has_base - Check whether the current clocksource 1327 * is based on given a base clock 1328 * @id: base clocksource ID 1329 * 1330 * Note: The return value is a snapshot which can become invalid right 1331 * after the function returns. 1332 * 1333 * Return: true if the timekeeper clocksource has a base clock with @id, 1334 * false otherwise 1335 */ 1336 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1337 { 1338 /* 1339 * This is a snapshot, so no point in using the sequence 1340 * count. Just prevent the compiler from re-evaluating @base as the 1341 * clocksource might change concurrently. 1342 */ 1343 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1344 1345 return base ? base->id == id : false; 1346 } 1347 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1348 1349 /** 1350 * do_settimeofday64 - Sets the time of day. 1351 * @ts: pointer to the timespec64 variable containing the new time 1352 * 1353 * Sets the time of day to the new time and update NTP and notify hrtimers 1354 */ 1355 int do_settimeofday64(const struct timespec64 *ts) 1356 { 1357 struct timespec64 ts_delta, xt; 1358 1359 if (!timespec64_valid_settod(ts)) 1360 return -EINVAL; 1361 1362 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1363 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1364 1365 timekeeping_forward_now(tks); 1366 1367 xt = tk_xtime(tks); 1368 ts_delta = timespec64_sub(*ts, xt); 1369 1370 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1371 timekeeping_restore_shadow(&tk_core); 1372 return -EINVAL; 1373 } 1374 1375 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1376 tk_set_xtime(tks, ts); 1377 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1378 } 1379 1380 /* Signal hrtimers about time change */ 1381 clock_was_set(CLOCK_SET_WALL); 1382 1383 audit_tk_injoffset(ts_delta); 1384 add_device_randomness(ts, sizeof(*ts)); 1385 return 0; 1386 } 1387 EXPORT_SYMBOL(do_settimeofday64); 1388 1389 /** 1390 * timekeeping_inject_offset - Adds or subtracts from the current time. 1391 * @ts: Pointer to the timespec variable containing the offset 1392 * 1393 * Adds or subtracts an offset value from the current time. 1394 */ 1395 static int timekeeping_inject_offset(const struct timespec64 *ts) 1396 { 1397 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1398 return -EINVAL; 1399 1400 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1401 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1402 struct timespec64 tmp; 1403 1404 timekeeping_forward_now(tks); 1405 1406 /* Make sure the proposed value is valid */ 1407 tmp = timespec64_add(tk_xtime(tks), *ts); 1408 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1409 !timespec64_valid_settod(&tmp)) { 1410 timekeeping_restore_shadow(&tk_core); 1411 return -EINVAL; 1412 } 1413 1414 tk_xtime_add(tks, ts); 1415 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1416 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1417 } 1418 1419 /* Signal hrtimers about time change */ 1420 clock_was_set(CLOCK_SET_WALL); 1421 return 0; 1422 } 1423 1424 /* 1425 * Indicates if there is an offset between the system clock and the hardware 1426 * clock/persistent clock/rtc. 1427 */ 1428 int persistent_clock_is_local; 1429 1430 /* 1431 * Adjust the time obtained from the CMOS to be UTC time instead of 1432 * local time. 1433 * 1434 * This is ugly, but preferable to the alternatives. Otherwise we 1435 * would either need to write a program to do it in /etc/rc (and risk 1436 * confusion if the program gets run more than once; it would also be 1437 * hard to make the program warp the clock precisely n hours) or 1438 * compile in the timezone information into the kernel. Bad, bad.... 1439 * 1440 * - TYT, 1992-01-01 1441 * 1442 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1443 * as real UNIX machines always do it. This avoids all headaches about 1444 * daylight saving times and warping kernel clocks. 1445 */ 1446 void timekeeping_warp_clock(void) 1447 { 1448 if (sys_tz.tz_minuteswest != 0) { 1449 struct timespec64 adjust; 1450 1451 persistent_clock_is_local = 1; 1452 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1453 adjust.tv_nsec = 0; 1454 timekeeping_inject_offset(&adjust); 1455 } 1456 } 1457 1458 /* 1459 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1460 */ 1461 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1462 { 1463 tk->tai_offset = tai_offset; 1464 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1465 } 1466 1467 /* 1468 * change_clocksource - Swaps clocksources if a new one is available 1469 * 1470 * Accumulates current time interval and initializes new clocksource 1471 */ 1472 static int change_clocksource(void *data) 1473 { 1474 struct clocksource *new = data, *old = NULL; 1475 1476 /* 1477 * If the clocksource is in a module, get a module reference. 1478 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1479 * reference can't be acquired. 1480 */ 1481 if (!try_module_get(new->owner)) 1482 return 0; 1483 1484 /* Abort if the device can't be enabled */ 1485 if (new->enable && new->enable(new) != 0) { 1486 module_put(new->owner); 1487 return 0; 1488 } 1489 1490 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1491 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1492 1493 timekeeping_forward_now(tks); 1494 old = tks->tkr_mono.clock; 1495 tk_setup_internals(tks, new); 1496 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1497 } 1498 1499 if (old) { 1500 if (old->disable) 1501 old->disable(old); 1502 module_put(old->owner); 1503 } 1504 1505 return 0; 1506 } 1507 1508 /** 1509 * timekeeping_notify - Install a new clock source 1510 * @clock: pointer to the clock source 1511 * 1512 * This function is called from clocksource.c after a new, better clock 1513 * source has been registered. The caller holds the clocksource_mutex. 1514 */ 1515 int timekeeping_notify(struct clocksource *clock) 1516 { 1517 struct timekeeper *tk = &tk_core.timekeeper; 1518 1519 if (tk->tkr_mono.clock == clock) 1520 return 0; 1521 stop_machine(change_clocksource, clock, NULL); 1522 tick_clock_notify(); 1523 return tk->tkr_mono.clock == clock ? 0 : -1; 1524 } 1525 1526 /** 1527 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1528 * @ts: pointer to the timespec64 to be set 1529 * 1530 * Returns the raw monotonic time (completely un-modified by ntp) 1531 */ 1532 void ktime_get_raw_ts64(struct timespec64 *ts) 1533 { 1534 struct timekeeper *tk = &tk_core.timekeeper; 1535 unsigned int seq; 1536 u64 nsecs; 1537 1538 do { 1539 seq = read_seqcount_begin(&tk_core.seq); 1540 ts->tv_sec = tk->raw_sec; 1541 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1542 1543 } while (read_seqcount_retry(&tk_core.seq, seq)); 1544 1545 ts->tv_nsec = 0; 1546 timespec64_add_ns(ts, nsecs); 1547 } 1548 EXPORT_SYMBOL(ktime_get_raw_ts64); 1549 1550 1551 /** 1552 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1553 */ 1554 int timekeeping_valid_for_hres(void) 1555 { 1556 struct timekeeper *tk = &tk_core.timekeeper; 1557 unsigned int seq; 1558 int ret; 1559 1560 do { 1561 seq = read_seqcount_begin(&tk_core.seq); 1562 1563 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1564 1565 } while (read_seqcount_retry(&tk_core.seq, seq)); 1566 1567 return ret; 1568 } 1569 1570 /** 1571 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1572 */ 1573 u64 timekeeping_max_deferment(void) 1574 { 1575 struct timekeeper *tk = &tk_core.timekeeper; 1576 unsigned int seq; 1577 u64 ret; 1578 1579 do { 1580 seq = read_seqcount_begin(&tk_core.seq); 1581 1582 ret = tk->tkr_mono.clock->max_idle_ns; 1583 1584 } while (read_seqcount_retry(&tk_core.seq, seq)); 1585 1586 return ret; 1587 } 1588 1589 /** 1590 * read_persistent_clock64 - Return time from the persistent clock. 1591 * @ts: Pointer to the storage for the readout value 1592 * 1593 * Weak dummy function for arches that do not yet support it. 1594 * Reads the time from the battery backed persistent clock. 1595 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1596 * 1597 * XXX - Do be sure to remove it once all arches implement it. 1598 */ 1599 void __weak read_persistent_clock64(struct timespec64 *ts) 1600 { 1601 ts->tv_sec = 0; 1602 ts->tv_nsec = 0; 1603 } 1604 1605 /** 1606 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1607 * from the boot. 1608 * @wall_time: current time as returned by persistent clock 1609 * @boot_offset: offset that is defined as wall_time - boot_time 1610 * 1611 * Weak dummy function for arches that do not yet support it. 1612 * 1613 * The default function calculates offset based on the current value of 1614 * local_clock(). This way architectures that support sched_clock() but don't 1615 * support dedicated boot time clock will provide the best estimate of the 1616 * boot time. 1617 */ 1618 void __weak __init 1619 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1620 struct timespec64 *boot_offset) 1621 { 1622 read_persistent_clock64(wall_time); 1623 *boot_offset = ns_to_timespec64(local_clock()); 1624 } 1625 1626 static __init void tkd_basic_setup(struct tk_data *tkd) 1627 { 1628 raw_spin_lock_init(&tkd->lock); 1629 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1630 } 1631 1632 /* 1633 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1634 * 1635 * The flag starts of false and is only set when a suspend reaches 1636 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1637 * timekeeper clocksource is not stopping across suspend and has been 1638 * used to update sleep time. If the timekeeper clocksource has stopped 1639 * then the flag stays true and is used by the RTC resume code to decide 1640 * whether sleeptime must be injected and if so the flag gets false then. 1641 * 1642 * If a suspend fails before reaching timekeeping_resume() then the flag 1643 * stays false and prevents erroneous sleeptime injection. 1644 */ 1645 static bool suspend_timing_needed; 1646 1647 /* Flag for if there is a persistent clock on this platform */ 1648 static bool persistent_clock_exists; 1649 1650 /* 1651 * timekeeping_init - Initializes the clocksource and common timekeeping values 1652 */ 1653 void __init timekeeping_init(void) 1654 { 1655 struct timespec64 wall_time, boot_offset, wall_to_mono; 1656 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1657 struct clocksource *clock; 1658 1659 tkd_basic_setup(&tk_core); 1660 1661 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1662 if (timespec64_valid_settod(&wall_time) && 1663 timespec64_to_ns(&wall_time) > 0) { 1664 persistent_clock_exists = true; 1665 } else if (timespec64_to_ns(&wall_time) != 0) { 1666 pr_warn("Persistent clock returned invalid value"); 1667 wall_time = (struct timespec64){0}; 1668 } 1669 1670 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1671 boot_offset = (struct timespec64){0}; 1672 1673 /* 1674 * We want set wall_to_mono, so the following is true: 1675 * wall time + wall_to_mono = boot time 1676 */ 1677 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1678 1679 guard(raw_spinlock_irqsave)(&tk_core.lock); 1680 1681 ntp_init(); 1682 1683 clock = clocksource_default_clock(); 1684 if (clock->enable) 1685 clock->enable(clock); 1686 tk_setup_internals(tks, clock); 1687 1688 tk_set_xtime(tks, &wall_time); 1689 tks->raw_sec = 0; 1690 1691 tk_set_wall_to_mono(tks, wall_to_mono); 1692 1693 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1694 } 1695 1696 /* time in seconds when suspend began for persistent clock */ 1697 static struct timespec64 timekeeping_suspend_time; 1698 1699 /** 1700 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1701 * @tk: Pointer to the timekeeper to be updated 1702 * @delta: Pointer to the delta value in timespec64 format 1703 * 1704 * Takes a timespec offset measuring a suspend interval and properly 1705 * adds the sleep offset to the timekeeping variables. 1706 */ 1707 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1708 const struct timespec64 *delta) 1709 { 1710 if (!timespec64_valid_strict(delta)) { 1711 printk_deferred(KERN_WARNING 1712 "__timekeeping_inject_sleeptime: Invalid " 1713 "sleep delta value!\n"); 1714 return; 1715 } 1716 tk_xtime_add(tk, delta); 1717 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1718 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1719 tk_debug_account_sleep_time(delta); 1720 } 1721 1722 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1723 /* 1724 * We have three kinds of time sources to use for sleep time 1725 * injection, the preference order is: 1726 * 1) non-stop clocksource 1727 * 2) persistent clock (ie: RTC accessible when irqs are off) 1728 * 3) RTC 1729 * 1730 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1731 * If system has neither 1) nor 2), 3) will be used finally. 1732 * 1733 * 1734 * If timekeeping has injected sleeptime via either 1) or 2), 1735 * 3) becomes needless, so in this case we don't need to call 1736 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1737 * means. 1738 */ 1739 bool timekeeping_rtc_skipresume(void) 1740 { 1741 return !suspend_timing_needed; 1742 } 1743 1744 /* 1745 * 1) can be determined whether to use or not only when doing 1746 * timekeeping_resume() which is invoked after rtc_suspend(), 1747 * so we can't skip rtc_suspend() surely if system has 1). 1748 * 1749 * But if system has 2), 2) will definitely be used, so in this 1750 * case we don't need to call rtc_suspend(), and this is what 1751 * timekeeping_rtc_skipsuspend() means. 1752 */ 1753 bool timekeeping_rtc_skipsuspend(void) 1754 { 1755 return persistent_clock_exists; 1756 } 1757 1758 /** 1759 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1760 * @delta: pointer to a timespec64 delta value 1761 * 1762 * This hook is for architectures that cannot support read_persistent_clock64 1763 * because their RTC/persistent clock is only accessible when irqs are enabled. 1764 * and also don't have an effective nonstop clocksource. 1765 * 1766 * This function should only be called by rtc_resume(), and allows 1767 * a suspend offset to be injected into the timekeeping values. 1768 */ 1769 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1770 { 1771 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1772 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1773 1774 suspend_timing_needed = false; 1775 timekeeping_forward_now(tks); 1776 __timekeeping_inject_sleeptime(tks, delta); 1777 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1778 } 1779 1780 /* Signal hrtimers about time change */ 1781 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1782 } 1783 #endif 1784 1785 /** 1786 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1787 */ 1788 void timekeeping_resume(void) 1789 { 1790 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1791 struct clocksource *clock = tks->tkr_mono.clock; 1792 struct timespec64 ts_new, ts_delta; 1793 bool inject_sleeptime = false; 1794 u64 cycle_now, nsec; 1795 unsigned long flags; 1796 1797 read_persistent_clock64(&ts_new); 1798 1799 clockevents_resume(); 1800 clocksource_resume(); 1801 1802 raw_spin_lock_irqsave(&tk_core.lock, flags); 1803 1804 /* 1805 * After system resumes, we need to calculate the suspended time and 1806 * compensate it for the OS time. There are 3 sources that could be 1807 * used: Nonstop clocksource during suspend, persistent clock and rtc 1808 * device. 1809 * 1810 * One specific platform may have 1 or 2 or all of them, and the 1811 * preference will be: 1812 * suspend-nonstop clocksource -> persistent clock -> rtc 1813 * The less preferred source will only be tried if there is no better 1814 * usable source. The rtc part is handled separately in rtc core code. 1815 */ 1816 cycle_now = tk_clock_read(&tks->tkr_mono); 1817 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1818 if (nsec > 0) { 1819 ts_delta = ns_to_timespec64(nsec); 1820 inject_sleeptime = true; 1821 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1822 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1823 inject_sleeptime = true; 1824 } 1825 1826 if (inject_sleeptime) { 1827 suspend_timing_needed = false; 1828 __timekeeping_inject_sleeptime(tks, &ts_delta); 1829 } 1830 1831 /* Re-base the last cycle value */ 1832 tks->tkr_mono.cycle_last = cycle_now; 1833 tks->tkr_raw.cycle_last = cycle_now; 1834 1835 tks->ntp_error = 0; 1836 timekeeping_suspended = 0; 1837 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1838 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1839 1840 touch_softlockup_watchdog(); 1841 1842 /* Resume the clockevent device(s) and hrtimers */ 1843 tick_resume(); 1844 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1845 timerfd_resume(); 1846 } 1847 1848 int timekeeping_suspend(void) 1849 { 1850 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1851 struct timespec64 delta, delta_delta; 1852 static struct timespec64 old_delta; 1853 struct clocksource *curr_clock; 1854 unsigned long flags; 1855 u64 cycle_now; 1856 1857 read_persistent_clock64(&timekeeping_suspend_time); 1858 1859 /* 1860 * On some systems the persistent_clock can not be detected at 1861 * timekeeping_init by its return value, so if we see a valid 1862 * value returned, update the persistent_clock_exists flag. 1863 */ 1864 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1865 persistent_clock_exists = true; 1866 1867 suspend_timing_needed = true; 1868 1869 raw_spin_lock_irqsave(&tk_core.lock, flags); 1870 timekeeping_forward_now(tks); 1871 timekeeping_suspended = 1; 1872 1873 /* 1874 * Since we've called forward_now, cycle_last stores the value 1875 * just read from the current clocksource. Save this to potentially 1876 * use in suspend timing. 1877 */ 1878 curr_clock = tks->tkr_mono.clock; 1879 cycle_now = tks->tkr_mono.cycle_last; 1880 clocksource_start_suspend_timing(curr_clock, cycle_now); 1881 1882 if (persistent_clock_exists) { 1883 /* 1884 * To avoid drift caused by repeated suspend/resumes, 1885 * which each can add ~1 second drift error, 1886 * try to compensate so the difference in system time 1887 * and persistent_clock time stays close to constant. 1888 */ 1889 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 1890 delta_delta = timespec64_sub(delta, old_delta); 1891 if (abs(delta_delta.tv_sec) >= 2) { 1892 /* 1893 * if delta_delta is too large, assume time correction 1894 * has occurred and set old_delta to the current delta. 1895 */ 1896 old_delta = delta; 1897 } else { 1898 /* Otherwise try to adjust old_system to compensate */ 1899 timekeeping_suspend_time = 1900 timespec64_add(timekeeping_suspend_time, delta_delta); 1901 } 1902 } 1903 1904 timekeeping_update_from_shadow(&tk_core, 0); 1905 halt_fast_timekeeper(tks); 1906 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1907 1908 tick_suspend(); 1909 clocksource_suspend(); 1910 clockevents_suspend(); 1911 1912 return 0; 1913 } 1914 1915 /* sysfs resume/suspend bits for timekeeping */ 1916 static struct syscore_ops timekeeping_syscore_ops = { 1917 .resume = timekeeping_resume, 1918 .suspend = timekeeping_suspend, 1919 }; 1920 1921 static int __init timekeeping_init_ops(void) 1922 { 1923 register_syscore_ops(&timekeeping_syscore_ops); 1924 return 0; 1925 } 1926 device_initcall(timekeeping_init_ops); 1927 1928 /* 1929 * Apply a multiplier adjustment to the timekeeper 1930 */ 1931 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1932 s64 offset, 1933 s32 mult_adj) 1934 { 1935 s64 interval = tk->cycle_interval; 1936 1937 if (mult_adj == 0) { 1938 return; 1939 } else if (mult_adj == -1) { 1940 interval = -interval; 1941 offset = -offset; 1942 } else if (mult_adj != 1) { 1943 interval *= mult_adj; 1944 offset *= mult_adj; 1945 } 1946 1947 /* 1948 * So the following can be confusing. 1949 * 1950 * To keep things simple, lets assume mult_adj == 1 for now. 1951 * 1952 * When mult_adj != 1, remember that the interval and offset values 1953 * have been appropriately scaled so the math is the same. 1954 * 1955 * The basic idea here is that we're increasing the multiplier 1956 * by one, this causes the xtime_interval to be incremented by 1957 * one cycle_interval. This is because: 1958 * xtime_interval = cycle_interval * mult 1959 * So if mult is being incremented by one: 1960 * xtime_interval = cycle_interval * (mult + 1) 1961 * Its the same as: 1962 * xtime_interval = (cycle_interval * mult) + cycle_interval 1963 * Which can be shortened to: 1964 * xtime_interval += cycle_interval 1965 * 1966 * So offset stores the non-accumulated cycles. Thus the current 1967 * time (in shifted nanoseconds) is: 1968 * now = (offset * adj) + xtime_nsec 1969 * Now, even though we're adjusting the clock frequency, we have 1970 * to keep time consistent. In other words, we can't jump back 1971 * in time, and we also want to avoid jumping forward in time. 1972 * 1973 * So given the same offset value, we need the time to be the same 1974 * both before and after the freq adjustment. 1975 * now = (offset * adj_1) + xtime_nsec_1 1976 * now = (offset * adj_2) + xtime_nsec_2 1977 * So: 1978 * (offset * adj_1) + xtime_nsec_1 = 1979 * (offset * adj_2) + xtime_nsec_2 1980 * And we know: 1981 * adj_2 = adj_1 + 1 1982 * So: 1983 * (offset * adj_1) + xtime_nsec_1 = 1984 * (offset * (adj_1+1)) + xtime_nsec_2 1985 * (offset * adj_1) + xtime_nsec_1 = 1986 * (offset * adj_1) + offset + xtime_nsec_2 1987 * Canceling the sides: 1988 * xtime_nsec_1 = offset + xtime_nsec_2 1989 * Which gives us: 1990 * xtime_nsec_2 = xtime_nsec_1 - offset 1991 * Which simplifies to: 1992 * xtime_nsec -= offset 1993 */ 1994 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1995 /* NTP adjustment caused clocksource mult overflow */ 1996 WARN_ON_ONCE(1); 1997 return; 1998 } 1999 2000 tk->tkr_mono.mult += mult_adj; 2001 tk->xtime_interval += interval; 2002 tk->tkr_mono.xtime_nsec -= offset; 2003 } 2004 2005 /* 2006 * Adjust the timekeeper's multiplier to the correct frequency 2007 * and also to reduce the accumulated error value. 2008 */ 2009 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2010 { 2011 u64 ntp_tl = ntp_tick_length(); 2012 u32 mult; 2013 2014 /* 2015 * Determine the multiplier from the current NTP tick length. 2016 * Avoid expensive division when the tick length doesn't change. 2017 */ 2018 if (likely(tk->ntp_tick == ntp_tl)) { 2019 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2020 } else { 2021 tk->ntp_tick = ntp_tl; 2022 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2023 tk->xtime_remainder, tk->cycle_interval); 2024 } 2025 2026 /* 2027 * If the clock is behind the NTP time, increase the multiplier by 1 2028 * to catch up with it. If it's ahead and there was a remainder in the 2029 * tick division, the clock will slow down. Otherwise it will stay 2030 * ahead until the tick length changes to a non-divisible value. 2031 */ 2032 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2033 mult += tk->ntp_err_mult; 2034 2035 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2036 2037 if (unlikely(tk->tkr_mono.clock->maxadj && 2038 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2039 > tk->tkr_mono.clock->maxadj))) { 2040 printk_once(KERN_WARNING 2041 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2042 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2043 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2044 } 2045 2046 /* 2047 * It may be possible that when we entered this function, xtime_nsec 2048 * was very small. Further, if we're slightly speeding the clocksource 2049 * in the code above, its possible the required corrective factor to 2050 * xtime_nsec could cause it to underflow. 2051 * 2052 * Now, since we have already accumulated the second and the NTP 2053 * subsystem has been notified via second_overflow(), we need to skip 2054 * the next update. 2055 */ 2056 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2057 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2058 tk->tkr_mono.shift; 2059 tk->xtime_sec--; 2060 tk->skip_second_overflow = 1; 2061 } 2062 } 2063 2064 /* 2065 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2066 * 2067 * Helper function that accumulates the nsecs greater than a second 2068 * from the xtime_nsec field to the xtime_secs field. 2069 * It also calls into the NTP code to handle leapsecond processing. 2070 */ 2071 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2072 { 2073 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2074 unsigned int clock_set = 0; 2075 2076 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2077 int leap; 2078 2079 tk->tkr_mono.xtime_nsec -= nsecps; 2080 tk->xtime_sec++; 2081 2082 /* 2083 * Skip NTP update if this second was accumulated before, 2084 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2085 */ 2086 if (unlikely(tk->skip_second_overflow)) { 2087 tk->skip_second_overflow = 0; 2088 continue; 2089 } 2090 2091 /* Figure out if its a leap sec and apply if needed */ 2092 leap = second_overflow(tk->xtime_sec); 2093 if (unlikely(leap)) { 2094 struct timespec64 ts; 2095 2096 tk->xtime_sec += leap; 2097 2098 ts.tv_sec = leap; 2099 ts.tv_nsec = 0; 2100 tk_set_wall_to_mono(tk, 2101 timespec64_sub(tk->wall_to_monotonic, ts)); 2102 2103 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2104 2105 clock_set = TK_CLOCK_WAS_SET; 2106 } 2107 } 2108 return clock_set; 2109 } 2110 2111 /* 2112 * logarithmic_accumulation - shifted accumulation of cycles 2113 * 2114 * This functions accumulates a shifted interval of cycles into 2115 * a shifted interval nanoseconds. Allows for O(log) accumulation 2116 * loop. 2117 * 2118 * Returns the unconsumed cycles. 2119 */ 2120 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2121 u32 shift, unsigned int *clock_set) 2122 { 2123 u64 interval = tk->cycle_interval << shift; 2124 u64 snsec_per_sec; 2125 2126 /* If the offset is smaller than a shifted interval, do nothing */ 2127 if (offset < interval) 2128 return offset; 2129 2130 /* Accumulate one shifted interval */ 2131 offset -= interval; 2132 tk->tkr_mono.cycle_last += interval; 2133 tk->tkr_raw.cycle_last += interval; 2134 2135 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2136 *clock_set |= accumulate_nsecs_to_secs(tk); 2137 2138 /* Accumulate raw time */ 2139 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2140 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2141 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2142 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2143 tk->raw_sec++; 2144 } 2145 2146 /* Accumulate error between NTP and clock interval */ 2147 tk->ntp_error += tk->ntp_tick << shift; 2148 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2149 (tk->ntp_error_shift + shift); 2150 2151 return offset; 2152 } 2153 2154 /* 2155 * timekeeping_advance - Updates the timekeeper to the current time and 2156 * current NTP tick length 2157 */ 2158 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2159 { 2160 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2161 struct timekeeper *real_tk = &tk_core.timekeeper; 2162 unsigned int clock_set = 0; 2163 int shift = 0, maxshift; 2164 u64 offset; 2165 2166 guard(raw_spinlock_irqsave)(&tk_core.lock); 2167 2168 /* Make sure we're fully resumed: */ 2169 if (unlikely(timekeeping_suspended)) 2170 return false; 2171 2172 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2173 tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 2174 tk->tkr_mono.clock->max_raw_delta); 2175 2176 /* Check if there's really nothing to do */ 2177 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2178 return false; 2179 2180 /* 2181 * With NO_HZ we may have to accumulate many cycle_intervals 2182 * (think "ticks") worth of time at once. To do this efficiently, 2183 * we calculate the largest doubling multiple of cycle_intervals 2184 * that is smaller than the offset. We then accumulate that 2185 * chunk in one go, and then try to consume the next smaller 2186 * doubled multiple. 2187 */ 2188 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2189 shift = max(0, shift); 2190 /* Bound shift to one less than what overflows tick_length */ 2191 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2192 shift = min(shift, maxshift); 2193 while (offset >= tk->cycle_interval) { 2194 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2195 if (offset < tk->cycle_interval<<shift) 2196 shift--; 2197 } 2198 2199 /* Adjust the multiplier to correct NTP error */ 2200 timekeeping_adjust(tk, offset); 2201 2202 /* 2203 * Finally, make sure that after the rounding 2204 * xtime_nsec isn't larger than NSEC_PER_SEC 2205 */ 2206 clock_set |= accumulate_nsecs_to_secs(tk); 2207 2208 timekeeping_update_from_shadow(&tk_core, clock_set); 2209 2210 return !!clock_set; 2211 } 2212 2213 /** 2214 * update_wall_time - Uses the current clocksource to increment the wall time 2215 * 2216 */ 2217 void update_wall_time(void) 2218 { 2219 if (timekeeping_advance(TK_ADV_TICK)) 2220 clock_was_set_delayed(); 2221 } 2222 2223 /** 2224 * getboottime64 - Return the real time of system boot. 2225 * @ts: pointer to the timespec64 to be set 2226 * 2227 * Returns the wall-time of boot in a timespec64. 2228 * 2229 * This is based on the wall_to_monotonic offset and the total suspend 2230 * time. Calls to settimeofday will affect the value returned (which 2231 * basically means that however wrong your real time clock is at boot time, 2232 * you get the right time here). 2233 */ 2234 void getboottime64(struct timespec64 *ts) 2235 { 2236 struct timekeeper *tk = &tk_core.timekeeper; 2237 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2238 2239 *ts = ktime_to_timespec64(t); 2240 } 2241 EXPORT_SYMBOL_GPL(getboottime64); 2242 2243 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2244 { 2245 struct timekeeper *tk = &tk_core.timekeeper; 2246 unsigned int seq; 2247 2248 do { 2249 seq = read_seqcount_begin(&tk_core.seq); 2250 2251 *ts = tk_xtime(tk); 2252 } while (read_seqcount_retry(&tk_core.seq, seq)); 2253 } 2254 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2255 2256 /** 2257 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2258 * @ts: timespec64 to be filled 2259 * 2260 * Fetch the global mg_floor value, convert it to realtime and compare it 2261 * to the current coarse-grained time. Fill @ts with whichever is 2262 * latest. Note that this is a filesystem-specific interface and should be 2263 * avoided outside of that context. 2264 */ 2265 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2266 { 2267 struct timekeeper *tk = &tk_core.timekeeper; 2268 u64 floor = atomic64_read(&mg_floor); 2269 ktime_t f_real, offset, coarse; 2270 unsigned int seq; 2271 2272 do { 2273 seq = read_seqcount_begin(&tk_core.seq); 2274 *ts = tk_xtime(tk); 2275 offset = tk_core.timekeeper.offs_real; 2276 } while (read_seqcount_retry(&tk_core.seq, seq)); 2277 2278 coarse = timespec64_to_ktime(*ts); 2279 f_real = ktime_add(floor, offset); 2280 if (ktime_after(f_real, coarse)) 2281 *ts = ktime_to_timespec64(f_real); 2282 } 2283 2284 /** 2285 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2286 * @ts: pointer to the timespec to be set 2287 * 2288 * Get a monotonic fine-grained time value and attempt to swap it into 2289 * mg_floor. If that succeeds then accept the new floor value. If it fails 2290 * then another task raced in during the interim time and updated the 2291 * floor. Since any update to the floor must be later than the previous 2292 * floor, either outcome is acceptable. 2293 * 2294 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2295 * and determining that the resulting coarse-grained timestamp did not effect 2296 * a change in ctime. Any more recent floor value would effect a change to 2297 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2298 * 2299 * @ts will be filled with the latest floor value, regardless of the outcome of 2300 * the cmpxchg. Note that this is a filesystem specific interface and should be 2301 * avoided outside of that context. 2302 */ 2303 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2304 { 2305 struct timekeeper *tk = &tk_core.timekeeper; 2306 ktime_t old = atomic64_read(&mg_floor); 2307 ktime_t offset, mono; 2308 unsigned int seq; 2309 u64 nsecs; 2310 2311 do { 2312 seq = read_seqcount_begin(&tk_core.seq); 2313 2314 ts->tv_sec = tk->xtime_sec; 2315 mono = tk->tkr_mono.base; 2316 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2317 offset = tk_core.timekeeper.offs_real; 2318 } while (read_seqcount_retry(&tk_core.seq, seq)); 2319 2320 mono = ktime_add_ns(mono, nsecs); 2321 2322 /* 2323 * Attempt to update the floor with the new time value. As any 2324 * update must be later then the existing floor, and would effect 2325 * a change to ctime from the perspective of the current task, 2326 * accept the resulting floor value regardless of the outcome of 2327 * the swap. 2328 */ 2329 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2330 ts->tv_nsec = 0; 2331 timespec64_add_ns(ts, nsecs); 2332 timekeeping_inc_mg_floor_swaps(); 2333 } else { 2334 /* 2335 * Another task changed mg_floor since "old" was fetched. 2336 * "old" has been updated with the latest value of "mg_floor". 2337 * That value is newer than the previous floor value, which 2338 * is enough to effect a change to ctime. Accept it. 2339 */ 2340 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2341 } 2342 } 2343 2344 void ktime_get_coarse_ts64(struct timespec64 *ts) 2345 { 2346 struct timekeeper *tk = &tk_core.timekeeper; 2347 struct timespec64 now, mono; 2348 unsigned int seq; 2349 2350 do { 2351 seq = read_seqcount_begin(&tk_core.seq); 2352 2353 now = tk_xtime(tk); 2354 mono = tk->wall_to_monotonic; 2355 } while (read_seqcount_retry(&tk_core.seq, seq)); 2356 2357 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2358 now.tv_nsec + mono.tv_nsec); 2359 } 2360 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2361 2362 /* 2363 * Must hold jiffies_lock 2364 */ 2365 void do_timer(unsigned long ticks) 2366 { 2367 jiffies_64 += ticks; 2368 calc_global_load(); 2369 } 2370 2371 /** 2372 * ktime_get_update_offsets_now - hrtimer helper 2373 * @cwsseq: pointer to check and store the clock was set sequence number 2374 * @offs_real: pointer to storage for monotonic -> realtime offset 2375 * @offs_boot: pointer to storage for monotonic -> boottime offset 2376 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2377 * 2378 * Returns current monotonic time and updates the offsets if the 2379 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2380 * different. 2381 * 2382 * Called from hrtimer_interrupt() or retrigger_next_event() 2383 */ 2384 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2385 ktime_t *offs_boot, ktime_t *offs_tai) 2386 { 2387 struct timekeeper *tk = &tk_core.timekeeper; 2388 unsigned int seq; 2389 ktime_t base; 2390 u64 nsecs; 2391 2392 do { 2393 seq = read_seqcount_begin(&tk_core.seq); 2394 2395 base = tk->tkr_mono.base; 2396 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2397 base = ktime_add_ns(base, nsecs); 2398 2399 if (*cwsseq != tk->clock_was_set_seq) { 2400 *cwsseq = tk->clock_was_set_seq; 2401 *offs_real = tk->offs_real; 2402 *offs_boot = tk->offs_boot; 2403 *offs_tai = tk->offs_tai; 2404 } 2405 2406 /* Handle leapsecond insertion adjustments */ 2407 if (unlikely(base >= tk->next_leap_ktime)) 2408 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2409 2410 } while (read_seqcount_retry(&tk_core.seq, seq)); 2411 2412 return base; 2413 } 2414 2415 /* 2416 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2417 */ 2418 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2419 { 2420 if (txc->modes & ADJ_ADJTIME) { 2421 /* singleshot must not be used with any other mode bits */ 2422 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2423 return -EINVAL; 2424 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2425 !capable(CAP_SYS_TIME)) 2426 return -EPERM; 2427 } else { 2428 /* In order to modify anything, you gotta be super-user! */ 2429 if (txc->modes && !capable(CAP_SYS_TIME)) 2430 return -EPERM; 2431 /* 2432 * if the quartz is off by more than 10% then 2433 * something is VERY wrong! 2434 */ 2435 if (txc->modes & ADJ_TICK && 2436 (txc->tick < 900000/USER_HZ || 2437 txc->tick > 1100000/USER_HZ)) 2438 return -EINVAL; 2439 } 2440 2441 if (txc->modes & ADJ_SETOFFSET) { 2442 /* In order to inject time, you gotta be super-user! */ 2443 if (!capable(CAP_SYS_TIME)) 2444 return -EPERM; 2445 2446 /* 2447 * Validate if a timespec/timeval used to inject a time 2448 * offset is valid. Offsets can be positive or negative, so 2449 * we don't check tv_sec. The value of the timeval/timespec 2450 * is the sum of its fields,but *NOTE*: 2451 * The field tv_usec/tv_nsec must always be non-negative and 2452 * we can't have more nanoseconds/microseconds than a second. 2453 */ 2454 if (txc->time.tv_usec < 0) 2455 return -EINVAL; 2456 2457 if (txc->modes & ADJ_NANO) { 2458 if (txc->time.tv_usec >= NSEC_PER_SEC) 2459 return -EINVAL; 2460 } else { 2461 if (txc->time.tv_usec >= USEC_PER_SEC) 2462 return -EINVAL; 2463 } 2464 } 2465 2466 /* 2467 * Check for potential multiplication overflows that can 2468 * only happen on 64-bit systems: 2469 */ 2470 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2471 if (LLONG_MIN / PPM_SCALE > txc->freq) 2472 return -EINVAL; 2473 if (LLONG_MAX / PPM_SCALE < txc->freq) 2474 return -EINVAL; 2475 } 2476 2477 return 0; 2478 } 2479 2480 /** 2481 * random_get_entropy_fallback - Returns the raw clock source value, 2482 * used by random.c for platforms with no valid random_get_entropy(). 2483 */ 2484 unsigned long random_get_entropy_fallback(void) 2485 { 2486 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2487 struct clocksource *clock = READ_ONCE(tkr->clock); 2488 2489 if (unlikely(timekeeping_suspended || !clock)) 2490 return 0; 2491 return clock->read(clock); 2492 } 2493 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2494 2495 /** 2496 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2497 * @txc: Pointer to kernel_timex structure containing NTP parameters 2498 */ 2499 int do_adjtimex(struct __kernel_timex *txc) 2500 { 2501 struct audit_ntp_data ad; 2502 bool offset_set = false; 2503 bool clock_set = false; 2504 struct timespec64 ts; 2505 int ret; 2506 2507 /* Validate the data before disabling interrupts */ 2508 ret = timekeeping_validate_timex(txc); 2509 if (ret) 2510 return ret; 2511 add_device_randomness(txc, sizeof(*txc)); 2512 2513 if (txc->modes & ADJ_SETOFFSET) { 2514 struct timespec64 delta; 2515 2516 delta.tv_sec = txc->time.tv_sec; 2517 delta.tv_nsec = txc->time.tv_usec; 2518 if (!(txc->modes & ADJ_NANO)) 2519 delta.tv_nsec *= 1000; 2520 ret = timekeeping_inject_offset(&delta); 2521 if (ret) 2522 return ret; 2523 2524 offset_set = delta.tv_sec != 0; 2525 audit_tk_injoffset(delta); 2526 } 2527 2528 audit_ntp_init(&ad); 2529 2530 ktime_get_real_ts64(&ts); 2531 add_device_randomness(&ts, sizeof(ts)); 2532 2533 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 2534 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2535 s32 orig_tai, tai; 2536 2537 orig_tai = tai = tks->tai_offset; 2538 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2539 2540 if (tai != orig_tai) { 2541 __timekeeping_set_tai_offset(tks, tai); 2542 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 2543 clock_set = true; 2544 } else { 2545 tk_update_leap_state_all(&tk_core); 2546 } 2547 } 2548 2549 audit_ntp_log(&ad); 2550 2551 /* Update the multiplier immediately if frequency was set directly */ 2552 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2553 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2554 2555 if (clock_set) 2556 clock_was_set(CLOCK_SET_WALL); 2557 2558 ntp_notify_cmos_timer(offset_set); 2559 2560 return ret; 2561 } 2562 2563 #ifdef CONFIG_NTP_PPS 2564 /** 2565 * hardpps() - Accessor function to NTP __hardpps function 2566 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2567 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2568 */ 2569 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2570 { 2571 guard(raw_spinlock_irqsave)(&tk_core.lock); 2572 __hardpps(phase_ts, raw_ts); 2573 } 2574 EXPORT_SYMBOL(hardpps); 2575 #endif /* CONFIG_NTP_PPS */ 2576