1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 enum timekeeping_adv_mode { 37 /* Update timekeeper when a tick has passed */ 38 TK_ADV_TICK, 39 40 /* Update timekeeper on a direct frequency change */ 41 TK_ADV_FREQ 42 }; 43 44 DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 static struct { 51 seqcount_raw_spinlock_t seq; 52 struct timekeeper timekeeper; 53 } tk_core ____cacheline_aligned = { 54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 55 }; 56 57 static struct timekeeper shadow_timekeeper; 58 59 /* flag for if timekeeping is suspended */ 60 int __read_mostly timekeeping_suspended; 61 62 /** 63 * struct tk_fast - NMI safe timekeeper 64 * @seq: Sequence counter for protecting updates. The lowest bit 65 * is the index for the tk_read_base array 66 * @base: tk_read_base array. Access is indexed by the lowest bit of 67 * @seq. 68 * 69 * See @update_fast_timekeeper() below. 70 */ 71 struct tk_fast { 72 seqcount_latch_t seq; 73 struct tk_read_base base[2]; 74 }; 75 76 /* Suspend-time cycles value for halted fast timekeeper. */ 77 static u64 cycles_at_suspend; 78 79 static u64 dummy_clock_read(struct clocksource *cs) 80 { 81 if (timekeeping_suspended) 82 return cycles_at_suspend; 83 return local_clock(); 84 } 85 86 static struct clocksource dummy_clock = { 87 .read = dummy_clock_read, 88 }; 89 90 /* 91 * Boot time initialization which allows local_clock() to be utilized 92 * during early boot when clocksources are not available. local_clock() 93 * returns nanoseconds already so no conversion is required, hence mult=1 94 * and shift=0. When the first proper clocksource is installed then 95 * the fast time keepers are updated with the correct values. 96 */ 97 #define FAST_TK_INIT \ 98 { \ 99 .clock = &dummy_clock, \ 100 .mask = CLOCKSOURCE_MASK(64), \ 101 .mult = 1, \ 102 .shift = 0, \ 103 } 104 105 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 107 .base[0] = FAST_TK_INIT, 108 .base[1] = FAST_TK_INIT, 109 }; 110 111 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 113 .base[0] = FAST_TK_INIT, 114 .base[1] = FAST_TK_INIT, 115 }; 116 117 static inline void tk_normalize_xtime(struct timekeeper *tk) 118 { 119 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 120 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 121 tk->xtime_sec++; 122 } 123 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 124 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 125 tk->raw_sec++; 126 } 127 } 128 129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 130 { 131 struct timespec64 ts; 132 133 ts.tv_sec = tk->xtime_sec; 134 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 135 return ts; 136 } 137 138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 139 { 140 tk->xtime_sec = ts->tv_sec; 141 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 142 } 143 144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 145 { 146 tk->xtime_sec += ts->tv_sec; 147 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 148 tk_normalize_xtime(tk); 149 } 150 151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 152 { 153 struct timespec64 tmp; 154 155 /* 156 * Verify consistency of: offset_real = -wall_to_monotonic 157 * before modifying anything 158 */ 159 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 160 -tk->wall_to_monotonic.tv_nsec); 161 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 162 tk->wall_to_monotonic = wtm; 163 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 164 tk->offs_real = timespec64_to_ktime(tmp); 165 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 166 } 167 168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 169 { 170 tk->offs_boot = ktime_add(tk->offs_boot, delta); 171 /* 172 * Timespec representation for VDSO update to avoid 64bit division 173 * on every update. 174 */ 175 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 176 } 177 178 /* 179 * tk_clock_read - atomic clocksource read() helper 180 * 181 * This helper is necessary to use in the read paths because, while the 182 * seqcount ensures we don't return a bad value while structures are updated, 183 * it doesn't protect from potential crashes. There is the possibility that 184 * the tkr's clocksource may change between the read reference, and the 185 * clock reference passed to the read function. This can cause crashes if 186 * the wrong clocksource is passed to the wrong read function. 187 * This isn't necessary to use when holding the timekeeper_lock or doing 188 * a read of the fast-timekeeper tkrs (which is protected by its own locking 189 * and update logic). 190 */ 191 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 192 { 193 struct clocksource *clock = READ_ONCE(tkr->clock); 194 195 return clock->read(clock); 196 } 197 198 #ifdef CONFIG_DEBUG_TIMEKEEPING 199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 200 201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 202 { 203 204 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 205 const char *name = tk->tkr_mono.clock->name; 206 207 if (offset > max_cycles) { 208 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 209 offset, name, max_cycles); 210 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 211 } else { 212 if (offset > (max_cycles >> 1)) { 213 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 214 offset, name, max_cycles >> 1); 215 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 216 } 217 } 218 219 if (tk->underflow_seen) { 220 if (jiffies - tk->last_warning > WARNING_FREQ) { 221 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 222 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 223 printk_deferred(" Your kernel is probably still fine.\n"); 224 tk->last_warning = jiffies; 225 } 226 tk->underflow_seen = 0; 227 } 228 229 if (tk->overflow_seen) { 230 if (jiffies - tk->last_warning > WARNING_FREQ) { 231 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 232 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 233 printk_deferred(" Your kernel is probably still fine.\n"); 234 tk->last_warning = jiffies; 235 } 236 tk->overflow_seen = 0; 237 } 238 } 239 240 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles); 241 242 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 243 { 244 struct timekeeper *tk = &tk_core.timekeeper; 245 u64 now, last, mask, max, delta; 246 unsigned int seq; 247 248 /* 249 * Since we're called holding a seqcount, the data may shift 250 * under us while we're doing the calculation. This can cause 251 * false positives, since we'd note a problem but throw the 252 * results away. So nest another seqcount here to atomically 253 * grab the points we are checking with. 254 */ 255 do { 256 seq = read_seqcount_begin(&tk_core.seq); 257 now = tk_clock_read(tkr); 258 last = tkr->cycle_last; 259 mask = tkr->mask; 260 max = tkr->clock->max_cycles; 261 } while (read_seqcount_retry(&tk_core.seq, seq)); 262 263 delta = clocksource_delta(now, last, mask); 264 265 /* 266 * Try to catch underflows by checking if we are seeing small 267 * mask-relative negative values. 268 */ 269 if (unlikely((~delta & mask) < (mask >> 3))) 270 tk->underflow_seen = 1; 271 272 /* Check for multiplication overflows */ 273 if (unlikely(delta > max)) 274 tk->overflow_seen = 1; 275 276 /* timekeeping_cycles_to_ns() handles both under and overflow */ 277 return timekeeping_cycles_to_ns(tkr, now); 278 } 279 #else 280 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 281 { 282 } 283 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 284 { 285 BUG(); 286 } 287 #endif 288 289 /** 290 * tk_setup_internals - Set up internals to use clocksource clock. 291 * 292 * @tk: The target timekeeper to setup. 293 * @clock: Pointer to clocksource. 294 * 295 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 296 * pair and interval request. 297 * 298 * Unless you're the timekeeping code, you should not be using this! 299 */ 300 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 301 { 302 u64 interval; 303 u64 tmp, ntpinterval; 304 struct clocksource *old_clock; 305 306 ++tk->cs_was_changed_seq; 307 old_clock = tk->tkr_mono.clock; 308 tk->tkr_mono.clock = clock; 309 tk->tkr_mono.mask = clock->mask; 310 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 311 312 tk->tkr_raw.clock = clock; 313 tk->tkr_raw.mask = clock->mask; 314 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 315 316 /* Do the ns -> cycle conversion first, using original mult */ 317 tmp = NTP_INTERVAL_LENGTH; 318 tmp <<= clock->shift; 319 ntpinterval = tmp; 320 tmp += clock->mult/2; 321 do_div(tmp, clock->mult); 322 if (tmp == 0) 323 tmp = 1; 324 325 interval = (u64) tmp; 326 tk->cycle_interval = interval; 327 328 /* Go back from cycles -> shifted ns */ 329 tk->xtime_interval = interval * clock->mult; 330 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 331 tk->raw_interval = interval * clock->mult; 332 333 /* if changing clocks, convert xtime_nsec shift units */ 334 if (old_clock) { 335 int shift_change = clock->shift - old_clock->shift; 336 if (shift_change < 0) { 337 tk->tkr_mono.xtime_nsec >>= -shift_change; 338 tk->tkr_raw.xtime_nsec >>= -shift_change; 339 } else { 340 tk->tkr_mono.xtime_nsec <<= shift_change; 341 tk->tkr_raw.xtime_nsec <<= shift_change; 342 } 343 } 344 345 tk->tkr_mono.shift = clock->shift; 346 tk->tkr_raw.shift = clock->shift; 347 348 tk->ntp_error = 0; 349 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 350 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 351 352 /* 353 * The timekeeper keeps its own mult values for the currently 354 * active clocksource. These value will be adjusted via NTP 355 * to counteract clock drifting. 356 */ 357 tk->tkr_mono.mult = clock->mult; 358 tk->tkr_raw.mult = clock->mult; 359 tk->ntp_err_mult = 0; 360 tk->skip_second_overflow = 0; 361 } 362 363 /* Timekeeper helper functions. */ 364 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 365 { 366 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 367 } 368 369 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 370 { 371 /* Calculate the delta since the last update_wall_time() */ 372 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 373 374 /* 375 * This detects both negative motion and the case where the delta 376 * overflows the multiplication with tkr->mult. 377 */ 378 if (unlikely(delta > tkr->clock->max_cycles)) { 379 /* 380 * Handle clocksource inconsistency between CPUs to prevent 381 * time from going backwards by checking for the MSB of the 382 * mask being set in the delta. 383 */ 384 if (delta & ~(mask >> 1)) 385 return tkr->xtime_nsec >> tkr->shift; 386 387 return delta_to_ns_safe(tkr, delta); 388 } 389 390 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 391 } 392 393 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr) 394 { 395 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 396 } 397 398 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 399 { 400 if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING)) 401 return timekeeping_debug_get_ns(tkr); 402 403 return __timekeeping_get_ns(tkr); 404 } 405 406 /** 407 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 408 * @tkr: Timekeeping readout base from which we take the update 409 * @tkf: Pointer to NMI safe timekeeper 410 * 411 * We want to use this from any context including NMI and tracing / 412 * instrumenting the timekeeping code itself. 413 * 414 * Employ the latch technique; see @raw_write_seqcount_latch. 415 * 416 * So if a NMI hits the update of base[0] then it will use base[1] 417 * which is still consistent. In the worst case this can result is a 418 * slightly wrong timestamp (a few nanoseconds). See 419 * @ktime_get_mono_fast_ns. 420 */ 421 static void update_fast_timekeeper(const struct tk_read_base *tkr, 422 struct tk_fast *tkf) 423 { 424 struct tk_read_base *base = tkf->base; 425 426 /* Force readers off to base[1] */ 427 raw_write_seqcount_latch(&tkf->seq); 428 429 /* Update base[0] */ 430 memcpy(base, tkr, sizeof(*base)); 431 432 /* Force readers back to base[0] */ 433 raw_write_seqcount_latch(&tkf->seq); 434 435 /* Update base[1] */ 436 memcpy(base + 1, base, sizeof(*base)); 437 } 438 439 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 440 { 441 struct tk_read_base *tkr; 442 unsigned int seq; 443 u64 now; 444 445 do { 446 seq = raw_read_seqcount_latch(&tkf->seq); 447 tkr = tkf->base + (seq & 0x01); 448 now = ktime_to_ns(tkr->base); 449 now += __timekeeping_get_ns(tkr); 450 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 451 452 return now; 453 } 454 455 /** 456 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 457 * 458 * This timestamp is not guaranteed to be monotonic across an update. 459 * The timestamp is calculated by: 460 * 461 * now = base_mono + clock_delta * slope 462 * 463 * So if the update lowers the slope, readers who are forced to the 464 * not yet updated second array are still using the old steeper slope. 465 * 466 * tmono 467 * ^ 468 * | o n 469 * | o n 470 * | u 471 * | o 472 * |o 473 * |12345678---> reader order 474 * 475 * o = old slope 476 * u = update 477 * n = new slope 478 * 479 * So reader 6 will observe time going backwards versus reader 5. 480 * 481 * While other CPUs are likely to be able to observe that, the only way 482 * for a CPU local observation is when an NMI hits in the middle of 483 * the update. Timestamps taken from that NMI context might be ahead 484 * of the following timestamps. Callers need to be aware of that and 485 * deal with it. 486 */ 487 u64 notrace ktime_get_mono_fast_ns(void) 488 { 489 return __ktime_get_fast_ns(&tk_fast_mono); 490 } 491 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 492 493 /** 494 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 495 * 496 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 497 * conversion factor is not affected by NTP/PTP correction. 498 */ 499 u64 notrace ktime_get_raw_fast_ns(void) 500 { 501 return __ktime_get_fast_ns(&tk_fast_raw); 502 } 503 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 504 505 /** 506 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 507 * 508 * To keep it NMI safe since we're accessing from tracing, we're not using a 509 * separate timekeeper with updates to monotonic clock and boot offset 510 * protected with seqcounts. This has the following minor side effects: 511 * 512 * (1) Its possible that a timestamp be taken after the boot offset is updated 513 * but before the timekeeper is updated. If this happens, the new boot offset 514 * is added to the old timekeeping making the clock appear to update slightly 515 * earlier: 516 * CPU 0 CPU 1 517 * timekeeping_inject_sleeptime64() 518 * __timekeeping_inject_sleeptime(tk, delta); 519 * timestamp(); 520 * timekeeping_update(tk, TK_CLEAR_NTP...); 521 * 522 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 523 * partially updated. Since the tk->offs_boot update is a rare event, this 524 * should be a rare occurrence which postprocessing should be able to handle. 525 * 526 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 527 * apply as well. 528 */ 529 u64 notrace ktime_get_boot_fast_ns(void) 530 { 531 struct timekeeper *tk = &tk_core.timekeeper; 532 533 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 534 } 535 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 536 537 /** 538 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 539 * 540 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 541 * mono time and the TAI offset are not read atomically which may yield wrong 542 * readouts. However, an update of the TAI offset is an rare event e.g., caused 543 * by settime or adjtimex with an offset. The user of this function has to deal 544 * with the possibility of wrong timestamps in post processing. 545 */ 546 u64 notrace ktime_get_tai_fast_ns(void) 547 { 548 struct timekeeper *tk = &tk_core.timekeeper; 549 550 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 551 } 552 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 553 554 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 555 { 556 struct tk_read_base *tkr; 557 u64 basem, baser, delta; 558 unsigned int seq; 559 560 do { 561 seq = raw_read_seqcount_latch(&tkf->seq); 562 tkr = tkf->base + (seq & 0x01); 563 basem = ktime_to_ns(tkr->base); 564 baser = ktime_to_ns(tkr->base_real); 565 delta = __timekeeping_get_ns(tkr); 566 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 567 568 if (mono) 569 *mono = basem + delta; 570 return baser + delta; 571 } 572 573 /** 574 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 575 * 576 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 577 */ 578 u64 ktime_get_real_fast_ns(void) 579 { 580 return __ktime_get_real_fast(&tk_fast_mono, NULL); 581 } 582 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 583 584 /** 585 * ktime_get_fast_timestamps: - NMI safe timestamps 586 * @snapshot: Pointer to timestamp storage 587 * 588 * Stores clock monotonic, boottime and realtime timestamps. 589 * 590 * Boot time is a racy access on 32bit systems if the sleep time injection 591 * happens late during resume and not in timekeeping_resume(). That could 592 * be avoided by expanding struct tk_read_base with boot offset for 32bit 593 * and adding more overhead to the update. As this is a hard to observe 594 * once per resume event which can be filtered with reasonable effort using 595 * the accurate mono/real timestamps, it's probably not worth the trouble. 596 * 597 * Aside of that it might be possible on 32 and 64 bit to observe the 598 * following when the sleep time injection happens late: 599 * 600 * CPU 0 CPU 1 601 * timekeeping_resume() 602 * ktime_get_fast_timestamps() 603 * mono, real = __ktime_get_real_fast() 604 * inject_sleep_time() 605 * update boot offset 606 * boot = mono + bootoffset; 607 * 608 * That means that boot time already has the sleep time adjustment, but 609 * real time does not. On the next readout both are in sync again. 610 * 611 * Preventing this for 64bit is not really feasible without destroying the 612 * careful cache layout of the timekeeper because the sequence count and 613 * struct tk_read_base would then need two cache lines instead of one. 614 * 615 * Access to the time keeper clock source is disabled across the innermost 616 * steps of suspend/resume. The accessors still work, but the timestamps 617 * are frozen until time keeping is resumed which happens very early. 618 * 619 * For regular suspend/resume there is no observable difference vs. sched 620 * clock, but it might affect some of the nasty low level debug printks. 621 * 622 * OTOH, access to sched clock is not guaranteed across suspend/resume on 623 * all systems either so it depends on the hardware in use. 624 * 625 * If that turns out to be a real problem then this could be mitigated by 626 * using sched clock in a similar way as during early boot. But it's not as 627 * trivial as on early boot because it needs some careful protection 628 * against the clock monotonic timestamp jumping backwards on resume. 629 */ 630 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 631 { 632 struct timekeeper *tk = &tk_core.timekeeper; 633 634 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 635 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 636 } 637 638 /** 639 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 640 * @tk: Timekeeper to snapshot. 641 * 642 * It generally is unsafe to access the clocksource after timekeeping has been 643 * suspended, so take a snapshot of the readout base of @tk and use it as the 644 * fast timekeeper's readout base while suspended. It will return the same 645 * number of cycles every time until timekeeping is resumed at which time the 646 * proper readout base for the fast timekeeper will be restored automatically. 647 */ 648 static void halt_fast_timekeeper(const struct timekeeper *tk) 649 { 650 static struct tk_read_base tkr_dummy; 651 const struct tk_read_base *tkr = &tk->tkr_mono; 652 653 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 654 cycles_at_suspend = tk_clock_read(tkr); 655 tkr_dummy.clock = &dummy_clock; 656 tkr_dummy.base_real = tkr->base + tk->offs_real; 657 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 658 659 tkr = &tk->tkr_raw; 660 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 661 tkr_dummy.clock = &dummy_clock; 662 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 663 } 664 665 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 666 667 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 668 { 669 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 670 } 671 672 /** 673 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 674 * @nb: Pointer to the notifier block to register 675 */ 676 int pvclock_gtod_register_notifier(struct notifier_block *nb) 677 { 678 struct timekeeper *tk = &tk_core.timekeeper; 679 unsigned long flags; 680 int ret; 681 682 raw_spin_lock_irqsave(&timekeeper_lock, flags); 683 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 684 update_pvclock_gtod(tk, true); 685 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 686 687 return ret; 688 } 689 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 690 691 /** 692 * pvclock_gtod_unregister_notifier - unregister a pvclock 693 * timedata update listener 694 * @nb: Pointer to the notifier block to unregister 695 */ 696 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 697 { 698 unsigned long flags; 699 int ret; 700 701 raw_spin_lock_irqsave(&timekeeper_lock, flags); 702 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 703 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 704 705 return ret; 706 } 707 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 708 709 /* 710 * tk_update_leap_state - helper to update the next_leap_ktime 711 */ 712 static inline void tk_update_leap_state(struct timekeeper *tk) 713 { 714 tk->next_leap_ktime = ntp_get_next_leap(); 715 if (tk->next_leap_ktime != KTIME_MAX) 716 /* Convert to monotonic time */ 717 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 718 } 719 720 /* 721 * Update the ktime_t based scalar nsec members of the timekeeper 722 */ 723 static inline void tk_update_ktime_data(struct timekeeper *tk) 724 { 725 u64 seconds; 726 u32 nsec; 727 728 /* 729 * The xtime based monotonic readout is: 730 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 731 * The ktime based monotonic readout is: 732 * nsec = base_mono + now(); 733 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 734 */ 735 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 736 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 737 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 738 739 /* 740 * The sum of the nanoseconds portions of xtime and 741 * wall_to_monotonic can be greater/equal one second. Take 742 * this into account before updating tk->ktime_sec. 743 */ 744 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 745 if (nsec >= NSEC_PER_SEC) 746 seconds++; 747 tk->ktime_sec = seconds; 748 749 /* Update the monotonic raw base */ 750 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 751 } 752 753 /* must hold timekeeper_lock */ 754 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 755 { 756 if (action & TK_CLEAR_NTP) { 757 tk->ntp_error = 0; 758 ntp_clear(); 759 } 760 761 tk_update_leap_state(tk); 762 tk_update_ktime_data(tk); 763 764 update_vsyscall(tk); 765 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 766 767 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 768 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 769 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 770 771 if (action & TK_CLOCK_WAS_SET) 772 tk->clock_was_set_seq++; 773 /* 774 * The mirroring of the data to the shadow-timekeeper needs 775 * to happen last here to ensure we don't over-write the 776 * timekeeper structure on the next update with stale data 777 */ 778 if (action & TK_MIRROR) 779 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 780 sizeof(tk_core.timekeeper)); 781 } 782 783 /** 784 * timekeeping_forward_now - update clock to the current time 785 * @tk: Pointer to the timekeeper to update 786 * 787 * Forward the current clock to update its state since the last call to 788 * update_wall_time(). This is useful before significant clock changes, 789 * as it avoids having to deal with this time offset explicitly. 790 */ 791 static void timekeeping_forward_now(struct timekeeper *tk) 792 { 793 u64 cycle_now, delta; 794 795 cycle_now = tk_clock_read(&tk->tkr_mono); 796 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 797 tk->tkr_mono.cycle_last = cycle_now; 798 tk->tkr_raw.cycle_last = cycle_now; 799 800 while (delta > 0) { 801 u64 max = tk->tkr_mono.clock->max_cycles; 802 u64 incr = delta < max ? delta : max; 803 804 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 805 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 806 tk_normalize_xtime(tk); 807 delta -= incr; 808 } 809 } 810 811 /** 812 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 813 * @ts: pointer to the timespec to be set 814 * 815 * Returns the time of day in a timespec64 (WARN if suspended). 816 */ 817 void ktime_get_real_ts64(struct timespec64 *ts) 818 { 819 struct timekeeper *tk = &tk_core.timekeeper; 820 unsigned int seq; 821 u64 nsecs; 822 823 WARN_ON(timekeeping_suspended); 824 825 do { 826 seq = read_seqcount_begin(&tk_core.seq); 827 828 ts->tv_sec = tk->xtime_sec; 829 nsecs = timekeeping_get_ns(&tk->tkr_mono); 830 831 } while (read_seqcount_retry(&tk_core.seq, seq)); 832 833 ts->tv_nsec = 0; 834 timespec64_add_ns(ts, nsecs); 835 } 836 EXPORT_SYMBOL(ktime_get_real_ts64); 837 838 ktime_t ktime_get(void) 839 { 840 struct timekeeper *tk = &tk_core.timekeeper; 841 unsigned int seq; 842 ktime_t base; 843 u64 nsecs; 844 845 WARN_ON(timekeeping_suspended); 846 847 do { 848 seq = read_seqcount_begin(&tk_core.seq); 849 base = tk->tkr_mono.base; 850 nsecs = timekeeping_get_ns(&tk->tkr_mono); 851 852 } while (read_seqcount_retry(&tk_core.seq, seq)); 853 854 return ktime_add_ns(base, nsecs); 855 } 856 EXPORT_SYMBOL_GPL(ktime_get); 857 858 u32 ktime_get_resolution_ns(void) 859 { 860 struct timekeeper *tk = &tk_core.timekeeper; 861 unsigned int seq; 862 u32 nsecs; 863 864 WARN_ON(timekeeping_suspended); 865 866 do { 867 seq = read_seqcount_begin(&tk_core.seq); 868 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 869 } while (read_seqcount_retry(&tk_core.seq, seq)); 870 871 return nsecs; 872 } 873 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 874 875 static ktime_t *offsets[TK_OFFS_MAX] = { 876 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 877 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 878 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 879 }; 880 881 ktime_t ktime_get_with_offset(enum tk_offsets offs) 882 { 883 struct timekeeper *tk = &tk_core.timekeeper; 884 unsigned int seq; 885 ktime_t base, *offset = offsets[offs]; 886 u64 nsecs; 887 888 WARN_ON(timekeeping_suspended); 889 890 do { 891 seq = read_seqcount_begin(&tk_core.seq); 892 base = ktime_add(tk->tkr_mono.base, *offset); 893 nsecs = timekeeping_get_ns(&tk->tkr_mono); 894 895 } while (read_seqcount_retry(&tk_core.seq, seq)); 896 897 return ktime_add_ns(base, nsecs); 898 899 } 900 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 901 902 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 903 { 904 struct timekeeper *tk = &tk_core.timekeeper; 905 unsigned int seq; 906 ktime_t base, *offset = offsets[offs]; 907 u64 nsecs; 908 909 WARN_ON(timekeeping_suspended); 910 911 do { 912 seq = read_seqcount_begin(&tk_core.seq); 913 base = ktime_add(tk->tkr_mono.base, *offset); 914 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 915 916 } while (read_seqcount_retry(&tk_core.seq, seq)); 917 918 return ktime_add_ns(base, nsecs); 919 } 920 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 921 922 /** 923 * ktime_mono_to_any() - convert monotonic time to any other time 924 * @tmono: time to convert. 925 * @offs: which offset to use 926 */ 927 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 928 { 929 ktime_t *offset = offsets[offs]; 930 unsigned int seq; 931 ktime_t tconv; 932 933 do { 934 seq = read_seqcount_begin(&tk_core.seq); 935 tconv = ktime_add(tmono, *offset); 936 } while (read_seqcount_retry(&tk_core.seq, seq)); 937 938 return tconv; 939 } 940 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 941 942 /** 943 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 944 */ 945 ktime_t ktime_get_raw(void) 946 { 947 struct timekeeper *tk = &tk_core.timekeeper; 948 unsigned int seq; 949 ktime_t base; 950 u64 nsecs; 951 952 do { 953 seq = read_seqcount_begin(&tk_core.seq); 954 base = tk->tkr_raw.base; 955 nsecs = timekeeping_get_ns(&tk->tkr_raw); 956 957 } while (read_seqcount_retry(&tk_core.seq, seq)); 958 959 return ktime_add_ns(base, nsecs); 960 } 961 EXPORT_SYMBOL_GPL(ktime_get_raw); 962 963 /** 964 * ktime_get_ts64 - get the monotonic clock in timespec64 format 965 * @ts: pointer to timespec variable 966 * 967 * The function calculates the monotonic clock from the realtime 968 * clock and the wall_to_monotonic offset and stores the result 969 * in normalized timespec64 format in the variable pointed to by @ts. 970 */ 971 void ktime_get_ts64(struct timespec64 *ts) 972 { 973 struct timekeeper *tk = &tk_core.timekeeper; 974 struct timespec64 tomono; 975 unsigned int seq; 976 u64 nsec; 977 978 WARN_ON(timekeeping_suspended); 979 980 do { 981 seq = read_seqcount_begin(&tk_core.seq); 982 ts->tv_sec = tk->xtime_sec; 983 nsec = timekeeping_get_ns(&tk->tkr_mono); 984 tomono = tk->wall_to_monotonic; 985 986 } while (read_seqcount_retry(&tk_core.seq, seq)); 987 988 ts->tv_sec += tomono.tv_sec; 989 ts->tv_nsec = 0; 990 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 991 } 992 EXPORT_SYMBOL_GPL(ktime_get_ts64); 993 994 /** 995 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 996 * 997 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 998 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 999 * works on both 32 and 64 bit systems. On 32 bit systems the readout 1000 * covers ~136 years of uptime which should be enough to prevent 1001 * premature wrap arounds. 1002 */ 1003 time64_t ktime_get_seconds(void) 1004 { 1005 struct timekeeper *tk = &tk_core.timekeeper; 1006 1007 WARN_ON(timekeeping_suspended); 1008 return tk->ktime_sec; 1009 } 1010 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1011 1012 /** 1013 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1014 * 1015 * Returns the wall clock seconds since 1970. 1016 * 1017 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1018 * 32bit systems the access must be protected with the sequence 1019 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1020 * value. 1021 */ 1022 time64_t ktime_get_real_seconds(void) 1023 { 1024 struct timekeeper *tk = &tk_core.timekeeper; 1025 time64_t seconds; 1026 unsigned int seq; 1027 1028 if (IS_ENABLED(CONFIG_64BIT)) 1029 return tk->xtime_sec; 1030 1031 do { 1032 seq = read_seqcount_begin(&tk_core.seq); 1033 seconds = tk->xtime_sec; 1034 1035 } while (read_seqcount_retry(&tk_core.seq, seq)); 1036 1037 return seconds; 1038 } 1039 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1040 1041 /** 1042 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1043 * but without the sequence counter protect. This internal function 1044 * is called just when timekeeping lock is already held. 1045 */ 1046 noinstr time64_t __ktime_get_real_seconds(void) 1047 { 1048 struct timekeeper *tk = &tk_core.timekeeper; 1049 1050 return tk->xtime_sec; 1051 } 1052 1053 /** 1054 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1055 * @systime_snapshot: pointer to struct receiving the system time snapshot 1056 */ 1057 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1058 { 1059 struct timekeeper *tk = &tk_core.timekeeper; 1060 unsigned int seq; 1061 ktime_t base_raw; 1062 ktime_t base_real; 1063 u64 nsec_raw; 1064 u64 nsec_real; 1065 u64 now; 1066 1067 WARN_ON_ONCE(timekeeping_suspended); 1068 1069 do { 1070 seq = read_seqcount_begin(&tk_core.seq); 1071 now = tk_clock_read(&tk->tkr_mono); 1072 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1073 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1074 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1075 base_real = ktime_add(tk->tkr_mono.base, 1076 tk_core.timekeeper.offs_real); 1077 base_raw = tk->tkr_raw.base; 1078 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1079 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1080 } while (read_seqcount_retry(&tk_core.seq, seq)); 1081 1082 systime_snapshot->cycles = now; 1083 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1084 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1085 } 1086 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1087 1088 /* Scale base by mult/div checking for overflow */ 1089 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1090 { 1091 u64 tmp, rem; 1092 1093 tmp = div64_u64_rem(*base, div, &rem); 1094 1095 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1096 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1097 return -EOVERFLOW; 1098 tmp *= mult; 1099 1100 rem = div64_u64(rem * mult, div); 1101 *base = tmp + rem; 1102 return 0; 1103 } 1104 1105 /** 1106 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1107 * @history: Snapshot representing start of history 1108 * @partial_history_cycles: Cycle offset into history (fractional part) 1109 * @total_history_cycles: Total history length in cycles 1110 * @discontinuity: True indicates clock was set on history period 1111 * @ts: Cross timestamp that should be adjusted using 1112 * partial/total ratio 1113 * 1114 * Helper function used by get_device_system_crosststamp() to correct the 1115 * crosstimestamp corresponding to the start of the current interval to the 1116 * system counter value (timestamp point) provided by the driver. The 1117 * total_history_* quantities are the total history starting at the provided 1118 * reference point and ending at the start of the current interval. The cycle 1119 * count between the driver timestamp point and the start of the current 1120 * interval is partial_history_cycles. 1121 */ 1122 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1123 u64 partial_history_cycles, 1124 u64 total_history_cycles, 1125 bool discontinuity, 1126 struct system_device_crosststamp *ts) 1127 { 1128 struct timekeeper *tk = &tk_core.timekeeper; 1129 u64 corr_raw, corr_real; 1130 bool interp_forward; 1131 int ret; 1132 1133 if (total_history_cycles == 0 || partial_history_cycles == 0) 1134 return 0; 1135 1136 /* Interpolate shortest distance from beginning or end of history */ 1137 interp_forward = partial_history_cycles > total_history_cycles / 2; 1138 partial_history_cycles = interp_forward ? 1139 total_history_cycles - partial_history_cycles : 1140 partial_history_cycles; 1141 1142 /* 1143 * Scale the monotonic raw time delta by: 1144 * partial_history_cycles / total_history_cycles 1145 */ 1146 corr_raw = (u64)ktime_to_ns( 1147 ktime_sub(ts->sys_monoraw, history->raw)); 1148 ret = scale64_check_overflow(partial_history_cycles, 1149 total_history_cycles, &corr_raw); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * If there is a discontinuity in the history, scale monotonic raw 1155 * correction by: 1156 * mult(real)/mult(raw) yielding the realtime correction 1157 * Otherwise, calculate the realtime correction similar to monotonic 1158 * raw calculation 1159 */ 1160 if (discontinuity) { 1161 corr_real = mul_u64_u32_div 1162 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1163 } else { 1164 corr_real = (u64)ktime_to_ns( 1165 ktime_sub(ts->sys_realtime, history->real)); 1166 ret = scale64_check_overflow(partial_history_cycles, 1167 total_history_cycles, &corr_real); 1168 if (ret) 1169 return ret; 1170 } 1171 1172 /* Fixup monotonic raw and real time time values */ 1173 if (interp_forward) { 1174 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1175 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1176 } else { 1177 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1178 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1179 } 1180 1181 return 0; 1182 } 1183 1184 /* 1185 * timestamp_in_interval - true if ts is chronologically in [start, end] 1186 * 1187 * True if ts occurs chronologically at or after start, and before or at end. 1188 */ 1189 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1190 { 1191 if (ts >= start && ts <= end) 1192 return true; 1193 if (start > end && (ts >= start || ts <= end)) 1194 return true; 1195 return false; 1196 } 1197 1198 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1199 { 1200 u64 rem, res; 1201 1202 if (!numerator || !denominator) 1203 return false; 1204 1205 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1206 *val = res + div_u64(rem * numerator, denominator); 1207 return true; 1208 } 1209 1210 static bool convert_base_to_cs(struct system_counterval_t *scv) 1211 { 1212 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1213 struct clocksource_base *base; 1214 u32 num, den; 1215 1216 /* The timestamp was taken from the time keeper clock source */ 1217 if (cs->id == scv->cs_id) 1218 return true; 1219 1220 /* 1221 * Check whether cs_id matches the base clock. Prevent the compiler from 1222 * re-evaluating @base as the clocksource might change concurrently. 1223 */ 1224 base = READ_ONCE(cs->base); 1225 if (!base || base->id != scv->cs_id) 1226 return false; 1227 1228 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1229 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1230 1231 if (!convert_clock(&scv->cycles, num, den)) 1232 return false; 1233 1234 scv->cycles += base->offset; 1235 return true; 1236 } 1237 1238 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1239 { 1240 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1241 struct clocksource_base *base; 1242 1243 /* 1244 * Check whether base_id matches the base clock. Prevent the compiler from 1245 * re-evaluating @base as the clocksource might change concurrently. 1246 */ 1247 base = READ_ONCE(cs->base); 1248 if (!base || base->id != base_id) 1249 return false; 1250 1251 *cycles -= base->offset; 1252 if (!convert_clock(cycles, base->denominator, base->numerator)) 1253 return false; 1254 return true; 1255 } 1256 1257 static bool convert_ns_to_cs(u64 *delta) 1258 { 1259 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1260 1261 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1262 return false; 1263 1264 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1265 return true; 1266 } 1267 1268 /** 1269 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1270 * @treal: CLOCK_REALTIME timestamp to convert 1271 * @base_id: base clocksource id 1272 * @cycles: pointer to store the converted base clock timestamp 1273 * 1274 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1275 * 1276 * Return: true if the conversion is successful, false otherwise. 1277 */ 1278 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1279 { 1280 struct timekeeper *tk = &tk_core.timekeeper; 1281 unsigned int seq; 1282 u64 delta; 1283 1284 do { 1285 seq = read_seqcount_begin(&tk_core.seq); 1286 if ((u64)treal < tk->tkr_mono.base_real) 1287 return false; 1288 delta = (u64)treal - tk->tkr_mono.base_real; 1289 if (!convert_ns_to_cs(&delta)) 1290 return false; 1291 *cycles = tk->tkr_mono.cycle_last + delta; 1292 if (!convert_cs_to_base(cycles, base_id)) 1293 return false; 1294 } while (read_seqcount_retry(&tk_core.seq, seq)); 1295 1296 return true; 1297 } 1298 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1299 1300 /** 1301 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1302 * @get_time_fn: Callback to get simultaneous device time and 1303 * system counter from the device driver 1304 * @ctx: Context passed to get_time_fn() 1305 * @history_begin: Historical reference point used to interpolate system 1306 * time when counter provided by the driver is before the current interval 1307 * @xtstamp: Receives simultaneously captured system and device time 1308 * 1309 * Reads a timestamp from a device and correlates it to system time 1310 */ 1311 int get_device_system_crosststamp(int (*get_time_fn) 1312 (ktime_t *device_time, 1313 struct system_counterval_t *sys_counterval, 1314 void *ctx), 1315 void *ctx, 1316 struct system_time_snapshot *history_begin, 1317 struct system_device_crosststamp *xtstamp) 1318 { 1319 struct system_counterval_t system_counterval; 1320 struct timekeeper *tk = &tk_core.timekeeper; 1321 u64 cycles, now, interval_start; 1322 unsigned int clock_was_set_seq = 0; 1323 ktime_t base_real, base_raw; 1324 u64 nsec_real, nsec_raw; 1325 u8 cs_was_changed_seq; 1326 unsigned int seq; 1327 bool do_interp; 1328 int ret; 1329 1330 do { 1331 seq = read_seqcount_begin(&tk_core.seq); 1332 /* 1333 * Try to synchronously capture device time and a system 1334 * counter value calling back into the device driver 1335 */ 1336 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1337 if (ret) 1338 return ret; 1339 1340 /* 1341 * Verify that the clocksource ID associated with the captured 1342 * system counter value is the same as for the currently 1343 * installed timekeeper clocksource 1344 */ 1345 if (system_counterval.cs_id == CSID_GENERIC || 1346 !convert_base_to_cs(&system_counterval)) 1347 return -ENODEV; 1348 cycles = system_counterval.cycles; 1349 1350 /* 1351 * Check whether the system counter value provided by the 1352 * device driver is on the current timekeeping interval. 1353 */ 1354 now = tk_clock_read(&tk->tkr_mono); 1355 interval_start = tk->tkr_mono.cycle_last; 1356 if (!timestamp_in_interval(interval_start, now, cycles)) { 1357 clock_was_set_seq = tk->clock_was_set_seq; 1358 cs_was_changed_seq = tk->cs_was_changed_seq; 1359 cycles = interval_start; 1360 do_interp = true; 1361 } else { 1362 do_interp = false; 1363 } 1364 1365 base_real = ktime_add(tk->tkr_mono.base, 1366 tk_core.timekeeper.offs_real); 1367 base_raw = tk->tkr_raw.base; 1368 1369 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1370 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1371 } while (read_seqcount_retry(&tk_core.seq, seq)); 1372 1373 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1374 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1375 1376 /* 1377 * Interpolate if necessary, adjusting back from the start of the 1378 * current interval 1379 */ 1380 if (do_interp) { 1381 u64 partial_history_cycles, total_history_cycles; 1382 bool discontinuity; 1383 1384 /* 1385 * Check that the counter value is not before the provided 1386 * history reference and that the history doesn't cross a 1387 * clocksource change 1388 */ 1389 if (!history_begin || 1390 !timestamp_in_interval(history_begin->cycles, 1391 cycles, system_counterval.cycles) || 1392 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1393 return -EINVAL; 1394 partial_history_cycles = cycles - system_counterval.cycles; 1395 total_history_cycles = cycles - history_begin->cycles; 1396 discontinuity = 1397 history_begin->clock_was_set_seq != clock_was_set_seq; 1398 1399 ret = adjust_historical_crosststamp(history_begin, 1400 partial_history_cycles, 1401 total_history_cycles, 1402 discontinuity, xtstamp); 1403 if (ret) 1404 return ret; 1405 } 1406 1407 return 0; 1408 } 1409 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1410 1411 /** 1412 * timekeeping_clocksource_has_base - Check whether the current clocksource 1413 * is based on given a base clock 1414 * @id: base clocksource ID 1415 * 1416 * Note: The return value is a snapshot which can become invalid right 1417 * after the function returns. 1418 * 1419 * Return: true if the timekeeper clocksource has a base clock with @id, 1420 * false otherwise 1421 */ 1422 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1423 { 1424 /* 1425 * This is a snapshot, so no point in using the sequence 1426 * count. Just prevent the compiler from re-evaluating @base as the 1427 * clocksource might change concurrently. 1428 */ 1429 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1430 1431 return base ? base->id == id : false; 1432 } 1433 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1434 1435 /** 1436 * do_settimeofday64 - Sets the time of day. 1437 * @ts: pointer to the timespec64 variable containing the new time 1438 * 1439 * Sets the time of day to the new time and update NTP and notify hrtimers 1440 */ 1441 int do_settimeofday64(const struct timespec64 *ts) 1442 { 1443 struct timekeeper *tk = &tk_core.timekeeper; 1444 struct timespec64 ts_delta, xt; 1445 unsigned long flags; 1446 int ret = 0; 1447 1448 if (!timespec64_valid_settod(ts)) 1449 return -EINVAL; 1450 1451 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1452 write_seqcount_begin(&tk_core.seq); 1453 1454 timekeeping_forward_now(tk); 1455 1456 xt = tk_xtime(tk); 1457 ts_delta = timespec64_sub(*ts, xt); 1458 1459 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1460 ret = -EINVAL; 1461 goto out; 1462 } 1463 1464 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1465 1466 tk_set_xtime(tk, ts); 1467 out: 1468 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1469 1470 write_seqcount_end(&tk_core.seq); 1471 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1472 1473 /* Signal hrtimers about time change */ 1474 clock_was_set(CLOCK_SET_WALL); 1475 1476 if (!ret) { 1477 audit_tk_injoffset(ts_delta); 1478 add_device_randomness(ts, sizeof(*ts)); 1479 } 1480 1481 return ret; 1482 } 1483 EXPORT_SYMBOL(do_settimeofday64); 1484 1485 /** 1486 * timekeeping_inject_offset - Adds or subtracts from the current time. 1487 * @ts: Pointer to the timespec variable containing the offset 1488 * 1489 * Adds or subtracts an offset value from the current time. 1490 */ 1491 static int timekeeping_inject_offset(const struct timespec64 *ts) 1492 { 1493 struct timekeeper *tk = &tk_core.timekeeper; 1494 unsigned long flags; 1495 struct timespec64 tmp; 1496 int ret = 0; 1497 1498 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1499 return -EINVAL; 1500 1501 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1502 write_seqcount_begin(&tk_core.seq); 1503 1504 timekeeping_forward_now(tk); 1505 1506 /* Make sure the proposed value is valid */ 1507 tmp = timespec64_add(tk_xtime(tk), *ts); 1508 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1509 !timespec64_valid_settod(&tmp)) { 1510 ret = -EINVAL; 1511 goto error; 1512 } 1513 1514 tk_xtime_add(tk, ts); 1515 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1516 1517 error: /* even if we error out, we forwarded the time, so call update */ 1518 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1519 1520 write_seqcount_end(&tk_core.seq); 1521 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1522 1523 /* Signal hrtimers about time change */ 1524 clock_was_set(CLOCK_SET_WALL); 1525 1526 return ret; 1527 } 1528 1529 /* 1530 * Indicates if there is an offset between the system clock and the hardware 1531 * clock/persistent clock/rtc. 1532 */ 1533 int persistent_clock_is_local; 1534 1535 /* 1536 * Adjust the time obtained from the CMOS to be UTC time instead of 1537 * local time. 1538 * 1539 * This is ugly, but preferable to the alternatives. Otherwise we 1540 * would either need to write a program to do it in /etc/rc (and risk 1541 * confusion if the program gets run more than once; it would also be 1542 * hard to make the program warp the clock precisely n hours) or 1543 * compile in the timezone information into the kernel. Bad, bad.... 1544 * 1545 * - TYT, 1992-01-01 1546 * 1547 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1548 * as real UNIX machines always do it. This avoids all headaches about 1549 * daylight saving times and warping kernel clocks. 1550 */ 1551 void timekeeping_warp_clock(void) 1552 { 1553 if (sys_tz.tz_minuteswest != 0) { 1554 struct timespec64 adjust; 1555 1556 persistent_clock_is_local = 1; 1557 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1558 adjust.tv_nsec = 0; 1559 timekeeping_inject_offset(&adjust); 1560 } 1561 } 1562 1563 /* 1564 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1565 */ 1566 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1567 { 1568 tk->tai_offset = tai_offset; 1569 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1570 } 1571 1572 /* 1573 * change_clocksource - Swaps clocksources if a new one is available 1574 * 1575 * Accumulates current time interval and initializes new clocksource 1576 */ 1577 static int change_clocksource(void *data) 1578 { 1579 struct timekeeper *tk = &tk_core.timekeeper; 1580 struct clocksource *new, *old = NULL; 1581 unsigned long flags; 1582 bool change = false; 1583 1584 new = (struct clocksource *) data; 1585 1586 /* 1587 * If the cs is in module, get a module reference. Succeeds 1588 * for built-in code (owner == NULL) as well. 1589 */ 1590 if (try_module_get(new->owner)) { 1591 if (!new->enable || new->enable(new) == 0) 1592 change = true; 1593 else 1594 module_put(new->owner); 1595 } 1596 1597 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1598 write_seqcount_begin(&tk_core.seq); 1599 1600 timekeeping_forward_now(tk); 1601 1602 if (change) { 1603 old = tk->tkr_mono.clock; 1604 tk_setup_internals(tk, new); 1605 } 1606 1607 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1608 1609 write_seqcount_end(&tk_core.seq); 1610 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1611 1612 if (old) { 1613 if (old->disable) 1614 old->disable(old); 1615 1616 module_put(old->owner); 1617 } 1618 1619 return 0; 1620 } 1621 1622 /** 1623 * timekeeping_notify - Install a new clock source 1624 * @clock: pointer to the clock source 1625 * 1626 * This function is called from clocksource.c after a new, better clock 1627 * source has been registered. The caller holds the clocksource_mutex. 1628 */ 1629 int timekeeping_notify(struct clocksource *clock) 1630 { 1631 struct timekeeper *tk = &tk_core.timekeeper; 1632 1633 if (tk->tkr_mono.clock == clock) 1634 return 0; 1635 stop_machine(change_clocksource, clock, NULL); 1636 tick_clock_notify(); 1637 return tk->tkr_mono.clock == clock ? 0 : -1; 1638 } 1639 1640 /** 1641 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1642 * @ts: pointer to the timespec64 to be set 1643 * 1644 * Returns the raw monotonic time (completely un-modified by ntp) 1645 */ 1646 void ktime_get_raw_ts64(struct timespec64 *ts) 1647 { 1648 struct timekeeper *tk = &tk_core.timekeeper; 1649 unsigned int seq; 1650 u64 nsecs; 1651 1652 do { 1653 seq = read_seqcount_begin(&tk_core.seq); 1654 ts->tv_sec = tk->raw_sec; 1655 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1656 1657 } while (read_seqcount_retry(&tk_core.seq, seq)); 1658 1659 ts->tv_nsec = 0; 1660 timespec64_add_ns(ts, nsecs); 1661 } 1662 EXPORT_SYMBOL(ktime_get_raw_ts64); 1663 1664 1665 /** 1666 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1667 */ 1668 int timekeeping_valid_for_hres(void) 1669 { 1670 struct timekeeper *tk = &tk_core.timekeeper; 1671 unsigned int seq; 1672 int ret; 1673 1674 do { 1675 seq = read_seqcount_begin(&tk_core.seq); 1676 1677 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1678 1679 } while (read_seqcount_retry(&tk_core.seq, seq)); 1680 1681 return ret; 1682 } 1683 1684 /** 1685 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1686 */ 1687 u64 timekeeping_max_deferment(void) 1688 { 1689 struct timekeeper *tk = &tk_core.timekeeper; 1690 unsigned int seq; 1691 u64 ret; 1692 1693 do { 1694 seq = read_seqcount_begin(&tk_core.seq); 1695 1696 ret = tk->tkr_mono.clock->max_idle_ns; 1697 1698 } while (read_seqcount_retry(&tk_core.seq, seq)); 1699 1700 return ret; 1701 } 1702 1703 /** 1704 * read_persistent_clock64 - Return time from the persistent clock. 1705 * @ts: Pointer to the storage for the readout value 1706 * 1707 * Weak dummy function for arches that do not yet support it. 1708 * Reads the time from the battery backed persistent clock. 1709 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1710 * 1711 * XXX - Do be sure to remove it once all arches implement it. 1712 */ 1713 void __weak read_persistent_clock64(struct timespec64 *ts) 1714 { 1715 ts->tv_sec = 0; 1716 ts->tv_nsec = 0; 1717 } 1718 1719 /** 1720 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1721 * from the boot. 1722 * @wall_time: current time as returned by persistent clock 1723 * @boot_offset: offset that is defined as wall_time - boot_time 1724 * 1725 * Weak dummy function for arches that do not yet support it. 1726 * 1727 * The default function calculates offset based on the current value of 1728 * local_clock(). This way architectures that support sched_clock() but don't 1729 * support dedicated boot time clock will provide the best estimate of the 1730 * boot time. 1731 */ 1732 void __weak __init 1733 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1734 struct timespec64 *boot_offset) 1735 { 1736 read_persistent_clock64(wall_time); 1737 *boot_offset = ns_to_timespec64(local_clock()); 1738 } 1739 1740 /* 1741 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1742 * 1743 * The flag starts of false and is only set when a suspend reaches 1744 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1745 * timekeeper clocksource is not stopping across suspend and has been 1746 * used to update sleep time. If the timekeeper clocksource has stopped 1747 * then the flag stays true and is used by the RTC resume code to decide 1748 * whether sleeptime must be injected and if so the flag gets false then. 1749 * 1750 * If a suspend fails before reaching timekeeping_resume() then the flag 1751 * stays false and prevents erroneous sleeptime injection. 1752 */ 1753 static bool suspend_timing_needed; 1754 1755 /* Flag for if there is a persistent clock on this platform */ 1756 static bool persistent_clock_exists; 1757 1758 /* 1759 * timekeeping_init - Initializes the clocksource and common timekeeping values 1760 */ 1761 void __init timekeeping_init(void) 1762 { 1763 struct timespec64 wall_time, boot_offset, wall_to_mono; 1764 struct timekeeper *tk = &tk_core.timekeeper; 1765 struct clocksource *clock; 1766 unsigned long flags; 1767 1768 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1769 if (timespec64_valid_settod(&wall_time) && 1770 timespec64_to_ns(&wall_time) > 0) { 1771 persistent_clock_exists = true; 1772 } else if (timespec64_to_ns(&wall_time) != 0) { 1773 pr_warn("Persistent clock returned invalid value"); 1774 wall_time = (struct timespec64){0}; 1775 } 1776 1777 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1778 boot_offset = (struct timespec64){0}; 1779 1780 /* 1781 * We want set wall_to_mono, so the following is true: 1782 * wall time + wall_to_mono = boot time 1783 */ 1784 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1785 1786 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1787 write_seqcount_begin(&tk_core.seq); 1788 ntp_init(); 1789 1790 clock = clocksource_default_clock(); 1791 if (clock->enable) 1792 clock->enable(clock); 1793 tk_setup_internals(tk, clock); 1794 1795 tk_set_xtime(tk, &wall_time); 1796 tk->raw_sec = 0; 1797 1798 tk_set_wall_to_mono(tk, wall_to_mono); 1799 1800 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1801 1802 write_seqcount_end(&tk_core.seq); 1803 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1804 } 1805 1806 /* time in seconds when suspend began for persistent clock */ 1807 static struct timespec64 timekeeping_suspend_time; 1808 1809 /** 1810 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1811 * @tk: Pointer to the timekeeper to be updated 1812 * @delta: Pointer to the delta value in timespec64 format 1813 * 1814 * Takes a timespec offset measuring a suspend interval and properly 1815 * adds the sleep offset to the timekeeping variables. 1816 */ 1817 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1818 const struct timespec64 *delta) 1819 { 1820 if (!timespec64_valid_strict(delta)) { 1821 printk_deferred(KERN_WARNING 1822 "__timekeeping_inject_sleeptime: Invalid " 1823 "sleep delta value!\n"); 1824 return; 1825 } 1826 tk_xtime_add(tk, delta); 1827 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1828 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1829 tk_debug_account_sleep_time(delta); 1830 } 1831 1832 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1833 /* 1834 * We have three kinds of time sources to use for sleep time 1835 * injection, the preference order is: 1836 * 1) non-stop clocksource 1837 * 2) persistent clock (ie: RTC accessible when irqs are off) 1838 * 3) RTC 1839 * 1840 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1841 * If system has neither 1) nor 2), 3) will be used finally. 1842 * 1843 * 1844 * If timekeeping has injected sleeptime via either 1) or 2), 1845 * 3) becomes needless, so in this case we don't need to call 1846 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1847 * means. 1848 */ 1849 bool timekeeping_rtc_skipresume(void) 1850 { 1851 return !suspend_timing_needed; 1852 } 1853 1854 /* 1855 * 1) can be determined whether to use or not only when doing 1856 * timekeeping_resume() which is invoked after rtc_suspend(), 1857 * so we can't skip rtc_suspend() surely if system has 1). 1858 * 1859 * But if system has 2), 2) will definitely be used, so in this 1860 * case we don't need to call rtc_suspend(), and this is what 1861 * timekeeping_rtc_skipsuspend() means. 1862 */ 1863 bool timekeeping_rtc_skipsuspend(void) 1864 { 1865 return persistent_clock_exists; 1866 } 1867 1868 /** 1869 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1870 * @delta: pointer to a timespec64 delta value 1871 * 1872 * This hook is for architectures that cannot support read_persistent_clock64 1873 * because their RTC/persistent clock is only accessible when irqs are enabled. 1874 * and also don't have an effective nonstop clocksource. 1875 * 1876 * This function should only be called by rtc_resume(), and allows 1877 * a suspend offset to be injected into the timekeeping values. 1878 */ 1879 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1880 { 1881 struct timekeeper *tk = &tk_core.timekeeper; 1882 unsigned long flags; 1883 1884 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1885 write_seqcount_begin(&tk_core.seq); 1886 1887 suspend_timing_needed = false; 1888 1889 timekeeping_forward_now(tk); 1890 1891 __timekeeping_inject_sleeptime(tk, delta); 1892 1893 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1894 1895 write_seqcount_end(&tk_core.seq); 1896 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1897 1898 /* Signal hrtimers about time change */ 1899 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1900 } 1901 #endif 1902 1903 /** 1904 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1905 */ 1906 void timekeeping_resume(void) 1907 { 1908 struct timekeeper *tk = &tk_core.timekeeper; 1909 struct clocksource *clock = tk->tkr_mono.clock; 1910 unsigned long flags; 1911 struct timespec64 ts_new, ts_delta; 1912 u64 cycle_now, nsec; 1913 bool inject_sleeptime = false; 1914 1915 read_persistent_clock64(&ts_new); 1916 1917 clockevents_resume(); 1918 clocksource_resume(); 1919 1920 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1921 write_seqcount_begin(&tk_core.seq); 1922 1923 /* 1924 * After system resumes, we need to calculate the suspended time and 1925 * compensate it for the OS time. There are 3 sources that could be 1926 * used: Nonstop clocksource during suspend, persistent clock and rtc 1927 * device. 1928 * 1929 * One specific platform may have 1 or 2 or all of them, and the 1930 * preference will be: 1931 * suspend-nonstop clocksource -> persistent clock -> rtc 1932 * The less preferred source will only be tried if there is no better 1933 * usable source. The rtc part is handled separately in rtc core code. 1934 */ 1935 cycle_now = tk_clock_read(&tk->tkr_mono); 1936 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1937 if (nsec > 0) { 1938 ts_delta = ns_to_timespec64(nsec); 1939 inject_sleeptime = true; 1940 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1941 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1942 inject_sleeptime = true; 1943 } 1944 1945 if (inject_sleeptime) { 1946 suspend_timing_needed = false; 1947 __timekeeping_inject_sleeptime(tk, &ts_delta); 1948 } 1949 1950 /* Re-base the last cycle value */ 1951 tk->tkr_mono.cycle_last = cycle_now; 1952 tk->tkr_raw.cycle_last = cycle_now; 1953 1954 tk->ntp_error = 0; 1955 timekeeping_suspended = 0; 1956 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1957 write_seqcount_end(&tk_core.seq); 1958 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1959 1960 touch_softlockup_watchdog(); 1961 1962 /* Resume the clockevent device(s) and hrtimers */ 1963 tick_resume(); 1964 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1965 timerfd_resume(); 1966 } 1967 1968 int timekeeping_suspend(void) 1969 { 1970 struct timekeeper *tk = &tk_core.timekeeper; 1971 unsigned long flags; 1972 struct timespec64 delta, delta_delta; 1973 static struct timespec64 old_delta; 1974 struct clocksource *curr_clock; 1975 u64 cycle_now; 1976 1977 read_persistent_clock64(&timekeeping_suspend_time); 1978 1979 /* 1980 * On some systems the persistent_clock can not be detected at 1981 * timekeeping_init by its return value, so if we see a valid 1982 * value returned, update the persistent_clock_exists flag. 1983 */ 1984 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1985 persistent_clock_exists = true; 1986 1987 suspend_timing_needed = true; 1988 1989 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1990 write_seqcount_begin(&tk_core.seq); 1991 timekeeping_forward_now(tk); 1992 timekeeping_suspended = 1; 1993 1994 /* 1995 * Since we've called forward_now, cycle_last stores the value 1996 * just read from the current clocksource. Save this to potentially 1997 * use in suspend timing. 1998 */ 1999 curr_clock = tk->tkr_mono.clock; 2000 cycle_now = tk->tkr_mono.cycle_last; 2001 clocksource_start_suspend_timing(curr_clock, cycle_now); 2002 2003 if (persistent_clock_exists) { 2004 /* 2005 * To avoid drift caused by repeated suspend/resumes, 2006 * which each can add ~1 second drift error, 2007 * try to compensate so the difference in system time 2008 * and persistent_clock time stays close to constant. 2009 */ 2010 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 2011 delta_delta = timespec64_sub(delta, old_delta); 2012 if (abs(delta_delta.tv_sec) >= 2) { 2013 /* 2014 * if delta_delta is too large, assume time correction 2015 * has occurred and set old_delta to the current delta. 2016 */ 2017 old_delta = delta; 2018 } else { 2019 /* Otherwise try to adjust old_system to compensate */ 2020 timekeeping_suspend_time = 2021 timespec64_add(timekeeping_suspend_time, delta_delta); 2022 } 2023 } 2024 2025 timekeeping_update(tk, TK_MIRROR); 2026 halt_fast_timekeeper(tk); 2027 write_seqcount_end(&tk_core.seq); 2028 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2029 2030 tick_suspend(); 2031 clocksource_suspend(); 2032 clockevents_suspend(); 2033 2034 return 0; 2035 } 2036 2037 /* sysfs resume/suspend bits for timekeeping */ 2038 static struct syscore_ops timekeeping_syscore_ops = { 2039 .resume = timekeeping_resume, 2040 .suspend = timekeeping_suspend, 2041 }; 2042 2043 static int __init timekeeping_init_ops(void) 2044 { 2045 register_syscore_ops(&timekeeping_syscore_ops); 2046 return 0; 2047 } 2048 device_initcall(timekeeping_init_ops); 2049 2050 /* 2051 * Apply a multiplier adjustment to the timekeeper 2052 */ 2053 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2054 s64 offset, 2055 s32 mult_adj) 2056 { 2057 s64 interval = tk->cycle_interval; 2058 2059 if (mult_adj == 0) { 2060 return; 2061 } else if (mult_adj == -1) { 2062 interval = -interval; 2063 offset = -offset; 2064 } else if (mult_adj != 1) { 2065 interval *= mult_adj; 2066 offset *= mult_adj; 2067 } 2068 2069 /* 2070 * So the following can be confusing. 2071 * 2072 * To keep things simple, lets assume mult_adj == 1 for now. 2073 * 2074 * When mult_adj != 1, remember that the interval and offset values 2075 * have been appropriately scaled so the math is the same. 2076 * 2077 * The basic idea here is that we're increasing the multiplier 2078 * by one, this causes the xtime_interval to be incremented by 2079 * one cycle_interval. This is because: 2080 * xtime_interval = cycle_interval * mult 2081 * So if mult is being incremented by one: 2082 * xtime_interval = cycle_interval * (mult + 1) 2083 * Its the same as: 2084 * xtime_interval = (cycle_interval * mult) + cycle_interval 2085 * Which can be shortened to: 2086 * xtime_interval += cycle_interval 2087 * 2088 * So offset stores the non-accumulated cycles. Thus the current 2089 * time (in shifted nanoseconds) is: 2090 * now = (offset * adj) + xtime_nsec 2091 * Now, even though we're adjusting the clock frequency, we have 2092 * to keep time consistent. In other words, we can't jump back 2093 * in time, and we also want to avoid jumping forward in time. 2094 * 2095 * So given the same offset value, we need the time to be the same 2096 * both before and after the freq adjustment. 2097 * now = (offset * adj_1) + xtime_nsec_1 2098 * now = (offset * adj_2) + xtime_nsec_2 2099 * So: 2100 * (offset * adj_1) + xtime_nsec_1 = 2101 * (offset * adj_2) + xtime_nsec_2 2102 * And we know: 2103 * adj_2 = adj_1 + 1 2104 * So: 2105 * (offset * adj_1) + xtime_nsec_1 = 2106 * (offset * (adj_1+1)) + xtime_nsec_2 2107 * (offset * adj_1) + xtime_nsec_1 = 2108 * (offset * adj_1) + offset + xtime_nsec_2 2109 * Canceling the sides: 2110 * xtime_nsec_1 = offset + xtime_nsec_2 2111 * Which gives us: 2112 * xtime_nsec_2 = xtime_nsec_1 - offset 2113 * Which simplifies to: 2114 * xtime_nsec -= offset 2115 */ 2116 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2117 /* NTP adjustment caused clocksource mult overflow */ 2118 WARN_ON_ONCE(1); 2119 return; 2120 } 2121 2122 tk->tkr_mono.mult += mult_adj; 2123 tk->xtime_interval += interval; 2124 tk->tkr_mono.xtime_nsec -= offset; 2125 } 2126 2127 /* 2128 * Adjust the timekeeper's multiplier to the correct frequency 2129 * and also to reduce the accumulated error value. 2130 */ 2131 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2132 { 2133 u32 mult; 2134 2135 /* 2136 * Determine the multiplier from the current NTP tick length. 2137 * Avoid expensive division when the tick length doesn't change. 2138 */ 2139 if (likely(tk->ntp_tick == ntp_tick_length())) { 2140 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2141 } else { 2142 tk->ntp_tick = ntp_tick_length(); 2143 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2144 tk->xtime_remainder, tk->cycle_interval); 2145 } 2146 2147 /* 2148 * If the clock is behind the NTP time, increase the multiplier by 1 2149 * to catch up with it. If it's ahead and there was a remainder in the 2150 * tick division, the clock will slow down. Otherwise it will stay 2151 * ahead until the tick length changes to a non-divisible value. 2152 */ 2153 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2154 mult += tk->ntp_err_mult; 2155 2156 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2157 2158 if (unlikely(tk->tkr_mono.clock->maxadj && 2159 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2160 > tk->tkr_mono.clock->maxadj))) { 2161 printk_once(KERN_WARNING 2162 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2163 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2164 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2165 } 2166 2167 /* 2168 * It may be possible that when we entered this function, xtime_nsec 2169 * was very small. Further, if we're slightly speeding the clocksource 2170 * in the code above, its possible the required corrective factor to 2171 * xtime_nsec could cause it to underflow. 2172 * 2173 * Now, since we have already accumulated the second and the NTP 2174 * subsystem has been notified via second_overflow(), we need to skip 2175 * the next update. 2176 */ 2177 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2178 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2179 tk->tkr_mono.shift; 2180 tk->xtime_sec--; 2181 tk->skip_second_overflow = 1; 2182 } 2183 } 2184 2185 /* 2186 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2187 * 2188 * Helper function that accumulates the nsecs greater than a second 2189 * from the xtime_nsec field to the xtime_secs field. 2190 * It also calls into the NTP code to handle leapsecond processing. 2191 */ 2192 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2193 { 2194 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2195 unsigned int clock_set = 0; 2196 2197 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2198 int leap; 2199 2200 tk->tkr_mono.xtime_nsec -= nsecps; 2201 tk->xtime_sec++; 2202 2203 /* 2204 * Skip NTP update if this second was accumulated before, 2205 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2206 */ 2207 if (unlikely(tk->skip_second_overflow)) { 2208 tk->skip_second_overflow = 0; 2209 continue; 2210 } 2211 2212 /* Figure out if its a leap sec and apply if needed */ 2213 leap = second_overflow(tk->xtime_sec); 2214 if (unlikely(leap)) { 2215 struct timespec64 ts; 2216 2217 tk->xtime_sec += leap; 2218 2219 ts.tv_sec = leap; 2220 ts.tv_nsec = 0; 2221 tk_set_wall_to_mono(tk, 2222 timespec64_sub(tk->wall_to_monotonic, ts)); 2223 2224 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2225 2226 clock_set = TK_CLOCK_WAS_SET; 2227 } 2228 } 2229 return clock_set; 2230 } 2231 2232 /* 2233 * logarithmic_accumulation - shifted accumulation of cycles 2234 * 2235 * This functions accumulates a shifted interval of cycles into 2236 * a shifted interval nanoseconds. Allows for O(log) accumulation 2237 * loop. 2238 * 2239 * Returns the unconsumed cycles. 2240 */ 2241 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2242 u32 shift, unsigned int *clock_set) 2243 { 2244 u64 interval = tk->cycle_interval << shift; 2245 u64 snsec_per_sec; 2246 2247 /* If the offset is smaller than a shifted interval, do nothing */ 2248 if (offset < interval) 2249 return offset; 2250 2251 /* Accumulate one shifted interval */ 2252 offset -= interval; 2253 tk->tkr_mono.cycle_last += interval; 2254 tk->tkr_raw.cycle_last += interval; 2255 2256 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2257 *clock_set |= accumulate_nsecs_to_secs(tk); 2258 2259 /* Accumulate raw time */ 2260 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2261 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2262 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2263 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2264 tk->raw_sec++; 2265 } 2266 2267 /* Accumulate error between NTP and clock interval */ 2268 tk->ntp_error += tk->ntp_tick << shift; 2269 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2270 (tk->ntp_error_shift + shift); 2271 2272 return offset; 2273 } 2274 2275 /* 2276 * timekeeping_advance - Updates the timekeeper to the current time and 2277 * current NTP tick length 2278 */ 2279 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2280 { 2281 struct timekeeper *real_tk = &tk_core.timekeeper; 2282 struct timekeeper *tk = &shadow_timekeeper; 2283 u64 offset; 2284 int shift = 0, maxshift; 2285 unsigned int clock_set = 0; 2286 unsigned long flags; 2287 2288 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2289 2290 /* Make sure we're fully resumed: */ 2291 if (unlikely(timekeeping_suspended)) 2292 goto out; 2293 2294 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2295 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2296 2297 /* Check if there's really nothing to do */ 2298 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2299 goto out; 2300 2301 /* Do some additional sanity checking */ 2302 timekeeping_check_update(tk, offset); 2303 2304 /* 2305 * With NO_HZ we may have to accumulate many cycle_intervals 2306 * (think "ticks") worth of time at once. To do this efficiently, 2307 * we calculate the largest doubling multiple of cycle_intervals 2308 * that is smaller than the offset. We then accumulate that 2309 * chunk in one go, and then try to consume the next smaller 2310 * doubled multiple. 2311 */ 2312 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2313 shift = max(0, shift); 2314 /* Bound shift to one less than what overflows tick_length */ 2315 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2316 shift = min(shift, maxshift); 2317 while (offset >= tk->cycle_interval) { 2318 offset = logarithmic_accumulation(tk, offset, shift, 2319 &clock_set); 2320 if (offset < tk->cycle_interval<<shift) 2321 shift--; 2322 } 2323 2324 /* Adjust the multiplier to correct NTP error */ 2325 timekeeping_adjust(tk, offset); 2326 2327 /* 2328 * Finally, make sure that after the rounding 2329 * xtime_nsec isn't larger than NSEC_PER_SEC 2330 */ 2331 clock_set |= accumulate_nsecs_to_secs(tk); 2332 2333 write_seqcount_begin(&tk_core.seq); 2334 /* 2335 * Update the real timekeeper. 2336 * 2337 * We could avoid this memcpy by switching pointers, but that 2338 * requires changes to all other timekeeper usage sites as 2339 * well, i.e. move the timekeeper pointer getter into the 2340 * spinlocked/seqcount protected sections. And we trade this 2341 * memcpy under the tk_core.seq against one before we start 2342 * updating. 2343 */ 2344 timekeeping_update(tk, clock_set); 2345 memcpy(real_tk, tk, sizeof(*tk)); 2346 /* The memcpy must come last. Do not put anything here! */ 2347 write_seqcount_end(&tk_core.seq); 2348 out: 2349 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2350 2351 return !!clock_set; 2352 } 2353 2354 /** 2355 * update_wall_time - Uses the current clocksource to increment the wall time 2356 * 2357 */ 2358 void update_wall_time(void) 2359 { 2360 if (timekeeping_advance(TK_ADV_TICK)) 2361 clock_was_set_delayed(); 2362 } 2363 2364 /** 2365 * getboottime64 - Return the real time of system boot. 2366 * @ts: pointer to the timespec64 to be set 2367 * 2368 * Returns the wall-time of boot in a timespec64. 2369 * 2370 * This is based on the wall_to_monotonic offset and the total suspend 2371 * time. Calls to settimeofday will affect the value returned (which 2372 * basically means that however wrong your real time clock is at boot time, 2373 * you get the right time here). 2374 */ 2375 void getboottime64(struct timespec64 *ts) 2376 { 2377 struct timekeeper *tk = &tk_core.timekeeper; 2378 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2379 2380 *ts = ktime_to_timespec64(t); 2381 } 2382 EXPORT_SYMBOL_GPL(getboottime64); 2383 2384 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2385 { 2386 struct timekeeper *tk = &tk_core.timekeeper; 2387 unsigned int seq; 2388 2389 do { 2390 seq = read_seqcount_begin(&tk_core.seq); 2391 2392 *ts = tk_xtime(tk); 2393 } while (read_seqcount_retry(&tk_core.seq, seq)); 2394 } 2395 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2396 2397 void ktime_get_coarse_ts64(struct timespec64 *ts) 2398 { 2399 struct timekeeper *tk = &tk_core.timekeeper; 2400 struct timespec64 now, mono; 2401 unsigned int seq; 2402 2403 do { 2404 seq = read_seqcount_begin(&tk_core.seq); 2405 2406 now = tk_xtime(tk); 2407 mono = tk->wall_to_monotonic; 2408 } while (read_seqcount_retry(&tk_core.seq, seq)); 2409 2410 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2411 now.tv_nsec + mono.tv_nsec); 2412 } 2413 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2414 2415 /* 2416 * Must hold jiffies_lock 2417 */ 2418 void do_timer(unsigned long ticks) 2419 { 2420 jiffies_64 += ticks; 2421 calc_global_load(); 2422 } 2423 2424 /** 2425 * ktime_get_update_offsets_now - hrtimer helper 2426 * @cwsseq: pointer to check and store the clock was set sequence number 2427 * @offs_real: pointer to storage for monotonic -> realtime offset 2428 * @offs_boot: pointer to storage for monotonic -> boottime offset 2429 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2430 * 2431 * Returns current monotonic time and updates the offsets if the 2432 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2433 * different. 2434 * 2435 * Called from hrtimer_interrupt() or retrigger_next_event() 2436 */ 2437 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2438 ktime_t *offs_boot, ktime_t *offs_tai) 2439 { 2440 struct timekeeper *tk = &tk_core.timekeeper; 2441 unsigned int seq; 2442 ktime_t base; 2443 u64 nsecs; 2444 2445 do { 2446 seq = read_seqcount_begin(&tk_core.seq); 2447 2448 base = tk->tkr_mono.base; 2449 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2450 base = ktime_add_ns(base, nsecs); 2451 2452 if (*cwsseq != tk->clock_was_set_seq) { 2453 *cwsseq = tk->clock_was_set_seq; 2454 *offs_real = tk->offs_real; 2455 *offs_boot = tk->offs_boot; 2456 *offs_tai = tk->offs_tai; 2457 } 2458 2459 /* Handle leapsecond insertion adjustments */ 2460 if (unlikely(base >= tk->next_leap_ktime)) 2461 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2462 2463 } while (read_seqcount_retry(&tk_core.seq, seq)); 2464 2465 return base; 2466 } 2467 2468 /* 2469 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2470 */ 2471 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2472 { 2473 if (txc->modes & ADJ_ADJTIME) { 2474 /* singleshot must not be used with any other mode bits */ 2475 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2476 return -EINVAL; 2477 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2478 !capable(CAP_SYS_TIME)) 2479 return -EPERM; 2480 } else { 2481 /* In order to modify anything, you gotta be super-user! */ 2482 if (txc->modes && !capable(CAP_SYS_TIME)) 2483 return -EPERM; 2484 /* 2485 * if the quartz is off by more than 10% then 2486 * something is VERY wrong! 2487 */ 2488 if (txc->modes & ADJ_TICK && 2489 (txc->tick < 900000/USER_HZ || 2490 txc->tick > 1100000/USER_HZ)) 2491 return -EINVAL; 2492 } 2493 2494 if (txc->modes & ADJ_SETOFFSET) { 2495 /* In order to inject time, you gotta be super-user! */ 2496 if (!capable(CAP_SYS_TIME)) 2497 return -EPERM; 2498 2499 /* 2500 * Validate if a timespec/timeval used to inject a time 2501 * offset is valid. Offsets can be positive or negative, so 2502 * we don't check tv_sec. The value of the timeval/timespec 2503 * is the sum of its fields,but *NOTE*: 2504 * The field tv_usec/tv_nsec must always be non-negative and 2505 * we can't have more nanoseconds/microseconds than a second. 2506 */ 2507 if (txc->time.tv_usec < 0) 2508 return -EINVAL; 2509 2510 if (txc->modes & ADJ_NANO) { 2511 if (txc->time.tv_usec >= NSEC_PER_SEC) 2512 return -EINVAL; 2513 } else { 2514 if (txc->time.tv_usec >= USEC_PER_SEC) 2515 return -EINVAL; 2516 } 2517 } 2518 2519 /* 2520 * Check for potential multiplication overflows that can 2521 * only happen on 64-bit systems: 2522 */ 2523 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2524 if (LLONG_MIN / PPM_SCALE > txc->freq) 2525 return -EINVAL; 2526 if (LLONG_MAX / PPM_SCALE < txc->freq) 2527 return -EINVAL; 2528 } 2529 2530 return 0; 2531 } 2532 2533 /** 2534 * random_get_entropy_fallback - Returns the raw clock source value, 2535 * used by random.c for platforms with no valid random_get_entropy(). 2536 */ 2537 unsigned long random_get_entropy_fallback(void) 2538 { 2539 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2540 struct clocksource *clock = READ_ONCE(tkr->clock); 2541 2542 if (unlikely(timekeeping_suspended || !clock)) 2543 return 0; 2544 return clock->read(clock); 2545 } 2546 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2547 2548 /** 2549 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2550 * @txc: Pointer to kernel_timex structure containing NTP parameters 2551 */ 2552 int do_adjtimex(struct __kernel_timex *txc) 2553 { 2554 struct timekeeper *tk = &tk_core.timekeeper; 2555 struct audit_ntp_data ad; 2556 bool clock_set = false; 2557 struct timespec64 ts; 2558 unsigned long flags; 2559 s32 orig_tai, tai; 2560 int ret; 2561 2562 /* Validate the data before disabling interrupts */ 2563 ret = timekeeping_validate_timex(txc); 2564 if (ret) 2565 return ret; 2566 add_device_randomness(txc, sizeof(*txc)); 2567 2568 if (txc->modes & ADJ_SETOFFSET) { 2569 struct timespec64 delta; 2570 delta.tv_sec = txc->time.tv_sec; 2571 delta.tv_nsec = txc->time.tv_usec; 2572 if (!(txc->modes & ADJ_NANO)) 2573 delta.tv_nsec *= 1000; 2574 ret = timekeeping_inject_offset(&delta); 2575 if (ret) 2576 return ret; 2577 2578 audit_tk_injoffset(delta); 2579 } 2580 2581 audit_ntp_init(&ad); 2582 2583 ktime_get_real_ts64(&ts); 2584 add_device_randomness(&ts, sizeof(ts)); 2585 2586 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2587 write_seqcount_begin(&tk_core.seq); 2588 2589 orig_tai = tai = tk->tai_offset; 2590 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2591 2592 if (tai != orig_tai) { 2593 __timekeeping_set_tai_offset(tk, tai); 2594 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2595 clock_set = true; 2596 } 2597 tk_update_leap_state(tk); 2598 2599 write_seqcount_end(&tk_core.seq); 2600 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2601 2602 audit_ntp_log(&ad); 2603 2604 /* Update the multiplier immediately if frequency was set directly */ 2605 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2606 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2607 2608 if (clock_set) 2609 clock_was_set(CLOCK_REALTIME); 2610 2611 ntp_notify_cmos_timer(); 2612 2613 return ret; 2614 } 2615 2616 #ifdef CONFIG_NTP_PPS 2617 /** 2618 * hardpps() - Accessor function to NTP __hardpps function 2619 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2620 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2621 */ 2622 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2623 { 2624 unsigned long flags; 2625 2626 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2627 write_seqcount_begin(&tk_core.seq); 2628 2629 __hardpps(phase_ts, raw_ts); 2630 2631 write_seqcount_end(&tk_core.seq); 2632 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2633 } 2634 EXPORT_SYMBOL(hardpps); 2635 #endif /* CONFIG_NTP_PPS */ 2636