xref: /linux/kernel/time/timekeeping.c (revision 6b8a024d25ebf7535eb4a3e926309aa693cfe1bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27 
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
31 
32 #define TK_CLEAR_NTP		(1 << 0)
33 #define TK_MIRROR		(1 << 1)
34 #define TK_CLOCK_WAS_SET	(1 << 2)
35 
36 enum timekeeping_adv_mode {
37 	/* Update timekeeper when a tick has passed */
38 	TK_ADV_TICK,
39 
40 	/* Update timekeeper on a direct frequency change */
41 	TK_ADV_FREQ
42 };
43 
44 DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 
46 /*
47  * The most important data for readout fits into a single 64 byte
48  * cache line.
49  */
50 static struct {
51 	seqcount_raw_spinlock_t	seq;
52 	struct timekeeper	timekeeper;
53 } tk_core ____cacheline_aligned = {
54 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
55 };
56 
57 static struct timekeeper shadow_timekeeper;
58 
59 /* flag for if timekeeping is suspended */
60 int __read_mostly timekeeping_suspended;
61 
62 /**
63  * struct tk_fast - NMI safe timekeeper
64  * @seq:	Sequence counter for protecting updates. The lowest bit
65  *		is the index for the tk_read_base array
66  * @base:	tk_read_base array. Access is indexed by the lowest bit of
67  *		@seq.
68  *
69  * See @update_fast_timekeeper() below.
70  */
71 struct tk_fast {
72 	seqcount_latch_t	seq;
73 	struct tk_read_base	base[2];
74 };
75 
76 /* Suspend-time cycles value for halted fast timekeeper. */
77 static u64 cycles_at_suspend;
78 
79 static u64 dummy_clock_read(struct clocksource *cs)
80 {
81 	if (timekeeping_suspended)
82 		return cycles_at_suspend;
83 	return local_clock();
84 }
85 
86 static struct clocksource dummy_clock = {
87 	.read = dummy_clock_read,
88 };
89 
90 /*
91  * Boot time initialization which allows local_clock() to be utilized
92  * during early boot when clocksources are not available. local_clock()
93  * returns nanoseconds already so no conversion is required, hence mult=1
94  * and shift=0. When the first proper clocksource is installed then
95  * the fast time keepers are updated with the correct values.
96  */
97 #define FAST_TK_INIT						\
98 	{							\
99 		.clock		= &dummy_clock,			\
100 		.mask		= CLOCKSOURCE_MASK(64),		\
101 		.mult		= 1,				\
102 		.shift		= 0,				\
103 	}
104 
105 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
106 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
107 	.base[0] = FAST_TK_INIT,
108 	.base[1] = FAST_TK_INIT,
109 };
110 
111 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
112 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
113 	.base[0] = FAST_TK_INIT,
114 	.base[1] = FAST_TK_INIT,
115 };
116 
117 static inline void tk_normalize_xtime(struct timekeeper *tk)
118 {
119 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
120 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
121 		tk->xtime_sec++;
122 	}
123 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
124 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
125 		tk->raw_sec++;
126 	}
127 }
128 
129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
130 {
131 	struct timespec64 ts;
132 
133 	ts.tv_sec = tk->xtime_sec;
134 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
135 	return ts;
136 }
137 
138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
139 {
140 	tk->xtime_sec = ts->tv_sec;
141 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
142 }
143 
144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
145 {
146 	tk->xtime_sec += ts->tv_sec;
147 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
148 	tk_normalize_xtime(tk);
149 }
150 
151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
152 {
153 	struct timespec64 tmp;
154 
155 	/*
156 	 * Verify consistency of: offset_real = -wall_to_monotonic
157 	 * before modifying anything
158 	 */
159 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
160 					-tk->wall_to_monotonic.tv_nsec);
161 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
162 	tk->wall_to_monotonic = wtm;
163 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
164 	tk->offs_real = timespec64_to_ktime(tmp);
165 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
166 }
167 
168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
169 {
170 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
171 	/*
172 	 * Timespec representation for VDSO update to avoid 64bit division
173 	 * on every update.
174 	 */
175 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
176 }
177 
178 /*
179  * tk_clock_read - atomic clocksource read() helper
180  *
181  * This helper is necessary to use in the read paths because, while the
182  * seqcount ensures we don't return a bad value while structures are updated,
183  * it doesn't protect from potential crashes. There is the possibility that
184  * the tkr's clocksource may change between the read reference, and the
185  * clock reference passed to the read function.  This can cause crashes if
186  * the wrong clocksource is passed to the wrong read function.
187  * This isn't necessary to use when holding the timekeeper_lock or doing
188  * a read of the fast-timekeeper tkrs (which is protected by its own locking
189  * and update logic).
190  */
191 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
192 {
193 	struct clocksource *clock = READ_ONCE(tkr->clock);
194 
195 	return clock->read(clock);
196 }
197 
198 #ifdef CONFIG_DEBUG_TIMEKEEPING
199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
200 
201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
202 {
203 
204 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
205 	const char *name = tk->tkr_mono.clock->name;
206 
207 	if (offset > max_cycles) {
208 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
209 				offset, name, max_cycles);
210 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
211 	} else {
212 		if (offset > (max_cycles >> 1)) {
213 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
214 					offset, name, max_cycles >> 1);
215 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
216 		}
217 	}
218 
219 	if (tk->underflow_seen) {
220 		if (jiffies - tk->last_warning > WARNING_FREQ) {
221 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
222 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
223 			printk_deferred("         Your kernel is probably still fine.\n");
224 			tk->last_warning = jiffies;
225 		}
226 		tk->underflow_seen = 0;
227 	}
228 
229 	if (tk->overflow_seen) {
230 		if (jiffies - tk->last_warning > WARNING_FREQ) {
231 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
232 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
233 			printk_deferred("         Your kernel is probably still fine.\n");
234 			tk->last_warning = jiffies;
235 		}
236 		tk->overflow_seen = 0;
237 	}
238 }
239 
240 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles);
241 
242 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
243 {
244 	struct timekeeper *tk = &tk_core.timekeeper;
245 	u64 now, last, mask, max, delta;
246 	unsigned int seq;
247 
248 	/*
249 	 * Since we're called holding a seqcount, the data may shift
250 	 * under us while we're doing the calculation. This can cause
251 	 * false positives, since we'd note a problem but throw the
252 	 * results away. So nest another seqcount here to atomically
253 	 * grab the points we are checking with.
254 	 */
255 	do {
256 		seq = read_seqcount_begin(&tk_core.seq);
257 		now = tk_clock_read(tkr);
258 		last = tkr->cycle_last;
259 		mask = tkr->mask;
260 		max = tkr->clock->max_cycles;
261 	} while (read_seqcount_retry(&tk_core.seq, seq));
262 
263 	delta = clocksource_delta(now, last, mask);
264 
265 	/*
266 	 * Try to catch underflows by checking if we are seeing small
267 	 * mask-relative negative values.
268 	 */
269 	if (unlikely((~delta & mask) < (mask >> 3)))
270 		tk->underflow_seen = 1;
271 
272 	/* Check for multiplication overflows */
273 	if (unlikely(delta > max))
274 		tk->overflow_seen = 1;
275 
276 	/* timekeeping_cycles_to_ns() handles both under and overflow */
277 	return timekeeping_cycles_to_ns(tkr, now);
278 }
279 #else
280 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
281 {
282 }
283 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
284 {
285 	BUG();
286 }
287 #endif
288 
289 /**
290  * tk_setup_internals - Set up internals to use clocksource clock.
291  *
292  * @tk:		The target timekeeper to setup.
293  * @clock:		Pointer to clocksource.
294  *
295  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
296  * pair and interval request.
297  *
298  * Unless you're the timekeeping code, you should not be using this!
299  */
300 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
301 {
302 	u64 interval;
303 	u64 tmp, ntpinterval;
304 	struct clocksource *old_clock;
305 
306 	++tk->cs_was_changed_seq;
307 	old_clock = tk->tkr_mono.clock;
308 	tk->tkr_mono.clock = clock;
309 	tk->tkr_mono.mask = clock->mask;
310 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
311 
312 	tk->tkr_raw.clock = clock;
313 	tk->tkr_raw.mask = clock->mask;
314 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
315 
316 	/* Do the ns -> cycle conversion first, using original mult */
317 	tmp = NTP_INTERVAL_LENGTH;
318 	tmp <<= clock->shift;
319 	ntpinterval = tmp;
320 	tmp += clock->mult/2;
321 	do_div(tmp, clock->mult);
322 	if (tmp == 0)
323 		tmp = 1;
324 
325 	interval = (u64) tmp;
326 	tk->cycle_interval = interval;
327 
328 	/* Go back from cycles -> shifted ns */
329 	tk->xtime_interval = interval * clock->mult;
330 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
331 	tk->raw_interval = interval * clock->mult;
332 
333 	 /* if changing clocks, convert xtime_nsec shift units */
334 	if (old_clock) {
335 		int shift_change = clock->shift - old_clock->shift;
336 		if (shift_change < 0) {
337 			tk->tkr_mono.xtime_nsec >>= -shift_change;
338 			tk->tkr_raw.xtime_nsec >>= -shift_change;
339 		} else {
340 			tk->tkr_mono.xtime_nsec <<= shift_change;
341 			tk->tkr_raw.xtime_nsec <<= shift_change;
342 		}
343 	}
344 
345 	tk->tkr_mono.shift = clock->shift;
346 	tk->tkr_raw.shift = clock->shift;
347 
348 	tk->ntp_error = 0;
349 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
350 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
351 
352 	/*
353 	 * The timekeeper keeps its own mult values for the currently
354 	 * active clocksource. These value will be adjusted via NTP
355 	 * to counteract clock drifting.
356 	 */
357 	tk->tkr_mono.mult = clock->mult;
358 	tk->tkr_raw.mult = clock->mult;
359 	tk->ntp_err_mult = 0;
360 	tk->skip_second_overflow = 0;
361 }
362 
363 /* Timekeeper helper functions. */
364 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
365 {
366 	return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
367 }
368 
369 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
370 {
371 	/* Calculate the delta since the last update_wall_time() */
372 	u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
373 
374 	/*
375 	 * This detects both negative motion and the case where the delta
376 	 * overflows the multiplication with tkr->mult.
377 	 */
378 	if (unlikely(delta > tkr->clock->max_cycles)) {
379 		/*
380 		 * Handle clocksource inconsistency between CPUs to prevent
381 		 * time from going backwards by checking for the MSB of the
382 		 * mask being set in the delta.
383 		 */
384 		if (delta & ~(mask >> 1))
385 			return tkr->xtime_nsec >> tkr->shift;
386 
387 		return delta_to_ns_safe(tkr, delta);
388 	}
389 
390 	return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
391 }
392 
393 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr)
394 {
395 	return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
396 }
397 
398 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
399 {
400 	if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING))
401 		return timekeeping_debug_get_ns(tkr);
402 
403 	return __timekeeping_get_ns(tkr);
404 }
405 
406 /**
407  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
408  * @tkr: Timekeeping readout base from which we take the update
409  * @tkf: Pointer to NMI safe timekeeper
410  *
411  * We want to use this from any context including NMI and tracing /
412  * instrumenting the timekeeping code itself.
413  *
414  * Employ the latch technique; see @raw_write_seqcount_latch.
415  *
416  * So if a NMI hits the update of base[0] then it will use base[1]
417  * which is still consistent. In the worst case this can result is a
418  * slightly wrong timestamp (a few nanoseconds). See
419  * @ktime_get_mono_fast_ns.
420  */
421 static void update_fast_timekeeper(const struct tk_read_base *tkr,
422 				   struct tk_fast *tkf)
423 {
424 	struct tk_read_base *base = tkf->base;
425 
426 	/* Force readers off to base[1] */
427 	raw_write_seqcount_latch(&tkf->seq);
428 
429 	/* Update base[0] */
430 	memcpy(base, tkr, sizeof(*base));
431 
432 	/* Force readers back to base[0] */
433 	raw_write_seqcount_latch(&tkf->seq);
434 
435 	/* Update base[1] */
436 	memcpy(base + 1, base, sizeof(*base));
437 }
438 
439 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
440 {
441 	struct tk_read_base *tkr;
442 	unsigned int seq;
443 	u64 now;
444 
445 	do {
446 		seq = raw_read_seqcount_latch(&tkf->seq);
447 		tkr = tkf->base + (seq & 0x01);
448 		now = ktime_to_ns(tkr->base);
449 		now += __timekeeping_get_ns(tkr);
450 	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
451 
452 	return now;
453 }
454 
455 /**
456  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
457  *
458  * This timestamp is not guaranteed to be monotonic across an update.
459  * The timestamp is calculated by:
460  *
461  *	now = base_mono + clock_delta * slope
462  *
463  * So if the update lowers the slope, readers who are forced to the
464  * not yet updated second array are still using the old steeper slope.
465  *
466  * tmono
467  * ^
468  * |    o  n
469  * |   o n
470  * |  u
471  * | o
472  * |o
473  * |12345678---> reader order
474  *
475  * o = old slope
476  * u = update
477  * n = new slope
478  *
479  * So reader 6 will observe time going backwards versus reader 5.
480  *
481  * While other CPUs are likely to be able to observe that, the only way
482  * for a CPU local observation is when an NMI hits in the middle of
483  * the update. Timestamps taken from that NMI context might be ahead
484  * of the following timestamps. Callers need to be aware of that and
485  * deal with it.
486  */
487 u64 notrace ktime_get_mono_fast_ns(void)
488 {
489 	return __ktime_get_fast_ns(&tk_fast_mono);
490 }
491 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
492 
493 /**
494  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
495  *
496  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
497  * conversion factor is not affected by NTP/PTP correction.
498  */
499 u64 notrace ktime_get_raw_fast_ns(void)
500 {
501 	return __ktime_get_fast_ns(&tk_fast_raw);
502 }
503 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
504 
505 /**
506  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
507  *
508  * To keep it NMI safe since we're accessing from tracing, we're not using a
509  * separate timekeeper with updates to monotonic clock and boot offset
510  * protected with seqcounts. This has the following minor side effects:
511  *
512  * (1) Its possible that a timestamp be taken after the boot offset is updated
513  * but before the timekeeper is updated. If this happens, the new boot offset
514  * is added to the old timekeeping making the clock appear to update slightly
515  * earlier:
516  *    CPU 0                                        CPU 1
517  *    timekeeping_inject_sleeptime64()
518  *    __timekeeping_inject_sleeptime(tk, delta);
519  *                                                 timestamp();
520  *    timekeeping_update(tk, TK_CLEAR_NTP...);
521  *
522  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
523  * partially updated.  Since the tk->offs_boot update is a rare event, this
524  * should be a rare occurrence which postprocessing should be able to handle.
525  *
526  * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
527  * apply as well.
528  */
529 u64 notrace ktime_get_boot_fast_ns(void)
530 {
531 	struct timekeeper *tk = &tk_core.timekeeper;
532 
533 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
534 }
535 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
536 
537 /**
538  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
539  *
540  * The same limitations as described for ktime_get_boot_fast_ns() apply. The
541  * mono time and the TAI offset are not read atomically which may yield wrong
542  * readouts. However, an update of the TAI offset is an rare event e.g., caused
543  * by settime or adjtimex with an offset. The user of this function has to deal
544  * with the possibility of wrong timestamps in post processing.
545  */
546 u64 notrace ktime_get_tai_fast_ns(void)
547 {
548 	struct timekeeper *tk = &tk_core.timekeeper;
549 
550 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
551 }
552 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
553 
554 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
555 {
556 	struct tk_read_base *tkr;
557 	u64 basem, baser, delta;
558 	unsigned int seq;
559 
560 	do {
561 		seq = raw_read_seqcount_latch(&tkf->seq);
562 		tkr = tkf->base + (seq & 0x01);
563 		basem = ktime_to_ns(tkr->base);
564 		baser = ktime_to_ns(tkr->base_real);
565 		delta = __timekeeping_get_ns(tkr);
566 	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
567 
568 	if (mono)
569 		*mono = basem + delta;
570 	return baser + delta;
571 }
572 
573 /**
574  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
575  *
576  * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
577  */
578 u64 ktime_get_real_fast_ns(void)
579 {
580 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
581 }
582 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
583 
584 /**
585  * ktime_get_fast_timestamps: - NMI safe timestamps
586  * @snapshot:	Pointer to timestamp storage
587  *
588  * Stores clock monotonic, boottime and realtime timestamps.
589  *
590  * Boot time is a racy access on 32bit systems if the sleep time injection
591  * happens late during resume and not in timekeeping_resume(). That could
592  * be avoided by expanding struct tk_read_base with boot offset for 32bit
593  * and adding more overhead to the update. As this is a hard to observe
594  * once per resume event which can be filtered with reasonable effort using
595  * the accurate mono/real timestamps, it's probably not worth the trouble.
596  *
597  * Aside of that it might be possible on 32 and 64 bit to observe the
598  * following when the sleep time injection happens late:
599  *
600  * CPU 0				CPU 1
601  * timekeeping_resume()
602  * ktime_get_fast_timestamps()
603  *	mono, real = __ktime_get_real_fast()
604  *					inject_sleep_time()
605  *					   update boot offset
606  *	boot = mono + bootoffset;
607  *
608  * That means that boot time already has the sleep time adjustment, but
609  * real time does not. On the next readout both are in sync again.
610  *
611  * Preventing this for 64bit is not really feasible without destroying the
612  * careful cache layout of the timekeeper because the sequence count and
613  * struct tk_read_base would then need two cache lines instead of one.
614  *
615  * Access to the time keeper clock source is disabled across the innermost
616  * steps of suspend/resume. The accessors still work, but the timestamps
617  * are frozen until time keeping is resumed which happens very early.
618  *
619  * For regular suspend/resume there is no observable difference vs. sched
620  * clock, but it might affect some of the nasty low level debug printks.
621  *
622  * OTOH, access to sched clock is not guaranteed across suspend/resume on
623  * all systems either so it depends on the hardware in use.
624  *
625  * If that turns out to be a real problem then this could be mitigated by
626  * using sched clock in a similar way as during early boot. But it's not as
627  * trivial as on early boot because it needs some careful protection
628  * against the clock monotonic timestamp jumping backwards on resume.
629  */
630 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
631 {
632 	struct timekeeper *tk = &tk_core.timekeeper;
633 
634 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
635 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
636 }
637 
638 /**
639  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
640  * @tk: Timekeeper to snapshot.
641  *
642  * It generally is unsafe to access the clocksource after timekeeping has been
643  * suspended, so take a snapshot of the readout base of @tk and use it as the
644  * fast timekeeper's readout base while suspended.  It will return the same
645  * number of cycles every time until timekeeping is resumed at which time the
646  * proper readout base for the fast timekeeper will be restored automatically.
647  */
648 static void halt_fast_timekeeper(const struct timekeeper *tk)
649 {
650 	static struct tk_read_base tkr_dummy;
651 	const struct tk_read_base *tkr = &tk->tkr_mono;
652 
653 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
654 	cycles_at_suspend = tk_clock_read(tkr);
655 	tkr_dummy.clock = &dummy_clock;
656 	tkr_dummy.base_real = tkr->base + tk->offs_real;
657 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
658 
659 	tkr = &tk->tkr_raw;
660 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
661 	tkr_dummy.clock = &dummy_clock;
662 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
663 }
664 
665 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
666 
667 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
668 {
669 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
670 }
671 
672 /**
673  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
674  * @nb: Pointer to the notifier block to register
675  */
676 int pvclock_gtod_register_notifier(struct notifier_block *nb)
677 {
678 	struct timekeeper *tk = &tk_core.timekeeper;
679 	unsigned long flags;
680 	int ret;
681 
682 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
683 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
684 	update_pvclock_gtod(tk, true);
685 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
686 
687 	return ret;
688 }
689 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
690 
691 /**
692  * pvclock_gtod_unregister_notifier - unregister a pvclock
693  * timedata update listener
694  * @nb: Pointer to the notifier block to unregister
695  */
696 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
697 {
698 	unsigned long flags;
699 	int ret;
700 
701 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
702 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
703 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
704 
705 	return ret;
706 }
707 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
708 
709 /*
710  * tk_update_leap_state - helper to update the next_leap_ktime
711  */
712 static inline void tk_update_leap_state(struct timekeeper *tk)
713 {
714 	tk->next_leap_ktime = ntp_get_next_leap();
715 	if (tk->next_leap_ktime != KTIME_MAX)
716 		/* Convert to monotonic time */
717 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
718 }
719 
720 /*
721  * Update the ktime_t based scalar nsec members of the timekeeper
722  */
723 static inline void tk_update_ktime_data(struct timekeeper *tk)
724 {
725 	u64 seconds;
726 	u32 nsec;
727 
728 	/*
729 	 * The xtime based monotonic readout is:
730 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
731 	 * The ktime based monotonic readout is:
732 	 *	nsec = base_mono + now();
733 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
734 	 */
735 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
736 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
737 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
738 
739 	/*
740 	 * The sum of the nanoseconds portions of xtime and
741 	 * wall_to_monotonic can be greater/equal one second. Take
742 	 * this into account before updating tk->ktime_sec.
743 	 */
744 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
745 	if (nsec >= NSEC_PER_SEC)
746 		seconds++;
747 	tk->ktime_sec = seconds;
748 
749 	/* Update the monotonic raw base */
750 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
751 }
752 
753 /* must hold timekeeper_lock */
754 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
755 {
756 	if (action & TK_CLEAR_NTP) {
757 		tk->ntp_error = 0;
758 		ntp_clear();
759 	}
760 
761 	tk_update_leap_state(tk);
762 	tk_update_ktime_data(tk);
763 
764 	update_vsyscall(tk);
765 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
766 
767 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
768 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
769 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
770 
771 	if (action & TK_CLOCK_WAS_SET)
772 		tk->clock_was_set_seq++;
773 	/*
774 	 * The mirroring of the data to the shadow-timekeeper needs
775 	 * to happen last here to ensure we don't over-write the
776 	 * timekeeper structure on the next update with stale data
777 	 */
778 	if (action & TK_MIRROR)
779 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
780 		       sizeof(tk_core.timekeeper));
781 }
782 
783 /**
784  * timekeeping_forward_now - update clock to the current time
785  * @tk:		Pointer to the timekeeper to update
786  *
787  * Forward the current clock to update its state since the last call to
788  * update_wall_time(). This is useful before significant clock changes,
789  * as it avoids having to deal with this time offset explicitly.
790  */
791 static void timekeeping_forward_now(struct timekeeper *tk)
792 {
793 	u64 cycle_now, delta;
794 
795 	cycle_now = tk_clock_read(&tk->tkr_mono);
796 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
797 	tk->tkr_mono.cycle_last = cycle_now;
798 	tk->tkr_raw.cycle_last  = cycle_now;
799 
800 	while (delta > 0) {
801 		u64 max = tk->tkr_mono.clock->max_cycles;
802 		u64 incr = delta < max ? delta : max;
803 
804 		tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
805 		tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
806 		tk_normalize_xtime(tk);
807 		delta -= incr;
808 	}
809 }
810 
811 /**
812  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
813  * @ts:		pointer to the timespec to be set
814  *
815  * Returns the time of day in a timespec64 (WARN if suspended).
816  */
817 void ktime_get_real_ts64(struct timespec64 *ts)
818 {
819 	struct timekeeper *tk = &tk_core.timekeeper;
820 	unsigned int seq;
821 	u64 nsecs;
822 
823 	WARN_ON(timekeeping_suspended);
824 
825 	do {
826 		seq = read_seqcount_begin(&tk_core.seq);
827 
828 		ts->tv_sec = tk->xtime_sec;
829 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
830 
831 	} while (read_seqcount_retry(&tk_core.seq, seq));
832 
833 	ts->tv_nsec = 0;
834 	timespec64_add_ns(ts, nsecs);
835 }
836 EXPORT_SYMBOL(ktime_get_real_ts64);
837 
838 ktime_t ktime_get(void)
839 {
840 	struct timekeeper *tk = &tk_core.timekeeper;
841 	unsigned int seq;
842 	ktime_t base;
843 	u64 nsecs;
844 
845 	WARN_ON(timekeeping_suspended);
846 
847 	do {
848 		seq = read_seqcount_begin(&tk_core.seq);
849 		base = tk->tkr_mono.base;
850 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
851 
852 	} while (read_seqcount_retry(&tk_core.seq, seq));
853 
854 	return ktime_add_ns(base, nsecs);
855 }
856 EXPORT_SYMBOL_GPL(ktime_get);
857 
858 u32 ktime_get_resolution_ns(void)
859 {
860 	struct timekeeper *tk = &tk_core.timekeeper;
861 	unsigned int seq;
862 	u32 nsecs;
863 
864 	WARN_ON(timekeeping_suspended);
865 
866 	do {
867 		seq = read_seqcount_begin(&tk_core.seq);
868 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
869 	} while (read_seqcount_retry(&tk_core.seq, seq));
870 
871 	return nsecs;
872 }
873 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
874 
875 static ktime_t *offsets[TK_OFFS_MAX] = {
876 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
877 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
878 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
879 };
880 
881 ktime_t ktime_get_with_offset(enum tk_offsets offs)
882 {
883 	struct timekeeper *tk = &tk_core.timekeeper;
884 	unsigned int seq;
885 	ktime_t base, *offset = offsets[offs];
886 	u64 nsecs;
887 
888 	WARN_ON(timekeeping_suspended);
889 
890 	do {
891 		seq = read_seqcount_begin(&tk_core.seq);
892 		base = ktime_add(tk->tkr_mono.base, *offset);
893 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
894 
895 	} while (read_seqcount_retry(&tk_core.seq, seq));
896 
897 	return ktime_add_ns(base, nsecs);
898 
899 }
900 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
901 
902 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
903 {
904 	struct timekeeper *tk = &tk_core.timekeeper;
905 	unsigned int seq;
906 	ktime_t base, *offset = offsets[offs];
907 	u64 nsecs;
908 
909 	WARN_ON(timekeeping_suspended);
910 
911 	do {
912 		seq = read_seqcount_begin(&tk_core.seq);
913 		base = ktime_add(tk->tkr_mono.base, *offset);
914 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
915 
916 	} while (read_seqcount_retry(&tk_core.seq, seq));
917 
918 	return ktime_add_ns(base, nsecs);
919 }
920 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
921 
922 /**
923  * ktime_mono_to_any() - convert monotonic time to any other time
924  * @tmono:	time to convert.
925  * @offs:	which offset to use
926  */
927 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
928 {
929 	ktime_t *offset = offsets[offs];
930 	unsigned int seq;
931 	ktime_t tconv;
932 
933 	do {
934 		seq = read_seqcount_begin(&tk_core.seq);
935 		tconv = ktime_add(tmono, *offset);
936 	} while (read_seqcount_retry(&tk_core.seq, seq));
937 
938 	return tconv;
939 }
940 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
941 
942 /**
943  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
944  */
945 ktime_t ktime_get_raw(void)
946 {
947 	struct timekeeper *tk = &tk_core.timekeeper;
948 	unsigned int seq;
949 	ktime_t base;
950 	u64 nsecs;
951 
952 	do {
953 		seq = read_seqcount_begin(&tk_core.seq);
954 		base = tk->tkr_raw.base;
955 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
956 
957 	} while (read_seqcount_retry(&tk_core.seq, seq));
958 
959 	return ktime_add_ns(base, nsecs);
960 }
961 EXPORT_SYMBOL_GPL(ktime_get_raw);
962 
963 /**
964  * ktime_get_ts64 - get the monotonic clock in timespec64 format
965  * @ts:		pointer to timespec variable
966  *
967  * The function calculates the monotonic clock from the realtime
968  * clock and the wall_to_monotonic offset and stores the result
969  * in normalized timespec64 format in the variable pointed to by @ts.
970  */
971 void ktime_get_ts64(struct timespec64 *ts)
972 {
973 	struct timekeeper *tk = &tk_core.timekeeper;
974 	struct timespec64 tomono;
975 	unsigned int seq;
976 	u64 nsec;
977 
978 	WARN_ON(timekeeping_suspended);
979 
980 	do {
981 		seq = read_seqcount_begin(&tk_core.seq);
982 		ts->tv_sec = tk->xtime_sec;
983 		nsec = timekeeping_get_ns(&tk->tkr_mono);
984 		tomono = tk->wall_to_monotonic;
985 
986 	} while (read_seqcount_retry(&tk_core.seq, seq));
987 
988 	ts->tv_sec += tomono.tv_sec;
989 	ts->tv_nsec = 0;
990 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
991 }
992 EXPORT_SYMBOL_GPL(ktime_get_ts64);
993 
994 /**
995  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
996  *
997  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
998  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
999  * works on both 32 and 64 bit systems. On 32 bit systems the readout
1000  * covers ~136 years of uptime which should be enough to prevent
1001  * premature wrap arounds.
1002  */
1003 time64_t ktime_get_seconds(void)
1004 {
1005 	struct timekeeper *tk = &tk_core.timekeeper;
1006 
1007 	WARN_ON(timekeeping_suspended);
1008 	return tk->ktime_sec;
1009 }
1010 EXPORT_SYMBOL_GPL(ktime_get_seconds);
1011 
1012 /**
1013  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1014  *
1015  * Returns the wall clock seconds since 1970.
1016  *
1017  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1018  * 32bit systems the access must be protected with the sequence
1019  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1020  * value.
1021  */
1022 time64_t ktime_get_real_seconds(void)
1023 {
1024 	struct timekeeper *tk = &tk_core.timekeeper;
1025 	time64_t seconds;
1026 	unsigned int seq;
1027 
1028 	if (IS_ENABLED(CONFIG_64BIT))
1029 		return tk->xtime_sec;
1030 
1031 	do {
1032 		seq = read_seqcount_begin(&tk_core.seq);
1033 		seconds = tk->xtime_sec;
1034 
1035 	} while (read_seqcount_retry(&tk_core.seq, seq));
1036 
1037 	return seconds;
1038 }
1039 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1040 
1041 /**
1042  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1043  * but without the sequence counter protect. This internal function
1044  * is called just when timekeeping lock is already held.
1045  */
1046 noinstr time64_t __ktime_get_real_seconds(void)
1047 {
1048 	struct timekeeper *tk = &tk_core.timekeeper;
1049 
1050 	return tk->xtime_sec;
1051 }
1052 
1053 /**
1054  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1055  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1056  */
1057 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1058 {
1059 	struct timekeeper *tk = &tk_core.timekeeper;
1060 	unsigned int seq;
1061 	ktime_t base_raw;
1062 	ktime_t base_real;
1063 	u64 nsec_raw;
1064 	u64 nsec_real;
1065 	u64 now;
1066 
1067 	WARN_ON_ONCE(timekeeping_suspended);
1068 
1069 	do {
1070 		seq = read_seqcount_begin(&tk_core.seq);
1071 		now = tk_clock_read(&tk->tkr_mono);
1072 		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1073 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1074 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1075 		base_real = ktime_add(tk->tkr_mono.base,
1076 				      tk_core.timekeeper.offs_real);
1077 		base_raw = tk->tkr_raw.base;
1078 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1079 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1080 	} while (read_seqcount_retry(&tk_core.seq, seq));
1081 
1082 	systime_snapshot->cycles = now;
1083 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1084 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1085 }
1086 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1087 
1088 /* Scale base by mult/div checking for overflow */
1089 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1090 {
1091 	u64 tmp, rem;
1092 
1093 	tmp = div64_u64_rem(*base, div, &rem);
1094 
1095 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1096 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1097 		return -EOVERFLOW;
1098 	tmp *= mult;
1099 
1100 	rem = div64_u64(rem * mult, div);
1101 	*base = tmp + rem;
1102 	return 0;
1103 }
1104 
1105 /**
1106  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1107  * @history:			Snapshot representing start of history
1108  * @partial_history_cycles:	Cycle offset into history (fractional part)
1109  * @total_history_cycles:	Total history length in cycles
1110  * @discontinuity:		True indicates clock was set on history period
1111  * @ts:				Cross timestamp that should be adjusted using
1112  *	partial/total ratio
1113  *
1114  * Helper function used by get_device_system_crosststamp() to correct the
1115  * crosstimestamp corresponding to the start of the current interval to the
1116  * system counter value (timestamp point) provided by the driver. The
1117  * total_history_* quantities are the total history starting at the provided
1118  * reference point and ending at the start of the current interval. The cycle
1119  * count between the driver timestamp point and the start of the current
1120  * interval is partial_history_cycles.
1121  */
1122 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1123 					 u64 partial_history_cycles,
1124 					 u64 total_history_cycles,
1125 					 bool discontinuity,
1126 					 struct system_device_crosststamp *ts)
1127 {
1128 	struct timekeeper *tk = &tk_core.timekeeper;
1129 	u64 corr_raw, corr_real;
1130 	bool interp_forward;
1131 	int ret;
1132 
1133 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1134 		return 0;
1135 
1136 	/* Interpolate shortest distance from beginning or end of history */
1137 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1138 	partial_history_cycles = interp_forward ?
1139 		total_history_cycles - partial_history_cycles :
1140 		partial_history_cycles;
1141 
1142 	/*
1143 	 * Scale the monotonic raw time delta by:
1144 	 *	partial_history_cycles / total_history_cycles
1145 	 */
1146 	corr_raw = (u64)ktime_to_ns(
1147 		ktime_sub(ts->sys_monoraw, history->raw));
1148 	ret = scale64_check_overflow(partial_history_cycles,
1149 				     total_history_cycles, &corr_raw);
1150 	if (ret)
1151 		return ret;
1152 
1153 	/*
1154 	 * If there is a discontinuity in the history, scale monotonic raw
1155 	 *	correction by:
1156 	 *	mult(real)/mult(raw) yielding the realtime correction
1157 	 * Otherwise, calculate the realtime correction similar to monotonic
1158 	 *	raw calculation
1159 	 */
1160 	if (discontinuity) {
1161 		corr_real = mul_u64_u32_div
1162 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1163 	} else {
1164 		corr_real = (u64)ktime_to_ns(
1165 			ktime_sub(ts->sys_realtime, history->real));
1166 		ret = scale64_check_overflow(partial_history_cycles,
1167 					     total_history_cycles, &corr_real);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	/* Fixup monotonic raw and real time time values */
1173 	if (interp_forward) {
1174 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1175 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1176 	} else {
1177 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1178 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /*
1185  * timestamp_in_interval - true if ts is chronologically in [start, end]
1186  *
1187  * True if ts occurs chronologically at or after start, and before or at end.
1188  */
1189 static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1190 {
1191 	if (ts >= start && ts <= end)
1192 		return true;
1193 	if (start > end && (ts >= start || ts <= end))
1194 		return true;
1195 	return false;
1196 }
1197 
1198 static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1199 {
1200 	u64 rem, res;
1201 
1202 	if (!numerator || !denominator)
1203 		return false;
1204 
1205 	res = div64_u64_rem(*val, denominator, &rem) * numerator;
1206 	*val = res + div_u64(rem * numerator, denominator);
1207 	return true;
1208 }
1209 
1210 static bool convert_base_to_cs(struct system_counterval_t *scv)
1211 {
1212 	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1213 	struct clocksource_base *base;
1214 	u32 num, den;
1215 
1216 	/* The timestamp was taken from the time keeper clock source */
1217 	if (cs->id == scv->cs_id)
1218 		return true;
1219 
1220 	/*
1221 	 * Check whether cs_id matches the base clock. Prevent the compiler from
1222 	 * re-evaluating @base as the clocksource might change concurrently.
1223 	 */
1224 	base = READ_ONCE(cs->base);
1225 	if (!base || base->id != scv->cs_id)
1226 		return false;
1227 
1228 	num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1229 	den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1230 
1231 	if (!convert_clock(&scv->cycles, num, den))
1232 		return false;
1233 
1234 	scv->cycles += base->offset;
1235 	return true;
1236 }
1237 
1238 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1239 {
1240 	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1241 	struct clocksource_base *base;
1242 
1243 	/*
1244 	 * Check whether base_id matches the base clock. Prevent the compiler from
1245 	 * re-evaluating @base as the clocksource might change concurrently.
1246 	 */
1247 	base = READ_ONCE(cs->base);
1248 	if (!base || base->id != base_id)
1249 		return false;
1250 
1251 	*cycles -= base->offset;
1252 	if (!convert_clock(cycles, base->denominator, base->numerator))
1253 		return false;
1254 	return true;
1255 }
1256 
1257 static bool convert_ns_to_cs(u64 *delta)
1258 {
1259 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1260 
1261 	if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1262 		return false;
1263 
1264 	*delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1265 	return true;
1266 }
1267 
1268 /**
1269  * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1270  * @treal:	CLOCK_REALTIME timestamp to convert
1271  * @base_id:	base clocksource id
1272  * @cycles:	pointer to store the converted base clock timestamp
1273  *
1274  * Converts a supplied, future realtime clock value to the corresponding base clock value.
1275  *
1276  * Return:  true if the conversion is successful, false otherwise.
1277  */
1278 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1279 {
1280 	struct timekeeper *tk = &tk_core.timekeeper;
1281 	unsigned int seq;
1282 	u64 delta;
1283 
1284 	do {
1285 		seq = read_seqcount_begin(&tk_core.seq);
1286 		if ((u64)treal < tk->tkr_mono.base_real)
1287 			return false;
1288 		delta = (u64)treal - tk->tkr_mono.base_real;
1289 		if (!convert_ns_to_cs(&delta))
1290 			return false;
1291 		*cycles = tk->tkr_mono.cycle_last + delta;
1292 		if (!convert_cs_to_base(cycles, base_id))
1293 			return false;
1294 	} while (read_seqcount_retry(&tk_core.seq, seq));
1295 
1296 	return true;
1297 }
1298 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1299 
1300 /**
1301  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1302  * @get_time_fn:	Callback to get simultaneous device time and
1303  *	system counter from the device driver
1304  * @ctx:		Context passed to get_time_fn()
1305  * @history_begin:	Historical reference point used to interpolate system
1306  *	time when counter provided by the driver is before the current interval
1307  * @xtstamp:		Receives simultaneously captured system and device time
1308  *
1309  * Reads a timestamp from a device and correlates it to system time
1310  */
1311 int get_device_system_crosststamp(int (*get_time_fn)
1312 				  (ktime_t *device_time,
1313 				   struct system_counterval_t *sys_counterval,
1314 				   void *ctx),
1315 				  void *ctx,
1316 				  struct system_time_snapshot *history_begin,
1317 				  struct system_device_crosststamp *xtstamp)
1318 {
1319 	struct system_counterval_t system_counterval;
1320 	struct timekeeper *tk = &tk_core.timekeeper;
1321 	u64 cycles, now, interval_start;
1322 	unsigned int clock_was_set_seq = 0;
1323 	ktime_t base_real, base_raw;
1324 	u64 nsec_real, nsec_raw;
1325 	u8 cs_was_changed_seq;
1326 	unsigned int seq;
1327 	bool do_interp;
1328 	int ret;
1329 
1330 	do {
1331 		seq = read_seqcount_begin(&tk_core.seq);
1332 		/*
1333 		 * Try to synchronously capture device time and a system
1334 		 * counter value calling back into the device driver
1335 		 */
1336 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1337 		if (ret)
1338 			return ret;
1339 
1340 		/*
1341 		 * Verify that the clocksource ID associated with the captured
1342 		 * system counter value is the same as for the currently
1343 		 * installed timekeeper clocksource
1344 		 */
1345 		if (system_counterval.cs_id == CSID_GENERIC ||
1346 		    !convert_base_to_cs(&system_counterval))
1347 			return -ENODEV;
1348 		cycles = system_counterval.cycles;
1349 
1350 		/*
1351 		 * Check whether the system counter value provided by the
1352 		 * device driver is on the current timekeeping interval.
1353 		 */
1354 		now = tk_clock_read(&tk->tkr_mono);
1355 		interval_start = tk->tkr_mono.cycle_last;
1356 		if (!timestamp_in_interval(interval_start, now, cycles)) {
1357 			clock_was_set_seq = tk->clock_was_set_seq;
1358 			cs_was_changed_seq = tk->cs_was_changed_seq;
1359 			cycles = interval_start;
1360 			do_interp = true;
1361 		} else {
1362 			do_interp = false;
1363 		}
1364 
1365 		base_real = ktime_add(tk->tkr_mono.base,
1366 				      tk_core.timekeeper.offs_real);
1367 		base_raw = tk->tkr_raw.base;
1368 
1369 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1370 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1371 	} while (read_seqcount_retry(&tk_core.seq, seq));
1372 
1373 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1374 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1375 
1376 	/*
1377 	 * Interpolate if necessary, adjusting back from the start of the
1378 	 * current interval
1379 	 */
1380 	if (do_interp) {
1381 		u64 partial_history_cycles, total_history_cycles;
1382 		bool discontinuity;
1383 
1384 		/*
1385 		 * Check that the counter value is not before the provided
1386 		 * history reference and that the history doesn't cross a
1387 		 * clocksource change
1388 		 */
1389 		if (!history_begin ||
1390 		    !timestamp_in_interval(history_begin->cycles,
1391 					   cycles, system_counterval.cycles) ||
1392 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1393 			return -EINVAL;
1394 		partial_history_cycles = cycles - system_counterval.cycles;
1395 		total_history_cycles = cycles - history_begin->cycles;
1396 		discontinuity =
1397 			history_begin->clock_was_set_seq != clock_was_set_seq;
1398 
1399 		ret = adjust_historical_crosststamp(history_begin,
1400 						    partial_history_cycles,
1401 						    total_history_cycles,
1402 						    discontinuity, xtstamp);
1403 		if (ret)
1404 			return ret;
1405 	}
1406 
1407 	return 0;
1408 }
1409 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1410 
1411 /**
1412  * timekeeping_clocksource_has_base - Check whether the current clocksource
1413  *				      is based on given a base clock
1414  * @id:		base clocksource ID
1415  *
1416  * Note:	The return value is a snapshot which can become invalid right
1417  *		after the function returns.
1418  *
1419  * Return:	true if the timekeeper clocksource has a base clock with @id,
1420  *		false otherwise
1421  */
1422 bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1423 {
1424 	/*
1425 	 * This is a snapshot, so no point in using the sequence
1426 	 * count. Just prevent the compiler from re-evaluating @base as the
1427 	 * clocksource might change concurrently.
1428 	 */
1429 	struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1430 
1431 	return base ? base->id == id : false;
1432 }
1433 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1434 
1435 /**
1436  * do_settimeofday64 - Sets the time of day.
1437  * @ts:     pointer to the timespec64 variable containing the new time
1438  *
1439  * Sets the time of day to the new time and update NTP and notify hrtimers
1440  */
1441 int do_settimeofday64(const struct timespec64 *ts)
1442 {
1443 	struct timekeeper *tk = &tk_core.timekeeper;
1444 	struct timespec64 ts_delta, xt;
1445 	unsigned long flags;
1446 	int ret = 0;
1447 
1448 	if (!timespec64_valid_settod(ts))
1449 		return -EINVAL;
1450 
1451 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1452 	write_seqcount_begin(&tk_core.seq);
1453 
1454 	timekeeping_forward_now(tk);
1455 
1456 	xt = tk_xtime(tk);
1457 	ts_delta = timespec64_sub(*ts, xt);
1458 
1459 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1460 		ret = -EINVAL;
1461 		goto out;
1462 	}
1463 
1464 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1465 
1466 	tk_set_xtime(tk, ts);
1467 out:
1468 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1469 
1470 	write_seqcount_end(&tk_core.seq);
1471 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1472 
1473 	/* Signal hrtimers about time change */
1474 	clock_was_set(CLOCK_SET_WALL);
1475 
1476 	if (!ret) {
1477 		audit_tk_injoffset(ts_delta);
1478 		add_device_randomness(ts, sizeof(*ts));
1479 	}
1480 
1481 	return ret;
1482 }
1483 EXPORT_SYMBOL(do_settimeofday64);
1484 
1485 /**
1486  * timekeeping_inject_offset - Adds or subtracts from the current time.
1487  * @ts:		Pointer to the timespec variable containing the offset
1488  *
1489  * Adds or subtracts an offset value from the current time.
1490  */
1491 static int timekeeping_inject_offset(const struct timespec64 *ts)
1492 {
1493 	struct timekeeper *tk = &tk_core.timekeeper;
1494 	unsigned long flags;
1495 	struct timespec64 tmp;
1496 	int ret = 0;
1497 
1498 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1499 		return -EINVAL;
1500 
1501 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1502 	write_seqcount_begin(&tk_core.seq);
1503 
1504 	timekeeping_forward_now(tk);
1505 
1506 	/* Make sure the proposed value is valid */
1507 	tmp = timespec64_add(tk_xtime(tk), *ts);
1508 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1509 	    !timespec64_valid_settod(&tmp)) {
1510 		ret = -EINVAL;
1511 		goto error;
1512 	}
1513 
1514 	tk_xtime_add(tk, ts);
1515 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1516 
1517 error: /* even if we error out, we forwarded the time, so call update */
1518 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1519 
1520 	write_seqcount_end(&tk_core.seq);
1521 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1522 
1523 	/* Signal hrtimers about time change */
1524 	clock_was_set(CLOCK_SET_WALL);
1525 
1526 	return ret;
1527 }
1528 
1529 /*
1530  * Indicates if there is an offset between the system clock and the hardware
1531  * clock/persistent clock/rtc.
1532  */
1533 int persistent_clock_is_local;
1534 
1535 /*
1536  * Adjust the time obtained from the CMOS to be UTC time instead of
1537  * local time.
1538  *
1539  * This is ugly, but preferable to the alternatives.  Otherwise we
1540  * would either need to write a program to do it in /etc/rc (and risk
1541  * confusion if the program gets run more than once; it would also be
1542  * hard to make the program warp the clock precisely n hours)  or
1543  * compile in the timezone information into the kernel.  Bad, bad....
1544  *
1545  *						- TYT, 1992-01-01
1546  *
1547  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1548  * as real UNIX machines always do it. This avoids all headaches about
1549  * daylight saving times and warping kernel clocks.
1550  */
1551 void timekeeping_warp_clock(void)
1552 {
1553 	if (sys_tz.tz_minuteswest != 0) {
1554 		struct timespec64 adjust;
1555 
1556 		persistent_clock_is_local = 1;
1557 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1558 		adjust.tv_nsec = 0;
1559 		timekeeping_inject_offset(&adjust);
1560 	}
1561 }
1562 
1563 /*
1564  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1565  */
1566 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1567 {
1568 	tk->tai_offset = tai_offset;
1569 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1570 }
1571 
1572 /*
1573  * change_clocksource - Swaps clocksources if a new one is available
1574  *
1575  * Accumulates current time interval and initializes new clocksource
1576  */
1577 static int change_clocksource(void *data)
1578 {
1579 	struct timekeeper *tk = &tk_core.timekeeper;
1580 	struct clocksource *new, *old = NULL;
1581 	unsigned long flags;
1582 	bool change = false;
1583 
1584 	new = (struct clocksource *) data;
1585 
1586 	/*
1587 	 * If the cs is in module, get a module reference. Succeeds
1588 	 * for built-in code (owner == NULL) as well.
1589 	 */
1590 	if (try_module_get(new->owner)) {
1591 		if (!new->enable || new->enable(new) == 0)
1592 			change = true;
1593 		else
1594 			module_put(new->owner);
1595 	}
1596 
1597 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1598 	write_seqcount_begin(&tk_core.seq);
1599 
1600 	timekeeping_forward_now(tk);
1601 
1602 	if (change) {
1603 		old = tk->tkr_mono.clock;
1604 		tk_setup_internals(tk, new);
1605 	}
1606 
1607 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1608 
1609 	write_seqcount_end(&tk_core.seq);
1610 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1611 
1612 	if (old) {
1613 		if (old->disable)
1614 			old->disable(old);
1615 
1616 		module_put(old->owner);
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 /**
1623  * timekeeping_notify - Install a new clock source
1624  * @clock:		pointer to the clock source
1625  *
1626  * This function is called from clocksource.c after a new, better clock
1627  * source has been registered. The caller holds the clocksource_mutex.
1628  */
1629 int timekeeping_notify(struct clocksource *clock)
1630 {
1631 	struct timekeeper *tk = &tk_core.timekeeper;
1632 
1633 	if (tk->tkr_mono.clock == clock)
1634 		return 0;
1635 	stop_machine(change_clocksource, clock, NULL);
1636 	tick_clock_notify();
1637 	return tk->tkr_mono.clock == clock ? 0 : -1;
1638 }
1639 
1640 /**
1641  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1642  * @ts:		pointer to the timespec64 to be set
1643  *
1644  * Returns the raw monotonic time (completely un-modified by ntp)
1645  */
1646 void ktime_get_raw_ts64(struct timespec64 *ts)
1647 {
1648 	struct timekeeper *tk = &tk_core.timekeeper;
1649 	unsigned int seq;
1650 	u64 nsecs;
1651 
1652 	do {
1653 		seq = read_seqcount_begin(&tk_core.seq);
1654 		ts->tv_sec = tk->raw_sec;
1655 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1656 
1657 	} while (read_seqcount_retry(&tk_core.seq, seq));
1658 
1659 	ts->tv_nsec = 0;
1660 	timespec64_add_ns(ts, nsecs);
1661 }
1662 EXPORT_SYMBOL(ktime_get_raw_ts64);
1663 
1664 
1665 /**
1666  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1667  */
1668 int timekeeping_valid_for_hres(void)
1669 {
1670 	struct timekeeper *tk = &tk_core.timekeeper;
1671 	unsigned int seq;
1672 	int ret;
1673 
1674 	do {
1675 		seq = read_seqcount_begin(&tk_core.seq);
1676 
1677 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1678 
1679 	} while (read_seqcount_retry(&tk_core.seq, seq));
1680 
1681 	return ret;
1682 }
1683 
1684 /**
1685  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1686  */
1687 u64 timekeeping_max_deferment(void)
1688 {
1689 	struct timekeeper *tk = &tk_core.timekeeper;
1690 	unsigned int seq;
1691 	u64 ret;
1692 
1693 	do {
1694 		seq = read_seqcount_begin(&tk_core.seq);
1695 
1696 		ret = tk->tkr_mono.clock->max_idle_ns;
1697 
1698 	} while (read_seqcount_retry(&tk_core.seq, seq));
1699 
1700 	return ret;
1701 }
1702 
1703 /**
1704  * read_persistent_clock64 -  Return time from the persistent clock.
1705  * @ts: Pointer to the storage for the readout value
1706  *
1707  * Weak dummy function for arches that do not yet support it.
1708  * Reads the time from the battery backed persistent clock.
1709  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1710  *
1711  *  XXX - Do be sure to remove it once all arches implement it.
1712  */
1713 void __weak read_persistent_clock64(struct timespec64 *ts)
1714 {
1715 	ts->tv_sec = 0;
1716 	ts->tv_nsec = 0;
1717 }
1718 
1719 /**
1720  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1721  *                                        from the boot.
1722  * @wall_time:	  current time as returned by persistent clock
1723  * @boot_offset:  offset that is defined as wall_time - boot_time
1724  *
1725  * Weak dummy function for arches that do not yet support it.
1726  *
1727  * The default function calculates offset based on the current value of
1728  * local_clock(). This way architectures that support sched_clock() but don't
1729  * support dedicated boot time clock will provide the best estimate of the
1730  * boot time.
1731  */
1732 void __weak __init
1733 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1734 				     struct timespec64 *boot_offset)
1735 {
1736 	read_persistent_clock64(wall_time);
1737 	*boot_offset = ns_to_timespec64(local_clock());
1738 }
1739 
1740 /*
1741  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1742  *
1743  * The flag starts of false and is only set when a suspend reaches
1744  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1745  * timekeeper clocksource is not stopping across suspend and has been
1746  * used to update sleep time. If the timekeeper clocksource has stopped
1747  * then the flag stays true and is used by the RTC resume code to decide
1748  * whether sleeptime must be injected and if so the flag gets false then.
1749  *
1750  * If a suspend fails before reaching timekeeping_resume() then the flag
1751  * stays false and prevents erroneous sleeptime injection.
1752  */
1753 static bool suspend_timing_needed;
1754 
1755 /* Flag for if there is a persistent clock on this platform */
1756 static bool persistent_clock_exists;
1757 
1758 /*
1759  * timekeeping_init - Initializes the clocksource and common timekeeping values
1760  */
1761 void __init timekeeping_init(void)
1762 {
1763 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1764 	struct timekeeper *tk = &tk_core.timekeeper;
1765 	struct clocksource *clock;
1766 	unsigned long flags;
1767 
1768 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1769 	if (timespec64_valid_settod(&wall_time) &&
1770 	    timespec64_to_ns(&wall_time) > 0) {
1771 		persistent_clock_exists = true;
1772 	} else if (timespec64_to_ns(&wall_time) != 0) {
1773 		pr_warn("Persistent clock returned invalid value");
1774 		wall_time = (struct timespec64){0};
1775 	}
1776 
1777 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1778 		boot_offset = (struct timespec64){0};
1779 
1780 	/*
1781 	 * We want set wall_to_mono, so the following is true:
1782 	 * wall time + wall_to_mono = boot time
1783 	 */
1784 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1785 
1786 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1787 	write_seqcount_begin(&tk_core.seq);
1788 	ntp_init();
1789 
1790 	clock = clocksource_default_clock();
1791 	if (clock->enable)
1792 		clock->enable(clock);
1793 	tk_setup_internals(tk, clock);
1794 
1795 	tk_set_xtime(tk, &wall_time);
1796 	tk->raw_sec = 0;
1797 
1798 	tk_set_wall_to_mono(tk, wall_to_mono);
1799 
1800 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1801 
1802 	write_seqcount_end(&tk_core.seq);
1803 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1804 }
1805 
1806 /* time in seconds when suspend began for persistent clock */
1807 static struct timespec64 timekeeping_suspend_time;
1808 
1809 /**
1810  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1811  * @tk:		Pointer to the timekeeper to be updated
1812  * @delta:	Pointer to the delta value in timespec64 format
1813  *
1814  * Takes a timespec offset measuring a suspend interval and properly
1815  * adds the sleep offset to the timekeeping variables.
1816  */
1817 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1818 					   const struct timespec64 *delta)
1819 {
1820 	if (!timespec64_valid_strict(delta)) {
1821 		printk_deferred(KERN_WARNING
1822 				"__timekeeping_inject_sleeptime: Invalid "
1823 				"sleep delta value!\n");
1824 		return;
1825 	}
1826 	tk_xtime_add(tk, delta);
1827 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1828 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1829 	tk_debug_account_sleep_time(delta);
1830 }
1831 
1832 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1833 /*
1834  * We have three kinds of time sources to use for sleep time
1835  * injection, the preference order is:
1836  * 1) non-stop clocksource
1837  * 2) persistent clock (ie: RTC accessible when irqs are off)
1838  * 3) RTC
1839  *
1840  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1841  * If system has neither 1) nor 2), 3) will be used finally.
1842  *
1843  *
1844  * If timekeeping has injected sleeptime via either 1) or 2),
1845  * 3) becomes needless, so in this case we don't need to call
1846  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1847  * means.
1848  */
1849 bool timekeeping_rtc_skipresume(void)
1850 {
1851 	return !suspend_timing_needed;
1852 }
1853 
1854 /*
1855  * 1) can be determined whether to use or not only when doing
1856  * timekeeping_resume() which is invoked after rtc_suspend(),
1857  * so we can't skip rtc_suspend() surely if system has 1).
1858  *
1859  * But if system has 2), 2) will definitely be used, so in this
1860  * case we don't need to call rtc_suspend(), and this is what
1861  * timekeeping_rtc_skipsuspend() means.
1862  */
1863 bool timekeeping_rtc_skipsuspend(void)
1864 {
1865 	return persistent_clock_exists;
1866 }
1867 
1868 /**
1869  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1870  * @delta: pointer to a timespec64 delta value
1871  *
1872  * This hook is for architectures that cannot support read_persistent_clock64
1873  * because their RTC/persistent clock is only accessible when irqs are enabled.
1874  * and also don't have an effective nonstop clocksource.
1875  *
1876  * This function should only be called by rtc_resume(), and allows
1877  * a suspend offset to be injected into the timekeeping values.
1878  */
1879 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1880 {
1881 	struct timekeeper *tk = &tk_core.timekeeper;
1882 	unsigned long flags;
1883 
1884 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1885 	write_seqcount_begin(&tk_core.seq);
1886 
1887 	suspend_timing_needed = false;
1888 
1889 	timekeeping_forward_now(tk);
1890 
1891 	__timekeeping_inject_sleeptime(tk, delta);
1892 
1893 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1894 
1895 	write_seqcount_end(&tk_core.seq);
1896 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1897 
1898 	/* Signal hrtimers about time change */
1899 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1900 }
1901 #endif
1902 
1903 /**
1904  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1905  */
1906 void timekeeping_resume(void)
1907 {
1908 	struct timekeeper *tk = &tk_core.timekeeper;
1909 	struct clocksource *clock = tk->tkr_mono.clock;
1910 	unsigned long flags;
1911 	struct timespec64 ts_new, ts_delta;
1912 	u64 cycle_now, nsec;
1913 	bool inject_sleeptime = false;
1914 
1915 	read_persistent_clock64(&ts_new);
1916 
1917 	clockevents_resume();
1918 	clocksource_resume();
1919 
1920 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1921 	write_seqcount_begin(&tk_core.seq);
1922 
1923 	/*
1924 	 * After system resumes, we need to calculate the suspended time and
1925 	 * compensate it for the OS time. There are 3 sources that could be
1926 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1927 	 * device.
1928 	 *
1929 	 * One specific platform may have 1 or 2 or all of them, and the
1930 	 * preference will be:
1931 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1932 	 * The less preferred source will only be tried if there is no better
1933 	 * usable source. The rtc part is handled separately in rtc core code.
1934 	 */
1935 	cycle_now = tk_clock_read(&tk->tkr_mono);
1936 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1937 	if (nsec > 0) {
1938 		ts_delta = ns_to_timespec64(nsec);
1939 		inject_sleeptime = true;
1940 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1941 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1942 		inject_sleeptime = true;
1943 	}
1944 
1945 	if (inject_sleeptime) {
1946 		suspend_timing_needed = false;
1947 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1948 	}
1949 
1950 	/* Re-base the last cycle value */
1951 	tk->tkr_mono.cycle_last = cycle_now;
1952 	tk->tkr_raw.cycle_last  = cycle_now;
1953 
1954 	tk->ntp_error = 0;
1955 	timekeeping_suspended = 0;
1956 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1957 	write_seqcount_end(&tk_core.seq);
1958 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1959 
1960 	touch_softlockup_watchdog();
1961 
1962 	/* Resume the clockevent device(s) and hrtimers */
1963 	tick_resume();
1964 	/* Notify timerfd as resume is equivalent to clock_was_set() */
1965 	timerfd_resume();
1966 }
1967 
1968 int timekeeping_suspend(void)
1969 {
1970 	struct timekeeper *tk = &tk_core.timekeeper;
1971 	unsigned long flags;
1972 	struct timespec64		delta, delta_delta;
1973 	static struct timespec64	old_delta;
1974 	struct clocksource *curr_clock;
1975 	u64 cycle_now;
1976 
1977 	read_persistent_clock64(&timekeeping_suspend_time);
1978 
1979 	/*
1980 	 * On some systems the persistent_clock can not be detected at
1981 	 * timekeeping_init by its return value, so if we see a valid
1982 	 * value returned, update the persistent_clock_exists flag.
1983 	 */
1984 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1985 		persistent_clock_exists = true;
1986 
1987 	suspend_timing_needed = true;
1988 
1989 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1990 	write_seqcount_begin(&tk_core.seq);
1991 	timekeeping_forward_now(tk);
1992 	timekeeping_suspended = 1;
1993 
1994 	/*
1995 	 * Since we've called forward_now, cycle_last stores the value
1996 	 * just read from the current clocksource. Save this to potentially
1997 	 * use in suspend timing.
1998 	 */
1999 	curr_clock = tk->tkr_mono.clock;
2000 	cycle_now = tk->tkr_mono.cycle_last;
2001 	clocksource_start_suspend_timing(curr_clock, cycle_now);
2002 
2003 	if (persistent_clock_exists) {
2004 		/*
2005 		 * To avoid drift caused by repeated suspend/resumes,
2006 		 * which each can add ~1 second drift error,
2007 		 * try to compensate so the difference in system time
2008 		 * and persistent_clock time stays close to constant.
2009 		 */
2010 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
2011 		delta_delta = timespec64_sub(delta, old_delta);
2012 		if (abs(delta_delta.tv_sec) >= 2) {
2013 			/*
2014 			 * if delta_delta is too large, assume time correction
2015 			 * has occurred and set old_delta to the current delta.
2016 			 */
2017 			old_delta = delta;
2018 		} else {
2019 			/* Otherwise try to adjust old_system to compensate */
2020 			timekeeping_suspend_time =
2021 				timespec64_add(timekeeping_suspend_time, delta_delta);
2022 		}
2023 	}
2024 
2025 	timekeeping_update(tk, TK_MIRROR);
2026 	halt_fast_timekeeper(tk);
2027 	write_seqcount_end(&tk_core.seq);
2028 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2029 
2030 	tick_suspend();
2031 	clocksource_suspend();
2032 	clockevents_suspend();
2033 
2034 	return 0;
2035 }
2036 
2037 /* sysfs resume/suspend bits for timekeeping */
2038 static struct syscore_ops timekeeping_syscore_ops = {
2039 	.resume		= timekeeping_resume,
2040 	.suspend	= timekeeping_suspend,
2041 };
2042 
2043 static int __init timekeeping_init_ops(void)
2044 {
2045 	register_syscore_ops(&timekeeping_syscore_ops);
2046 	return 0;
2047 }
2048 device_initcall(timekeeping_init_ops);
2049 
2050 /*
2051  * Apply a multiplier adjustment to the timekeeper
2052  */
2053 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
2054 							 s64 offset,
2055 							 s32 mult_adj)
2056 {
2057 	s64 interval = tk->cycle_interval;
2058 
2059 	if (mult_adj == 0) {
2060 		return;
2061 	} else if (mult_adj == -1) {
2062 		interval = -interval;
2063 		offset = -offset;
2064 	} else if (mult_adj != 1) {
2065 		interval *= mult_adj;
2066 		offset *= mult_adj;
2067 	}
2068 
2069 	/*
2070 	 * So the following can be confusing.
2071 	 *
2072 	 * To keep things simple, lets assume mult_adj == 1 for now.
2073 	 *
2074 	 * When mult_adj != 1, remember that the interval and offset values
2075 	 * have been appropriately scaled so the math is the same.
2076 	 *
2077 	 * The basic idea here is that we're increasing the multiplier
2078 	 * by one, this causes the xtime_interval to be incremented by
2079 	 * one cycle_interval. This is because:
2080 	 *	xtime_interval = cycle_interval * mult
2081 	 * So if mult is being incremented by one:
2082 	 *	xtime_interval = cycle_interval * (mult + 1)
2083 	 * Its the same as:
2084 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
2085 	 * Which can be shortened to:
2086 	 *	xtime_interval += cycle_interval
2087 	 *
2088 	 * So offset stores the non-accumulated cycles. Thus the current
2089 	 * time (in shifted nanoseconds) is:
2090 	 *	now = (offset * adj) + xtime_nsec
2091 	 * Now, even though we're adjusting the clock frequency, we have
2092 	 * to keep time consistent. In other words, we can't jump back
2093 	 * in time, and we also want to avoid jumping forward in time.
2094 	 *
2095 	 * So given the same offset value, we need the time to be the same
2096 	 * both before and after the freq adjustment.
2097 	 *	now = (offset * adj_1) + xtime_nsec_1
2098 	 *	now = (offset * adj_2) + xtime_nsec_2
2099 	 * So:
2100 	 *	(offset * adj_1) + xtime_nsec_1 =
2101 	 *		(offset * adj_2) + xtime_nsec_2
2102 	 * And we know:
2103 	 *	adj_2 = adj_1 + 1
2104 	 * So:
2105 	 *	(offset * adj_1) + xtime_nsec_1 =
2106 	 *		(offset * (adj_1+1)) + xtime_nsec_2
2107 	 *	(offset * adj_1) + xtime_nsec_1 =
2108 	 *		(offset * adj_1) + offset + xtime_nsec_2
2109 	 * Canceling the sides:
2110 	 *	xtime_nsec_1 = offset + xtime_nsec_2
2111 	 * Which gives us:
2112 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
2113 	 * Which simplifies to:
2114 	 *	xtime_nsec -= offset
2115 	 */
2116 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2117 		/* NTP adjustment caused clocksource mult overflow */
2118 		WARN_ON_ONCE(1);
2119 		return;
2120 	}
2121 
2122 	tk->tkr_mono.mult += mult_adj;
2123 	tk->xtime_interval += interval;
2124 	tk->tkr_mono.xtime_nsec -= offset;
2125 }
2126 
2127 /*
2128  * Adjust the timekeeper's multiplier to the correct frequency
2129  * and also to reduce the accumulated error value.
2130  */
2131 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2132 {
2133 	u32 mult;
2134 
2135 	/*
2136 	 * Determine the multiplier from the current NTP tick length.
2137 	 * Avoid expensive division when the tick length doesn't change.
2138 	 */
2139 	if (likely(tk->ntp_tick == ntp_tick_length())) {
2140 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2141 	} else {
2142 		tk->ntp_tick = ntp_tick_length();
2143 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2144 				 tk->xtime_remainder, tk->cycle_interval);
2145 	}
2146 
2147 	/*
2148 	 * If the clock is behind the NTP time, increase the multiplier by 1
2149 	 * to catch up with it. If it's ahead and there was a remainder in the
2150 	 * tick division, the clock will slow down. Otherwise it will stay
2151 	 * ahead until the tick length changes to a non-divisible value.
2152 	 */
2153 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2154 	mult += tk->ntp_err_mult;
2155 
2156 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2157 
2158 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2159 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2160 			> tk->tkr_mono.clock->maxadj))) {
2161 		printk_once(KERN_WARNING
2162 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2163 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2164 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2165 	}
2166 
2167 	/*
2168 	 * It may be possible that when we entered this function, xtime_nsec
2169 	 * was very small.  Further, if we're slightly speeding the clocksource
2170 	 * in the code above, its possible the required corrective factor to
2171 	 * xtime_nsec could cause it to underflow.
2172 	 *
2173 	 * Now, since we have already accumulated the second and the NTP
2174 	 * subsystem has been notified via second_overflow(), we need to skip
2175 	 * the next update.
2176 	 */
2177 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2178 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2179 							tk->tkr_mono.shift;
2180 		tk->xtime_sec--;
2181 		tk->skip_second_overflow = 1;
2182 	}
2183 }
2184 
2185 /*
2186  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2187  *
2188  * Helper function that accumulates the nsecs greater than a second
2189  * from the xtime_nsec field to the xtime_secs field.
2190  * It also calls into the NTP code to handle leapsecond processing.
2191  */
2192 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2193 {
2194 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2195 	unsigned int clock_set = 0;
2196 
2197 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2198 		int leap;
2199 
2200 		tk->tkr_mono.xtime_nsec -= nsecps;
2201 		tk->xtime_sec++;
2202 
2203 		/*
2204 		 * Skip NTP update if this second was accumulated before,
2205 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2206 		 */
2207 		if (unlikely(tk->skip_second_overflow)) {
2208 			tk->skip_second_overflow = 0;
2209 			continue;
2210 		}
2211 
2212 		/* Figure out if its a leap sec and apply if needed */
2213 		leap = second_overflow(tk->xtime_sec);
2214 		if (unlikely(leap)) {
2215 			struct timespec64 ts;
2216 
2217 			tk->xtime_sec += leap;
2218 
2219 			ts.tv_sec = leap;
2220 			ts.tv_nsec = 0;
2221 			tk_set_wall_to_mono(tk,
2222 				timespec64_sub(tk->wall_to_monotonic, ts));
2223 
2224 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2225 
2226 			clock_set = TK_CLOCK_WAS_SET;
2227 		}
2228 	}
2229 	return clock_set;
2230 }
2231 
2232 /*
2233  * logarithmic_accumulation - shifted accumulation of cycles
2234  *
2235  * This functions accumulates a shifted interval of cycles into
2236  * a shifted interval nanoseconds. Allows for O(log) accumulation
2237  * loop.
2238  *
2239  * Returns the unconsumed cycles.
2240  */
2241 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2242 				    u32 shift, unsigned int *clock_set)
2243 {
2244 	u64 interval = tk->cycle_interval << shift;
2245 	u64 snsec_per_sec;
2246 
2247 	/* If the offset is smaller than a shifted interval, do nothing */
2248 	if (offset < interval)
2249 		return offset;
2250 
2251 	/* Accumulate one shifted interval */
2252 	offset -= interval;
2253 	tk->tkr_mono.cycle_last += interval;
2254 	tk->tkr_raw.cycle_last  += interval;
2255 
2256 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2257 	*clock_set |= accumulate_nsecs_to_secs(tk);
2258 
2259 	/* Accumulate raw time */
2260 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2261 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2262 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2263 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2264 		tk->raw_sec++;
2265 	}
2266 
2267 	/* Accumulate error between NTP and clock interval */
2268 	tk->ntp_error += tk->ntp_tick << shift;
2269 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2270 						(tk->ntp_error_shift + shift);
2271 
2272 	return offset;
2273 }
2274 
2275 /*
2276  * timekeeping_advance - Updates the timekeeper to the current time and
2277  * current NTP tick length
2278  */
2279 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2280 {
2281 	struct timekeeper *real_tk = &tk_core.timekeeper;
2282 	struct timekeeper *tk = &shadow_timekeeper;
2283 	u64 offset;
2284 	int shift = 0, maxshift;
2285 	unsigned int clock_set = 0;
2286 	unsigned long flags;
2287 
2288 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2289 
2290 	/* Make sure we're fully resumed: */
2291 	if (unlikely(timekeeping_suspended))
2292 		goto out;
2293 
2294 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2295 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2296 
2297 	/* Check if there's really nothing to do */
2298 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2299 		goto out;
2300 
2301 	/* Do some additional sanity checking */
2302 	timekeeping_check_update(tk, offset);
2303 
2304 	/*
2305 	 * With NO_HZ we may have to accumulate many cycle_intervals
2306 	 * (think "ticks") worth of time at once. To do this efficiently,
2307 	 * we calculate the largest doubling multiple of cycle_intervals
2308 	 * that is smaller than the offset.  We then accumulate that
2309 	 * chunk in one go, and then try to consume the next smaller
2310 	 * doubled multiple.
2311 	 */
2312 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2313 	shift = max(0, shift);
2314 	/* Bound shift to one less than what overflows tick_length */
2315 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2316 	shift = min(shift, maxshift);
2317 	while (offset >= tk->cycle_interval) {
2318 		offset = logarithmic_accumulation(tk, offset, shift,
2319 							&clock_set);
2320 		if (offset < tk->cycle_interval<<shift)
2321 			shift--;
2322 	}
2323 
2324 	/* Adjust the multiplier to correct NTP error */
2325 	timekeeping_adjust(tk, offset);
2326 
2327 	/*
2328 	 * Finally, make sure that after the rounding
2329 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2330 	 */
2331 	clock_set |= accumulate_nsecs_to_secs(tk);
2332 
2333 	write_seqcount_begin(&tk_core.seq);
2334 	/*
2335 	 * Update the real timekeeper.
2336 	 *
2337 	 * We could avoid this memcpy by switching pointers, but that
2338 	 * requires changes to all other timekeeper usage sites as
2339 	 * well, i.e. move the timekeeper pointer getter into the
2340 	 * spinlocked/seqcount protected sections. And we trade this
2341 	 * memcpy under the tk_core.seq against one before we start
2342 	 * updating.
2343 	 */
2344 	timekeeping_update(tk, clock_set);
2345 	memcpy(real_tk, tk, sizeof(*tk));
2346 	/* The memcpy must come last. Do not put anything here! */
2347 	write_seqcount_end(&tk_core.seq);
2348 out:
2349 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2350 
2351 	return !!clock_set;
2352 }
2353 
2354 /**
2355  * update_wall_time - Uses the current clocksource to increment the wall time
2356  *
2357  */
2358 void update_wall_time(void)
2359 {
2360 	if (timekeeping_advance(TK_ADV_TICK))
2361 		clock_was_set_delayed();
2362 }
2363 
2364 /**
2365  * getboottime64 - Return the real time of system boot.
2366  * @ts:		pointer to the timespec64 to be set
2367  *
2368  * Returns the wall-time of boot in a timespec64.
2369  *
2370  * This is based on the wall_to_monotonic offset and the total suspend
2371  * time. Calls to settimeofday will affect the value returned (which
2372  * basically means that however wrong your real time clock is at boot time,
2373  * you get the right time here).
2374  */
2375 void getboottime64(struct timespec64 *ts)
2376 {
2377 	struct timekeeper *tk = &tk_core.timekeeper;
2378 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2379 
2380 	*ts = ktime_to_timespec64(t);
2381 }
2382 EXPORT_SYMBOL_GPL(getboottime64);
2383 
2384 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2385 {
2386 	struct timekeeper *tk = &tk_core.timekeeper;
2387 	unsigned int seq;
2388 
2389 	do {
2390 		seq = read_seqcount_begin(&tk_core.seq);
2391 
2392 		*ts = tk_xtime(tk);
2393 	} while (read_seqcount_retry(&tk_core.seq, seq));
2394 }
2395 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2396 
2397 void ktime_get_coarse_ts64(struct timespec64 *ts)
2398 {
2399 	struct timekeeper *tk = &tk_core.timekeeper;
2400 	struct timespec64 now, mono;
2401 	unsigned int seq;
2402 
2403 	do {
2404 		seq = read_seqcount_begin(&tk_core.seq);
2405 
2406 		now = tk_xtime(tk);
2407 		mono = tk->wall_to_monotonic;
2408 	} while (read_seqcount_retry(&tk_core.seq, seq));
2409 
2410 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2411 				now.tv_nsec + mono.tv_nsec);
2412 }
2413 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2414 
2415 /*
2416  * Must hold jiffies_lock
2417  */
2418 void do_timer(unsigned long ticks)
2419 {
2420 	jiffies_64 += ticks;
2421 	calc_global_load();
2422 }
2423 
2424 /**
2425  * ktime_get_update_offsets_now - hrtimer helper
2426  * @cwsseq:	pointer to check and store the clock was set sequence number
2427  * @offs_real:	pointer to storage for monotonic -> realtime offset
2428  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2429  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2430  *
2431  * Returns current monotonic time and updates the offsets if the
2432  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2433  * different.
2434  *
2435  * Called from hrtimer_interrupt() or retrigger_next_event()
2436  */
2437 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2438 				     ktime_t *offs_boot, ktime_t *offs_tai)
2439 {
2440 	struct timekeeper *tk = &tk_core.timekeeper;
2441 	unsigned int seq;
2442 	ktime_t base;
2443 	u64 nsecs;
2444 
2445 	do {
2446 		seq = read_seqcount_begin(&tk_core.seq);
2447 
2448 		base = tk->tkr_mono.base;
2449 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2450 		base = ktime_add_ns(base, nsecs);
2451 
2452 		if (*cwsseq != tk->clock_was_set_seq) {
2453 			*cwsseq = tk->clock_was_set_seq;
2454 			*offs_real = tk->offs_real;
2455 			*offs_boot = tk->offs_boot;
2456 			*offs_tai = tk->offs_tai;
2457 		}
2458 
2459 		/* Handle leapsecond insertion adjustments */
2460 		if (unlikely(base >= tk->next_leap_ktime))
2461 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2462 
2463 	} while (read_seqcount_retry(&tk_core.seq, seq));
2464 
2465 	return base;
2466 }
2467 
2468 /*
2469  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2470  */
2471 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2472 {
2473 	if (txc->modes & ADJ_ADJTIME) {
2474 		/* singleshot must not be used with any other mode bits */
2475 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2476 			return -EINVAL;
2477 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2478 		    !capable(CAP_SYS_TIME))
2479 			return -EPERM;
2480 	} else {
2481 		/* In order to modify anything, you gotta be super-user! */
2482 		if (txc->modes && !capable(CAP_SYS_TIME))
2483 			return -EPERM;
2484 		/*
2485 		 * if the quartz is off by more than 10% then
2486 		 * something is VERY wrong!
2487 		 */
2488 		if (txc->modes & ADJ_TICK &&
2489 		    (txc->tick <  900000/USER_HZ ||
2490 		     txc->tick > 1100000/USER_HZ))
2491 			return -EINVAL;
2492 	}
2493 
2494 	if (txc->modes & ADJ_SETOFFSET) {
2495 		/* In order to inject time, you gotta be super-user! */
2496 		if (!capable(CAP_SYS_TIME))
2497 			return -EPERM;
2498 
2499 		/*
2500 		 * Validate if a timespec/timeval used to inject a time
2501 		 * offset is valid.  Offsets can be positive or negative, so
2502 		 * we don't check tv_sec. The value of the timeval/timespec
2503 		 * is the sum of its fields,but *NOTE*:
2504 		 * The field tv_usec/tv_nsec must always be non-negative and
2505 		 * we can't have more nanoseconds/microseconds than a second.
2506 		 */
2507 		if (txc->time.tv_usec < 0)
2508 			return -EINVAL;
2509 
2510 		if (txc->modes & ADJ_NANO) {
2511 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2512 				return -EINVAL;
2513 		} else {
2514 			if (txc->time.tv_usec >= USEC_PER_SEC)
2515 				return -EINVAL;
2516 		}
2517 	}
2518 
2519 	/*
2520 	 * Check for potential multiplication overflows that can
2521 	 * only happen on 64-bit systems:
2522 	 */
2523 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2524 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2525 			return -EINVAL;
2526 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2527 			return -EINVAL;
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 /**
2534  * random_get_entropy_fallback - Returns the raw clock source value,
2535  * used by random.c for platforms with no valid random_get_entropy().
2536  */
2537 unsigned long random_get_entropy_fallback(void)
2538 {
2539 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2540 	struct clocksource *clock = READ_ONCE(tkr->clock);
2541 
2542 	if (unlikely(timekeeping_suspended || !clock))
2543 		return 0;
2544 	return clock->read(clock);
2545 }
2546 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2547 
2548 /**
2549  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2550  * @txc:	Pointer to kernel_timex structure containing NTP parameters
2551  */
2552 int do_adjtimex(struct __kernel_timex *txc)
2553 {
2554 	struct timekeeper *tk = &tk_core.timekeeper;
2555 	struct audit_ntp_data ad;
2556 	bool clock_set = false;
2557 	struct timespec64 ts;
2558 	unsigned long flags;
2559 	s32 orig_tai, tai;
2560 	int ret;
2561 
2562 	/* Validate the data before disabling interrupts */
2563 	ret = timekeeping_validate_timex(txc);
2564 	if (ret)
2565 		return ret;
2566 	add_device_randomness(txc, sizeof(*txc));
2567 
2568 	if (txc->modes & ADJ_SETOFFSET) {
2569 		struct timespec64 delta;
2570 		delta.tv_sec  = txc->time.tv_sec;
2571 		delta.tv_nsec = txc->time.tv_usec;
2572 		if (!(txc->modes & ADJ_NANO))
2573 			delta.tv_nsec *= 1000;
2574 		ret = timekeeping_inject_offset(&delta);
2575 		if (ret)
2576 			return ret;
2577 
2578 		audit_tk_injoffset(delta);
2579 	}
2580 
2581 	audit_ntp_init(&ad);
2582 
2583 	ktime_get_real_ts64(&ts);
2584 	add_device_randomness(&ts, sizeof(ts));
2585 
2586 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2587 	write_seqcount_begin(&tk_core.seq);
2588 
2589 	orig_tai = tai = tk->tai_offset;
2590 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2591 
2592 	if (tai != orig_tai) {
2593 		__timekeeping_set_tai_offset(tk, tai);
2594 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2595 		clock_set = true;
2596 	}
2597 	tk_update_leap_state(tk);
2598 
2599 	write_seqcount_end(&tk_core.seq);
2600 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2601 
2602 	audit_ntp_log(&ad);
2603 
2604 	/* Update the multiplier immediately if frequency was set directly */
2605 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2606 		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2607 
2608 	if (clock_set)
2609 		clock_was_set(CLOCK_REALTIME);
2610 
2611 	ntp_notify_cmos_timer();
2612 
2613 	return ret;
2614 }
2615 
2616 #ifdef CONFIG_NTP_PPS
2617 /**
2618  * hardpps() - Accessor function to NTP __hardpps function
2619  * @phase_ts:	Pointer to timespec64 structure representing phase timestamp
2620  * @raw_ts:	Pointer to timespec64 structure representing raw timestamp
2621  */
2622 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2623 {
2624 	unsigned long flags;
2625 
2626 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2627 	write_seqcount_begin(&tk_core.seq);
2628 
2629 	__hardpps(phase_ts, raw_ts);
2630 
2631 	write_seqcount_end(&tk_core.seq);
2632 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2633 }
2634 EXPORT_SYMBOL(hardpps);
2635 #endif /* CONFIG_NTP_PPS */
2636