xref: /linux/kernel/time/timekeeping.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27 
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
31 
32 #define TK_CLEAR_NTP		(1 << 0)
33 #define TK_CLOCK_WAS_SET	(1 << 1)
34 
35 #define TK_UPDATE_ALL		(TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
36 
37 enum timekeeping_adv_mode {
38 	/* Update timekeeper when a tick has passed */
39 	TK_ADV_TICK,
40 
41 	/* Update timekeeper on a direct frequency change */
42 	TK_ADV_FREQ
43 };
44 
45 /*
46  * The most important data for readout fits into a single 64 byte
47  * cache line.
48  */
49 struct tk_data {
50 	seqcount_raw_spinlock_t	seq;
51 	struct timekeeper	timekeeper;
52 	struct timekeeper	shadow_timekeeper;
53 	raw_spinlock_t		lock;
54 } ____cacheline_aligned;
55 
56 static struct tk_data tk_core;
57 
58 /* flag for if timekeeping is suspended */
59 int __read_mostly timekeeping_suspended;
60 
61 /**
62  * struct tk_fast - NMI safe timekeeper
63  * @seq:	Sequence counter for protecting updates. The lowest bit
64  *		is the index for the tk_read_base array
65  * @base:	tk_read_base array. Access is indexed by the lowest bit of
66  *		@seq.
67  *
68  * See @update_fast_timekeeper() below.
69  */
70 struct tk_fast {
71 	seqcount_latch_t	seq;
72 	struct tk_read_base	base[2];
73 };
74 
75 /* Suspend-time cycles value for halted fast timekeeper. */
76 static u64 cycles_at_suspend;
77 
78 static u64 dummy_clock_read(struct clocksource *cs)
79 {
80 	if (timekeeping_suspended)
81 		return cycles_at_suspend;
82 	return local_clock();
83 }
84 
85 static struct clocksource dummy_clock = {
86 	.read = dummy_clock_read,
87 };
88 
89 /*
90  * Boot time initialization which allows local_clock() to be utilized
91  * during early boot when clocksources are not available. local_clock()
92  * returns nanoseconds already so no conversion is required, hence mult=1
93  * and shift=0. When the first proper clocksource is installed then
94  * the fast time keepers are updated with the correct values.
95  */
96 #define FAST_TK_INIT						\
97 	{							\
98 		.clock		= &dummy_clock,			\
99 		.mask		= CLOCKSOURCE_MASK(64),		\
100 		.mult		= 1,				\
101 		.shift		= 0,				\
102 	}
103 
104 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
105 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
106 	.base[0] = FAST_TK_INIT,
107 	.base[1] = FAST_TK_INIT,
108 };
109 
110 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
111 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
112 	.base[0] = FAST_TK_INIT,
113 	.base[1] = FAST_TK_INIT,
114 };
115 
116 unsigned long timekeeper_lock_irqsave(void)
117 {
118 	unsigned long flags;
119 
120 	raw_spin_lock_irqsave(&tk_core.lock, flags);
121 	return flags;
122 }
123 
124 void timekeeper_unlock_irqrestore(unsigned long flags)
125 {
126 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
127 }
128 
129 /*
130  * Multigrain timestamps require tracking the latest fine-grained timestamp
131  * that has been issued, and never returning a coarse-grained timestamp that is
132  * earlier than that value.
133  *
134  * mg_floor represents the latest fine-grained time that has been handed out as
135  * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
136  * converted to a realtime clock value on an as-needed basis.
137  *
138  * Maintaining mg_floor ensures the multigrain interfaces never issue a
139  * timestamp earlier than one that has been previously issued.
140  *
141  * The exception to this rule is when there is a backward realtime clock jump. If
142  * such an event occurs, a timestamp can appear to be earlier than a previous one.
143  */
144 static __cacheline_aligned_in_smp atomic64_t mg_floor;
145 
146 static inline void tk_normalize_xtime(struct timekeeper *tk)
147 {
148 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
149 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
150 		tk->xtime_sec++;
151 	}
152 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
153 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
154 		tk->raw_sec++;
155 	}
156 }
157 
158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
159 {
160 	struct timespec64 ts;
161 
162 	ts.tv_sec = tk->xtime_sec;
163 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
164 	return ts;
165 }
166 
167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
168 {
169 	tk->xtime_sec = ts->tv_sec;
170 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
171 }
172 
173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
174 {
175 	tk->xtime_sec += ts->tv_sec;
176 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
177 	tk_normalize_xtime(tk);
178 }
179 
180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
181 {
182 	struct timespec64 tmp;
183 
184 	/*
185 	 * Verify consistency of: offset_real = -wall_to_monotonic
186 	 * before modifying anything
187 	 */
188 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
189 					-tk->wall_to_monotonic.tv_nsec);
190 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
191 	tk->wall_to_monotonic = wtm;
192 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
193 	/* Paired with READ_ONCE() in ktime_mono_to_any() */
194 	WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
195 	WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
196 }
197 
198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
199 {
200 	/* Paired with READ_ONCE() in ktime_mono_to_any() */
201 	WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
202 	/*
203 	 * Timespec representation for VDSO update to avoid 64bit division
204 	 * on every update.
205 	 */
206 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
207 }
208 
209 /*
210  * tk_clock_read - atomic clocksource read() helper
211  *
212  * This helper is necessary to use in the read paths because, while the
213  * seqcount ensures we don't return a bad value while structures are updated,
214  * it doesn't protect from potential crashes. There is the possibility that
215  * the tkr's clocksource may change between the read reference, and the
216  * clock reference passed to the read function.  This can cause crashes if
217  * the wrong clocksource is passed to the wrong read function.
218  * This isn't necessary to use when holding the tk_core.lock or doing
219  * a read of the fast-timekeeper tkrs (which is protected by its own locking
220  * and update logic).
221  */
222 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
223 {
224 	struct clocksource *clock = READ_ONCE(tkr->clock);
225 
226 	return clock->read(clock);
227 }
228 
229 /**
230  * tk_setup_internals - Set up internals to use clocksource clock.
231  *
232  * @tk:		The target timekeeper to setup.
233  * @clock:		Pointer to clocksource.
234  *
235  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
236  * pair and interval request.
237  *
238  * Unless you're the timekeeping code, you should not be using this!
239  */
240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
241 {
242 	u64 interval;
243 	u64 tmp, ntpinterval;
244 	struct clocksource *old_clock;
245 
246 	++tk->cs_was_changed_seq;
247 	old_clock = tk->tkr_mono.clock;
248 	tk->tkr_mono.clock = clock;
249 	tk->tkr_mono.mask = clock->mask;
250 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
251 
252 	tk->tkr_raw.clock = clock;
253 	tk->tkr_raw.mask = clock->mask;
254 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
255 
256 	/* Do the ns -> cycle conversion first, using original mult */
257 	tmp = NTP_INTERVAL_LENGTH;
258 	tmp <<= clock->shift;
259 	ntpinterval = tmp;
260 	tmp += clock->mult/2;
261 	do_div(tmp, clock->mult);
262 	if (tmp == 0)
263 		tmp = 1;
264 
265 	interval = (u64) tmp;
266 	tk->cycle_interval = interval;
267 
268 	/* Go back from cycles -> shifted ns */
269 	tk->xtime_interval = interval * clock->mult;
270 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
271 	tk->raw_interval = interval * clock->mult;
272 
273 	 /* if changing clocks, convert xtime_nsec shift units */
274 	if (old_clock) {
275 		int shift_change = clock->shift - old_clock->shift;
276 		if (shift_change < 0) {
277 			tk->tkr_mono.xtime_nsec >>= -shift_change;
278 			tk->tkr_raw.xtime_nsec >>= -shift_change;
279 		} else {
280 			tk->tkr_mono.xtime_nsec <<= shift_change;
281 			tk->tkr_raw.xtime_nsec <<= shift_change;
282 		}
283 	}
284 
285 	tk->tkr_mono.shift = clock->shift;
286 	tk->tkr_raw.shift = clock->shift;
287 
288 	tk->ntp_error = 0;
289 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
290 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
291 
292 	/*
293 	 * The timekeeper keeps its own mult values for the currently
294 	 * active clocksource. These value will be adjusted via NTP
295 	 * to counteract clock drifting.
296 	 */
297 	tk->tkr_mono.mult = clock->mult;
298 	tk->tkr_raw.mult = clock->mult;
299 	tk->ntp_err_mult = 0;
300 	tk->skip_second_overflow = 0;
301 }
302 
303 /* Timekeeper helper functions. */
304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
305 {
306 	return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
307 }
308 
309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
310 {
311 	/* Calculate the delta since the last update_wall_time() */
312 	u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
313 
314 	/*
315 	 * This detects both negative motion and the case where the delta
316 	 * overflows the multiplication with tkr->mult.
317 	 */
318 	if (unlikely(delta > tkr->clock->max_cycles)) {
319 		/*
320 		 * Handle clocksource inconsistency between CPUs to prevent
321 		 * time from going backwards by checking for the MSB of the
322 		 * mask being set in the delta.
323 		 */
324 		if (delta & ~(mask >> 1))
325 			return tkr->xtime_nsec >> tkr->shift;
326 
327 		return delta_to_ns_safe(tkr, delta);
328 	}
329 
330 	return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
331 }
332 
333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
334 {
335 	return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
336 }
337 
338 /**
339  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
340  * @tkr: Timekeeping readout base from which we take the update
341  * @tkf: Pointer to NMI safe timekeeper
342  *
343  * We want to use this from any context including NMI and tracing /
344  * instrumenting the timekeeping code itself.
345  *
346  * Employ the latch technique; see @write_seqcount_latch.
347  *
348  * So if a NMI hits the update of base[0] then it will use base[1]
349  * which is still consistent. In the worst case this can result is a
350  * slightly wrong timestamp (a few nanoseconds). See
351  * @ktime_get_mono_fast_ns.
352  */
353 static void update_fast_timekeeper(const struct tk_read_base *tkr,
354 				   struct tk_fast *tkf)
355 {
356 	struct tk_read_base *base = tkf->base;
357 
358 	/* Force readers off to base[1] */
359 	write_seqcount_latch_begin(&tkf->seq);
360 
361 	/* Update base[0] */
362 	memcpy(base, tkr, sizeof(*base));
363 
364 	/* Force readers back to base[0] */
365 	write_seqcount_latch(&tkf->seq);
366 
367 	/* Update base[1] */
368 	memcpy(base + 1, base, sizeof(*base));
369 
370 	write_seqcount_latch_end(&tkf->seq);
371 }
372 
373 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
374 {
375 	struct tk_read_base *tkr;
376 	unsigned int seq;
377 	u64 now;
378 
379 	do {
380 		seq = read_seqcount_latch(&tkf->seq);
381 		tkr = tkf->base + (seq & 0x01);
382 		now = ktime_to_ns(tkr->base);
383 		now += timekeeping_get_ns(tkr);
384 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
385 
386 	return now;
387 }
388 
389 /**
390  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
391  *
392  * This timestamp is not guaranteed to be monotonic across an update.
393  * The timestamp is calculated by:
394  *
395  *	now = base_mono + clock_delta * slope
396  *
397  * So if the update lowers the slope, readers who are forced to the
398  * not yet updated second array are still using the old steeper slope.
399  *
400  * tmono
401  * ^
402  * |    o  n
403  * |   o n
404  * |  u
405  * | o
406  * |o
407  * |12345678---> reader order
408  *
409  * o = old slope
410  * u = update
411  * n = new slope
412  *
413  * So reader 6 will observe time going backwards versus reader 5.
414  *
415  * While other CPUs are likely to be able to observe that, the only way
416  * for a CPU local observation is when an NMI hits in the middle of
417  * the update. Timestamps taken from that NMI context might be ahead
418  * of the following timestamps. Callers need to be aware of that and
419  * deal with it.
420  */
421 u64 notrace ktime_get_mono_fast_ns(void)
422 {
423 	return __ktime_get_fast_ns(&tk_fast_mono);
424 }
425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
426 
427 /**
428  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
429  *
430  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
431  * conversion factor is not affected by NTP/PTP correction.
432  */
433 u64 notrace ktime_get_raw_fast_ns(void)
434 {
435 	return __ktime_get_fast_ns(&tk_fast_raw);
436 }
437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
438 
439 /**
440  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
441  *
442  * To keep it NMI safe since we're accessing from tracing, we're not using a
443  * separate timekeeper with updates to monotonic clock and boot offset
444  * protected with seqcounts. This has the following minor side effects:
445  *
446  * (1) Its possible that a timestamp be taken after the boot offset is updated
447  * but before the timekeeper is updated. If this happens, the new boot offset
448  * is added to the old timekeeping making the clock appear to update slightly
449  * earlier:
450  *    CPU 0                                        CPU 1
451  *    timekeeping_inject_sleeptime64()
452  *    __timekeeping_inject_sleeptime(tk, delta);
453  *                                                 timestamp();
454  *    timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
455  *
456  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
457  * partially updated.  Since the tk->offs_boot update is a rare event, this
458  * should be a rare occurrence which postprocessing should be able to handle.
459  *
460  * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
461  * apply as well.
462  */
463 u64 notrace ktime_get_boot_fast_ns(void)
464 {
465 	struct timekeeper *tk = &tk_core.timekeeper;
466 
467 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
468 }
469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
470 
471 /**
472  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
473  *
474  * The same limitations as described for ktime_get_boot_fast_ns() apply. The
475  * mono time and the TAI offset are not read atomically which may yield wrong
476  * readouts. However, an update of the TAI offset is an rare event e.g., caused
477  * by settime or adjtimex with an offset. The user of this function has to deal
478  * with the possibility of wrong timestamps in post processing.
479  */
480 u64 notrace ktime_get_tai_fast_ns(void)
481 {
482 	struct timekeeper *tk = &tk_core.timekeeper;
483 
484 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
485 }
486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
487 
488 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
489 {
490 	struct tk_read_base *tkr;
491 	u64 basem, baser, delta;
492 	unsigned int seq;
493 
494 	do {
495 		seq = raw_read_seqcount_latch(&tkf->seq);
496 		tkr = tkf->base + (seq & 0x01);
497 		basem = ktime_to_ns(tkr->base);
498 		baser = ktime_to_ns(tkr->base_real);
499 		delta = timekeeping_get_ns(tkr);
500 	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
501 
502 	if (mono)
503 		*mono = basem + delta;
504 	return baser + delta;
505 }
506 
507 /**
508  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
509  *
510  * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
511  */
512 u64 ktime_get_real_fast_ns(void)
513 {
514 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
515 }
516 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
517 
518 /**
519  * ktime_get_fast_timestamps: - NMI safe timestamps
520  * @snapshot:	Pointer to timestamp storage
521  *
522  * Stores clock monotonic, boottime and realtime timestamps.
523  *
524  * Boot time is a racy access on 32bit systems if the sleep time injection
525  * happens late during resume and not in timekeeping_resume(). That could
526  * be avoided by expanding struct tk_read_base with boot offset for 32bit
527  * and adding more overhead to the update. As this is a hard to observe
528  * once per resume event which can be filtered with reasonable effort using
529  * the accurate mono/real timestamps, it's probably not worth the trouble.
530  *
531  * Aside of that it might be possible on 32 and 64 bit to observe the
532  * following when the sleep time injection happens late:
533  *
534  * CPU 0				CPU 1
535  * timekeeping_resume()
536  * ktime_get_fast_timestamps()
537  *	mono, real = __ktime_get_real_fast()
538  *					inject_sleep_time()
539  *					   update boot offset
540  *	boot = mono + bootoffset;
541  *
542  * That means that boot time already has the sleep time adjustment, but
543  * real time does not. On the next readout both are in sync again.
544  *
545  * Preventing this for 64bit is not really feasible without destroying the
546  * careful cache layout of the timekeeper because the sequence count and
547  * struct tk_read_base would then need two cache lines instead of one.
548  *
549  * Access to the time keeper clock source is disabled across the innermost
550  * steps of suspend/resume. The accessors still work, but the timestamps
551  * are frozen until time keeping is resumed which happens very early.
552  *
553  * For regular suspend/resume there is no observable difference vs. sched
554  * clock, but it might affect some of the nasty low level debug printks.
555  *
556  * OTOH, access to sched clock is not guaranteed across suspend/resume on
557  * all systems either so it depends on the hardware in use.
558  *
559  * If that turns out to be a real problem then this could be mitigated by
560  * using sched clock in a similar way as during early boot. But it's not as
561  * trivial as on early boot because it needs some careful protection
562  * against the clock monotonic timestamp jumping backwards on resume.
563  */
564 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
565 {
566 	struct timekeeper *tk = &tk_core.timekeeper;
567 
568 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
569 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
570 }
571 
572 /**
573  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
574  * @tk: Timekeeper to snapshot.
575  *
576  * It generally is unsafe to access the clocksource after timekeeping has been
577  * suspended, so take a snapshot of the readout base of @tk and use it as the
578  * fast timekeeper's readout base while suspended.  It will return the same
579  * number of cycles every time until timekeeping is resumed at which time the
580  * proper readout base for the fast timekeeper will be restored automatically.
581  */
582 static void halt_fast_timekeeper(const struct timekeeper *tk)
583 {
584 	static struct tk_read_base tkr_dummy;
585 	const struct tk_read_base *tkr = &tk->tkr_mono;
586 
587 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
588 	cycles_at_suspend = tk_clock_read(tkr);
589 	tkr_dummy.clock = &dummy_clock;
590 	tkr_dummy.base_real = tkr->base + tk->offs_real;
591 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
592 
593 	tkr = &tk->tkr_raw;
594 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
595 	tkr_dummy.clock = &dummy_clock;
596 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
597 }
598 
599 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
600 
601 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
602 {
603 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
604 }
605 
606 /**
607  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
608  * @nb: Pointer to the notifier block to register
609  */
610 int pvclock_gtod_register_notifier(struct notifier_block *nb)
611 {
612 	struct timekeeper *tk = &tk_core.timekeeper;
613 	int ret;
614 
615 	guard(raw_spinlock_irqsave)(&tk_core.lock);
616 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
617 	update_pvclock_gtod(tk, true);
618 
619 	return ret;
620 }
621 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
622 
623 /**
624  * pvclock_gtod_unregister_notifier - unregister a pvclock
625  * timedata update listener
626  * @nb: Pointer to the notifier block to unregister
627  */
628 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
629 {
630 	guard(raw_spinlock_irqsave)(&tk_core.lock);
631 	return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
632 }
633 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
634 
635 /*
636  * tk_update_leap_state - helper to update the next_leap_ktime
637  */
638 static inline void tk_update_leap_state(struct timekeeper *tk)
639 {
640 	tk->next_leap_ktime = ntp_get_next_leap();
641 	if (tk->next_leap_ktime != KTIME_MAX)
642 		/* Convert to monotonic time */
643 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
644 }
645 
646 /*
647  * Leap state update for both shadow and the real timekeeper
648  * Separate to spare a full memcpy() of the timekeeper.
649  */
650 static void tk_update_leap_state_all(struct tk_data *tkd)
651 {
652 	write_seqcount_begin(&tkd->seq);
653 	tk_update_leap_state(&tkd->shadow_timekeeper);
654 	tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
655 	write_seqcount_end(&tkd->seq);
656 }
657 
658 /*
659  * Update the ktime_t based scalar nsec members of the timekeeper
660  */
661 static inline void tk_update_ktime_data(struct timekeeper *tk)
662 {
663 	u64 seconds;
664 	u32 nsec;
665 
666 	/*
667 	 * The xtime based monotonic readout is:
668 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
669 	 * The ktime based monotonic readout is:
670 	 *	nsec = base_mono + now();
671 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
672 	 */
673 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
674 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
675 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
676 
677 	/*
678 	 * The sum of the nanoseconds portions of xtime and
679 	 * wall_to_monotonic can be greater/equal one second. Take
680 	 * this into account before updating tk->ktime_sec.
681 	 */
682 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
683 	if (nsec >= NSEC_PER_SEC)
684 		seconds++;
685 	tk->ktime_sec = seconds;
686 
687 	/* Update the monotonic raw base */
688 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
689 }
690 
691 /*
692  * Restore the shadow timekeeper from the real timekeeper.
693  */
694 static void timekeeping_restore_shadow(struct tk_data *tkd)
695 {
696 	lockdep_assert_held(&tkd->lock);
697 	memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
698 }
699 
700 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
701 {
702 	struct timekeeper *tk = &tk_core.shadow_timekeeper;
703 
704 	lockdep_assert_held(&tkd->lock);
705 
706 	/*
707 	 * Block out readers before running the updates below because that
708 	 * updates VDSO and other time related infrastructure. Not blocking
709 	 * the readers might let a reader see time going backwards when
710 	 * reading from the VDSO after the VDSO update and then reading in
711 	 * the kernel from the timekeeper before that got updated.
712 	 */
713 	write_seqcount_begin(&tkd->seq);
714 
715 	if (action & TK_CLEAR_NTP) {
716 		tk->ntp_error = 0;
717 		ntp_clear();
718 	}
719 
720 	tk_update_leap_state(tk);
721 	tk_update_ktime_data(tk);
722 
723 	update_vsyscall(tk);
724 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
725 
726 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
727 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
728 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
729 
730 	if (action & TK_CLOCK_WAS_SET)
731 		tk->clock_was_set_seq++;
732 
733 	/*
734 	 * Update the real timekeeper.
735 	 *
736 	 * We could avoid this memcpy() by switching pointers, but that has
737 	 * the downside that the reader side does not longer benefit from
738 	 * the cacheline optimized data layout of the timekeeper and requires
739 	 * another indirection.
740 	 */
741 	memcpy(&tkd->timekeeper, tk, sizeof(*tk));
742 	write_seqcount_end(&tkd->seq);
743 }
744 
745 /**
746  * timekeeping_forward_now - update clock to the current time
747  * @tk:		Pointer to the timekeeper to update
748  *
749  * Forward the current clock to update its state since the last call to
750  * update_wall_time(). This is useful before significant clock changes,
751  * as it avoids having to deal with this time offset explicitly.
752  */
753 static void timekeeping_forward_now(struct timekeeper *tk)
754 {
755 	u64 cycle_now, delta;
756 
757 	cycle_now = tk_clock_read(&tk->tkr_mono);
758 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
759 	tk->tkr_mono.cycle_last = cycle_now;
760 	tk->tkr_raw.cycle_last  = cycle_now;
761 
762 	while (delta > 0) {
763 		u64 max = tk->tkr_mono.clock->max_cycles;
764 		u64 incr = delta < max ? delta : max;
765 
766 		tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
767 		tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
768 		tk_normalize_xtime(tk);
769 		delta -= incr;
770 	}
771 }
772 
773 /**
774  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
775  * @ts:		pointer to the timespec to be set
776  *
777  * Returns the time of day in a timespec64 (WARN if suspended).
778  */
779 void ktime_get_real_ts64(struct timespec64 *ts)
780 {
781 	struct timekeeper *tk = &tk_core.timekeeper;
782 	unsigned int seq;
783 	u64 nsecs;
784 
785 	WARN_ON(timekeeping_suspended);
786 
787 	do {
788 		seq = read_seqcount_begin(&tk_core.seq);
789 
790 		ts->tv_sec = tk->xtime_sec;
791 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
792 
793 	} while (read_seqcount_retry(&tk_core.seq, seq));
794 
795 	ts->tv_nsec = 0;
796 	timespec64_add_ns(ts, nsecs);
797 }
798 EXPORT_SYMBOL(ktime_get_real_ts64);
799 
800 ktime_t ktime_get(void)
801 {
802 	struct timekeeper *tk = &tk_core.timekeeper;
803 	unsigned int seq;
804 	ktime_t base;
805 	u64 nsecs;
806 
807 	WARN_ON(timekeeping_suspended);
808 
809 	do {
810 		seq = read_seqcount_begin(&tk_core.seq);
811 		base = tk->tkr_mono.base;
812 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
813 
814 	} while (read_seqcount_retry(&tk_core.seq, seq));
815 
816 	return ktime_add_ns(base, nsecs);
817 }
818 EXPORT_SYMBOL_GPL(ktime_get);
819 
820 u32 ktime_get_resolution_ns(void)
821 {
822 	struct timekeeper *tk = &tk_core.timekeeper;
823 	unsigned int seq;
824 	u32 nsecs;
825 
826 	WARN_ON(timekeeping_suspended);
827 
828 	do {
829 		seq = read_seqcount_begin(&tk_core.seq);
830 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
831 	} while (read_seqcount_retry(&tk_core.seq, seq));
832 
833 	return nsecs;
834 }
835 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
836 
837 static ktime_t *offsets[TK_OFFS_MAX] = {
838 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
839 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
840 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
841 };
842 
843 ktime_t ktime_get_with_offset(enum tk_offsets offs)
844 {
845 	struct timekeeper *tk = &tk_core.timekeeper;
846 	unsigned int seq;
847 	ktime_t base, *offset = offsets[offs];
848 	u64 nsecs;
849 
850 	WARN_ON(timekeeping_suspended);
851 
852 	do {
853 		seq = read_seqcount_begin(&tk_core.seq);
854 		base = ktime_add(tk->tkr_mono.base, *offset);
855 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
856 
857 	} while (read_seqcount_retry(&tk_core.seq, seq));
858 
859 	return ktime_add_ns(base, nsecs);
860 
861 }
862 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
863 
864 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
865 {
866 	struct timekeeper *tk = &tk_core.timekeeper;
867 	unsigned int seq;
868 	ktime_t base, *offset = offsets[offs];
869 	u64 nsecs;
870 
871 	WARN_ON(timekeeping_suspended);
872 
873 	do {
874 		seq = read_seqcount_begin(&tk_core.seq);
875 		base = ktime_add(tk->tkr_mono.base, *offset);
876 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
877 
878 	} while (read_seqcount_retry(&tk_core.seq, seq));
879 
880 	return ktime_add_ns(base, nsecs);
881 }
882 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
883 
884 /**
885  * ktime_mono_to_any() - convert monotonic time to any other time
886  * @tmono:	time to convert.
887  * @offs:	which offset to use
888  */
889 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
890 {
891 	ktime_t *offset = offsets[offs];
892 	unsigned int seq;
893 	ktime_t tconv;
894 
895 	if (IS_ENABLED(CONFIG_64BIT)) {
896 		/*
897 		 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
898 		 * tk_update_sleep_time().
899 		 */
900 		return ktime_add(tmono, READ_ONCE(*offset));
901 	}
902 
903 	do {
904 		seq = read_seqcount_begin(&tk_core.seq);
905 		tconv = ktime_add(tmono, *offset);
906 	} while (read_seqcount_retry(&tk_core.seq, seq));
907 
908 	return tconv;
909 }
910 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
911 
912 /**
913  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
914  */
915 ktime_t ktime_get_raw(void)
916 {
917 	struct timekeeper *tk = &tk_core.timekeeper;
918 	unsigned int seq;
919 	ktime_t base;
920 	u64 nsecs;
921 
922 	do {
923 		seq = read_seqcount_begin(&tk_core.seq);
924 		base = tk->tkr_raw.base;
925 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
926 
927 	} while (read_seqcount_retry(&tk_core.seq, seq));
928 
929 	return ktime_add_ns(base, nsecs);
930 }
931 EXPORT_SYMBOL_GPL(ktime_get_raw);
932 
933 /**
934  * ktime_get_ts64 - get the monotonic clock in timespec64 format
935  * @ts:		pointer to timespec variable
936  *
937  * The function calculates the monotonic clock from the realtime
938  * clock and the wall_to_monotonic offset and stores the result
939  * in normalized timespec64 format in the variable pointed to by @ts.
940  */
941 void ktime_get_ts64(struct timespec64 *ts)
942 {
943 	struct timekeeper *tk = &tk_core.timekeeper;
944 	struct timespec64 tomono;
945 	unsigned int seq;
946 	u64 nsec;
947 
948 	WARN_ON(timekeeping_suspended);
949 
950 	do {
951 		seq = read_seqcount_begin(&tk_core.seq);
952 		ts->tv_sec = tk->xtime_sec;
953 		nsec = timekeeping_get_ns(&tk->tkr_mono);
954 		tomono = tk->wall_to_monotonic;
955 
956 	} while (read_seqcount_retry(&tk_core.seq, seq));
957 
958 	ts->tv_sec += tomono.tv_sec;
959 	ts->tv_nsec = 0;
960 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
961 }
962 EXPORT_SYMBOL_GPL(ktime_get_ts64);
963 
964 /**
965  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
966  *
967  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
968  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
969  * works on both 32 and 64 bit systems. On 32 bit systems the readout
970  * covers ~136 years of uptime which should be enough to prevent
971  * premature wrap arounds.
972  */
973 time64_t ktime_get_seconds(void)
974 {
975 	struct timekeeper *tk = &tk_core.timekeeper;
976 
977 	WARN_ON(timekeeping_suspended);
978 	return tk->ktime_sec;
979 }
980 EXPORT_SYMBOL_GPL(ktime_get_seconds);
981 
982 /**
983  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
984  *
985  * Returns the wall clock seconds since 1970.
986  *
987  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
988  * 32bit systems the access must be protected with the sequence
989  * counter to provide "atomic" access to the 64bit tk->xtime_sec
990  * value.
991  */
992 time64_t ktime_get_real_seconds(void)
993 {
994 	struct timekeeper *tk = &tk_core.timekeeper;
995 	time64_t seconds;
996 	unsigned int seq;
997 
998 	if (IS_ENABLED(CONFIG_64BIT))
999 		return tk->xtime_sec;
1000 
1001 	do {
1002 		seq = read_seqcount_begin(&tk_core.seq);
1003 		seconds = tk->xtime_sec;
1004 
1005 	} while (read_seqcount_retry(&tk_core.seq, seq));
1006 
1007 	return seconds;
1008 }
1009 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1010 
1011 /**
1012  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1013  * but without the sequence counter protect. This internal function
1014  * is called just when timekeeping lock is already held.
1015  */
1016 noinstr time64_t __ktime_get_real_seconds(void)
1017 {
1018 	struct timekeeper *tk = &tk_core.timekeeper;
1019 
1020 	return tk->xtime_sec;
1021 }
1022 
1023 /**
1024  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1025  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1026  */
1027 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1028 {
1029 	struct timekeeper *tk = &tk_core.timekeeper;
1030 	unsigned int seq;
1031 	ktime_t base_raw;
1032 	ktime_t base_real;
1033 	ktime_t base_boot;
1034 	u64 nsec_raw;
1035 	u64 nsec_real;
1036 	u64 now;
1037 
1038 	WARN_ON_ONCE(timekeeping_suspended);
1039 
1040 	do {
1041 		seq = read_seqcount_begin(&tk_core.seq);
1042 		now = tk_clock_read(&tk->tkr_mono);
1043 		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1044 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1045 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1046 		base_real = ktime_add(tk->tkr_mono.base,
1047 				      tk_core.timekeeper.offs_real);
1048 		base_boot = ktime_add(tk->tkr_mono.base,
1049 				      tk_core.timekeeper.offs_boot);
1050 		base_raw = tk->tkr_raw.base;
1051 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1052 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1053 	} while (read_seqcount_retry(&tk_core.seq, seq));
1054 
1055 	systime_snapshot->cycles = now;
1056 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1057 	systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1058 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1059 }
1060 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1061 
1062 /* Scale base by mult/div checking for overflow */
1063 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1064 {
1065 	u64 tmp, rem;
1066 
1067 	tmp = div64_u64_rem(*base, div, &rem);
1068 
1069 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1070 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1071 		return -EOVERFLOW;
1072 	tmp *= mult;
1073 
1074 	rem = div64_u64(rem * mult, div);
1075 	*base = tmp + rem;
1076 	return 0;
1077 }
1078 
1079 /**
1080  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1081  * @history:			Snapshot representing start of history
1082  * @partial_history_cycles:	Cycle offset into history (fractional part)
1083  * @total_history_cycles:	Total history length in cycles
1084  * @discontinuity:		True indicates clock was set on history period
1085  * @ts:				Cross timestamp that should be adjusted using
1086  *	partial/total ratio
1087  *
1088  * Helper function used by get_device_system_crosststamp() to correct the
1089  * crosstimestamp corresponding to the start of the current interval to the
1090  * system counter value (timestamp point) provided by the driver. The
1091  * total_history_* quantities are the total history starting at the provided
1092  * reference point and ending at the start of the current interval. The cycle
1093  * count between the driver timestamp point and the start of the current
1094  * interval is partial_history_cycles.
1095  */
1096 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1097 					 u64 partial_history_cycles,
1098 					 u64 total_history_cycles,
1099 					 bool discontinuity,
1100 					 struct system_device_crosststamp *ts)
1101 {
1102 	struct timekeeper *tk = &tk_core.timekeeper;
1103 	u64 corr_raw, corr_real;
1104 	bool interp_forward;
1105 	int ret;
1106 
1107 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1108 		return 0;
1109 
1110 	/* Interpolate shortest distance from beginning or end of history */
1111 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1112 	partial_history_cycles = interp_forward ?
1113 		total_history_cycles - partial_history_cycles :
1114 		partial_history_cycles;
1115 
1116 	/*
1117 	 * Scale the monotonic raw time delta by:
1118 	 *	partial_history_cycles / total_history_cycles
1119 	 */
1120 	corr_raw = (u64)ktime_to_ns(
1121 		ktime_sub(ts->sys_monoraw, history->raw));
1122 	ret = scale64_check_overflow(partial_history_cycles,
1123 				     total_history_cycles, &corr_raw);
1124 	if (ret)
1125 		return ret;
1126 
1127 	/*
1128 	 * If there is a discontinuity in the history, scale monotonic raw
1129 	 *	correction by:
1130 	 *	mult(real)/mult(raw) yielding the realtime correction
1131 	 * Otherwise, calculate the realtime correction similar to monotonic
1132 	 *	raw calculation
1133 	 */
1134 	if (discontinuity) {
1135 		corr_real = mul_u64_u32_div
1136 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1137 	} else {
1138 		corr_real = (u64)ktime_to_ns(
1139 			ktime_sub(ts->sys_realtime, history->real));
1140 		ret = scale64_check_overflow(partial_history_cycles,
1141 					     total_history_cycles, &corr_real);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 
1146 	/* Fixup monotonic raw and real time time values */
1147 	if (interp_forward) {
1148 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1149 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1150 	} else {
1151 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1152 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * timestamp_in_interval - true if ts is chronologically in [start, end]
1160  *
1161  * True if ts occurs chronologically at or after start, and before or at end.
1162  */
1163 static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1164 {
1165 	if (ts >= start && ts <= end)
1166 		return true;
1167 	if (start > end && (ts >= start || ts <= end))
1168 		return true;
1169 	return false;
1170 }
1171 
1172 static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1173 {
1174 	u64 rem, res;
1175 
1176 	if (!numerator || !denominator)
1177 		return false;
1178 
1179 	res = div64_u64_rem(*val, denominator, &rem) * numerator;
1180 	*val = res + div_u64(rem * numerator, denominator);
1181 	return true;
1182 }
1183 
1184 static bool convert_base_to_cs(struct system_counterval_t *scv)
1185 {
1186 	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1187 	struct clocksource_base *base;
1188 	u32 num, den;
1189 
1190 	/* The timestamp was taken from the time keeper clock source */
1191 	if (cs->id == scv->cs_id)
1192 		return true;
1193 
1194 	/*
1195 	 * Check whether cs_id matches the base clock. Prevent the compiler from
1196 	 * re-evaluating @base as the clocksource might change concurrently.
1197 	 */
1198 	base = READ_ONCE(cs->base);
1199 	if (!base || base->id != scv->cs_id)
1200 		return false;
1201 
1202 	num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1203 	den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1204 
1205 	if (!convert_clock(&scv->cycles, num, den))
1206 		return false;
1207 
1208 	scv->cycles += base->offset;
1209 	return true;
1210 }
1211 
1212 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1213 {
1214 	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1215 	struct clocksource_base *base;
1216 
1217 	/*
1218 	 * Check whether base_id matches the base clock. Prevent the compiler from
1219 	 * re-evaluating @base as the clocksource might change concurrently.
1220 	 */
1221 	base = READ_ONCE(cs->base);
1222 	if (!base || base->id != base_id)
1223 		return false;
1224 
1225 	*cycles -= base->offset;
1226 	if (!convert_clock(cycles, base->denominator, base->numerator))
1227 		return false;
1228 	return true;
1229 }
1230 
1231 static bool convert_ns_to_cs(u64 *delta)
1232 {
1233 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1234 
1235 	if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1236 		return false;
1237 
1238 	*delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1239 	return true;
1240 }
1241 
1242 /**
1243  * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1244  * @treal:	CLOCK_REALTIME timestamp to convert
1245  * @base_id:	base clocksource id
1246  * @cycles:	pointer to store the converted base clock timestamp
1247  *
1248  * Converts a supplied, future realtime clock value to the corresponding base clock value.
1249  *
1250  * Return:  true if the conversion is successful, false otherwise.
1251  */
1252 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1253 {
1254 	struct timekeeper *tk = &tk_core.timekeeper;
1255 	unsigned int seq;
1256 	u64 delta;
1257 
1258 	do {
1259 		seq = read_seqcount_begin(&tk_core.seq);
1260 		if ((u64)treal < tk->tkr_mono.base_real)
1261 			return false;
1262 		delta = (u64)treal - tk->tkr_mono.base_real;
1263 		if (!convert_ns_to_cs(&delta))
1264 			return false;
1265 		*cycles = tk->tkr_mono.cycle_last + delta;
1266 		if (!convert_cs_to_base(cycles, base_id))
1267 			return false;
1268 	} while (read_seqcount_retry(&tk_core.seq, seq));
1269 
1270 	return true;
1271 }
1272 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1273 
1274 /**
1275  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1276  * @get_time_fn:	Callback to get simultaneous device time and
1277  *	system counter from the device driver
1278  * @ctx:		Context passed to get_time_fn()
1279  * @history_begin:	Historical reference point used to interpolate system
1280  *	time when counter provided by the driver is before the current interval
1281  * @xtstamp:		Receives simultaneously captured system and device time
1282  *
1283  * Reads a timestamp from a device and correlates it to system time
1284  */
1285 int get_device_system_crosststamp(int (*get_time_fn)
1286 				  (ktime_t *device_time,
1287 				   struct system_counterval_t *sys_counterval,
1288 				   void *ctx),
1289 				  void *ctx,
1290 				  struct system_time_snapshot *history_begin,
1291 				  struct system_device_crosststamp *xtstamp)
1292 {
1293 	struct system_counterval_t system_counterval;
1294 	struct timekeeper *tk = &tk_core.timekeeper;
1295 	u64 cycles, now, interval_start;
1296 	unsigned int clock_was_set_seq = 0;
1297 	ktime_t base_real, base_raw;
1298 	u64 nsec_real, nsec_raw;
1299 	u8 cs_was_changed_seq;
1300 	unsigned int seq;
1301 	bool do_interp;
1302 	int ret;
1303 
1304 	do {
1305 		seq = read_seqcount_begin(&tk_core.seq);
1306 		/*
1307 		 * Try to synchronously capture device time and a system
1308 		 * counter value calling back into the device driver
1309 		 */
1310 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1311 		if (ret)
1312 			return ret;
1313 
1314 		/*
1315 		 * Verify that the clocksource ID associated with the captured
1316 		 * system counter value is the same as for the currently
1317 		 * installed timekeeper clocksource
1318 		 */
1319 		if (system_counterval.cs_id == CSID_GENERIC ||
1320 		    !convert_base_to_cs(&system_counterval))
1321 			return -ENODEV;
1322 		cycles = system_counterval.cycles;
1323 
1324 		/*
1325 		 * Check whether the system counter value provided by the
1326 		 * device driver is on the current timekeeping interval.
1327 		 */
1328 		now = tk_clock_read(&tk->tkr_mono);
1329 		interval_start = tk->tkr_mono.cycle_last;
1330 		if (!timestamp_in_interval(interval_start, now, cycles)) {
1331 			clock_was_set_seq = tk->clock_was_set_seq;
1332 			cs_was_changed_seq = tk->cs_was_changed_seq;
1333 			cycles = interval_start;
1334 			do_interp = true;
1335 		} else {
1336 			do_interp = false;
1337 		}
1338 
1339 		base_real = ktime_add(tk->tkr_mono.base,
1340 				      tk_core.timekeeper.offs_real);
1341 		base_raw = tk->tkr_raw.base;
1342 
1343 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1344 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1345 	} while (read_seqcount_retry(&tk_core.seq, seq));
1346 
1347 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1348 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1349 
1350 	/*
1351 	 * Interpolate if necessary, adjusting back from the start of the
1352 	 * current interval
1353 	 */
1354 	if (do_interp) {
1355 		u64 partial_history_cycles, total_history_cycles;
1356 		bool discontinuity;
1357 
1358 		/*
1359 		 * Check that the counter value is not before the provided
1360 		 * history reference and that the history doesn't cross a
1361 		 * clocksource change
1362 		 */
1363 		if (!history_begin ||
1364 		    !timestamp_in_interval(history_begin->cycles,
1365 					   cycles, system_counterval.cycles) ||
1366 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1367 			return -EINVAL;
1368 		partial_history_cycles = cycles - system_counterval.cycles;
1369 		total_history_cycles = cycles - history_begin->cycles;
1370 		discontinuity =
1371 			history_begin->clock_was_set_seq != clock_was_set_seq;
1372 
1373 		ret = adjust_historical_crosststamp(history_begin,
1374 						    partial_history_cycles,
1375 						    total_history_cycles,
1376 						    discontinuity, xtstamp);
1377 		if (ret)
1378 			return ret;
1379 	}
1380 
1381 	return 0;
1382 }
1383 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1384 
1385 /**
1386  * timekeeping_clocksource_has_base - Check whether the current clocksource
1387  *				      is based on given a base clock
1388  * @id:		base clocksource ID
1389  *
1390  * Note:	The return value is a snapshot which can become invalid right
1391  *		after the function returns.
1392  *
1393  * Return:	true if the timekeeper clocksource has a base clock with @id,
1394  *		false otherwise
1395  */
1396 bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1397 {
1398 	/*
1399 	 * This is a snapshot, so no point in using the sequence
1400 	 * count. Just prevent the compiler from re-evaluating @base as the
1401 	 * clocksource might change concurrently.
1402 	 */
1403 	struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1404 
1405 	return base ? base->id == id : false;
1406 }
1407 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1408 
1409 /**
1410  * do_settimeofday64 - Sets the time of day.
1411  * @ts:     pointer to the timespec64 variable containing the new time
1412  *
1413  * Sets the time of day to the new time and update NTP and notify hrtimers
1414  */
1415 int do_settimeofday64(const struct timespec64 *ts)
1416 {
1417 	struct timespec64 ts_delta, xt;
1418 
1419 	if (!timespec64_valid_settod(ts))
1420 		return -EINVAL;
1421 
1422 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1423 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1424 
1425 		timekeeping_forward_now(tks);
1426 
1427 		xt = tk_xtime(tks);
1428 		ts_delta = timespec64_sub(*ts, xt);
1429 
1430 		if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
1431 			timekeeping_restore_shadow(&tk_core);
1432 			return -EINVAL;
1433 		}
1434 
1435 		tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
1436 		tk_set_xtime(tks, ts);
1437 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1438 	}
1439 
1440 	/* Signal hrtimers about time change */
1441 	clock_was_set(CLOCK_SET_WALL);
1442 
1443 	audit_tk_injoffset(ts_delta);
1444 	add_device_randomness(ts, sizeof(*ts));
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL(do_settimeofday64);
1448 
1449 /**
1450  * timekeeping_inject_offset - Adds or subtracts from the current time.
1451  * @ts:		Pointer to the timespec variable containing the offset
1452  *
1453  * Adds or subtracts an offset value from the current time.
1454  */
1455 static int timekeeping_inject_offset(const struct timespec64 *ts)
1456 {
1457 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1458 		return -EINVAL;
1459 
1460 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1461 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1462 		struct timespec64 tmp;
1463 
1464 		timekeeping_forward_now(tks);
1465 
1466 		/* Make sure the proposed value is valid */
1467 		tmp = timespec64_add(tk_xtime(tks), *ts);
1468 		if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
1469 		    !timespec64_valid_settod(&tmp)) {
1470 			timekeeping_restore_shadow(&tk_core);
1471 			return -EINVAL;
1472 		}
1473 
1474 		tk_xtime_add(tks, ts);
1475 		tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
1476 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1477 	}
1478 
1479 	/* Signal hrtimers about time change */
1480 	clock_was_set(CLOCK_SET_WALL);
1481 	return 0;
1482 }
1483 
1484 /*
1485  * Indicates if there is an offset between the system clock and the hardware
1486  * clock/persistent clock/rtc.
1487  */
1488 int persistent_clock_is_local;
1489 
1490 /*
1491  * Adjust the time obtained from the CMOS to be UTC time instead of
1492  * local time.
1493  *
1494  * This is ugly, but preferable to the alternatives.  Otherwise we
1495  * would either need to write a program to do it in /etc/rc (and risk
1496  * confusion if the program gets run more than once; it would also be
1497  * hard to make the program warp the clock precisely n hours)  or
1498  * compile in the timezone information into the kernel.  Bad, bad....
1499  *
1500  *						- TYT, 1992-01-01
1501  *
1502  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1503  * as real UNIX machines always do it. This avoids all headaches about
1504  * daylight saving times and warping kernel clocks.
1505  */
1506 void timekeeping_warp_clock(void)
1507 {
1508 	if (sys_tz.tz_minuteswest != 0) {
1509 		struct timespec64 adjust;
1510 
1511 		persistent_clock_is_local = 1;
1512 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1513 		adjust.tv_nsec = 0;
1514 		timekeeping_inject_offset(&adjust);
1515 	}
1516 }
1517 
1518 /*
1519  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1520  */
1521 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1522 {
1523 	tk->tai_offset = tai_offset;
1524 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1525 }
1526 
1527 /*
1528  * change_clocksource - Swaps clocksources if a new one is available
1529  *
1530  * Accumulates current time interval and initializes new clocksource
1531  */
1532 static int change_clocksource(void *data)
1533 {
1534 	struct clocksource *new = data, *old = NULL;
1535 
1536 	/*
1537 	 * If the clocksource is in a module, get a module reference.
1538 	 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1539 	 * reference can't be acquired.
1540 	 */
1541 	if (!try_module_get(new->owner))
1542 		return 0;
1543 
1544 	/* Abort if the device can't be enabled */
1545 	if (new->enable && new->enable(new) != 0) {
1546 		module_put(new->owner);
1547 		return 0;
1548 	}
1549 
1550 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1551 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1552 
1553 		timekeeping_forward_now(tks);
1554 		old = tks->tkr_mono.clock;
1555 		tk_setup_internals(tks, new);
1556 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1557 	}
1558 
1559 	if (old) {
1560 		if (old->disable)
1561 			old->disable(old);
1562 		module_put(old->owner);
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 /**
1569  * timekeeping_notify - Install a new clock source
1570  * @clock:		pointer to the clock source
1571  *
1572  * This function is called from clocksource.c after a new, better clock
1573  * source has been registered. The caller holds the clocksource_mutex.
1574  */
1575 int timekeeping_notify(struct clocksource *clock)
1576 {
1577 	struct timekeeper *tk = &tk_core.timekeeper;
1578 
1579 	if (tk->tkr_mono.clock == clock)
1580 		return 0;
1581 	stop_machine(change_clocksource, clock, NULL);
1582 	tick_clock_notify();
1583 	return tk->tkr_mono.clock == clock ? 0 : -1;
1584 }
1585 
1586 /**
1587  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1588  * @ts:		pointer to the timespec64 to be set
1589  *
1590  * Returns the raw monotonic time (completely un-modified by ntp)
1591  */
1592 void ktime_get_raw_ts64(struct timespec64 *ts)
1593 {
1594 	struct timekeeper *tk = &tk_core.timekeeper;
1595 	unsigned int seq;
1596 	u64 nsecs;
1597 
1598 	do {
1599 		seq = read_seqcount_begin(&tk_core.seq);
1600 		ts->tv_sec = tk->raw_sec;
1601 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1602 
1603 	} while (read_seqcount_retry(&tk_core.seq, seq));
1604 
1605 	ts->tv_nsec = 0;
1606 	timespec64_add_ns(ts, nsecs);
1607 }
1608 EXPORT_SYMBOL(ktime_get_raw_ts64);
1609 
1610 
1611 /**
1612  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1613  */
1614 int timekeeping_valid_for_hres(void)
1615 {
1616 	struct timekeeper *tk = &tk_core.timekeeper;
1617 	unsigned int seq;
1618 	int ret;
1619 
1620 	do {
1621 		seq = read_seqcount_begin(&tk_core.seq);
1622 
1623 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1624 
1625 	} while (read_seqcount_retry(&tk_core.seq, seq));
1626 
1627 	return ret;
1628 }
1629 
1630 /**
1631  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1632  */
1633 u64 timekeeping_max_deferment(void)
1634 {
1635 	struct timekeeper *tk = &tk_core.timekeeper;
1636 	unsigned int seq;
1637 	u64 ret;
1638 
1639 	do {
1640 		seq = read_seqcount_begin(&tk_core.seq);
1641 
1642 		ret = tk->tkr_mono.clock->max_idle_ns;
1643 
1644 	} while (read_seqcount_retry(&tk_core.seq, seq));
1645 
1646 	return ret;
1647 }
1648 
1649 /**
1650  * read_persistent_clock64 -  Return time from the persistent clock.
1651  * @ts: Pointer to the storage for the readout value
1652  *
1653  * Weak dummy function for arches that do not yet support it.
1654  * Reads the time from the battery backed persistent clock.
1655  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1656  *
1657  *  XXX - Do be sure to remove it once all arches implement it.
1658  */
1659 void __weak read_persistent_clock64(struct timespec64 *ts)
1660 {
1661 	ts->tv_sec = 0;
1662 	ts->tv_nsec = 0;
1663 }
1664 
1665 /**
1666  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1667  *                                        from the boot.
1668  * @wall_time:	  current time as returned by persistent clock
1669  * @boot_offset:  offset that is defined as wall_time - boot_time
1670  *
1671  * Weak dummy function for arches that do not yet support it.
1672  *
1673  * The default function calculates offset based on the current value of
1674  * local_clock(). This way architectures that support sched_clock() but don't
1675  * support dedicated boot time clock will provide the best estimate of the
1676  * boot time.
1677  */
1678 void __weak __init
1679 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1680 				     struct timespec64 *boot_offset)
1681 {
1682 	read_persistent_clock64(wall_time);
1683 	*boot_offset = ns_to_timespec64(local_clock());
1684 }
1685 
1686 static __init void tkd_basic_setup(struct tk_data *tkd)
1687 {
1688 	raw_spin_lock_init(&tkd->lock);
1689 	seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
1690 }
1691 
1692 /*
1693  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1694  *
1695  * The flag starts of false and is only set when a suspend reaches
1696  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1697  * timekeeper clocksource is not stopping across suspend and has been
1698  * used to update sleep time. If the timekeeper clocksource has stopped
1699  * then the flag stays true and is used by the RTC resume code to decide
1700  * whether sleeptime must be injected and if so the flag gets false then.
1701  *
1702  * If a suspend fails before reaching timekeeping_resume() then the flag
1703  * stays false and prevents erroneous sleeptime injection.
1704  */
1705 static bool suspend_timing_needed;
1706 
1707 /* Flag for if there is a persistent clock on this platform */
1708 static bool persistent_clock_exists;
1709 
1710 /*
1711  * timekeeping_init - Initializes the clocksource and common timekeeping values
1712  */
1713 void __init timekeeping_init(void)
1714 {
1715 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1716 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
1717 	struct clocksource *clock;
1718 
1719 	tkd_basic_setup(&tk_core);
1720 
1721 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1722 	if (timespec64_valid_settod(&wall_time) &&
1723 	    timespec64_to_ns(&wall_time) > 0) {
1724 		persistent_clock_exists = true;
1725 	} else if (timespec64_to_ns(&wall_time) != 0) {
1726 		pr_warn("Persistent clock returned invalid value");
1727 		wall_time = (struct timespec64){0};
1728 	}
1729 
1730 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1731 		boot_offset = (struct timespec64){0};
1732 
1733 	/*
1734 	 * We want set wall_to_mono, so the following is true:
1735 	 * wall time + wall_to_mono = boot time
1736 	 */
1737 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1738 
1739 	guard(raw_spinlock_irqsave)(&tk_core.lock);
1740 
1741 	ntp_init();
1742 
1743 	clock = clocksource_default_clock();
1744 	if (clock->enable)
1745 		clock->enable(clock);
1746 	tk_setup_internals(tks, clock);
1747 
1748 	tk_set_xtime(tks, &wall_time);
1749 	tks->raw_sec = 0;
1750 
1751 	tk_set_wall_to_mono(tks, wall_to_mono);
1752 
1753 	timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1754 }
1755 
1756 /* time in seconds when suspend began for persistent clock */
1757 static struct timespec64 timekeeping_suspend_time;
1758 
1759 /**
1760  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1761  * @tk:		Pointer to the timekeeper to be updated
1762  * @delta:	Pointer to the delta value in timespec64 format
1763  *
1764  * Takes a timespec offset measuring a suspend interval and properly
1765  * adds the sleep offset to the timekeeping variables.
1766  */
1767 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1768 					   const struct timespec64 *delta)
1769 {
1770 	if (!timespec64_valid_strict(delta)) {
1771 		printk_deferred(KERN_WARNING
1772 				"__timekeeping_inject_sleeptime: Invalid "
1773 				"sleep delta value!\n");
1774 		return;
1775 	}
1776 	tk_xtime_add(tk, delta);
1777 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1778 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1779 	tk_debug_account_sleep_time(delta);
1780 }
1781 
1782 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1783 /*
1784  * We have three kinds of time sources to use for sleep time
1785  * injection, the preference order is:
1786  * 1) non-stop clocksource
1787  * 2) persistent clock (ie: RTC accessible when irqs are off)
1788  * 3) RTC
1789  *
1790  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1791  * If system has neither 1) nor 2), 3) will be used finally.
1792  *
1793  *
1794  * If timekeeping has injected sleeptime via either 1) or 2),
1795  * 3) becomes needless, so in this case we don't need to call
1796  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1797  * means.
1798  */
1799 bool timekeeping_rtc_skipresume(void)
1800 {
1801 	return !suspend_timing_needed;
1802 }
1803 
1804 /*
1805  * 1) can be determined whether to use or not only when doing
1806  * timekeeping_resume() which is invoked after rtc_suspend(),
1807  * so we can't skip rtc_suspend() surely if system has 1).
1808  *
1809  * But if system has 2), 2) will definitely be used, so in this
1810  * case we don't need to call rtc_suspend(), and this is what
1811  * timekeeping_rtc_skipsuspend() means.
1812  */
1813 bool timekeeping_rtc_skipsuspend(void)
1814 {
1815 	return persistent_clock_exists;
1816 }
1817 
1818 /**
1819  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1820  * @delta: pointer to a timespec64 delta value
1821  *
1822  * This hook is for architectures that cannot support read_persistent_clock64
1823  * because their RTC/persistent clock is only accessible when irqs are enabled.
1824  * and also don't have an effective nonstop clocksource.
1825  *
1826  * This function should only be called by rtc_resume(), and allows
1827  * a suspend offset to be injected into the timekeeping values.
1828  */
1829 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1830 {
1831 	scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
1832 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1833 
1834 		suspend_timing_needed = false;
1835 		timekeeping_forward_now(tks);
1836 		__timekeeping_inject_sleeptime(tks, delta);
1837 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1838 	}
1839 
1840 	/* Signal hrtimers about time change */
1841 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1842 }
1843 #endif
1844 
1845 /**
1846  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1847  */
1848 void timekeeping_resume(void)
1849 {
1850 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
1851 	struct clocksource *clock = tks->tkr_mono.clock;
1852 	struct timespec64 ts_new, ts_delta;
1853 	bool inject_sleeptime = false;
1854 	u64 cycle_now, nsec;
1855 	unsigned long flags;
1856 
1857 	read_persistent_clock64(&ts_new);
1858 
1859 	clockevents_resume();
1860 	clocksource_resume();
1861 
1862 	raw_spin_lock_irqsave(&tk_core.lock, flags);
1863 
1864 	/*
1865 	 * After system resumes, we need to calculate the suspended time and
1866 	 * compensate it for the OS time. There are 3 sources that could be
1867 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1868 	 * device.
1869 	 *
1870 	 * One specific platform may have 1 or 2 or all of them, and the
1871 	 * preference will be:
1872 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1873 	 * The less preferred source will only be tried if there is no better
1874 	 * usable source. The rtc part is handled separately in rtc core code.
1875 	 */
1876 	cycle_now = tk_clock_read(&tks->tkr_mono);
1877 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1878 	if (nsec > 0) {
1879 		ts_delta = ns_to_timespec64(nsec);
1880 		inject_sleeptime = true;
1881 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1882 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1883 		inject_sleeptime = true;
1884 	}
1885 
1886 	if (inject_sleeptime) {
1887 		suspend_timing_needed = false;
1888 		__timekeeping_inject_sleeptime(tks, &ts_delta);
1889 	}
1890 
1891 	/* Re-base the last cycle value */
1892 	tks->tkr_mono.cycle_last = cycle_now;
1893 	tks->tkr_raw.cycle_last  = cycle_now;
1894 
1895 	tks->ntp_error = 0;
1896 	timekeeping_suspended = 0;
1897 	timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1898 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1899 
1900 	touch_softlockup_watchdog();
1901 
1902 	/* Resume the clockevent device(s) and hrtimers */
1903 	tick_resume();
1904 	/* Notify timerfd as resume is equivalent to clock_was_set() */
1905 	timerfd_resume();
1906 }
1907 
1908 int timekeeping_suspend(void)
1909 {
1910 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
1911 	struct timespec64 delta, delta_delta;
1912 	static struct timespec64 old_delta;
1913 	struct clocksource *curr_clock;
1914 	unsigned long flags;
1915 	u64 cycle_now;
1916 
1917 	read_persistent_clock64(&timekeeping_suspend_time);
1918 
1919 	/*
1920 	 * On some systems the persistent_clock can not be detected at
1921 	 * timekeeping_init by its return value, so if we see a valid
1922 	 * value returned, update the persistent_clock_exists flag.
1923 	 */
1924 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1925 		persistent_clock_exists = true;
1926 
1927 	suspend_timing_needed = true;
1928 
1929 	raw_spin_lock_irqsave(&tk_core.lock, flags);
1930 	timekeeping_forward_now(tks);
1931 	timekeeping_suspended = 1;
1932 
1933 	/*
1934 	 * Since we've called forward_now, cycle_last stores the value
1935 	 * just read from the current clocksource. Save this to potentially
1936 	 * use in suspend timing.
1937 	 */
1938 	curr_clock = tks->tkr_mono.clock;
1939 	cycle_now = tks->tkr_mono.cycle_last;
1940 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1941 
1942 	if (persistent_clock_exists) {
1943 		/*
1944 		 * To avoid drift caused by repeated suspend/resumes,
1945 		 * which each can add ~1 second drift error,
1946 		 * try to compensate so the difference in system time
1947 		 * and persistent_clock time stays close to constant.
1948 		 */
1949 		delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
1950 		delta_delta = timespec64_sub(delta, old_delta);
1951 		if (abs(delta_delta.tv_sec) >= 2) {
1952 			/*
1953 			 * if delta_delta is too large, assume time correction
1954 			 * has occurred and set old_delta to the current delta.
1955 			 */
1956 			old_delta = delta;
1957 		} else {
1958 			/* Otherwise try to adjust old_system to compensate */
1959 			timekeeping_suspend_time =
1960 				timespec64_add(timekeeping_suspend_time, delta_delta);
1961 		}
1962 	}
1963 
1964 	timekeeping_update_from_shadow(&tk_core, 0);
1965 	halt_fast_timekeeper(tks);
1966 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1967 
1968 	tick_suspend();
1969 	clocksource_suspend();
1970 	clockevents_suspend();
1971 
1972 	return 0;
1973 }
1974 
1975 /* sysfs resume/suspend bits for timekeeping */
1976 static struct syscore_ops timekeeping_syscore_ops = {
1977 	.resume		= timekeeping_resume,
1978 	.suspend	= timekeeping_suspend,
1979 };
1980 
1981 static int __init timekeeping_init_ops(void)
1982 {
1983 	register_syscore_ops(&timekeeping_syscore_ops);
1984 	return 0;
1985 }
1986 device_initcall(timekeeping_init_ops);
1987 
1988 /*
1989  * Apply a multiplier adjustment to the timekeeper
1990  */
1991 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1992 							 s64 offset,
1993 							 s32 mult_adj)
1994 {
1995 	s64 interval = tk->cycle_interval;
1996 
1997 	if (mult_adj == 0) {
1998 		return;
1999 	} else if (mult_adj == -1) {
2000 		interval = -interval;
2001 		offset = -offset;
2002 	} else if (mult_adj != 1) {
2003 		interval *= mult_adj;
2004 		offset *= mult_adj;
2005 	}
2006 
2007 	/*
2008 	 * So the following can be confusing.
2009 	 *
2010 	 * To keep things simple, lets assume mult_adj == 1 for now.
2011 	 *
2012 	 * When mult_adj != 1, remember that the interval and offset values
2013 	 * have been appropriately scaled so the math is the same.
2014 	 *
2015 	 * The basic idea here is that we're increasing the multiplier
2016 	 * by one, this causes the xtime_interval to be incremented by
2017 	 * one cycle_interval. This is because:
2018 	 *	xtime_interval = cycle_interval * mult
2019 	 * So if mult is being incremented by one:
2020 	 *	xtime_interval = cycle_interval * (mult + 1)
2021 	 * Its the same as:
2022 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
2023 	 * Which can be shortened to:
2024 	 *	xtime_interval += cycle_interval
2025 	 *
2026 	 * So offset stores the non-accumulated cycles. Thus the current
2027 	 * time (in shifted nanoseconds) is:
2028 	 *	now = (offset * adj) + xtime_nsec
2029 	 * Now, even though we're adjusting the clock frequency, we have
2030 	 * to keep time consistent. In other words, we can't jump back
2031 	 * in time, and we also want to avoid jumping forward in time.
2032 	 *
2033 	 * So given the same offset value, we need the time to be the same
2034 	 * both before and after the freq adjustment.
2035 	 *	now = (offset * adj_1) + xtime_nsec_1
2036 	 *	now = (offset * adj_2) + xtime_nsec_2
2037 	 * So:
2038 	 *	(offset * adj_1) + xtime_nsec_1 =
2039 	 *		(offset * adj_2) + xtime_nsec_2
2040 	 * And we know:
2041 	 *	adj_2 = adj_1 + 1
2042 	 * So:
2043 	 *	(offset * adj_1) + xtime_nsec_1 =
2044 	 *		(offset * (adj_1+1)) + xtime_nsec_2
2045 	 *	(offset * adj_1) + xtime_nsec_1 =
2046 	 *		(offset * adj_1) + offset + xtime_nsec_2
2047 	 * Canceling the sides:
2048 	 *	xtime_nsec_1 = offset + xtime_nsec_2
2049 	 * Which gives us:
2050 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
2051 	 * Which simplifies to:
2052 	 *	xtime_nsec -= offset
2053 	 */
2054 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2055 		/* NTP adjustment caused clocksource mult overflow */
2056 		WARN_ON_ONCE(1);
2057 		return;
2058 	}
2059 
2060 	tk->tkr_mono.mult += mult_adj;
2061 	tk->xtime_interval += interval;
2062 	tk->tkr_mono.xtime_nsec -= offset;
2063 }
2064 
2065 /*
2066  * Adjust the timekeeper's multiplier to the correct frequency
2067  * and also to reduce the accumulated error value.
2068  */
2069 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2070 {
2071 	u64 ntp_tl = ntp_tick_length();
2072 	u32 mult;
2073 
2074 	/*
2075 	 * Determine the multiplier from the current NTP tick length.
2076 	 * Avoid expensive division when the tick length doesn't change.
2077 	 */
2078 	if (likely(tk->ntp_tick == ntp_tl)) {
2079 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2080 	} else {
2081 		tk->ntp_tick = ntp_tl;
2082 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2083 				 tk->xtime_remainder, tk->cycle_interval);
2084 	}
2085 
2086 	/*
2087 	 * If the clock is behind the NTP time, increase the multiplier by 1
2088 	 * to catch up with it. If it's ahead and there was a remainder in the
2089 	 * tick division, the clock will slow down. Otherwise it will stay
2090 	 * ahead until the tick length changes to a non-divisible value.
2091 	 */
2092 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2093 	mult += tk->ntp_err_mult;
2094 
2095 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2096 
2097 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2098 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2099 			> tk->tkr_mono.clock->maxadj))) {
2100 		printk_once(KERN_WARNING
2101 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2102 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2103 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2104 	}
2105 
2106 	/*
2107 	 * It may be possible that when we entered this function, xtime_nsec
2108 	 * was very small.  Further, if we're slightly speeding the clocksource
2109 	 * in the code above, its possible the required corrective factor to
2110 	 * xtime_nsec could cause it to underflow.
2111 	 *
2112 	 * Now, since we have already accumulated the second and the NTP
2113 	 * subsystem has been notified via second_overflow(), we need to skip
2114 	 * the next update.
2115 	 */
2116 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2117 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2118 							tk->tkr_mono.shift;
2119 		tk->xtime_sec--;
2120 		tk->skip_second_overflow = 1;
2121 	}
2122 }
2123 
2124 /*
2125  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2126  *
2127  * Helper function that accumulates the nsecs greater than a second
2128  * from the xtime_nsec field to the xtime_secs field.
2129  * It also calls into the NTP code to handle leapsecond processing.
2130  */
2131 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2132 {
2133 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2134 	unsigned int clock_set = 0;
2135 
2136 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2137 		int leap;
2138 
2139 		tk->tkr_mono.xtime_nsec -= nsecps;
2140 		tk->xtime_sec++;
2141 
2142 		/*
2143 		 * Skip NTP update if this second was accumulated before,
2144 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2145 		 */
2146 		if (unlikely(tk->skip_second_overflow)) {
2147 			tk->skip_second_overflow = 0;
2148 			continue;
2149 		}
2150 
2151 		/* Figure out if its a leap sec and apply if needed */
2152 		leap = second_overflow(tk->xtime_sec);
2153 		if (unlikely(leap)) {
2154 			struct timespec64 ts;
2155 
2156 			tk->xtime_sec += leap;
2157 
2158 			ts.tv_sec = leap;
2159 			ts.tv_nsec = 0;
2160 			tk_set_wall_to_mono(tk,
2161 				timespec64_sub(tk->wall_to_monotonic, ts));
2162 
2163 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2164 
2165 			clock_set = TK_CLOCK_WAS_SET;
2166 		}
2167 	}
2168 	return clock_set;
2169 }
2170 
2171 /*
2172  * logarithmic_accumulation - shifted accumulation of cycles
2173  *
2174  * This functions accumulates a shifted interval of cycles into
2175  * a shifted interval nanoseconds. Allows for O(log) accumulation
2176  * loop.
2177  *
2178  * Returns the unconsumed cycles.
2179  */
2180 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2181 				    u32 shift, unsigned int *clock_set)
2182 {
2183 	u64 interval = tk->cycle_interval << shift;
2184 	u64 snsec_per_sec;
2185 
2186 	/* If the offset is smaller than a shifted interval, do nothing */
2187 	if (offset < interval)
2188 		return offset;
2189 
2190 	/* Accumulate one shifted interval */
2191 	offset -= interval;
2192 	tk->tkr_mono.cycle_last += interval;
2193 	tk->tkr_raw.cycle_last  += interval;
2194 
2195 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2196 	*clock_set |= accumulate_nsecs_to_secs(tk);
2197 
2198 	/* Accumulate raw time */
2199 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2200 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2201 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2202 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2203 		tk->raw_sec++;
2204 	}
2205 
2206 	/* Accumulate error between NTP and clock interval */
2207 	tk->ntp_error += tk->ntp_tick << shift;
2208 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2209 						(tk->ntp_error_shift + shift);
2210 
2211 	return offset;
2212 }
2213 
2214 /*
2215  * timekeeping_advance - Updates the timekeeper to the current time and
2216  * current NTP tick length
2217  */
2218 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2219 {
2220 	struct timekeeper *tk = &tk_core.shadow_timekeeper;
2221 	struct timekeeper *real_tk = &tk_core.timekeeper;
2222 	unsigned int clock_set = 0;
2223 	int shift = 0, maxshift;
2224 	u64 offset;
2225 
2226 	guard(raw_spinlock_irqsave)(&tk_core.lock);
2227 
2228 	/* Make sure we're fully resumed: */
2229 	if (unlikely(timekeeping_suspended))
2230 		return false;
2231 
2232 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2233 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2234 
2235 	/* Check if there's really nothing to do */
2236 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2237 		return false;
2238 
2239 	/*
2240 	 * With NO_HZ we may have to accumulate many cycle_intervals
2241 	 * (think "ticks") worth of time at once. To do this efficiently,
2242 	 * we calculate the largest doubling multiple of cycle_intervals
2243 	 * that is smaller than the offset.  We then accumulate that
2244 	 * chunk in one go, and then try to consume the next smaller
2245 	 * doubled multiple.
2246 	 */
2247 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2248 	shift = max(0, shift);
2249 	/* Bound shift to one less than what overflows tick_length */
2250 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2251 	shift = min(shift, maxshift);
2252 	while (offset >= tk->cycle_interval) {
2253 		offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
2254 		if (offset < tk->cycle_interval<<shift)
2255 			shift--;
2256 	}
2257 
2258 	/* Adjust the multiplier to correct NTP error */
2259 	timekeeping_adjust(tk, offset);
2260 
2261 	/*
2262 	 * Finally, make sure that after the rounding
2263 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2264 	 */
2265 	clock_set |= accumulate_nsecs_to_secs(tk);
2266 
2267 	timekeeping_update_from_shadow(&tk_core, clock_set);
2268 
2269 	return !!clock_set;
2270 }
2271 
2272 /**
2273  * update_wall_time - Uses the current clocksource to increment the wall time
2274  *
2275  */
2276 void update_wall_time(void)
2277 {
2278 	if (timekeeping_advance(TK_ADV_TICK))
2279 		clock_was_set_delayed();
2280 }
2281 
2282 /**
2283  * getboottime64 - Return the real time of system boot.
2284  * @ts:		pointer to the timespec64 to be set
2285  *
2286  * Returns the wall-time of boot in a timespec64.
2287  *
2288  * This is based on the wall_to_monotonic offset and the total suspend
2289  * time. Calls to settimeofday will affect the value returned (which
2290  * basically means that however wrong your real time clock is at boot time,
2291  * you get the right time here).
2292  */
2293 void getboottime64(struct timespec64 *ts)
2294 {
2295 	struct timekeeper *tk = &tk_core.timekeeper;
2296 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2297 
2298 	*ts = ktime_to_timespec64(t);
2299 }
2300 EXPORT_SYMBOL_GPL(getboottime64);
2301 
2302 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2303 {
2304 	struct timekeeper *tk = &tk_core.timekeeper;
2305 	unsigned int seq;
2306 
2307 	do {
2308 		seq = read_seqcount_begin(&tk_core.seq);
2309 
2310 		*ts = tk_xtime(tk);
2311 	} while (read_seqcount_retry(&tk_core.seq, seq));
2312 }
2313 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2314 
2315 /**
2316  * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2317  * @ts:		timespec64 to be filled
2318  *
2319  * Fetch the global mg_floor value, convert it to realtime and compare it
2320  * to the current coarse-grained time. Fill @ts with whichever is
2321  * latest. Note that this is a filesystem-specific interface and should be
2322  * avoided outside of that context.
2323  */
2324 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
2325 {
2326 	struct timekeeper *tk = &tk_core.timekeeper;
2327 	u64 floor = atomic64_read(&mg_floor);
2328 	ktime_t f_real, offset, coarse;
2329 	unsigned int seq;
2330 
2331 	do {
2332 		seq = read_seqcount_begin(&tk_core.seq);
2333 		*ts = tk_xtime(tk);
2334 		offset = tk_core.timekeeper.offs_real;
2335 	} while (read_seqcount_retry(&tk_core.seq, seq));
2336 
2337 	coarse = timespec64_to_ktime(*ts);
2338 	f_real = ktime_add(floor, offset);
2339 	if (ktime_after(f_real, coarse))
2340 		*ts = ktime_to_timespec64(f_real);
2341 }
2342 
2343 /**
2344  * ktime_get_real_ts64_mg - attempt to update floor value and return result
2345  * @ts:		pointer to the timespec to be set
2346  *
2347  * Get a monotonic fine-grained time value and attempt to swap it into
2348  * mg_floor. If that succeeds then accept the new floor value. If it fails
2349  * then another task raced in during the interim time and updated the
2350  * floor.  Since any update to the floor must be later than the previous
2351  * floor, either outcome is acceptable.
2352  *
2353  * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2354  * and determining that the resulting coarse-grained timestamp did not effect
2355  * a change in ctime. Any more recent floor value would effect a change to
2356  * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2357  *
2358  * @ts will be filled with the latest floor value, regardless of the outcome of
2359  * the cmpxchg. Note that this is a filesystem specific interface and should be
2360  * avoided outside of that context.
2361  */
2362 void ktime_get_real_ts64_mg(struct timespec64 *ts)
2363 {
2364 	struct timekeeper *tk = &tk_core.timekeeper;
2365 	ktime_t old = atomic64_read(&mg_floor);
2366 	ktime_t offset, mono;
2367 	unsigned int seq;
2368 	u64 nsecs;
2369 
2370 	do {
2371 		seq = read_seqcount_begin(&tk_core.seq);
2372 
2373 		ts->tv_sec = tk->xtime_sec;
2374 		mono = tk->tkr_mono.base;
2375 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2376 		offset = tk_core.timekeeper.offs_real;
2377 	} while (read_seqcount_retry(&tk_core.seq, seq));
2378 
2379 	mono = ktime_add_ns(mono, nsecs);
2380 
2381 	/*
2382 	 * Attempt to update the floor with the new time value. As any
2383 	 * update must be later then the existing floor, and would effect
2384 	 * a change to ctime from the perspective of the current task,
2385 	 * accept the resulting floor value regardless of the outcome of
2386 	 * the swap.
2387 	 */
2388 	if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
2389 		ts->tv_nsec = 0;
2390 		timespec64_add_ns(ts, nsecs);
2391 		timekeeping_inc_mg_floor_swaps();
2392 	} else {
2393 		/*
2394 		 * Another task changed mg_floor since "old" was fetched.
2395 		 * "old" has been updated with the latest value of "mg_floor".
2396 		 * That value is newer than the previous floor value, which
2397 		 * is enough to effect a change to ctime. Accept it.
2398 		 */
2399 		*ts = ktime_to_timespec64(ktime_add(old, offset));
2400 	}
2401 }
2402 
2403 void ktime_get_coarse_ts64(struct timespec64 *ts)
2404 {
2405 	struct timekeeper *tk = &tk_core.timekeeper;
2406 	struct timespec64 now, mono;
2407 	unsigned int seq;
2408 
2409 	do {
2410 		seq = read_seqcount_begin(&tk_core.seq);
2411 
2412 		now = tk_xtime(tk);
2413 		mono = tk->wall_to_monotonic;
2414 	} while (read_seqcount_retry(&tk_core.seq, seq));
2415 
2416 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2417 				now.tv_nsec + mono.tv_nsec);
2418 }
2419 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2420 
2421 /*
2422  * Must hold jiffies_lock
2423  */
2424 void do_timer(unsigned long ticks)
2425 {
2426 	jiffies_64 += ticks;
2427 	calc_global_load();
2428 }
2429 
2430 /**
2431  * ktime_get_update_offsets_now - hrtimer helper
2432  * @cwsseq:	pointer to check and store the clock was set sequence number
2433  * @offs_real:	pointer to storage for monotonic -> realtime offset
2434  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2435  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2436  *
2437  * Returns current monotonic time and updates the offsets if the
2438  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2439  * different.
2440  *
2441  * Called from hrtimer_interrupt() or retrigger_next_event()
2442  */
2443 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2444 				     ktime_t *offs_boot, ktime_t *offs_tai)
2445 {
2446 	struct timekeeper *tk = &tk_core.timekeeper;
2447 	unsigned int seq;
2448 	ktime_t base;
2449 	u64 nsecs;
2450 
2451 	do {
2452 		seq = read_seqcount_begin(&tk_core.seq);
2453 
2454 		base = tk->tkr_mono.base;
2455 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2456 		base = ktime_add_ns(base, nsecs);
2457 
2458 		if (*cwsseq != tk->clock_was_set_seq) {
2459 			*cwsseq = tk->clock_was_set_seq;
2460 			*offs_real = tk->offs_real;
2461 			*offs_boot = tk->offs_boot;
2462 			*offs_tai = tk->offs_tai;
2463 		}
2464 
2465 		/* Handle leapsecond insertion adjustments */
2466 		if (unlikely(base >= tk->next_leap_ktime))
2467 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2468 
2469 	} while (read_seqcount_retry(&tk_core.seq, seq));
2470 
2471 	return base;
2472 }
2473 
2474 /*
2475  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2476  */
2477 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2478 {
2479 	if (txc->modes & ADJ_ADJTIME) {
2480 		/* singleshot must not be used with any other mode bits */
2481 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2482 			return -EINVAL;
2483 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2484 		    !capable(CAP_SYS_TIME))
2485 			return -EPERM;
2486 	} else {
2487 		/* In order to modify anything, you gotta be super-user! */
2488 		if (txc->modes && !capable(CAP_SYS_TIME))
2489 			return -EPERM;
2490 		/*
2491 		 * if the quartz is off by more than 10% then
2492 		 * something is VERY wrong!
2493 		 */
2494 		if (txc->modes & ADJ_TICK &&
2495 		    (txc->tick <  900000/USER_HZ ||
2496 		     txc->tick > 1100000/USER_HZ))
2497 			return -EINVAL;
2498 	}
2499 
2500 	if (txc->modes & ADJ_SETOFFSET) {
2501 		/* In order to inject time, you gotta be super-user! */
2502 		if (!capable(CAP_SYS_TIME))
2503 			return -EPERM;
2504 
2505 		/*
2506 		 * Validate if a timespec/timeval used to inject a time
2507 		 * offset is valid.  Offsets can be positive or negative, so
2508 		 * we don't check tv_sec. The value of the timeval/timespec
2509 		 * is the sum of its fields,but *NOTE*:
2510 		 * The field tv_usec/tv_nsec must always be non-negative and
2511 		 * we can't have more nanoseconds/microseconds than a second.
2512 		 */
2513 		if (txc->time.tv_usec < 0)
2514 			return -EINVAL;
2515 
2516 		if (txc->modes & ADJ_NANO) {
2517 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2518 				return -EINVAL;
2519 		} else {
2520 			if (txc->time.tv_usec >= USEC_PER_SEC)
2521 				return -EINVAL;
2522 		}
2523 	}
2524 
2525 	/*
2526 	 * Check for potential multiplication overflows that can
2527 	 * only happen on 64-bit systems:
2528 	 */
2529 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2530 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2531 			return -EINVAL;
2532 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2533 			return -EINVAL;
2534 	}
2535 
2536 	return 0;
2537 }
2538 
2539 /**
2540  * random_get_entropy_fallback - Returns the raw clock source value,
2541  * used by random.c for platforms with no valid random_get_entropy().
2542  */
2543 unsigned long random_get_entropy_fallback(void)
2544 {
2545 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2546 	struct clocksource *clock = READ_ONCE(tkr->clock);
2547 
2548 	if (unlikely(timekeeping_suspended || !clock))
2549 		return 0;
2550 	return clock->read(clock);
2551 }
2552 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2553 
2554 /**
2555  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2556  * @txc:	Pointer to kernel_timex structure containing NTP parameters
2557  */
2558 int do_adjtimex(struct __kernel_timex *txc)
2559 {
2560 	struct audit_ntp_data ad;
2561 	bool offset_set = false;
2562 	bool clock_set = false;
2563 	struct timespec64 ts;
2564 	int ret;
2565 
2566 	/* Validate the data before disabling interrupts */
2567 	ret = timekeeping_validate_timex(txc);
2568 	if (ret)
2569 		return ret;
2570 	add_device_randomness(txc, sizeof(*txc));
2571 
2572 	if (txc->modes & ADJ_SETOFFSET) {
2573 		struct timespec64 delta;
2574 
2575 		delta.tv_sec  = txc->time.tv_sec;
2576 		delta.tv_nsec = txc->time.tv_usec;
2577 		if (!(txc->modes & ADJ_NANO))
2578 			delta.tv_nsec *= 1000;
2579 		ret = timekeeping_inject_offset(&delta);
2580 		if (ret)
2581 			return ret;
2582 
2583 		offset_set = delta.tv_sec != 0;
2584 		audit_tk_injoffset(delta);
2585 	}
2586 
2587 	audit_ntp_init(&ad);
2588 
2589 	ktime_get_real_ts64(&ts);
2590 	add_device_randomness(&ts, sizeof(ts));
2591 
2592 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
2593 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
2594 		s32 orig_tai, tai;
2595 
2596 		orig_tai = tai = tks->tai_offset;
2597 		ret = __do_adjtimex(txc, &ts, &tai, &ad);
2598 
2599 		if (tai != orig_tai) {
2600 			__timekeeping_set_tai_offset(tks, tai);
2601 			timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
2602 			clock_set = true;
2603 		} else {
2604 			tk_update_leap_state_all(&tk_core);
2605 		}
2606 	}
2607 
2608 	audit_ntp_log(&ad);
2609 
2610 	/* Update the multiplier immediately if frequency was set directly */
2611 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2612 		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2613 
2614 	if (clock_set)
2615 		clock_was_set(CLOCK_SET_WALL);
2616 
2617 	ntp_notify_cmos_timer(offset_set);
2618 
2619 	return ret;
2620 }
2621 
2622 #ifdef CONFIG_NTP_PPS
2623 /**
2624  * hardpps() - Accessor function to NTP __hardpps function
2625  * @phase_ts:	Pointer to timespec64 structure representing phase timestamp
2626  * @raw_ts:	Pointer to timespec64 structure representing raw timestamp
2627  */
2628 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2629 {
2630 	guard(raw_spinlock_irqsave)(&tk_core.lock);
2631 	__hardpps(phase_ts, raw_ts);
2632 }
2633 EXPORT_SYMBOL(hardpps);
2634 #endif /* CONFIG_NTP_PPS */
2635