1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 enum timekeeping_adv_mode { 37 /* Update timekeeper when a tick has passed */ 38 TK_ADV_TICK, 39 40 /* Update timekeeper on a direct frequency change */ 41 TK_ADV_FREQ 42 }; 43 44 DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 static struct { 51 seqcount_raw_spinlock_t seq; 52 struct timekeeper timekeeper; 53 } tk_core ____cacheline_aligned = { 54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 55 }; 56 57 static struct timekeeper shadow_timekeeper; 58 59 /* flag for if timekeeping is suspended */ 60 int __read_mostly timekeeping_suspended; 61 62 /** 63 * struct tk_fast - NMI safe timekeeper 64 * @seq: Sequence counter for protecting updates. The lowest bit 65 * is the index for the tk_read_base array 66 * @base: tk_read_base array. Access is indexed by the lowest bit of 67 * @seq. 68 * 69 * See @update_fast_timekeeper() below. 70 */ 71 struct tk_fast { 72 seqcount_latch_t seq; 73 struct tk_read_base base[2]; 74 }; 75 76 /* Suspend-time cycles value for halted fast timekeeper. */ 77 static u64 cycles_at_suspend; 78 79 static u64 dummy_clock_read(struct clocksource *cs) 80 { 81 if (timekeeping_suspended) 82 return cycles_at_suspend; 83 return local_clock(); 84 } 85 86 static struct clocksource dummy_clock = { 87 .read = dummy_clock_read, 88 }; 89 90 /* 91 * Boot time initialization which allows local_clock() to be utilized 92 * during early boot when clocksources are not available. local_clock() 93 * returns nanoseconds already so no conversion is required, hence mult=1 94 * and shift=0. When the first proper clocksource is installed then 95 * the fast time keepers are updated with the correct values. 96 */ 97 #define FAST_TK_INIT \ 98 { \ 99 .clock = &dummy_clock, \ 100 .mask = CLOCKSOURCE_MASK(64), \ 101 .mult = 1, \ 102 .shift = 0, \ 103 } 104 105 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 107 .base[0] = FAST_TK_INIT, 108 .base[1] = FAST_TK_INIT, 109 }; 110 111 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 113 .base[0] = FAST_TK_INIT, 114 .base[1] = FAST_TK_INIT, 115 }; 116 117 static inline void tk_normalize_xtime(struct timekeeper *tk) 118 { 119 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 120 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 121 tk->xtime_sec++; 122 } 123 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 124 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 125 tk->raw_sec++; 126 } 127 } 128 129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 130 { 131 struct timespec64 ts; 132 133 ts.tv_sec = tk->xtime_sec; 134 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 135 return ts; 136 } 137 138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 139 { 140 tk->xtime_sec = ts->tv_sec; 141 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 142 } 143 144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 145 { 146 tk->xtime_sec += ts->tv_sec; 147 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 148 tk_normalize_xtime(tk); 149 } 150 151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 152 { 153 struct timespec64 tmp; 154 155 /* 156 * Verify consistency of: offset_real = -wall_to_monotonic 157 * before modifying anything 158 */ 159 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 160 -tk->wall_to_monotonic.tv_nsec); 161 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 162 tk->wall_to_monotonic = wtm; 163 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 164 tk->offs_real = timespec64_to_ktime(tmp); 165 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 166 } 167 168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 169 { 170 tk->offs_boot = ktime_add(tk->offs_boot, delta); 171 /* 172 * Timespec representation for VDSO update to avoid 64bit division 173 * on every update. 174 */ 175 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 176 } 177 178 /* 179 * tk_clock_read - atomic clocksource read() helper 180 * 181 * This helper is necessary to use in the read paths because, while the 182 * seqcount ensures we don't return a bad value while structures are updated, 183 * it doesn't protect from potential crashes. There is the possibility that 184 * the tkr's clocksource may change between the read reference, and the 185 * clock reference passed to the read function. This can cause crashes if 186 * the wrong clocksource is passed to the wrong read function. 187 * This isn't necessary to use when holding the timekeeper_lock or doing 188 * a read of the fast-timekeeper tkrs (which is protected by its own locking 189 * and update logic). 190 */ 191 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 192 { 193 struct clocksource *clock = READ_ONCE(tkr->clock); 194 195 return clock->read(clock); 196 } 197 198 #ifdef CONFIG_DEBUG_TIMEKEEPING 199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 200 201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 202 { 203 204 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 205 const char *name = tk->tkr_mono.clock->name; 206 207 if (offset > max_cycles) { 208 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 209 offset, name, max_cycles); 210 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 211 } else { 212 if (offset > (max_cycles >> 1)) { 213 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 214 offset, name, max_cycles >> 1); 215 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 216 } 217 } 218 219 if (tk->underflow_seen) { 220 if (jiffies - tk->last_warning > WARNING_FREQ) { 221 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 222 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 223 printk_deferred(" Your kernel is probably still fine.\n"); 224 tk->last_warning = jiffies; 225 } 226 tk->underflow_seen = 0; 227 } 228 229 if (tk->overflow_seen) { 230 if (jiffies - tk->last_warning > WARNING_FREQ) { 231 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 232 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 233 printk_deferred(" Your kernel is probably still fine.\n"); 234 tk->last_warning = jiffies; 235 } 236 tk->overflow_seen = 0; 237 } 238 } 239 240 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 241 { 242 struct timekeeper *tk = &tk_core.timekeeper; 243 u64 now, last, mask, max, delta; 244 unsigned int seq; 245 246 /* 247 * Since we're called holding a seqcount, the data may shift 248 * under us while we're doing the calculation. This can cause 249 * false positives, since we'd note a problem but throw the 250 * results away. So nest another seqcount here to atomically 251 * grab the points we are checking with. 252 */ 253 do { 254 seq = read_seqcount_begin(&tk_core.seq); 255 now = tk_clock_read(tkr); 256 last = tkr->cycle_last; 257 mask = tkr->mask; 258 max = tkr->clock->max_cycles; 259 } while (read_seqcount_retry(&tk_core.seq, seq)); 260 261 delta = clocksource_delta(now, last, mask); 262 263 /* 264 * Try to catch underflows by checking if we are seeing small 265 * mask-relative negative values. 266 */ 267 if (unlikely((~delta & mask) < (mask >> 3))) { 268 tk->underflow_seen = 1; 269 delta = 0; 270 } 271 272 /* Cap delta value to the max_cycles values to avoid mult overflows */ 273 if (unlikely(delta > max)) { 274 tk->overflow_seen = 1; 275 delta = tkr->clock->max_cycles; 276 } 277 278 return delta; 279 } 280 #else 281 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 282 { 283 } 284 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 285 { 286 u64 cycle_now, delta; 287 288 /* read clocksource */ 289 cycle_now = tk_clock_read(tkr); 290 291 /* calculate the delta since the last update_wall_time */ 292 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 293 294 return delta; 295 } 296 #endif 297 298 /** 299 * tk_setup_internals - Set up internals to use clocksource clock. 300 * 301 * @tk: The target timekeeper to setup. 302 * @clock: Pointer to clocksource. 303 * 304 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 305 * pair and interval request. 306 * 307 * Unless you're the timekeeping code, you should not be using this! 308 */ 309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 310 { 311 u64 interval; 312 u64 tmp, ntpinterval; 313 struct clocksource *old_clock; 314 315 ++tk->cs_was_changed_seq; 316 old_clock = tk->tkr_mono.clock; 317 tk->tkr_mono.clock = clock; 318 tk->tkr_mono.mask = clock->mask; 319 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 320 321 tk->tkr_raw.clock = clock; 322 tk->tkr_raw.mask = clock->mask; 323 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 324 325 /* Do the ns -> cycle conversion first, using original mult */ 326 tmp = NTP_INTERVAL_LENGTH; 327 tmp <<= clock->shift; 328 ntpinterval = tmp; 329 tmp += clock->mult/2; 330 do_div(tmp, clock->mult); 331 if (tmp == 0) 332 tmp = 1; 333 334 interval = (u64) tmp; 335 tk->cycle_interval = interval; 336 337 /* Go back from cycles -> shifted ns */ 338 tk->xtime_interval = interval * clock->mult; 339 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 340 tk->raw_interval = interval * clock->mult; 341 342 /* if changing clocks, convert xtime_nsec shift units */ 343 if (old_clock) { 344 int shift_change = clock->shift - old_clock->shift; 345 if (shift_change < 0) { 346 tk->tkr_mono.xtime_nsec >>= -shift_change; 347 tk->tkr_raw.xtime_nsec >>= -shift_change; 348 } else { 349 tk->tkr_mono.xtime_nsec <<= shift_change; 350 tk->tkr_raw.xtime_nsec <<= shift_change; 351 } 352 } 353 354 tk->tkr_mono.shift = clock->shift; 355 tk->tkr_raw.shift = clock->shift; 356 357 tk->ntp_error = 0; 358 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 359 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 360 361 /* 362 * The timekeeper keeps its own mult values for the currently 363 * active clocksource. These value will be adjusted via NTP 364 * to counteract clock drifting. 365 */ 366 tk->tkr_mono.mult = clock->mult; 367 tk->tkr_raw.mult = clock->mult; 368 tk->ntp_err_mult = 0; 369 tk->skip_second_overflow = 0; 370 } 371 372 /* Timekeeper helper functions. */ 373 374 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 375 { 376 u64 nsec; 377 378 nsec = delta * tkr->mult + tkr->xtime_nsec; 379 nsec >>= tkr->shift; 380 381 return nsec; 382 } 383 384 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 385 { 386 u64 delta; 387 388 delta = timekeeping_get_delta(tkr); 389 return timekeeping_delta_to_ns(tkr, delta); 390 } 391 392 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 393 { 394 u64 delta; 395 396 /* calculate the delta since the last update_wall_time */ 397 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 398 return timekeeping_delta_to_ns(tkr, delta); 399 } 400 401 /** 402 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 403 * @tkr: Timekeeping readout base from which we take the update 404 * @tkf: Pointer to NMI safe timekeeper 405 * 406 * We want to use this from any context including NMI and tracing / 407 * instrumenting the timekeeping code itself. 408 * 409 * Employ the latch technique; see @raw_write_seqcount_latch. 410 * 411 * So if a NMI hits the update of base[0] then it will use base[1] 412 * which is still consistent. In the worst case this can result is a 413 * slightly wrong timestamp (a few nanoseconds). See 414 * @ktime_get_mono_fast_ns. 415 */ 416 static void update_fast_timekeeper(const struct tk_read_base *tkr, 417 struct tk_fast *tkf) 418 { 419 struct tk_read_base *base = tkf->base; 420 421 /* Force readers off to base[1] */ 422 raw_write_seqcount_latch(&tkf->seq); 423 424 /* Update base[0] */ 425 memcpy(base, tkr, sizeof(*base)); 426 427 /* Force readers back to base[0] */ 428 raw_write_seqcount_latch(&tkf->seq); 429 430 /* Update base[1] */ 431 memcpy(base + 1, base, sizeof(*base)); 432 } 433 434 static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr) 435 { 436 u64 delta, cycles = tk_clock_read(tkr); 437 438 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 439 return timekeeping_delta_to_ns(tkr, delta); 440 } 441 442 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 443 { 444 struct tk_read_base *tkr; 445 unsigned int seq; 446 u64 now; 447 448 do { 449 seq = raw_read_seqcount_latch(&tkf->seq); 450 tkr = tkf->base + (seq & 0x01); 451 now = ktime_to_ns(tkr->base); 452 now += fast_tk_get_delta_ns(tkr); 453 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 454 455 return now; 456 } 457 458 /** 459 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 460 * 461 * This timestamp is not guaranteed to be monotonic across an update. 462 * The timestamp is calculated by: 463 * 464 * now = base_mono + clock_delta * slope 465 * 466 * So if the update lowers the slope, readers who are forced to the 467 * not yet updated second array are still using the old steeper slope. 468 * 469 * tmono 470 * ^ 471 * | o n 472 * | o n 473 * | u 474 * | o 475 * |o 476 * |12345678---> reader order 477 * 478 * o = old slope 479 * u = update 480 * n = new slope 481 * 482 * So reader 6 will observe time going backwards versus reader 5. 483 * 484 * While other CPUs are likely to be able to observe that, the only way 485 * for a CPU local observation is when an NMI hits in the middle of 486 * the update. Timestamps taken from that NMI context might be ahead 487 * of the following timestamps. Callers need to be aware of that and 488 * deal with it. 489 */ 490 u64 notrace ktime_get_mono_fast_ns(void) 491 { 492 return __ktime_get_fast_ns(&tk_fast_mono); 493 } 494 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 495 496 /** 497 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 498 * 499 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 500 * conversion factor is not affected by NTP/PTP correction. 501 */ 502 u64 notrace ktime_get_raw_fast_ns(void) 503 { 504 return __ktime_get_fast_ns(&tk_fast_raw); 505 } 506 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 507 508 /** 509 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 510 * 511 * To keep it NMI safe since we're accessing from tracing, we're not using a 512 * separate timekeeper with updates to monotonic clock and boot offset 513 * protected with seqcounts. This has the following minor side effects: 514 * 515 * (1) Its possible that a timestamp be taken after the boot offset is updated 516 * but before the timekeeper is updated. If this happens, the new boot offset 517 * is added to the old timekeeping making the clock appear to update slightly 518 * earlier: 519 * CPU 0 CPU 1 520 * timekeeping_inject_sleeptime64() 521 * __timekeeping_inject_sleeptime(tk, delta); 522 * timestamp(); 523 * timekeeping_update(tk, TK_CLEAR_NTP...); 524 * 525 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 526 * partially updated. Since the tk->offs_boot update is a rare event, this 527 * should be a rare occurrence which postprocessing should be able to handle. 528 * 529 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 530 * apply as well. 531 */ 532 u64 notrace ktime_get_boot_fast_ns(void) 533 { 534 struct timekeeper *tk = &tk_core.timekeeper; 535 536 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 537 } 538 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 539 540 /** 541 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 542 * 543 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 544 * mono time and the TAI offset are not read atomically which may yield wrong 545 * readouts. However, an update of the TAI offset is an rare event e.g., caused 546 * by settime or adjtimex with an offset. The user of this function has to deal 547 * with the possibility of wrong timestamps in post processing. 548 */ 549 u64 notrace ktime_get_tai_fast_ns(void) 550 { 551 struct timekeeper *tk = &tk_core.timekeeper; 552 553 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 554 } 555 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 556 557 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 558 { 559 struct tk_read_base *tkr; 560 u64 basem, baser, delta; 561 unsigned int seq; 562 563 do { 564 seq = raw_read_seqcount_latch(&tkf->seq); 565 tkr = tkf->base + (seq & 0x01); 566 basem = ktime_to_ns(tkr->base); 567 baser = ktime_to_ns(tkr->base_real); 568 delta = fast_tk_get_delta_ns(tkr); 569 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 570 571 if (mono) 572 *mono = basem + delta; 573 return baser + delta; 574 } 575 576 /** 577 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 578 * 579 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 580 */ 581 u64 ktime_get_real_fast_ns(void) 582 { 583 return __ktime_get_real_fast(&tk_fast_mono, NULL); 584 } 585 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 586 587 /** 588 * ktime_get_fast_timestamps: - NMI safe timestamps 589 * @snapshot: Pointer to timestamp storage 590 * 591 * Stores clock monotonic, boottime and realtime timestamps. 592 * 593 * Boot time is a racy access on 32bit systems if the sleep time injection 594 * happens late during resume and not in timekeeping_resume(). That could 595 * be avoided by expanding struct tk_read_base with boot offset for 32bit 596 * and adding more overhead to the update. As this is a hard to observe 597 * once per resume event which can be filtered with reasonable effort using 598 * the accurate mono/real timestamps, it's probably not worth the trouble. 599 * 600 * Aside of that it might be possible on 32 and 64 bit to observe the 601 * following when the sleep time injection happens late: 602 * 603 * CPU 0 CPU 1 604 * timekeeping_resume() 605 * ktime_get_fast_timestamps() 606 * mono, real = __ktime_get_real_fast() 607 * inject_sleep_time() 608 * update boot offset 609 * boot = mono + bootoffset; 610 * 611 * That means that boot time already has the sleep time adjustment, but 612 * real time does not. On the next readout both are in sync again. 613 * 614 * Preventing this for 64bit is not really feasible without destroying the 615 * careful cache layout of the timekeeper because the sequence count and 616 * struct tk_read_base would then need two cache lines instead of one. 617 * 618 * Access to the time keeper clock source is disabled across the innermost 619 * steps of suspend/resume. The accessors still work, but the timestamps 620 * are frozen until time keeping is resumed which happens very early. 621 * 622 * For regular suspend/resume there is no observable difference vs. sched 623 * clock, but it might affect some of the nasty low level debug printks. 624 * 625 * OTOH, access to sched clock is not guaranteed across suspend/resume on 626 * all systems either so it depends on the hardware in use. 627 * 628 * If that turns out to be a real problem then this could be mitigated by 629 * using sched clock in a similar way as during early boot. But it's not as 630 * trivial as on early boot because it needs some careful protection 631 * against the clock monotonic timestamp jumping backwards on resume. 632 */ 633 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 634 { 635 struct timekeeper *tk = &tk_core.timekeeper; 636 637 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 638 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 639 } 640 641 /** 642 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 643 * @tk: Timekeeper to snapshot. 644 * 645 * It generally is unsafe to access the clocksource after timekeeping has been 646 * suspended, so take a snapshot of the readout base of @tk and use it as the 647 * fast timekeeper's readout base while suspended. It will return the same 648 * number of cycles every time until timekeeping is resumed at which time the 649 * proper readout base for the fast timekeeper will be restored automatically. 650 */ 651 static void halt_fast_timekeeper(const struct timekeeper *tk) 652 { 653 static struct tk_read_base tkr_dummy; 654 const struct tk_read_base *tkr = &tk->tkr_mono; 655 656 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 657 cycles_at_suspend = tk_clock_read(tkr); 658 tkr_dummy.clock = &dummy_clock; 659 tkr_dummy.base_real = tkr->base + tk->offs_real; 660 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 661 662 tkr = &tk->tkr_raw; 663 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 664 tkr_dummy.clock = &dummy_clock; 665 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 666 } 667 668 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 669 670 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 671 { 672 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 673 } 674 675 /** 676 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 677 * @nb: Pointer to the notifier block to register 678 */ 679 int pvclock_gtod_register_notifier(struct notifier_block *nb) 680 { 681 struct timekeeper *tk = &tk_core.timekeeper; 682 unsigned long flags; 683 int ret; 684 685 raw_spin_lock_irqsave(&timekeeper_lock, flags); 686 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 687 update_pvclock_gtod(tk, true); 688 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 689 690 return ret; 691 } 692 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 693 694 /** 695 * pvclock_gtod_unregister_notifier - unregister a pvclock 696 * timedata update listener 697 * @nb: Pointer to the notifier block to unregister 698 */ 699 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 700 { 701 unsigned long flags; 702 int ret; 703 704 raw_spin_lock_irqsave(&timekeeper_lock, flags); 705 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 706 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 707 708 return ret; 709 } 710 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 711 712 /* 713 * tk_update_leap_state - helper to update the next_leap_ktime 714 */ 715 static inline void tk_update_leap_state(struct timekeeper *tk) 716 { 717 tk->next_leap_ktime = ntp_get_next_leap(); 718 if (tk->next_leap_ktime != KTIME_MAX) 719 /* Convert to monotonic time */ 720 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 721 } 722 723 /* 724 * Update the ktime_t based scalar nsec members of the timekeeper 725 */ 726 static inline void tk_update_ktime_data(struct timekeeper *tk) 727 { 728 u64 seconds; 729 u32 nsec; 730 731 /* 732 * The xtime based monotonic readout is: 733 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 734 * The ktime based monotonic readout is: 735 * nsec = base_mono + now(); 736 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 737 */ 738 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 739 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 740 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 741 742 /* 743 * The sum of the nanoseconds portions of xtime and 744 * wall_to_monotonic can be greater/equal one second. Take 745 * this into account before updating tk->ktime_sec. 746 */ 747 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 748 if (nsec >= NSEC_PER_SEC) 749 seconds++; 750 tk->ktime_sec = seconds; 751 752 /* Update the monotonic raw base */ 753 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 754 } 755 756 /* must hold timekeeper_lock */ 757 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 758 { 759 if (action & TK_CLEAR_NTP) { 760 tk->ntp_error = 0; 761 ntp_clear(); 762 } 763 764 tk_update_leap_state(tk); 765 tk_update_ktime_data(tk); 766 767 update_vsyscall(tk); 768 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 769 770 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 771 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 772 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 773 774 if (action & TK_CLOCK_WAS_SET) 775 tk->clock_was_set_seq++; 776 /* 777 * The mirroring of the data to the shadow-timekeeper needs 778 * to happen last here to ensure we don't over-write the 779 * timekeeper structure on the next update with stale data 780 */ 781 if (action & TK_MIRROR) 782 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 783 sizeof(tk_core.timekeeper)); 784 } 785 786 /** 787 * timekeeping_forward_now - update clock to the current time 788 * @tk: Pointer to the timekeeper to update 789 * 790 * Forward the current clock to update its state since the last call to 791 * update_wall_time(). This is useful before significant clock changes, 792 * as it avoids having to deal with this time offset explicitly. 793 */ 794 static void timekeeping_forward_now(struct timekeeper *tk) 795 { 796 u64 cycle_now, delta; 797 798 cycle_now = tk_clock_read(&tk->tkr_mono); 799 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 800 tk->tkr_mono.cycle_last = cycle_now; 801 tk->tkr_raw.cycle_last = cycle_now; 802 803 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 804 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 805 806 tk_normalize_xtime(tk); 807 } 808 809 /** 810 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 811 * @ts: pointer to the timespec to be set 812 * 813 * Returns the time of day in a timespec64 (WARN if suspended). 814 */ 815 void ktime_get_real_ts64(struct timespec64 *ts) 816 { 817 struct timekeeper *tk = &tk_core.timekeeper; 818 unsigned int seq; 819 u64 nsecs; 820 821 WARN_ON(timekeeping_suspended); 822 823 do { 824 seq = read_seqcount_begin(&tk_core.seq); 825 826 ts->tv_sec = tk->xtime_sec; 827 nsecs = timekeeping_get_ns(&tk->tkr_mono); 828 829 } while (read_seqcount_retry(&tk_core.seq, seq)); 830 831 ts->tv_nsec = 0; 832 timespec64_add_ns(ts, nsecs); 833 } 834 EXPORT_SYMBOL(ktime_get_real_ts64); 835 836 ktime_t ktime_get(void) 837 { 838 struct timekeeper *tk = &tk_core.timekeeper; 839 unsigned int seq; 840 ktime_t base; 841 u64 nsecs; 842 843 WARN_ON(timekeeping_suspended); 844 845 do { 846 seq = read_seqcount_begin(&tk_core.seq); 847 base = tk->tkr_mono.base; 848 nsecs = timekeeping_get_ns(&tk->tkr_mono); 849 850 } while (read_seqcount_retry(&tk_core.seq, seq)); 851 852 return ktime_add_ns(base, nsecs); 853 } 854 EXPORT_SYMBOL_GPL(ktime_get); 855 856 u32 ktime_get_resolution_ns(void) 857 { 858 struct timekeeper *tk = &tk_core.timekeeper; 859 unsigned int seq; 860 u32 nsecs; 861 862 WARN_ON(timekeeping_suspended); 863 864 do { 865 seq = read_seqcount_begin(&tk_core.seq); 866 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 867 } while (read_seqcount_retry(&tk_core.seq, seq)); 868 869 return nsecs; 870 } 871 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 872 873 static ktime_t *offsets[TK_OFFS_MAX] = { 874 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 875 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 876 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 877 }; 878 879 ktime_t ktime_get_with_offset(enum tk_offsets offs) 880 { 881 struct timekeeper *tk = &tk_core.timekeeper; 882 unsigned int seq; 883 ktime_t base, *offset = offsets[offs]; 884 u64 nsecs; 885 886 WARN_ON(timekeeping_suspended); 887 888 do { 889 seq = read_seqcount_begin(&tk_core.seq); 890 base = ktime_add(tk->tkr_mono.base, *offset); 891 nsecs = timekeeping_get_ns(&tk->tkr_mono); 892 893 } while (read_seqcount_retry(&tk_core.seq, seq)); 894 895 return ktime_add_ns(base, nsecs); 896 897 } 898 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 899 900 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 901 { 902 struct timekeeper *tk = &tk_core.timekeeper; 903 unsigned int seq; 904 ktime_t base, *offset = offsets[offs]; 905 u64 nsecs; 906 907 WARN_ON(timekeeping_suspended); 908 909 do { 910 seq = read_seqcount_begin(&tk_core.seq); 911 base = ktime_add(tk->tkr_mono.base, *offset); 912 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 913 914 } while (read_seqcount_retry(&tk_core.seq, seq)); 915 916 return ktime_add_ns(base, nsecs); 917 } 918 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 919 920 /** 921 * ktime_mono_to_any() - convert monotonic time to any other time 922 * @tmono: time to convert. 923 * @offs: which offset to use 924 */ 925 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 926 { 927 ktime_t *offset = offsets[offs]; 928 unsigned int seq; 929 ktime_t tconv; 930 931 do { 932 seq = read_seqcount_begin(&tk_core.seq); 933 tconv = ktime_add(tmono, *offset); 934 } while (read_seqcount_retry(&tk_core.seq, seq)); 935 936 return tconv; 937 } 938 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 939 940 /** 941 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 942 */ 943 ktime_t ktime_get_raw(void) 944 { 945 struct timekeeper *tk = &tk_core.timekeeper; 946 unsigned int seq; 947 ktime_t base; 948 u64 nsecs; 949 950 do { 951 seq = read_seqcount_begin(&tk_core.seq); 952 base = tk->tkr_raw.base; 953 nsecs = timekeeping_get_ns(&tk->tkr_raw); 954 955 } while (read_seqcount_retry(&tk_core.seq, seq)); 956 957 return ktime_add_ns(base, nsecs); 958 } 959 EXPORT_SYMBOL_GPL(ktime_get_raw); 960 961 /** 962 * ktime_get_ts64 - get the monotonic clock in timespec64 format 963 * @ts: pointer to timespec variable 964 * 965 * The function calculates the monotonic clock from the realtime 966 * clock and the wall_to_monotonic offset and stores the result 967 * in normalized timespec64 format in the variable pointed to by @ts. 968 */ 969 void ktime_get_ts64(struct timespec64 *ts) 970 { 971 struct timekeeper *tk = &tk_core.timekeeper; 972 struct timespec64 tomono; 973 unsigned int seq; 974 u64 nsec; 975 976 WARN_ON(timekeeping_suspended); 977 978 do { 979 seq = read_seqcount_begin(&tk_core.seq); 980 ts->tv_sec = tk->xtime_sec; 981 nsec = timekeeping_get_ns(&tk->tkr_mono); 982 tomono = tk->wall_to_monotonic; 983 984 } while (read_seqcount_retry(&tk_core.seq, seq)); 985 986 ts->tv_sec += tomono.tv_sec; 987 ts->tv_nsec = 0; 988 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 989 } 990 EXPORT_SYMBOL_GPL(ktime_get_ts64); 991 992 /** 993 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 994 * 995 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 996 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 997 * works on both 32 and 64 bit systems. On 32 bit systems the readout 998 * covers ~136 years of uptime which should be enough to prevent 999 * premature wrap arounds. 1000 */ 1001 time64_t ktime_get_seconds(void) 1002 { 1003 struct timekeeper *tk = &tk_core.timekeeper; 1004 1005 WARN_ON(timekeeping_suspended); 1006 return tk->ktime_sec; 1007 } 1008 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1009 1010 /** 1011 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1012 * 1013 * Returns the wall clock seconds since 1970. 1014 * 1015 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1016 * 32bit systems the access must be protected with the sequence 1017 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1018 * value. 1019 */ 1020 time64_t ktime_get_real_seconds(void) 1021 { 1022 struct timekeeper *tk = &tk_core.timekeeper; 1023 time64_t seconds; 1024 unsigned int seq; 1025 1026 if (IS_ENABLED(CONFIG_64BIT)) 1027 return tk->xtime_sec; 1028 1029 do { 1030 seq = read_seqcount_begin(&tk_core.seq); 1031 seconds = tk->xtime_sec; 1032 1033 } while (read_seqcount_retry(&tk_core.seq, seq)); 1034 1035 return seconds; 1036 } 1037 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1038 1039 /** 1040 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1041 * but without the sequence counter protect. This internal function 1042 * is called just when timekeeping lock is already held. 1043 */ 1044 noinstr time64_t __ktime_get_real_seconds(void) 1045 { 1046 struct timekeeper *tk = &tk_core.timekeeper; 1047 1048 return tk->xtime_sec; 1049 } 1050 1051 /** 1052 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1053 * @systime_snapshot: pointer to struct receiving the system time snapshot 1054 */ 1055 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1056 { 1057 struct timekeeper *tk = &tk_core.timekeeper; 1058 unsigned int seq; 1059 ktime_t base_raw; 1060 ktime_t base_real; 1061 u64 nsec_raw; 1062 u64 nsec_real; 1063 u64 now; 1064 1065 WARN_ON_ONCE(timekeeping_suspended); 1066 1067 do { 1068 seq = read_seqcount_begin(&tk_core.seq); 1069 now = tk_clock_read(&tk->tkr_mono); 1070 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1071 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1072 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1073 base_real = ktime_add(tk->tkr_mono.base, 1074 tk_core.timekeeper.offs_real); 1075 base_raw = tk->tkr_raw.base; 1076 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1077 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1078 } while (read_seqcount_retry(&tk_core.seq, seq)); 1079 1080 systime_snapshot->cycles = now; 1081 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1082 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1083 } 1084 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1085 1086 /* Scale base by mult/div checking for overflow */ 1087 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1088 { 1089 u64 tmp, rem; 1090 1091 tmp = div64_u64_rem(*base, div, &rem); 1092 1093 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1094 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1095 return -EOVERFLOW; 1096 tmp *= mult; 1097 1098 rem = div64_u64(rem * mult, div); 1099 *base = tmp + rem; 1100 return 0; 1101 } 1102 1103 /** 1104 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1105 * @history: Snapshot representing start of history 1106 * @partial_history_cycles: Cycle offset into history (fractional part) 1107 * @total_history_cycles: Total history length in cycles 1108 * @discontinuity: True indicates clock was set on history period 1109 * @ts: Cross timestamp that should be adjusted using 1110 * partial/total ratio 1111 * 1112 * Helper function used by get_device_system_crosststamp() to correct the 1113 * crosstimestamp corresponding to the start of the current interval to the 1114 * system counter value (timestamp point) provided by the driver. The 1115 * total_history_* quantities are the total history starting at the provided 1116 * reference point and ending at the start of the current interval. The cycle 1117 * count between the driver timestamp point and the start of the current 1118 * interval is partial_history_cycles. 1119 */ 1120 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1121 u64 partial_history_cycles, 1122 u64 total_history_cycles, 1123 bool discontinuity, 1124 struct system_device_crosststamp *ts) 1125 { 1126 struct timekeeper *tk = &tk_core.timekeeper; 1127 u64 corr_raw, corr_real; 1128 bool interp_forward; 1129 int ret; 1130 1131 if (total_history_cycles == 0 || partial_history_cycles == 0) 1132 return 0; 1133 1134 /* Interpolate shortest distance from beginning or end of history */ 1135 interp_forward = partial_history_cycles > total_history_cycles / 2; 1136 partial_history_cycles = interp_forward ? 1137 total_history_cycles - partial_history_cycles : 1138 partial_history_cycles; 1139 1140 /* 1141 * Scale the monotonic raw time delta by: 1142 * partial_history_cycles / total_history_cycles 1143 */ 1144 corr_raw = (u64)ktime_to_ns( 1145 ktime_sub(ts->sys_monoraw, history->raw)); 1146 ret = scale64_check_overflow(partial_history_cycles, 1147 total_history_cycles, &corr_raw); 1148 if (ret) 1149 return ret; 1150 1151 /* 1152 * If there is a discontinuity in the history, scale monotonic raw 1153 * correction by: 1154 * mult(real)/mult(raw) yielding the realtime correction 1155 * Otherwise, calculate the realtime correction similar to monotonic 1156 * raw calculation 1157 */ 1158 if (discontinuity) { 1159 corr_real = mul_u64_u32_div 1160 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1161 } else { 1162 corr_real = (u64)ktime_to_ns( 1163 ktime_sub(ts->sys_realtime, history->real)); 1164 ret = scale64_check_overflow(partial_history_cycles, 1165 total_history_cycles, &corr_real); 1166 if (ret) 1167 return ret; 1168 } 1169 1170 /* Fixup monotonic raw and real time time values */ 1171 if (interp_forward) { 1172 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1173 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1174 } else { 1175 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1176 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1177 } 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * timestamp_in_interval - true if ts is chronologically in [start, end] 1184 * 1185 * True if ts occurs chronologically at or after start, and before or at end. 1186 */ 1187 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1188 { 1189 if (ts >= start && ts <= end) 1190 return true; 1191 if (start > end && (ts >= start || ts <= end)) 1192 return true; 1193 return false; 1194 } 1195 1196 /** 1197 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1198 * @get_time_fn: Callback to get simultaneous device time and 1199 * system counter from the device driver 1200 * @ctx: Context passed to get_time_fn() 1201 * @history_begin: Historical reference point used to interpolate system 1202 * time when counter provided by the driver is before the current interval 1203 * @xtstamp: Receives simultaneously captured system and device time 1204 * 1205 * Reads a timestamp from a device and correlates it to system time 1206 */ 1207 int get_device_system_crosststamp(int (*get_time_fn) 1208 (ktime_t *device_time, 1209 struct system_counterval_t *sys_counterval, 1210 void *ctx), 1211 void *ctx, 1212 struct system_time_snapshot *history_begin, 1213 struct system_device_crosststamp *xtstamp) 1214 { 1215 struct system_counterval_t system_counterval; 1216 struct timekeeper *tk = &tk_core.timekeeper; 1217 u64 cycles, now, interval_start; 1218 unsigned int clock_was_set_seq = 0; 1219 ktime_t base_real, base_raw; 1220 u64 nsec_real, nsec_raw; 1221 u8 cs_was_changed_seq; 1222 unsigned int seq; 1223 bool do_interp; 1224 int ret; 1225 1226 do { 1227 seq = read_seqcount_begin(&tk_core.seq); 1228 /* 1229 * Try to synchronously capture device time and a system 1230 * counter value calling back into the device driver 1231 */ 1232 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1233 if (ret) 1234 return ret; 1235 1236 /* 1237 * Verify that the clocksource ID associated with the captured 1238 * system counter value is the same as for the currently 1239 * installed timekeeper clocksource 1240 */ 1241 if (system_counterval.cs_id == CSID_GENERIC || 1242 tk->tkr_mono.clock->id != system_counterval.cs_id) 1243 return -ENODEV; 1244 cycles = system_counterval.cycles; 1245 1246 /* 1247 * Check whether the system counter value provided by the 1248 * device driver is on the current timekeeping interval. 1249 */ 1250 now = tk_clock_read(&tk->tkr_mono); 1251 interval_start = tk->tkr_mono.cycle_last; 1252 if (!timestamp_in_interval(interval_start, now, cycles)) { 1253 clock_was_set_seq = tk->clock_was_set_seq; 1254 cs_was_changed_seq = tk->cs_was_changed_seq; 1255 cycles = interval_start; 1256 do_interp = true; 1257 } else { 1258 do_interp = false; 1259 } 1260 1261 base_real = ktime_add(tk->tkr_mono.base, 1262 tk_core.timekeeper.offs_real); 1263 base_raw = tk->tkr_raw.base; 1264 1265 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1266 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1267 } while (read_seqcount_retry(&tk_core.seq, seq)); 1268 1269 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1270 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1271 1272 /* 1273 * Interpolate if necessary, adjusting back from the start of the 1274 * current interval 1275 */ 1276 if (do_interp) { 1277 u64 partial_history_cycles, total_history_cycles; 1278 bool discontinuity; 1279 1280 /* 1281 * Check that the counter value is not before the provided 1282 * history reference and that the history doesn't cross a 1283 * clocksource change 1284 */ 1285 if (!history_begin || 1286 !timestamp_in_interval(history_begin->cycles, 1287 cycles, system_counterval.cycles) || 1288 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1289 return -EINVAL; 1290 partial_history_cycles = cycles - system_counterval.cycles; 1291 total_history_cycles = cycles - history_begin->cycles; 1292 discontinuity = 1293 history_begin->clock_was_set_seq != clock_was_set_seq; 1294 1295 ret = adjust_historical_crosststamp(history_begin, 1296 partial_history_cycles, 1297 total_history_cycles, 1298 discontinuity, xtstamp); 1299 if (ret) 1300 return ret; 1301 } 1302 1303 return 0; 1304 } 1305 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1306 1307 /** 1308 * do_settimeofday64 - Sets the time of day. 1309 * @ts: pointer to the timespec64 variable containing the new time 1310 * 1311 * Sets the time of day to the new time and update NTP and notify hrtimers 1312 */ 1313 int do_settimeofday64(const struct timespec64 *ts) 1314 { 1315 struct timekeeper *tk = &tk_core.timekeeper; 1316 struct timespec64 ts_delta, xt; 1317 unsigned long flags; 1318 int ret = 0; 1319 1320 if (!timespec64_valid_settod(ts)) 1321 return -EINVAL; 1322 1323 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1324 write_seqcount_begin(&tk_core.seq); 1325 1326 timekeeping_forward_now(tk); 1327 1328 xt = tk_xtime(tk); 1329 ts_delta = timespec64_sub(*ts, xt); 1330 1331 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1332 ret = -EINVAL; 1333 goto out; 1334 } 1335 1336 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1337 1338 tk_set_xtime(tk, ts); 1339 out: 1340 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1341 1342 write_seqcount_end(&tk_core.seq); 1343 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1344 1345 /* Signal hrtimers about time change */ 1346 clock_was_set(CLOCK_SET_WALL); 1347 1348 if (!ret) { 1349 audit_tk_injoffset(ts_delta); 1350 add_device_randomness(ts, sizeof(*ts)); 1351 } 1352 1353 return ret; 1354 } 1355 EXPORT_SYMBOL(do_settimeofday64); 1356 1357 /** 1358 * timekeeping_inject_offset - Adds or subtracts from the current time. 1359 * @ts: Pointer to the timespec variable containing the offset 1360 * 1361 * Adds or subtracts an offset value from the current time. 1362 */ 1363 static int timekeeping_inject_offset(const struct timespec64 *ts) 1364 { 1365 struct timekeeper *tk = &tk_core.timekeeper; 1366 unsigned long flags; 1367 struct timespec64 tmp; 1368 int ret = 0; 1369 1370 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1371 return -EINVAL; 1372 1373 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1374 write_seqcount_begin(&tk_core.seq); 1375 1376 timekeeping_forward_now(tk); 1377 1378 /* Make sure the proposed value is valid */ 1379 tmp = timespec64_add(tk_xtime(tk), *ts); 1380 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1381 !timespec64_valid_settod(&tmp)) { 1382 ret = -EINVAL; 1383 goto error; 1384 } 1385 1386 tk_xtime_add(tk, ts); 1387 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1388 1389 error: /* even if we error out, we forwarded the time, so call update */ 1390 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1391 1392 write_seqcount_end(&tk_core.seq); 1393 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1394 1395 /* Signal hrtimers about time change */ 1396 clock_was_set(CLOCK_SET_WALL); 1397 1398 return ret; 1399 } 1400 1401 /* 1402 * Indicates if there is an offset between the system clock and the hardware 1403 * clock/persistent clock/rtc. 1404 */ 1405 int persistent_clock_is_local; 1406 1407 /* 1408 * Adjust the time obtained from the CMOS to be UTC time instead of 1409 * local time. 1410 * 1411 * This is ugly, but preferable to the alternatives. Otherwise we 1412 * would either need to write a program to do it in /etc/rc (and risk 1413 * confusion if the program gets run more than once; it would also be 1414 * hard to make the program warp the clock precisely n hours) or 1415 * compile in the timezone information into the kernel. Bad, bad.... 1416 * 1417 * - TYT, 1992-01-01 1418 * 1419 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1420 * as real UNIX machines always do it. This avoids all headaches about 1421 * daylight saving times and warping kernel clocks. 1422 */ 1423 void timekeeping_warp_clock(void) 1424 { 1425 if (sys_tz.tz_minuteswest != 0) { 1426 struct timespec64 adjust; 1427 1428 persistent_clock_is_local = 1; 1429 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1430 adjust.tv_nsec = 0; 1431 timekeeping_inject_offset(&adjust); 1432 } 1433 } 1434 1435 /* 1436 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1437 */ 1438 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1439 { 1440 tk->tai_offset = tai_offset; 1441 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1442 } 1443 1444 /* 1445 * change_clocksource - Swaps clocksources if a new one is available 1446 * 1447 * Accumulates current time interval and initializes new clocksource 1448 */ 1449 static int change_clocksource(void *data) 1450 { 1451 struct timekeeper *tk = &tk_core.timekeeper; 1452 struct clocksource *new, *old = NULL; 1453 unsigned long flags; 1454 bool change = false; 1455 1456 new = (struct clocksource *) data; 1457 1458 /* 1459 * If the cs is in module, get a module reference. Succeeds 1460 * for built-in code (owner == NULL) as well. 1461 */ 1462 if (try_module_get(new->owner)) { 1463 if (!new->enable || new->enable(new) == 0) 1464 change = true; 1465 else 1466 module_put(new->owner); 1467 } 1468 1469 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1470 write_seqcount_begin(&tk_core.seq); 1471 1472 timekeeping_forward_now(tk); 1473 1474 if (change) { 1475 old = tk->tkr_mono.clock; 1476 tk_setup_internals(tk, new); 1477 } 1478 1479 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1480 1481 write_seqcount_end(&tk_core.seq); 1482 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1483 1484 if (old) { 1485 if (old->disable) 1486 old->disable(old); 1487 1488 module_put(old->owner); 1489 } 1490 1491 return 0; 1492 } 1493 1494 /** 1495 * timekeeping_notify - Install a new clock source 1496 * @clock: pointer to the clock source 1497 * 1498 * This function is called from clocksource.c after a new, better clock 1499 * source has been registered. The caller holds the clocksource_mutex. 1500 */ 1501 int timekeeping_notify(struct clocksource *clock) 1502 { 1503 struct timekeeper *tk = &tk_core.timekeeper; 1504 1505 if (tk->tkr_mono.clock == clock) 1506 return 0; 1507 stop_machine(change_clocksource, clock, NULL); 1508 tick_clock_notify(); 1509 return tk->tkr_mono.clock == clock ? 0 : -1; 1510 } 1511 1512 /** 1513 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1514 * @ts: pointer to the timespec64 to be set 1515 * 1516 * Returns the raw monotonic time (completely un-modified by ntp) 1517 */ 1518 void ktime_get_raw_ts64(struct timespec64 *ts) 1519 { 1520 struct timekeeper *tk = &tk_core.timekeeper; 1521 unsigned int seq; 1522 u64 nsecs; 1523 1524 do { 1525 seq = read_seqcount_begin(&tk_core.seq); 1526 ts->tv_sec = tk->raw_sec; 1527 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1528 1529 } while (read_seqcount_retry(&tk_core.seq, seq)); 1530 1531 ts->tv_nsec = 0; 1532 timespec64_add_ns(ts, nsecs); 1533 } 1534 EXPORT_SYMBOL(ktime_get_raw_ts64); 1535 1536 1537 /** 1538 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1539 */ 1540 int timekeeping_valid_for_hres(void) 1541 { 1542 struct timekeeper *tk = &tk_core.timekeeper; 1543 unsigned int seq; 1544 int ret; 1545 1546 do { 1547 seq = read_seqcount_begin(&tk_core.seq); 1548 1549 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1550 1551 } while (read_seqcount_retry(&tk_core.seq, seq)); 1552 1553 return ret; 1554 } 1555 1556 /** 1557 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1558 */ 1559 u64 timekeeping_max_deferment(void) 1560 { 1561 struct timekeeper *tk = &tk_core.timekeeper; 1562 unsigned int seq; 1563 u64 ret; 1564 1565 do { 1566 seq = read_seqcount_begin(&tk_core.seq); 1567 1568 ret = tk->tkr_mono.clock->max_idle_ns; 1569 1570 } while (read_seqcount_retry(&tk_core.seq, seq)); 1571 1572 return ret; 1573 } 1574 1575 /** 1576 * read_persistent_clock64 - Return time from the persistent clock. 1577 * @ts: Pointer to the storage for the readout value 1578 * 1579 * Weak dummy function for arches that do not yet support it. 1580 * Reads the time from the battery backed persistent clock. 1581 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1582 * 1583 * XXX - Do be sure to remove it once all arches implement it. 1584 */ 1585 void __weak read_persistent_clock64(struct timespec64 *ts) 1586 { 1587 ts->tv_sec = 0; 1588 ts->tv_nsec = 0; 1589 } 1590 1591 /** 1592 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1593 * from the boot. 1594 * @wall_time: current time as returned by persistent clock 1595 * @boot_offset: offset that is defined as wall_time - boot_time 1596 * 1597 * Weak dummy function for arches that do not yet support it. 1598 * 1599 * The default function calculates offset based on the current value of 1600 * local_clock(). This way architectures that support sched_clock() but don't 1601 * support dedicated boot time clock will provide the best estimate of the 1602 * boot time. 1603 */ 1604 void __weak __init 1605 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1606 struct timespec64 *boot_offset) 1607 { 1608 read_persistent_clock64(wall_time); 1609 *boot_offset = ns_to_timespec64(local_clock()); 1610 } 1611 1612 /* 1613 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1614 * 1615 * The flag starts of false and is only set when a suspend reaches 1616 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1617 * timekeeper clocksource is not stopping across suspend and has been 1618 * used to update sleep time. If the timekeeper clocksource has stopped 1619 * then the flag stays true and is used by the RTC resume code to decide 1620 * whether sleeptime must be injected and if so the flag gets false then. 1621 * 1622 * If a suspend fails before reaching timekeeping_resume() then the flag 1623 * stays false and prevents erroneous sleeptime injection. 1624 */ 1625 static bool suspend_timing_needed; 1626 1627 /* Flag for if there is a persistent clock on this platform */ 1628 static bool persistent_clock_exists; 1629 1630 /* 1631 * timekeeping_init - Initializes the clocksource and common timekeeping values 1632 */ 1633 void __init timekeeping_init(void) 1634 { 1635 struct timespec64 wall_time, boot_offset, wall_to_mono; 1636 struct timekeeper *tk = &tk_core.timekeeper; 1637 struct clocksource *clock; 1638 unsigned long flags; 1639 1640 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1641 if (timespec64_valid_settod(&wall_time) && 1642 timespec64_to_ns(&wall_time) > 0) { 1643 persistent_clock_exists = true; 1644 } else if (timespec64_to_ns(&wall_time) != 0) { 1645 pr_warn("Persistent clock returned invalid value"); 1646 wall_time = (struct timespec64){0}; 1647 } 1648 1649 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1650 boot_offset = (struct timespec64){0}; 1651 1652 /* 1653 * We want set wall_to_mono, so the following is true: 1654 * wall time + wall_to_mono = boot time 1655 */ 1656 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1657 1658 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1659 write_seqcount_begin(&tk_core.seq); 1660 ntp_init(); 1661 1662 clock = clocksource_default_clock(); 1663 if (clock->enable) 1664 clock->enable(clock); 1665 tk_setup_internals(tk, clock); 1666 1667 tk_set_xtime(tk, &wall_time); 1668 tk->raw_sec = 0; 1669 1670 tk_set_wall_to_mono(tk, wall_to_mono); 1671 1672 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1673 1674 write_seqcount_end(&tk_core.seq); 1675 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1676 } 1677 1678 /* time in seconds when suspend began for persistent clock */ 1679 static struct timespec64 timekeeping_suspend_time; 1680 1681 /** 1682 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1683 * @tk: Pointer to the timekeeper to be updated 1684 * @delta: Pointer to the delta value in timespec64 format 1685 * 1686 * Takes a timespec offset measuring a suspend interval and properly 1687 * adds the sleep offset to the timekeeping variables. 1688 */ 1689 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1690 const struct timespec64 *delta) 1691 { 1692 if (!timespec64_valid_strict(delta)) { 1693 printk_deferred(KERN_WARNING 1694 "__timekeeping_inject_sleeptime: Invalid " 1695 "sleep delta value!\n"); 1696 return; 1697 } 1698 tk_xtime_add(tk, delta); 1699 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1700 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1701 tk_debug_account_sleep_time(delta); 1702 } 1703 1704 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1705 /* 1706 * We have three kinds of time sources to use for sleep time 1707 * injection, the preference order is: 1708 * 1) non-stop clocksource 1709 * 2) persistent clock (ie: RTC accessible when irqs are off) 1710 * 3) RTC 1711 * 1712 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1713 * If system has neither 1) nor 2), 3) will be used finally. 1714 * 1715 * 1716 * If timekeeping has injected sleeptime via either 1) or 2), 1717 * 3) becomes needless, so in this case we don't need to call 1718 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1719 * means. 1720 */ 1721 bool timekeeping_rtc_skipresume(void) 1722 { 1723 return !suspend_timing_needed; 1724 } 1725 1726 /* 1727 * 1) can be determined whether to use or not only when doing 1728 * timekeeping_resume() which is invoked after rtc_suspend(), 1729 * so we can't skip rtc_suspend() surely if system has 1). 1730 * 1731 * But if system has 2), 2) will definitely be used, so in this 1732 * case we don't need to call rtc_suspend(), and this is what 1733 * timekeeping_rtc_skipsuspend() means. 1734 */ 1735 bool timekeeping_rtc_skipsuspend(void) 1736 { 1737 return persistent_clock_exists; 1738 } 1739 1740 /** 1741 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1742 * @delta: pointer to a timespec64 delta value 1743 * 1744 * This hook is for architectures that cannot support read_persistent_clock64 1745 * because their RTC/persistent clock is only accessible when irqs are enabled. 1746 * and also don't have an effective nonstop clocksource. 1747 * 1748 * This function should only be called by rtc_resume(), and allows 1749 * a suspend offset to be injected into the timekeeping values. 1750 */ 1751 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1752 { 1753 struct timekeeper *tk = &tk_core.timekeeper; 1754 unsigned long flags; 1755 1756 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1757 write_seqcount_begin(&tk_core.seq); 1758 1759 suspend_timing_needed = false; 1760 1761 timekeeping_forward_now(tk); 1762 1763 __timekeeping_inject_sleeptime(tk, delta); 1764 1765 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1766 1767 write_seqcount_end(&tk_core.seq); 1768 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1769 1770 /* Signal hrtimers about time change */ 1771 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1772 } 1773 #endif 1774 1775 /** 1776 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1777 */ 1778 void timekeeping_resume(void) 1779 { 1780 struct timekeeper *tk = &tk_core.timekeeper; 1781 struct clocksource *clock = tk->tkr_mono.clock; 1782 unsigned long flags; 1783 struct timespec64 ts_new, ts_delta; 1784 u64 cycle_now, nsec; 1785 bool inject_sleeptime = false; 1786 1787 read_persistent_clock64(&ts_new); 1788 1789 clockevents_resume(); 1790 clocksource_resume(); 1791 1792 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1793 write_seqcount_begin(&tk_core.seq); 1794 1795 /* 1796 * After system resumes, we need to calculate the suspended time and 1797 * compensate it for the OS time. There are 3 sources that could be 1798 * used: Nonstop clocksource during suspend, persistent clock and rtc 1799 * device. 1800 * 1801 * One specific platform may have 1 or 2 or all of them, and the 1802 * preference will be: 1803 * suspend-nonstop clocksource -> persistent clock -> rtc 1804 * The less preferred source will only be tried if there is no better 1805 * usable source. The rtc part is handled separately in rtc core code. 1806 */ 1807 cycle_now = tk_clock_read(&tk->tkr_mono); 1808 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1809 if (nsec > 0) { 1810 ts_delta = ns_to_timespec64(nsec); 1811 inject_sleeptime = true; 1812 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1813 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1814 inject_sleeptime = true; 1815 } 1816 1817 if (inject_sleeptime) { 1818 suspend_timing_needed = false; 1819 __timekeeping_inject_sleeptime(tk, &ts_delta); 1820 } 1821 1822 /* Re-base the last cycle value */ 1823 tk->tkr_mono.cycle_last = cycle_now; 1824 tk->tkr_raw.cycle_last = cycle_now; 1825 1826 tk->ntp_error = 0; 1827 timekeeping_suspended = 0; 1828 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1829 write_seqcount_end(&tk_core.seq); 1830 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1831 1832 touch_softlockup_watchdog(); 1833 1834 /* Resume the clockevent device(s) and hrtimers */ 1835 tick_resume(); 1836 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1837 timerfd_resume(); 1838 } 1839 1840 int timekeeping_suspend(void) 1841 { 1842 struct timekeeper *tk = &tk_core.timekeeper; 1843 unsigned long flags; 1844 struct timespec64 delta, delta_delta; 1845 static struct timespec64 old_delta; 1846 struct clocksource *curr_clock; 1847 u64 cycle_now; 1848 1849 read_persistent_clock64(&timekeeping_suspend_time); 1850 1851 /* 1852 * On some systems the persistent_clock can not be detected at 1853 * timekeeping_init by its return value, so if we see a valid 1854 * value returned, update the persistent_clock_exists flag. 1855 */ 1856 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1857 persistent_clock_exists = true; 1858 1859 suspend_timing_needed = true; 1860 1861 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1862 write_seqcount_begin(&tk_core.seq); 1863 timekeeping_forward_now(tk); 1864 timekeeping_suspended = 1; 1865 1866 /* 1867 * Since we've called forward_now, cycle_last stores the value 1868 * just read from the current clocksource. Save this to potentially 1869 * use in suspend timing. 1870 */ 1871 curr_clock = tk->tkr_mono.clock; 1872 cycle_now = tk->tkr_mono.cycle_last; 1873 clocksource_start_suspend_timing(curr_clock, cycle_now); 1874 1875 if (persistent_clock_exists) { 1876 /* 1877 * To avoid drift caused by repeated suspend/resumes, 1878 * which each can add ~1 second drift error, 1879 * try to compensate so the difference in system time 1880 * and persistent_clock time stays close to constant. 1881 */ 1882 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1883 delta_delta = timespec64_sub(delta, old_delta); 1884 if (abs(delta_delta.tv_sec) >= 2) { 1885 /* 1886 * if delta_delta is too large, assume time correction 1887 * has occurred and set old_delta to the current delta. 1888 */ 1889 old_delta = delta; 1890 } else { 1891 /* Otherwise try to adjust old_system to compensate */ 1892 timekeeping_suspend_time = 1893 timespec64_add(timekeeping_suspend_time, delta_delta); 1894 } 1895 } 1896 1897 timekeeping_update(tk, TK_MIRROR); 1898 halt_fast_timekeeper(tk); 1899 write_seqcount_end(&tk_core.seq); 1900 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1901 1902 tick_suspend(); 1903 clocksource_suspend(); 1904 clockevents_suspend(); 1905 1906 return 0; 1907 } 1908 1909 /* sysfs resume/suspend bits for timekeeping */ 1910 static struct syscore_ops timekeeping_syscore_ops = { 1911 .resume = timekeeping_resume, 1912 .suspend = timekeeping_suspend, 1913 }; 1914 1915 static int __init timekeeping_init_ops(void) 1916 { 1917 register_syscore_ops(&timekeeping_syscore_ops); 1918 return 0; 1919 } 1920 device_initcall(timekeeping_init_ops); 1921 1922 /* 1923 * Apply a multiplier adjustment to the timekeeper 1924 */ 1925 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1926 s64 offset, 1927 s32 mult_adj) 1928 { 1929 s64 interval = tk->cycle_interval; 1930 1931 if (mult_adj == 0) { 1932 return; 1933 } else if (mult_adj == -1) { 1934 interval = -interval; 1935 offset = -offset; 1936 } else if (mult_adj != 1) { 1937 interval *= mult_adj; 1938 offset *= mult_adj; 1939 } 1940 1941 /* 1942 * So the following can be confusing. 1943 * 1944 * To keep things simple, lets assume mult_adj == 1 for now. 1945 * 1946 * When mult_adj != 1, remember that the interval and offset values 1947 * have been appropriately scaled so the math is the same. 1948 * 1949 * The basic idea here is that we're increasing the multiplier 1950 * by one, this causes the xtime_interval to be incremented by 1951 * one cycle_interval. This is because: 1952 * xtime_interval = cycle_interval * mult 1953 * So if mult is being incremented by one: 1954 * xtime_interval = cycle_interval * (mult + 1) 1955 * Its the same as: 1956 * xtime_interval = (cycle_interval * mult) + cycle_interval 1957 * Which can be shortened to: 1958 * xtime_interval += cycle_interval 1959 * 1960 * So offset stores the non-accumulated cycles. Thus the current 1961 * time (in shifted nanoseconds) is: 1962 * now = (offset * adj) + xtime_nsec 1963 * Now, even though we're adjusting the clock frequency, we have 1964 * to keep time consistent. In other words, we can't jump back 1965 * in time, and we also want to avoid jumping forward in time. 1966 * 1967 * So given the same offset value, we need the time to be the same 1968 * both before and after the freq adjustment. 1969 * now = (offset * adj_1) + xtime_nsec_1 1970 * now = (offset * adj_2) + xtime_nsec_2 1971 * So: 1972 * (offset * adj_1) + xtime_nsec_1 = 1973 * (offset * adj_2) + xtime_nsec_2 1974 * And we know: 1975 * adj_2 = adj_1 + 1 1976 * So: 1977 * (offset * adj_1) + xtime_nsec_1 = 1978 * (offset * (adj_1+1)) + xtime_nsec_2 1979 * (offset * adj_1) + xtime_nsec_1 = 1980 * (offset * adj_1) + offset + xtime_nsec_2 1981 * Canceling the sides: 1982 * xtime_nsec_1 = offset + xtime_nsec_2 1983 * Which gives us: 1984 * xtime_nsec_2 = xtime_nsec_1 - offset 1985 * Which simplifies to: 1986 * xtime_nsec -= offset 1987 */ 1988 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1989 /* NTP adjustment caused clocksource mult overflow */ 1990 WARN_ON_ONCE(1); 1991 return; 1992 } 1993 1994 tk->tkr_mono.mult += mult_adj; 1995 tk->xtime_interval += interval; 1996 tk->tkr_mono.xtime_nsec -= offset; 1997 } 1998 1999 /* 2000 * Adjust the timekeeper's multiplier to the correct frequency 2001 * and also to reduce the accumulated error value. 2002 */ 2003 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2004 { 2005 u32 mult; 2006 2007 /* 2008 * Determine the multiplier from the current NTP tick length. 2009 * Avoid expensive division when the tick length doesn't change. 2010 */ 2011 if (likely(tk->ntp_tick == ntp_tick_length())) { 2012 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2013 } else { 2014 tk->ntp_tick = ntp_tick_length(); 2015 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2016 tk->xtime_remainder, tk->cycle_interval); 2017 } 2018 2019 /* 2020 * If the clock is behind the NTP time, increase the multiplier by 1 2021 * to catch up with it. If it's ahead and there was a remainder in the 2022 * tick division, the clock will slow down. Otherwise it will stay 2023 * ahead until the tick length changes to a non-divisible value. 2024 */ 2025 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2026 mult += tk->ntp_err_mult; 2027 2028 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2029 2030 if (unlikely(tk->tkr_mono.clock->maxadj && 2031 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2032 > tk->tkr_mono.clock->maxadj))) { 2033 printk_once(KERN_WARNING 2034 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2035 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2036 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2037 } 2038 2039 /* 2040 * It may be possible that when we entered this function, xtime_nsec 2041 * was very small. Further, if we're slightly speeding the clocksource 2042 * in the code above, its possible the required corrective factor to 2043 * xtime_nsec could cause it to underflow. 2044 * 2045 * Now, since we have already accumulated the second and the NTP 2046 * subsystem has been notified via second_overflow(), we need to skip 2047 * the next update. 2048 */ 2049 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2050 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2051 tk->tkr_mono.shift; 2052 tk->xtime_sec--; 2053 tk->skip_second_overflow = 1; 2054 } 2055 } 2056 2057 /* 2058 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2059 * 2060 * Helper function that accumulates the nsecs greater than a second 2061 * from the xtime_nsec field to the xtime_secs field. 2062 * It also calls into the NTP code to handle leapsecond processing. 2063 */ 2064 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2065 { 2066 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2067 unsigned int clock_set = 0; 2068 2069 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2070 int leap; 2071 2072 tk->tkr_mono.xtime_nsec -= nsecps; 2073 tk->xtime_sec++; 2074 2075 /* 2076 * Skip NTP update if this second was accumulated before, 2077 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2078 */ 2079 if (unlikely(tk->skip_second_overflow)) { 2080 tk->skip_second_overflow = 0; 2081 continue; 2082 } 2083 2084 /* Figure out if its a leap sec and apply if needed */ 2085 leap = second_overflow(tk->xtime_sec); 2086 if (unlikely(leap)) { 2087 struct timespec64 ts; 2088 2089 tk->xtime_sec += leap; 2090 2091 ts.tv_sec = leap; 2092 ts.tv_nsec = 0; 2093 tk_set_wall_to_mono(tk, 2094 timespec64_sub(tk->wall_to_monotonic, ts)); 2095 2096 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2097 2098 clock_set = TK_CLOCK_WAS_SET; 2099 } 2100 } 2101 return clock_set; 2102 } 2103 2104 /* 2105 * logarithmic_accumulation - shifted accumulation of cycles 2106 * 2107 * This functions accumulates a shifted interval of cycles into 2108 * a shifted interval nanoseconds. Allows for O(log) accumulation 2109 * loop. 2110 * 2111 * Returns the unconsumed cycles. 2112 */ 2113 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2114 u32 shift, unsigned int *clock_set) 2115 { 2116 u64 interval = tk->cycle_interval << shift; 2117 u64 snsec_per_sec; 2118 2119 /* If the offset is smaller than a shifted interval, do nothing */ 2120 if (offset < interval) 2121 return offset; 2122 2123 /* Accumulate one shifted interval */ 2124 offset -= interval; 2125 tk->tkr_mono.cycle_last += interval; 2126 tk->tkr_raw.cycle_last += interval; 2127 2128 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2129 *clock_set |= accumulate_nsecs_to_secs(tk); 2130 2131 /* Accumulate raw time */ 2132 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2133 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2134 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2135 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2136 tk->raw_sec++; 2137 } 2138 2139 /* Accumulate error between NTP and clock interval */ 2140 tk->ntp_error += tk->ntp_tick << shift; 2141 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2142 (tk->ntp_error_shift + shift); 2143 2144 return offset; 2145 } 2146 2147 /* 2148 * timekeeping_advance - Updates the timekeeper to the current time and 2149 * current NTP tick length 2150 */ 2151 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2152 { 2153 struct timekeeper *real_tk = &tk_core.timekeeper; 2154 struct timekeeper *tk = &shadow_timekeeper; 2155 u64 offset; 2156 int shift = 0, maxshift; 2157 unsigned int clock_set = 0; 2158 unsigned long flags; 2159 2160 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2161 2162 /* Make sure we're fully resumed: */ 2163 if (unlikely(timekeeping_suspended)) 2164 goto out; 2165 2166 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2167 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2168 2169 /* Check if there's really nothing to do */ 2170 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2171 goto out; 2172 2173 /* Do some additional sanity checking */ 2174 timekeeping_check_update(tk, offset); 2175 2176 /* 2177 * With NO_HZ we may have to accumulate many cycle_intervals 2178 * (think "ticks") worth of time at once. To do this efficiently, 2179 * we calculate the largest doubling multiple of cycle_intervals 2180 * that is smaller than the offset. We then accumulate that 2181 * chunk in one go, and then try to consume the next smaller 2182 * doubled multiple. 2183 */ 2184 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2185 shift = max(0, shift); 2186 /* Bound shift to one less than what overflows tick_length */ 2187 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2188 shift = min(shift, maxshift); 2189 while (offset >= tk->cycle_interval) { 2190 offset = logarithmic_accumulation(tk, offset, shift, 2191 &clock_set); 2192 if (offset < tk->cycle_interval<<shift) 2193 shift--; 2194 } 2195 2196 /* Adjust the multiplier to correct NTP error */ 2197 timekeeping_adjust(tk, offset); 2198 2199 /* 2200 * Finally, make sure that after the rounding 2201 * xtime_nsec isn't larger than NSEC_PER_SEC 2202 */ 2203 clock_set |= accumulate_nsecs_to_secs(tk); 2204 2205 write_seqcount_begin(&tk_core.seq); 2206 /* 2207 * Update the real timekeeper. 2208 * 2209 * We could avoid this memcpy by switching pointers, but that 2210 * requires changes to all other timekeeper usage sites as 2211 * well, i.e. move the timekeeper pointer getter into the 2212 * spinlocked/seqcount protected sections. And we trade this 2213 * memcpy under the tk_core.seq against one before we start 2214 * updating. 2215 */ 2216 timekeeping_update(tk, clock_set); 2217 memcpy(real_tk, tk, sizeof(*tk)); 2218 /* The memcpy must come last. Do not put anything here! */ 2219 write_seqcount_end(&tk_core.seq); 2220 out: 2221 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2222 2223 return !!clock_set; 2224 } 2225 2226 /** 2227 * update_wall_time - Uses the current clocksource to increment the wall time 2228 * 2229 */ 2230 void update_wall_time(void) 2231 { 2232 if (timekeeping_advance(TK_ADV_TICK)) 2233 clock_was_set_delayed(); 2234 } 2235 2236 /** 2237 * getboottime64 - Return the real time of system boot. 2238 * @ts: pointer to the timespec64 to be set 2239 * 2240 * Returns the wall-time of boot in a timespec64. 2241 * 2242 * This is based on the wall_to_monotonic offset and the total suspend 2243 * time. Calls to settimeofday will affect the value returned (which 2244 * basically means that however wrong your real time clock is at boot time, 2245 * you get the right time here). 2246 */ 2247 void getboottime64(struct timespec64 *ts) 2248 { 2249 struct timekeeper *tk = &tk_core.timekeeper; 2250 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2251 2252 *ts = ktime_to_timespec64(t); 2253 } 2254 EXPORT_SYMBOL_GPL(getboottime64); 2255 2256 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2257 { 2258 struct timekeeper *tk = &tk_core.timekeeper; 2259 unsigned int seq; 2260 2261 do { 2262 seq = read_seqcount_begin(&tk_core.seq); 2263 2264 *ts = tk_xtime(tk); 2265 } while (read_seqcount_retry(&tk_core.seq, seq)); 2266 } 2267 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2268 2269 void ktime_get_coarse_ts64(struct timespec64 *ts) 2270 { 2271 struct timekeeper *tk = &tk_core.timekeeper; 2272 struct timespec64 now, mono; 2273 unsigned int seq; 2274 2275 do { 2276 seq = read_seqcount_begin(&tk_core.seq); 2277 2278 now = tk_xtime(tk); 2279 mono = tk->wall_to_monotonic; 2280 } while (read_seqcount_retry(&tk_core.seq, seq)); 2281 2282 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2283 now.tv_nsec + mono.tv_nsec); 2284 } 2285 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2286 2287 /* 2288 * Must hold jiffies_lock 2289 */ 2290 void do_timer(unsigned long ticks) 2291 { 2292 jiffies_64 += ticks; 2293 calc_global_load(); 2294 } 2295 2296 /** 2297 * ktime_get_update_offsets_now - hrtimer helper 2298 * @cwsseq: pointer to check and store the clock was set sequence number 2299 * @offs_real: pointer to storage for monotonic -> realtime offset 2300 * @offs_boot: pointer to storage for monotonic -> boottime offset 2301 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2302 * 2303 * Returns current monotonic time and updates the offsets if the 2304 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2305 * different. 2306 * 2307 * Called from hrtimer_interrupt() or retrigger_next_event() 2308 */ 2309 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2310 ktime_t *offs_boot, ktime_t *offs_tai) 2311 { 2312 struct timekeeper *tk = &tk_core.timekeeper; 2313 unsigned int seq; 2314 ktime_t base; 2315 u64 nsecs; 2316 2317 do { 2318 seq = read_seqcount_begin(&tk_core.seq); 2319 2320 base = tk->tkr_mono.base; 2321 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2322 base = ktime_add_ns(base, nsecs); 2323 2324 if (*cwsseq != tk->clock_was_set_seq) { 2325 *cwsseq = tk->clock_was_set_seq; 2326 *offs_real = tk->offs_real; 2327 *offs_boot = tk->offs_boot; 2328 *offs_tai = tk->offs_tai; 2329 } 2330 2331 /* Handle leapsecond insertion adjustments */ 2332 if (unlikely(base >= tk->next_leap_ktime)) 2333 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2334 2335 } while (read_seqcount_retry(&tk_core.seq, seq)); 2336 2337 return base; 2338 } 2339 2340 /* 2341 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2342 */ 2343 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2344 { 2345 if (txc->modes & ADJ_ADJTIME) { 2346 /* singleshot must not be used with any other mode bits */ 2347 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2348 return -EINVAL; 2349 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2350 !capable(CAP_SYS_TIME)) 2351 return -EPERM; 2352 } else { 2353 /* In order to modify anything, you gotta be super-user! */ 2354 if (txc->modes && !capable(CAP_SYS_TIME)) 2355 return -EPERM; 2356 /* 2357 * if the quartz is off by more than 10% then 2358 * something is VERY wrong! 2359 */ 2360 if (txc->modes & ADJ_TICK && 2361 (txc->tick < 900000/USER_HZ || 2362 txc->tick > 1100000/USER_HZ)) 2363 return -EINVAL; 2364 } 2365 2366 if (txc->modes & ADJ_SETOFFSET) { 2367 /* In order to inject time, you gotta be super-user! */ 2368 if (!capable(CAP_SYS_TIME)) 2369 return -EPERM; 2370 2371 /* 2372 * Validate if a timespec/timeval used to inject a time 2373 * offset is valid. Offsets can be positive or negative, so 2374 * we don't check tv_sec. The value of the timeval/timespec 2375 * is the sum of its fields,but *NOTE*: 2376 * The field tv_usec/tv_nsec must always be non-negative and 2377 * we can't have more nanoseconds/microseconds than a second. 2378 */ 2379 if (txc->time.tv_usec < 0) 2380 return -EINVAL; 2381 2382 if (txc->modes & ADJ_NANO) { 2383 if (txc->time.tv_usec >= NSEC_PER_SEC) 2384 return -EINVAL; 2385 } else { 2386 if (txc->time.tv_usec >= USEC_PER_SEC) 2387 return -EINVAL; 2388 } 2389 } 2390 2391 /* 2392 * Check for potential multiplication overflows that can 2393 * only happen on 64-bit systems: 2394 */ 2395 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2396 if (LLONG_MIN / PPM_SCALE > txc->freq) 2397 return -EINVAL; 2398 if (LLONG_MAX / PPM_SCALE < txc->freq) 2399 return -EINVAL; 2400 } 2401 2402 return 0; 2403 } 2404 2405 /** 2406 * random_get_entropy_fallback - Returns the raw clock source value, 2407 * used by random.c for platforms with no valid random_get_entropy(). 2408 */ 2409 unsigned long random_get_entropy_fallback(void) 2410 { 2411 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2412 struct clocksource *clock = READ_ONCE(tkr->clock); 2413 2414 if (unlikely(timekeeping_suspended || !clock)) 2415 return 0; 2416 return clock->read(clock); 2417 } 2418 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2419 2420 /** 2421 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2422 */ 2423 int do_adjtimex(struct __kernel_timex *txc) 2424 { 2425 struct timekeeper *tk = &tk_core.timekeeper; 2426 struct audit_ntp_data ad; 2427 bool clock_set = false; 2428 struct timespec64 ts; 2429 unsigned long flags; 2430 s32 orig_tai, tai; 2431 int ret; 2432 2433 /* Validate the data before disabling interrupts */ 2434 ret = timekeeping_validate_timex(txc); 2435 if (ret) 2436 return ret; 2437 add_device_randomness(txc, sizeof(*txc)); 2438 2439 if (txc->modes & ADJ_SETOFFSET) { 2440 struct timespec64 delta; 2441 delta.tv_sec = txc->time.tv_sec; 2442 delta.tv_nsec = txc->time.tv_usec; 2443 if (!(txc->modes & ADJ_NANO)) 2444 delta.tv_nsec *= 1000; 2445 ret = timekeeping_inject_offset(&delta); 2446 if (ret) 2447 return ret; 2448 2449 audit_tk_injoffset(delta); 2450 } 2451 2452 audit_ntp_init(&ad); 2453 2454 ktime_get_real_ts64(&ts); 2455 add_device_randomness(&ts, sizeof(ts)); 2456 2457 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2458 write_seqcount_begin(&tk_core.seq); 2459 2460 orig_tai = tai = tk->tai_offset; 2461 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2462 2463 if (tai != orig_tai) { 2464 __timekeeping_set_tai_offset(tk, tai); 2465 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2466 clock_set = true; 2467 } 2468 tk_update_leap_state(tk); 2469 2470 write_seqcount_end(&tk_core.seq); 2471 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2472 2473 audit_ntp_log(&ad); 2474 2475 /* Update the multiplier immediately if frequency was set directly */ 2476 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2477 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2478 2479 if (clock_set) 2480 clock_was_set(CLOCK_REALTIME); 2481 2482 ntp_notify_cmos_timer(); 2483 2484 return ret; 2485 } 2486 2487 #ifdef CONFIG_NTP_PPS 2488 /** 2489 * hardpps() - Accessor function to NTP __hardpps function 2490 */ 2491 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2492 { 2493 unsigned long flags; 2494 2495 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2496 write_seqcount_begin(&tk_core.seq); 2497 2498 __hardpps(phase_ts, raw_ts); 2499 2500 write_seqcount_end(&tk_core.seq); 2501 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2502 } 2503 EXPORT_SYMBOL(hardpps); 2504 #endif /* CONFIG_NTP_PPS */ 2505