1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 enum timekeeping_adv_mode { 37 /* Update timekeeper when a tick has passed */ 38 TK_ADV_TICK, 39 40 /* Update timekeeper on a direct frequency change */ 41 TK_ADV_FREQ 42 }; 43 44 DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 static struct { 51 seqcount_raw_spinlock_t seq; 52 struct timekeeper timekeeper; 53 } tk_core ____cacheline_aligned = { 54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 55 }; 56 57 static struct timekeeper shadow_timekeeper; 58 59 /* flag for if timekeeping is suspended */ 60 int __read_mostly timekeeping_suspended; 61 62 /** 63 * struct tk_fast - NMI safe timekeeper 64 * @seq: Sequence counter for protecting updates. The lowest bit 65 * is the index for the tk_read_base array 66 * @base: tk_read_base array. Access is indexed by the lowest bit of 67 * @seq. 68 * 69 * See @update_fast_timekeeper() below. 70 */ 71 struct tk_fast { 72 seqcount_latch_t seq; 73 struct tk_read_base base[2]; 74 }; 75 76 /* Suspend-time cycles value for halted fast timekeeper. */ 77 static u64 cycles_at_suspend; 78 79 static u64 dummy_clock_read(struct clocksource *cs) 80 { 81 if (timekeeping_suspended) 82 return cycles_at_suspend; 83 return local_clock(); 84 } 85 86 static struct clocksource dummy_clock = { 87 .read = dummy_clock_read, 88 }; 89 90 /* 91 * Boot time initialization which allows local_clock() to be utilized 92 * during early boot when clocksources are not available. local_clock() 93 * returns nanoseconds already so no conversion is required, hence mult=1 94 * and shift=0. When the first proper clocksource is installed then 95 * the fast time keepers are updated with the correct values. 96 */ 97 #define FAST_TK_INIT \ 98 { \ 99 .clock = &dummy_clock, \ 100 .mask = CLOCKSOURCE_MASK(64), \ 101 .mult = 1, \ 102 .shift = 0, \ 103 } 104 105 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 107 .base[0] = FAST_TK_INIT, 108 .base[1] = FAST_TK_INIT, 109 }; 110 111 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 113 .base[0] = FAST_TK_INIT, 114 .base[1] = FAST_TK_INIT, 115 }; 116 117 static inline void tk_normalize_xtime(struct timekeeper *tk) 118 { 119 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 120 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 121 tk->xtime_sec++; 122 } 123 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 124 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 125 tk->raw_sec++; 126 } 127 } 128 129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 130 { 131 struct timespec64 ts; 132 133 ts.tv_sec = tk->xtime_sec; 134 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 135 return ts; 136 } 137 138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 139 { 140 tk->xtime_sec = ts->tv_sec; 141 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 142 } 143 144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 145 { 146 tk->xtime_sec += ts->tv_sec; 147 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 148 tk_normalize_xtime(tk); 149 } 150 151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 152 { 153 struct timespec64 tmp; 154 155 /* 156 * Verify consistency of: offset_real = -wall_to_monotonic 157 * before modifying anything 158 */ 159 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 160 -tk->wall_to_monotonic.tv_nsec); 161 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 162 tk->wall_to_monotonic = wtm; 163 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 164 tk->offs_real = timespec64_to_ktime(tmp); 165 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 166 } 167 168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 169 { 170 tk->offs_boot = ktime_add(tk->offs_boot, delta); 171 /* 172 * Timespec representation for VDSO update to avoid 64bit division 173 * on every update. 174 */ 175 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 176 } 177 178 /* 179 * tk_clock_read - atomic clocksource read() helper 180 * 181 * This helper is necessary to use in the read paths because, while the 182 * seqcount ensures we don't return a bad value while structures are updated, 183 * it doesn't protect from potential crashes. There is the possibility that 184 * the tkr's clocksource may change between the read reference, and the 185 * clock reference passed to the read function. This can cause crashes if 186 * the wrong clocksource is passed to the wrong read function. 187 * This isn't necessary to use when holding the timekeeper_lock or doing 188 * a read of the fast-timekeeper tkrs (which is protected by its own locking 189 * and update logic). 190 */ 191 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 192 { 193 struct clocksource *clock = READ_ONCE(tkr->clock); 194 195 return clock->read(clock); 196 } 197 198 #ifdef CONFIG_DEBUG_TIMEKEEPING 199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 200 201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 202 { 203 204 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 205 const char *name = tk->tkr_mono.clock->name; 206 207 if (offset > max_cycles) { 208 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 209 offset, name, max_cycles); 210 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 211 } else { 212 if (offset > (max_cycles >> 1)) { 213 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 214 offset, name, max_cycles >> 1); 215 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 216 } 217 } 218 219 if (tk->underflow_seen) { 220 if (jiffies - tk->last_warning > WARNING_FREQ) { 221 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 222 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 223 printk_deferred(" Your kernel is probably still fine.\n"); 224 tk->last_warning = jiffies; 225 } 226 tk->underflow_seen = 0; 227 } 228 229 if (tk->overflow_seen) { 230 if (jiffies - tk->last_warning > WARNING_FREQ) { 231 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 232 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 233 printk_deferred(" Your kernel is probably still fine.\n"); 234 tk->last_warning = jiffies; 235 } 236 tk->overflow_seen = 0; 237 } 238 } 239 240 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles); 241 242 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 243 { 244 struct timekeeper *tk = &tk_core.timekeeper; 245 u64 now, last, mask, max, delta; 246 unsigned int seq; 247 248 /* 249 * Since we're called holding a seqcount, the data may shift 250 * under us while we're doing the calculation. This can cause 251 * false positives, since we'd note a problem but throw the 252 * results away. So nest another seqcount here to atomically 253 * grab the points we are checking with. 254 */ 255 do { 256 seq = read_seqcount_begin(&tk_core.seq); 257 now = tk_clock_read(tkr); 258 last = tkr->cycle_last; 259 mask = tkr->mask; 260 max = tkr->clock->max_cycles; 261 } while (read_seqcount_retry(&tk_core.seq, seq)); 262 263 delta = clocksource_delta(now, last, mask); 264 265 /* 266 * Try to catch underflows by checking if we are seeing small 267 * mask-relative negative values. 268 */ 269 if (unlikely((~delta & mask) < (mask >> 3))) 270 tk->underflow_seen = 1; 271 272 /* Check for multiplication overflows */ 273 if (unlikely(delta > max)) 274 tk->overflow_seen = 1; 275 276 /* timekeeping_cycles_to_ns() handles both under and overflow */ 277 return timekeeping_cycles_to_ns(tkr, now); 278 } 279 #else 280 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 281 { 282 } 283 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 284 { 285 BUG(); 286 } 287 #endif 288 289 /** 290 * tk_setup_internals - Set up internals to use clocksource clock. 291 * 292 * @tk: The target timekeeper to setup. 293 * @clock: Pointer to clocksource. 294 * 295 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 296 * pair and interval request. 297 * 298 * Unless you're the timekeeping code, you should not be using this! 299 */ 300 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 301 { 302 u64 interval; 303 u64 tmp, ntpinterval; 304 struct clocksource *old_clock; 305 306 ++tk->cs_was_changed_seq; 307 old_clock = tk->tkr_mono.clock; 308 tk->tkr_mono.clock = clock; 309 tk->tkr_mono.mask = clock->mask; 310 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 311 312 tk->tkr_raw.clock = clock; 313 tk->tkr_raw.mask = clock->mask; 314 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 315 316 /* Do the ns -> cycle conversion first, using original mult */ 317 tmp = NTP_INTERVAL_LENGTH; 318 tmp <<= clock->shift; 319 ntpinterval = tmp; 320 tmp += clock->mult/2; 321 do_div(tmp, clock->mult); 322 if (tmp == 0) 323 tmp = 1; 324 325 interval = (u64) tmp; 326 tk->cycle_interval = interval; 327 328 /* Go back from cycles -> shifted ns */ 329 tk->xtime_interval = interval * clock->mult; 330 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 331 tk->raw_interval = interval * clock->mult; 332 333 /* if changing clocks, convert xtime_nsec shift units */ 334 if (old_clock) { 335 int shift_change = clock->shift - old_clock->shift; 336 if (shift_change < 0) { 337 tk->tkr_mono.xtime_nsec >>= -shift_change; 338 tk->tkr_raw.xtime_nsec >>= -shift_change; 339 } else { 340 tk->tkr_mono.xtime_nsec <<= shift_change; 341 tk->tkr_raw.xtime_nsec <<= shift_change; 342 } 343 } 344 345 tk->tkr_mono.shift = clock->shift; 346 tk->tkr_raw.shift = clock->shift; 347 348 tk->ntp_error = 0; 349 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 350 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 351 352 /* 353 * The timekeeper keeps its own mult values for the currently 354 * active clocksource. These value will be adjusted via NTP 355 * to counteract clock drifting. 356 */ 357 tk->tkr_mono.mult = clock->mult; 358 tk->tkr_raw.mult = clock->mult; 359 tk->ntp_err_mult = 0; 360 tk->skip_second_overflow = 0; 361 } 362 363 /* Timekeeper helper functions. */ 364 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 365 { 366 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 367 } 368 369 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 370 { 371 /* Calculate the delta since the last update_wall_time() */ 372 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 373 374 /* 375 * This detects both negative motion and the case where the delta 376 * overflows the multiplication with tkr->mult. 377 */ 378 if (unlikely(delta > tkr->clock->max_cycles)) { 379 /* 380 * Handle clocksource inconsistency between CPUs to prevent 381 * time from going backwards by checking for the MSB of the 382 * mask being set in the delta. 383 */ 384 if (delta & ~(mask >> 1)) 385 return tkr->xtime_nsec >> tkr->shift; 386 387 return delta_to_ns_safe(tkr, delta); 388 } 389 390 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 391 } 392 393 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr) 394 { 395 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 396 } 397 398 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 399 { 400 if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING)) 401 return timekeeping_debug_get_ns(tkr); 402 403 return __timekeeping_get_ns(tkr); 404 } 405 406 /** 407 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 408 * @tkr: Timekeeping readout base from which we take the update 409 * @tkf: Pointer to NMI safe timekeeper 410 * 411 * We want to use this from any context including NMI and tracing / 412 * instrumenting the timekeeping code itself. 413 * 414 * Employ the latch technique; see @write_seqcount_latch. 415 * 416 * So if a NMI hits the update of base[0] then it will use base[1] 417 * which is still consistent. In the worst case this can result is a 418 * slightly wrong timestamp (a few nanoseconds). See 419 * @ktime_get_mono_fast_ns. 420 */ 421 static void update_fast_timekeeper(const struct tk_read_base *tkr, 422 struct tk_fast *tkf) 423 { 424 struct tk_read_base *base = tkf->base; 425 426 /* Force readers off to base[1] */ 427 write_seqcount_latch_begin(&tkf->seq); 428 429 /* Update base[0] */ 430 memcpy(base, tkr, sizeof(*base)); 431 432 /* Force readers back to base[0] */ 433 write_seqcount_latch(&tkf->seq); 434 435 /* Update base[1] */ 436 memcpy(base + 1, base, sizeof(*base)); 437 438 write_seqcount_latch_end(&tkf->seq); 439 } 440 441 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 442 { 443 struct tk_read_base *tkr; 444 unsigned int seq; 445 u64 now; 446 447 do { 448 seq = read_seqcount_latch(&tkf->seq); 449 tkr = tkf->base + (seq & 0x01); 450 now = ktime_to_ns(tkr->base); 451 now += __timekeeping_get_ns(tkr); 452 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 453 454 return now; 455 } 456 457 /** 458 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 459 * 460 * This timestamp is not guaranteed to be monotonic across an update. 461 * The timestamp is calculated by: 462 * 463 * now = base_mono + clock_delta * slope 464 * 465 * So if the update lowers the slope, readers who are forced to the 466 * not yet updated second array are still using the old steeper slope. 467 * 468 * tmono 469 * ^ 470 * | o n 471 * | o n 472 * | u 473 * | o 474 * |o 475 * |12345678---> reader order 476 * 477 * o = old slope 478 * u = update 479 * n = new slope 480 * 481 * So reader 6 will observe time going backwards versus reader 5. 482 * 483 * While other CPUs are likely to be able to observe that, the only way 484 * for a CPU local observation is when an NMI hits in the middle of 485 * the update. Timestamps taken from that NMI context might be ahead 486 * of the following timestamps. Callers need to be aware of that and 487 * deal with it. 488 */ 489 u64 notrace ktime_get_mono_fast_ns(void) 490 { 491 return __ktime_get_fast_ns(&tk_fast_mono); 492 } 493 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 494 495 /** 496 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 497 * 498 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 499 * conversion factor is not affected by NTP/PTP correction. 500 */ 501 u64 notrace ktime_get_raw_fast_ns(void) 502 { 503 return __ktime_get_fast_ns(&tk_fast_raw); 504 } 505 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 506 507 /** 508 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 509 * 510 * To keep it NMI safe since we're accessing from tracing, we're not using a 511 * separate timekeeper with updates to monotonic clock and boot offset 512 * protected with seqcounts. This has the following minor side effects: 513 * 514 * (1) Its possible that a timestamp be taken after the boot offset is updated 515 * but before the timekeeper is updated. If this happens, the new boot offset 516 * is added to the old timekeeping making the clock appear to update slightly 517 * earlier: 518 * CPU 0 CPU 1 519 * timekeeping_inject_sleeptime64() 520 * __timekeeping_inject_sleeptime(tk, delta); 521 * timestamp(); 522 * timekeeping_update(tk, TK_CLEAR_NTP...); 523 * 524 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 525 * partially updated. Since the tk->offs_boot update is a rare event, this 526 * should be a rare occurrence which postprocessing should be able to handle. 527 * 528 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 529 * apply as well. 530 */ 531 u64 notrace ktime_get_boot_fast_ns(void) 532 { 533 struct timekeeper *tk = &tk_core.timekeeper; 534 535 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 536 } 537 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 538 539 /** 540 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 541 * 542 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 543 * mono time and the TAI offset are not read atomically which may yield wrong 544 * readouts. However, an update of the TAI offset is an rare event e.g., caused 545 * by settime or adjtimex with an offset. The user of this function has to deal 546 * with the possibility of wrong timestamps in post processing. 547 */ 548 u64 notrace ktime_get_tai_fast_ns(void) 549 { 550 struct timekeeper *tk = &tk_core.timekeeper; 551 552 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 553 } 554 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 555 556 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 557 { 558 struct tk_read_base *tkr; 559 u64 basem, baser, delta; 560 unsigned int seq; 561 562 do { 563 seq = raw_read_seqcount_latch(&tkf->seq); 564 tkr = tkf->base + (seq & 0x01); 565 basem = ktime_to_ns(tkr->base); 566 baser = ktime_to_ns(tkr->base_real); 567 delta = __timekeeping_get_ns(tkr); 568 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 569 570 if (mono) 571 *mono = basem + delta; 572 return baser + delta; 573 } 574 575 /** 576 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 577 * 578 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 579 */ 580 u64 ktime_get_real_fast_ns(void) 581 { 582 return __ktime_get_real_fast(&tk_fast_mono, NULL); 583 } 584 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 585 586 /** 587 * ktime_get_fast_timestamps: - NMI safe timestamps 588 * @snapshot: Pointer to timestamp storage 589 * 590 * Stores clock monotonic, boottime and realtime timestamps. 591 * 592 * Boot time is a racy access on 32bit systems if the sleep time injection 593 * happens late during resume and not in timekeeping_resume(). That could 594 * be avoided by expanding struct tk_read_base with boot offset for 32bit 595 * and adding more overhead to the update. As this is a hard to observe 596 * once per resume event which can be filtered with reasonable effort using 597 * the accurate mono/real timestamps, it's probably not worth the trouble. 598 * 599 * Aside of that it might be possible on 32 and 64 bit to observe the 600 * following when the sleep time injection happens late: 601 * 602 * CPU 0 CPU 1 603 * timekeeping_resume() 604 * ktime_get_fast_timestamps() 605 * mono, real = __ktime_get_real_fast() 606 * inject_sleep_time() 607 * update boot offset 608 * boot = mono + bootoffset; 609 * 610 * That means that boot time already has the sleep time adjustment, but 611 * real time does not. On the next readout both are in sync again. 612 * 613 * Preventing this for 64bit is not really feasible without destroying the 614 * careful cache layout of the timekeeper because the sequence count and 615 * struct tk_read_base would then need two cache lines instead of one. 616 * 617 * Access to the time keeper clock source is disabled across the innermost 618 * steps of suspend/resume. The accessors still work, but the timestamps 619 * are frozen until time keeping is resumed which happens very early. 620 * 621 * For regular suspend/resume there is no observable difference vs. sched 622 * clock, but it might affect some of the nasty low level debug printks. 623 * 624 * OTOH, access to sched clock is not guaranteed across suspend/resume on 625 * all systems either so it depends on the hardware in use. 626 * 627 * If that turns out to be a real problem then this could be mitigated by 628 * using sched clock in a similar way as during early boot. But it's not as 629 * trivial as on early boot because it needs some careful protection 630 * against the clock monotonic timestamp jumping backwards on resume. 631 */ 632 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 633 { 634 struct timekeeper *tk = &tk_core.timekeeper; 635 636 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 637 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 638 } 639 640 /** 641 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 642 * @tk: Timekeeper to snapshot. 643 * 644 * It generally is unsafe to access the clocksource after timekeeping has been 645 * suspended, so take a snapshot of the readout base of @tk and use it as the 646 * fast timekeeper's readout base while suspended. It will return the same 647 * number of cycles every time until timekeeping is resumed at which time the 648 * proper readout base for the fast timekeeper will be restored automatically. 649 */ 650 static void halt_fast_timekeeper(const struct timekeeper *tk) 651 { 652 static struct tk_read_base tkr_dummy; 653 const struct tk_read_base *tkr = &tk->tkr_mono; 654 655 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 656 cycles_at_suspend = tk_clock_read(tkr); 657 tkr_dummy.clock = &dummy_clock; 658 tkr_dummy.base_real = tkr->base + tk->offs_real; 659 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 660 661 tkr = &tk->tkr_raw; 662 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 663 tkr_dummy.clock = &dummy_clock; 664 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 665 } 666 667 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 668 669 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 670 { 671 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 672 } 673 674 /** 675 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 676 * @nb: Pointer to the notifier block to register 677 */ 678 int pvclock_gtod_register_notifier(struct notifier_block *nb) 679 { 680 struct timekeeper *tk = &tk_core.timekeeper; 681 unsigned long flags; 682 int ret; 683 684 raw_spin_lock_irqsave(&timekeeper_lock, flags); 685 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 686 update_pvclock_gtod(tk, true); 687 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 688 689 return ret; 690 } 691 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 692 693 /** 694 * pvclock_gtod_unregister_notifier - unregister a pvclock 695 * timedata update listener 696 * @nb: Pointer to the notifier block to unregister 697 */ 698 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 699 { 700 unsigned long flags; 701 int ret; 702 703 raw_spin_lock_irqsave(&timekeeper_lock, flags); 704 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 705 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 706 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 710 711 /* 712 * tk_update_leap_state - helper to update the next_leap_ktime 713 */ 714 static inline void tk_update_leap_state(struct timekeeper *tk) 715 { 716 tk->next_leap_ktime = ntp_get_next_leap(); 717 if (tk->next_leap_ktime != KTIME_MAX) 718 /* Convert to monotonic time */ 719 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 720 } 721 722 /* 723 * Update the ktime_t based scalar nsec members of the timekeeper 724 */ 725 static inline void tk_update_ktime_data(struct timekeeper *tk) 726 { 727 u64 seconds; 728 u32 nsec; 729 730 /* 731 * The xtime based monotonic readout is: 732 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 733 * The ktime based monotonic readout is: 734 * nsec = base_mono + now(); 735 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 736 */ 737 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 738 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 739 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 740 741 /* 742 * The sum of the nanoseconds portions of xtime and 743 * wall_to_monotonic can be greater/equal one second. Take 744 * this into account before updating tk->ktime_sec. 745 */ 746 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 747 if (nsec >= NSEC_PER_SEC) 748 seconds++; 749 tk->ktime_sec = seconds; 750 751 /* Update the monotonic raw base */ 752 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 753 } 754 755 /* must hold timekeeper_lock */ 756 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 757 { 758 if (action & TK_CLEAR_NTP) { 759 tk->ntp_error = 0; 760 ntp_clear(); 761 } 762 763 tk_update_leap_state(tk); 764 tk_update_ktime_data(tk); 765 766 update_vsyscall(tk); 767 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 768 769 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 770 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 771 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 772 773 if (action & TK_CLOCK_WAS_SET) 774 tk->clock_was_set_seq++; 775 /* 776 * The mirroring of the data to the shadow-timekeeper needs 777 * to happen last here to ensure we don't over-write the 778 * timekeeper structure on the next update with stale data 779 */ 780 if (action & TK_MIRROR) 781 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 782 sizeof(tk_core.timekeeper)); 783 } 784 785 /** 786 * timekeeping_forward_now - update clock to the current time 787 * @tk: Pointer to the timekeeper to update 788 * 789 * Forward the current clock to update its state since the last call to 790 * update_wall_time(). This is useful before significant clock changes, 791 * as it avoids having to deal with this time offset explicitly. 792 */ 793 static void timekeeping_forward_now(struct timekeeper *tk) 794 { 795 u64 cycle_now, delta; 796 797 cycle_now = tk_clock_read(&tk->tkr_mono); 798 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 799 tk->tkr_mono.cycle_last = cycle_now; 800 tk->tkr_raw.cycle_last = cycle_now; 801 802 while (delta > 0) { 803 u64 max = tk->tkr_mono.clock->max_cycles; 804 u64 incr = delta < max ? delta : max; 805 806 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 807 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 808 tk_normalize_xtime(tk); 809 delta -= incr; 810 } 811 } 812 813 /** 814 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 815 * @ts: pointer to the timespec to be set 816 * 817 * Returns the time of day in a timespec64 (WARN if suspended). 818 */ 819 void ktime_get_real_ts64(struct timespec64 *ts) 820 { 821 struct timekeeper *tk = &tk_core.timekeeper; 822 unsigned int seq; 823 u64 nsecs; 824 825 WARN_ON(timekeeping_suspended); 826 827 do { 828 seq = read_seqcount_begin(&tk_core.seq); 829 830 ts->tv_sec = tk->xtime_sec; 831 nsecs = timekeeping_get_ns(&tk->tkr_mono); 832 833 } while (read_seqcount_retry(&tk_core.seq, seq)); 834 835 ts->tv_nsec = 0; 836 timespec64_add_ns(ts, nsecs); 837 } 838 EXPORT_SYMBOL(ktime_get_real_ts64); 839 840 ktime_t ktime_get(void) 841 { 842 struct timekeeper *tk = &tk_core.timekeeper; 843 unsigned int seq; 844 ktime_t base; 845 u64 nsecs; 846 847 WARN_ON(timekeeping_suspended); 848 849 do { 850 seq = read_seqcount_begin(&tk_core.seq); 851 base = tk->tkr_mono.base; 852 nsecs = timekeeping_get_ns(&tk->tkr_mono); 853 854 } while (read_seqcount_retry(&tk_core.seq, seq)); 855 856 return ktime_add_ns(base, nsecs); 857 } 858 EXPORT_SYMBOL_GPL(ktime_get); 859 860 u32 ktime_get_resolution_ns(void) 861 { 862 struct timekeeper *tk = &tk_core.timekeeper; 863 unsigned int seq; 864 u32 nsecs; 865 866 WARN_ON(timekeeping_suspended); 867 868 do { 869 seq = read_seqcount_begin(&tk_core.seq); 870 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 871 } while (read_seqcount_retry(&tk_core.seq, seq)); 872 873 return nsecs; 874 } 875 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 876 877 static ktime_t *offsets[TK_OFFS_MAX] = { 878 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 879 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 880 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 881 }; 882 883 ktime_t ktime_get_with_offset(enum tk_offsets offs) 884 { 885 struct timekeeper *tk = &tk_core.timekeeper; 886 unsigned int seq; 887 ktime_t base, *offset = offsets[offs]; 888 u64 nsecs; 889 890 WARN_ON(timekeeping_suspended); 891 892 do { 893 seq = read_seqcount_begin(&tk_core.seq); 894 base = ktime_add(tk->tkr_mono.base, *offset); 895 nsecs = timekeeping_get_ns(&tk->tkr_mono); 896 897 } while (read_seqcount_retry(&tk_core.seq, seq)); 898 899 return ktime_add_ns(base, nsecs); 900 901 } 902 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 903 904 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 905 { 906 struct timekeeper *tk = &tk_core.timekeeper; 907 unsigned int seq; 908 ktime_t base, *offset = offsets[offs]; 909 u64 nsecs; 910 911 WARN_ON(timekeeping_suspended); 912 913 do { 914 seq = read_seqcount_begin(&tk_core.seq); 915 base = ktime_add(tk->tkr_mono.base, *offset); 916 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 917 918 } while (read_seqcount_retry(&tk_core.seq, seq)); 919 920 return ktime_add_ns(base, nsecs); 921 } 922 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 923 924 /** 925 * ktime_mono_to_any() - convert monotonic time to any other time 926 * @tmono: time to convert. 927 * @offs: which offset to use 928 */ 929 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 930 { 931 ktime_t *offset = offsets[offs]; 932 unsigned int seq; 933 ktime_t tconv; 934 935 do { 936 seq = read_seqcount_begin(&tk_core.seq); 937 tconv = ktime_add(tmono, *offset); 938 } while (read_seqcount_retry(&tk_core.seq, seq)); 939 940 return tconv; 941 } 942 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 943 944 /** 945 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 946 */ 947 ktime_t ktime_get_raw(void) 948 { 949 struct timekeeper *tk = &tk_core.timekeeper; 950 unsigned int seq; 951 ktime_t base; 952 u64 nsecs; 953 954 do { 955 seq = read_seqcount_begin(&tk_core.seq); 956 base = tk->tkr_raw.base; 957 nsecs = timekeeping_get_ns(&tk->tkr_raw); 958 959 } while (read_seqcount_retry(&tk_core.seq, seq)); 960 961 return ktime_add_ns(base, nsecs); 962 } 963 EXPORT_SYMBOL_GPL(ktime_get_raw); 964 965 /** 966 * ktime_get_ts64 - get the monotonic clock in timespec64 format 967 * @ts: pointer to timespec variable 968 * 969 * The function calculates the monotonic clock from the realtime 970 * clock and the wall_to_monotonic offset and stores the result 971 * in normalized timespec64 format in the variable pointed to by @ts. 972 */ 973 void ktime_get_ts64(struct timespec64 *ts) 974 { 975 struct timekeeper *tk = &tk_core.timekeeper; 976 struct timespec64 tomono; 977 unsigned int seq; 978 u64 nsec; 979 980 WARN_ON(timekeeping_suspended); 981 982 do { 983 seq = read_seqcount_begin(&tk_core.seq); 984 ts->tv_sec = tk->xtime_sec; 985 nsec = timekeeping_get_ns(&tk->tkr_mono); 986 tomono = tk->wall_to_monotonic; 987 988 } while (read_seqcount_retry(&tk_core.seq, seq)); 989 990 ts->tv_sec += tomono.tv_sec; 991 ts->tv_nsec = 0; 992 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 993 } 994 EXPORT_SYMBOL_GPL(ktime_get_ts64); 995 996 /** 997 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 998 * 999 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 1000 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 1001 * works on both 32 and 64 bit systems. On 32 bit systems the readout 1002 * covers ~136 years of uptime which should be enough to prevent 1003 * premature wrap arounds. 1004 */ 1005 time64_t ktime_get_seconds(void) 1006 { 1007 struct timekeeper *tk = &tk_core.timekeeper; 1008 1009 WARN_ON(timekeeping_suspended); 1010 return tk->ktime_sec; 1011 } 1012 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1013 1014 /** 1015 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1016 * 1017 * Returns the wall clock seconds since 1970. 1018 * 1019 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1020 * 32bit systems the access must be protected with the sequence 1021 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1022 * value. 1023 */ 1024 time64_t ktime_get_real_seconds(void) 1025 { 1026 struct timekeeper *tk = &tk_core.timekeeper; 1027 time64_t seconds; 1028 unsigned int seq; 1029 1030 if (IS_ENABLED(CONFIG_64BIT)) 1031 return tk->xtime_sec; 1032 1033 do { 1034 seq = read_seqcount_begin(&tk_core.seq); 1035 seconds = tk->xtime_sec; 1036 1037 } while (read_seqcount_retry(&tk_core.seq, seq)); 1038 1039 return seconds; 1040 } 1041 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1042 1043 /** 1044 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1045 * but without the sequence counter protect. This internal function 1046 * is called just when timekeeping lock is already held. 1047 */ 1048 noinstr time64_t __ktime_get_real_seconds(void) 1049 { 1050 struct timekeeper *tk = &tk_core.timekeeper; 1051 1052 return tk->xtime_sec; 1053 } 1054 1055 /** 1056 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1057 * @systime_snapshot: pointer to struct receiving the system time snapshot 1058 */ 1059 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1060 { 1061 struct timekeeper *tk = &tk_core.timekeeper; 1062 unsigned int seq; 1063 ktime_t base_raw; 1064 ktime_t base_real; 1065 u64 nsec_raw; 1066 u64 nsec_real; 1067 u64 now; 1068 1069 WARN_ON_ONCE(timekeeping_suspended); 1070 1071 do { 1072 seq = read_seqcount_begin(&tk_core.seq); 1073 now = tk_clock_read(&tk->tkr_mono); 1074 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1075 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1076 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1077 base_real = ktime_add(tk->tkr_mono.base, 1078 tk_core.timekeeper.offs_real); 1079 base_raw = tk->tkr_raw.base; 1080 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1081 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1082 } while (read_seqcount_retry(&tk_core.seq, seq)); 1083 1084 systime_snapshot->cycles = now; 1085 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1086 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1087 } 1088 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1089 1090 /* Scale base by mult/div checking for overflow */ 1091 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1092 { 1093 u64 tmp, rem; 1094 1095 tmp = div64_u64_rem(*base, div, &rem); 1096 1097 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1098 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1099 return -EOVERFLOW; 1100 tmp *= mult; 1101 1102 rem = div64_u64(rem * mult, div); 1103 *base = tmp + rem; 1104 return 0; 1105 } 1106 1107 /** 1108 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1109 * @history: Snapshot representing start of history 1110 * @partial_history_cycles: Cycle offset into history (fractional part) 1111 * @total_history_cycles: Total history length in cycles 1112 * @discontinuity: True indicates clock was set on history period 1113 * @ts: Cross timestamp that should be adjusted using 1114 * partial/total ratio 1115 * 1116 * Helper function used by get_device_system_crosststamp() to correct the 1117 * crosstimestamp corresponding to the start of the current interval to the 1118 * system counter value (timestamp point) provided by the driver. The 1119 * total_history_* quantities are the total history starting at the provided 1120 * reference point and ending at the start of the current interval. The cycle 1121 * count between the driver timestamp point and the start of the current 1122 * interval is partial_history_cycles. 1123 */ 1124 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1125 u64 partial_history_cycles, 1126 u64 total_history_cycles, 1127 bool discontinuity, 1128 struct system_device_crosststamp *ts) 1129 { 1130 struct timekeeper *tk = &tk_core.timekeeper; 1131 u64 corr_raw, corr_real; 1132 bool interp_forward; 1133 int ret; 1134 1135 if (total_history_cycles == 0 || partial_history_cycles == 0) 1136 return 0; 1137 1138 /* Interpolate shortest distance from beginning or end of history */ 1139 interp_forward = partial_history_cycles > total_history_cycles / 2; 1140 partial_history_cycles = interp_forward ? 1141 total_history_cycles - partial_history_cycles : 1142 partial_history_cycles; 1143 1144 /* 1145 * Scale the monotonic raw time delta by: 1146 * partial_history_cycles / total_history_cycles 1147 */ 1148 corr_raw = (u64)ktime_to_ns( 1149 ktime_sub(ts->sys_monoraw, history->raw)); 1150 ret = scale64_check_overflow(partial_history_cycles, 1151 total_history_cycles, &corr_raw); 1152 if (ret) 1153 return ret; 1154 1155 /* 1156 * If there is a discontinuity in the history, scale monotonic raw 1157 * correction by: 1158 * mult(real)/mult(raw) yielding the realtime correction 1159 * Otherwise, calculate the realtime correction similar to monotonic 1160 * raw calculation 1161 */ 1162 if (discontinuity) { 1163 corr_real = mul_u64_u32_div 1164 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1165 } else { 1166 corr_real = (u64)ktime_to_ns( 1167 ktime_sub(ts->sys_realtime, history->real)); 1168 ret = scale64_check_overflow(partial_history_cycles, 1169 total_history_cycles, &corr_real); 1170 if (ret) 1171 return ret; 1172 } 1173 1174 /* Fixup monotonic raw and real time time values */ 1175 if (interp_forward) { 1176 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1177 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1178 } else { 1179 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1180 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1181 } 1182 1183 return 0; 1184 } 1185 1186 /* 1187 * timestamp_in_interval - true if ts is chronologically in [start, end] 1188 * 1189 * True if ts occurs chronologically at or after start, and before or at end. 1190 */ 1191 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1192 { 1193 if (ts >= start && ts <= end) 1194 return true; 1195 if (start > end && (ts >= start || ts <= end)) 1196 return true; 1197 return false; 1198 } 1199 1200 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1201 { 1202 u64 rem, res; 1203 1204 if (!numerator || !denominator) 1205 return false; 1206 1207 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1208 *val = res + div_u64(rem * numerator, denominator); 1209 return true; 1210 } 1211 1212 static bool convert_base_to_cs(struct system_counterval_t *scv) 1213 { 1214 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1215 struct clocksource_base *base; 1216 u32 num, den; 1217 1218 /* The timestamp was taken from the time keeper clock source */ 1219 if (cs->id == scv->cs_id) 1220 return true; 1221 1222 /* 1223 * Check whether cs_id matches the base clock. Prevent the compiler from 1224 * re-evaluating @base as the clocksource might change concurrently. 1225 */ 1226 base = READ_ONCE(cs->base); 1227 if (!base || base->id != scv->cs_id) 1228 return false; 1229 1230 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1231 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1232 1233 if (!convert_clock(&scv->cycles, num, den)) 1234 return false; 1235 1236 scv->cycles += base->offset; 1237 return true; 1238 } 1239 1240 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1241 { 1242 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1243 struct clocksource_base *base; 1244 1245 /* 1246 * Check whether base_id matches the base clock. Prevent the compiler from 1247 * re-evaluating @base as the clocksource might change concurrently. 1248 */ 1249 base = READ_ONCE(cs->base); 1250 if (!base || base->id != base_id) 1251 return false; 1252 1253 *cycles -= base->offset; 1254 if (!convert_clock(cycles, base->denominator, base->numerator)) 1255 return false; 1256 return true; 1257 } 1258 1259 static bool convert_ns_to_cs(u64 *delta) 1260 { 1261 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1262 1263 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1264 return false; 1265 1266 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1267 return true; 1268 } 1269 1270 /** 1271 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1272 * @treal: CLOCK_REALTIME timestamp to convert 1273 * @base_id: base clocksource id 1274 * @cycles: pointer to store the converted base clock timestamp 1275 * 1276 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1277 * 1278 * Return: true if the conversion is successful, false otherwise. 1279 */ 1280 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1281 { 1282 struct timekeeper *tk = &tk_core.timekeeper; 1283 unsigned int seq; 1284 u64 delta; 1285 1286 do { 1287 seq = read_seqcount_begin(&tk_core.seq); 1288 if ((u64)treal < tk->tkr_mono.base_real) 1289 return false; 1290 delta = (u64)treal - tk->tkr_mono.base_real; 1291 if (!convert_ns_to_cs(&delta)) 1292 return false; 1293 *cycles = tk->tkr_mono.cycle_last + delta; 1294 if (!convert_cs_to_base(cycles, base_id)) 1295 return false; 1296 } while (read_seqcount_retry(&tk_core.seq, seq)); 1297 1298 return true; 1299 } 1300 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1301 1302 /** 1303 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1304 * @get_time_fn: Callback to get simultaneous device time and 1305 * system counter from the device driver 1306 * @ctx: Context passed to get_time_fn() 1307 * @history_begin: Historical reference point used to interpolate system 1308 * time when counter provided by the driver is before the current interval 1309 * @xtstamp: Receives simultaneously captured system and device time 1310 * 1311 * Reads a timestamp from a device and correlates it to system time 1312 */ 1313 int get_device_system_crosststamp(int (*get_time_fn) 1314 (ktime_t *device_time, 1315 struct system_counterval_t *sys_counterval, 1316 void *ctx), 1317 void *ctx, 1318 struct system_time_snapshot *history_begin, 1319 struct system_device_crosststamp *xtstamp) 1320 { 1321 struct system_counterval_t system_counterval; 1322 struct timekeeper *tk = &tk_core.timekeeper; 1323 u64 cycles, now, interval_start; 1324 unsigned int clock_was_set_seq = 0; 1325 ktime_t base_real, base_raw; 1326 u64 nsec_real, nsec_raw; 1327 u8 cs_was_changed_seq; 1328 unsigned int seq; 1329 bool do_interp; 1330 int ret; 1331 1332 do { 1333 seq = read_seqcount_begin(&tk_core.seq); 1334 /* 1335 * Try to synchronously capture device time and a system 1336 * counter value calling back into the device driver 1337 */ 1338 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1339 if (ret) 1340 return ret; 1341 1342 /* 1343 * Verify that the clocksource ID associated with the captured 1344 * system counter value is the same as for the currently 1345 * installed timekeeper clocksource 1346 */ 1347 if (system_counterval.cs_id == CSID_GENERIC || 1348 !convert_base_to_cs(&system_counterval)) 1349 return -ENODEV; 1350 cycles = system_counterval.cycles; 1351 1352 /* 1353 * Check whether the system counter value provided by the 1354 * device driver is on the current timekeeping interval. 1355 */ 1356 now = tk_clock_read(&tk->tkr_mono); 1357 interval_start = tk->tkr_mono.cycle_last; 1358 if (!timestamp_in_interval(interval_start, now, cycles)) { 1359 clock_was_set_seq = tk->clock_was_set_seq; 1360 cs_was_changed_seq = tk->cs_was_changed_seq; 1361 cycles = interval_start; 1362 do_interp = true; 1363 } else { 1364 do_interp = false; 1365 } 1366 1367 base_real = ktime_add(tk->tkr_mono.base, 1368 tk_core.timekeeper.offs_real); 1369 base_raw = tk->tkr_raw.base; 1370 1371 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1372 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1373 } while (read_seqcount_retry(&tk_core.seq, seq)); 1374 1375 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1376 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1377 1378 /* 1379 * Interpolate if necessary, adjusting back from the start of the 1380 * current interval 1381 */ 1382 if (do_interp) { 1383 u64 partial_history_cycles, total_history_cycles; 1384 bool discontinuity; 1385 1386 /* 1387 * Check that the counter value is not before the provided 1388 * history reference and that the history doesn't cross a 1389 * clocksource change 1390 */ 1391 if (!history_begin || 1392 !timestamp_in_interval(history_begin->cycles, 1393 cycles, system_counterval.cycles) || 1394 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1395 return -EINVAL; 1396 partial_history_cycles = cycles - system_counterval.cycles; 1397 total_history_cycles = cycles - history_begin->cycles; 1398 discontinuity = 1399 history_begin->clock_was_set_seq != clock_was_set_seq; 1400 1401 ret = adjust_historical_crosststamp(history_begin, 1402 partial_history_cycles, 1403 total_history_cycles, 1404 discontinuity, xtstamp); 1405 if (ret) 1406 return ret; 1407 } 1408 1409 return 0; 1410 } 1411 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1412 1413 /** 1414 * timekeeping_clocksource_has_base - Check whether the current clocksource 1415 * is based on given a base clock 1416 * @id: base clocksource ID 1417 * 1418 * Note: The return value is a snapshot which can become invalid right 1419 * after the function returns. 1420 * 1421 * Return: true if the timekeeper clocksource has a base clock with @id, 1422 * false otherwise 1423 */ 1424 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1425 { 1426 /* 1427 * This is a snapshot, so no point in using the sequence 1428 * count. Just prevent the compiler from re-evaluating @base as the 1429 * clocksource might change concurrently. 1430 */ 1431 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1432 1433 return base ? base->id == id : false; 1434 } 1435 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1436 1437 /** 1438 * do_settimeofday64 - Sets the time of day. 1439 * @ts: pointer to the timespec64 variable containing the new time 1440 * 1441 * Sets the time of day to the new time and update NTP and notify hrtimers 1442 */ 1443 int do_settimeofday64(const struct timespec64 *ts) 1444 { 1445 struct timekeeper *tk = &tk_core.timekeeper; 1446 struct timespec64 ts_delta, xt; 1447 unsigned long flags; 1448 int ret = 0; 1449 1450 if (!timespec64_valid_settod(ts)) 1451 return -EINVAL; 1452 1453 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1454 write_seqcount_begin(&tk_core.seq); 1455 1456 timekeeping_forward_now(tk); 1457 1458 xt = tk_xtime(tk); 1459 ts_delta = timespec64_sub(*ts, xt); 1460 1461 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1462 ret = -EINVAL; 1463 goto out; 1464 } 1465 1466 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1467 1468 tk_set_xtime(tk, ts); 1469 out: 1470 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1471 1472 write_seqcount_end(&tk_core.seq); 1473 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1474 1475 /* Signal hrtimers about time change */ 1476 clock_was_set(CLOCK_SET_WALL); 1477 1478 if (!ret) { 1479 audit_tk_injoffset(ts_delta); 1480 add_device_randomness(ts, sizeof(*ts)); 1481 } 1482 1483 return ret; 1484 } 1485 EXPORT_SYMBOL(do_settimeofday64); 1486 1487 /** 1488 * timekeeping_inject_offset - Adds or subtracts from the current time. 1489 * @ts: Pointer to the timespec variable containing the offset 1490 * 1491 * Adds or subtracts an offset value from the current time. 1492 */ 1493 static int timekeeping_inject_offset(const struct timespec64 *ts) 1494 { 1495 struct timekeeper *tk = &tk_core.timekeeper; 1496 unsigned long flags; 1497 struct timespec64 tmp; 1498 int ret = 0; 1499 1500 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1501 return -EINVAL; 1502 1503 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1504 write_seqcount_begin(&tk_core.seq); 1505 1506 timekeeping_forward_now(tk); 1507 1508 /* Make sure the proposed value is valid */ 1509 tmp = timespec64_add(tk_xtime(tk), *ts); 1510 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1511 !timespec64_valid_settod(&tmp)) { 1512 ret = -EINVAL; 1513 goto error; 1514 } 1515 1516 tk_xtime_add(tk, ts); 1517 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1518 1519 error: /* even if we error out, we forwarded the time, so call update */ 1520 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1521 1522 write_seqcount_end(&tk_core.seq); 1523 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1524 1525 /* Signal hrtimers about time change */ 1526 clock_was_set(CLOCK_SET_WALL); 1527 1528 return ret; 1529 } 1530 1531 /* 1532 * Indicates if there is an offset between the system clock and the hardware 1533 * clock/persistent clock/rtc. 1534 */ 1535 int persistent_clock_is_local; 1536 1537 /* 1538 * Adjust the time obtained from the CMOS to be UTC time instead of 1539 * local time. 1540 * 1541 * This is ugly, but preferable to the alternatives. Otherwise we 1542 * would either need to write a program to do it in /etc/rc (and risk 1543 * confusion if the program gets run more than once; it would also be 1544 * hard to make the program warp the clock precisely n hours) or 1545 * compile in the timezone information into the kernel. Bad, bad.... 1546 * 1547 * - TYT, 1992-01-01 1548 * 1549 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1550 * as real UNIX machines always do it. This avoids all headaches about 1551 * daylight saving times and warping kernel clocks. 1552 */ 1553 void timekeeping_warp_clock(void) 1554 { 1555 if (sys_tz.tz_minuteswest != 0) { 1556 struct timespec64 adjust; 1557 1558 persistent_clock_is_local = 1; 1559 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1560 adjust.tv_nsec = 0; 1561 timekeeping_inject_offset(&adjust); 1562 } 1563 } 1564 1565 /* 1566 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1567 */ 1568 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1569 { 1570 tk->tai_offset = tai_offset; 1571 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1572 } 1573 1574 /* 1575 * change_clocksource - Swaps clocksources if a new one is available 1576 * 1577 * Accumulates current time interval and initializes new clocksource 1578 */ 1579 static int change_clocksource(void *data) 1580 { 1581 struct timekeeper *tk = &tk_core.timekeeper; 1582 struct clocksource *new, *old = NULL; 1583 unsigned long flags; 1584 bool change = false; 1585 1586 new = (struct clocksource *) data; 1587 1588 /* 1589 * If the cs is in module, get a module reference. Succeeds 1590 * for built-in code (owner == NULL) as well. 1591 */ 1592 if (try_module_get(new->owner)) { 1593 if (!new->enable || new->enable(new) == 0) 1594 change = true; 1595 else 1596 module_put(new->owner); 1597 } 1598 1599 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1600 write_seqcount_begin(&tk_core.seq); 1601 1602 timekeeping_forward_now(tk); 1603 1604 if (change) { 1605 old = tk->tkr_mono.clock; 1606 tk_setup_internals(tk, new); 1607 } 1608 1609 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1610 1611 write_seqcount_end(&tk_core.seq); 1612 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1613 1614 if (old) { 1615 if (old->disable) 1616 old->disable(old); 1617 1618 module_put(old->owner); 1619 } 1620 1621 return 0; 1622 } 1623 1624 /** 1625 * timekeeping_notify - Install a new clock source 1626 * @clock: pointer to the clock source 1627 * 1628 * This function is called from clocksource.c after a new, better clock 1629 * source has been registered. The caller holds the clocksource_mutex. 1630 */ 1631 int timekeeping_notify(struct clocksource *clock) 1632 { 1633 struct timekeeper *tk = &tk_core.timekeeper; 1634 1635 if (tk->tkr_mono.clock == clock) 1636 return 0; 1637 stop_machine(change_clocksource, clock, NULL); 1638 tick_clock_notify(); 1639 return tk->tkr_mono.clock == clock ? 0 : -1; 1640 } 1641 1642 /** 1643 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1644 * @ts: pointer to the timespec64 to be set 1645 * 1646 * Returns the raw monotonic time (completely un-modified by ntp) 1647 */ 1648 void ktime_get_raw_ts64(struct timespec64 *ts) 1649 { 1650 struct timekeeper *tk = &tk_core.timekeeper; 1651 unsigned int seq; 1652 u64 nsecs; 1653 1654 do { 1655 seq = read_seqcount_begin(&tk_core.seq); 1656 ts->tv_sec = tk->raw_sec; 1657 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1658 1659 } while (read_seqcount_retry(&tk_core.seq, seq)); 1660 1661 ts->tv_nsec = 0; 1662 timespec64_add_ns(ts, nsecs); 1663 } 1664 EXPORT_SYMBOL(ktime_get_raw_ts64); 1665 1666 1667 /** 1668 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1669 */ 1670 int timekeeping_valid_for_hres(void) 1671 { 1672 struct timekeeper *tk = &tk_core.timekeeper; 1673 unsigned int seq; 1674 int ret; 1675 1676 do { 1677 seq = read_seqcount_begin(&tk_core.seq); 1678 1679 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1680 1681 } while (read_seqcount_retry(&tk_core.seq, seq)); 1682 1683 return ret; 1684 } 1685 1686 /** 1687 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1688 */ 1689 u64 timekeeping_max_deferment(void) 1690 { 1691 struct timekeeper *tk = &tk_core.timekeeper; 1692 unsigned int seq; 1693 u64 ret; 1694 1695 do { 1696 seq = read_seqcount_begin(&tk_core.seq); 1697 1698 ret = tk->tkr_mono.clock->max_idle_ns; 1699 1700 } while (read_seqcount_retry(&tk_core.seq, seq)); 1701 1702 return ret; 1703 } 1704 1705 /** 1706 * read_persistent_clock64 - Return time from the persistent clock. 1707 * @ts: Pointer to the storage for the readout value 1708 * 1709 * Weak dummy function for arches that do not yet support it. 1710 * Reads the time from the battery backed persistent clock. 1711 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1712 * 1713 * XXX - Do be sure to remove it once all arches implement it. 1714 */ 1715 void __weak read_persistent_clock64(struct timespec64 *ts) 1716 { 1717 ts->tv_sec = 0; 1718 ts->tv_nsec = 0; 1719 } 1720 1721 /** 1722 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1723 * from the boot. 1724 * @wall_time: current time as returned by persistent clock 1725 * @boot_offset: offset that is defined as wall_time - boot_time 1726 * 1727 * Weak dummy function for arches that do not yet support it. 1728 * 1729 * The default function calculates offset based on the current value of 1730 * local_clock(). This way architectures that support sched_clock() but don't 1731 * support dedicated boot time clock will provide the best estimate of the 1732 * boot time. 1733 */ 1734 void __weak __init 1735 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1736 struct timespec64 *boot_offset) 1737 { 1738 read_persistent_clock64(wall_time); 1739 *boot_offset = ns_to_timespec64(local_clock()); 1740 } 1741 1742 /* 1743 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1744 * 1745 * The flag starts of false and is only set when a suspend reaches 1746 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1747 * timekeeper clocksource is not stopping across suspend and has been 1748 * used to update sleep time. If the timekeeper clocksource has stopped 1749 * then the flag stays true and is used by the RTC resume code to decide 1750 * whether sleeptime must be injected and if so the flag gets false then. 1751 * 1752 * If a suspend fails before reaching timekeeping_resume() then the flag 1753 * stays false and prevents erroneous sleeptime injection. 1754 */ 1755 static bool suspend_timing_needed; 1756 1757 /* Flag for if there is a persistent clock on this platform */ 1758 static bool persistent_clock_exists; 1759 1760 /* 1761 * timekeeping_init - Initializes the clocksource and common timekeeping values 1762 */ 1763 void __init timekeeping_init(void) 1764 { 1765 struct timespec64 wall_time, boot_offset, wall_to_mono; 1766 struct timekeeper *tk = &tk_core.timekeeper; 1767 struct clocksource *clock; 1768 unsigned long flags; 1769 1770 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1771 if (timespec64_valid_settod(&wall_time) && 1772 timespec64_to_ns(&wall_time) > 0) { 1773 persistent_clock_exists = true; 1774 } else if (timespec64_to_ns(&wall_time) != 0) { 1775 pr_warn("Persistent clock returned invalid value"); 1776 wall_time = (struct timespec64){0}; 1777 } 1778 1779 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1780 boot_offset = (struct timespec64){0}; 1781 1782 /* 1783 * We want set wall_to_mono, so the following is true: 1784 * wall time + wall_to_mono = boot time 1785 */ 1786 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1787 1788 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1789 write_seqcount_begin(&tk_core.seq); 1790 ntp_init(); 1791 1792 clock = clocksource_default_clock(); 1793 if (clock->enable) 1794 clock->enable(clock); 1795 tk_setup_internals(tk, clock); 1796 1797 tk_set_xtime(tk, &wall_time); 1798 tk->raw_sec = 0; 1799 1800 tk_set_wall_to_mono(tk, wall_to_mono); 1801 1802 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1803 1804 write_seqcount_end(&tk_core.seq); 1805 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1806 } 1807 1808 /* time in seconds when suspend began for persistent clock */ 1809 static struct timespec64 timekeeping_suspend_time; 1810 1811 /** 1812 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1813 * @tk: Pointer to the timekeeper to be updated 1814 * @delta: Pointer to the delta value in timespec64 format 1815 * 1816 * Takes a timespec offset measuring a suspend interval and properly 1817 * adds the sleep offset to the timekeeping variables. 1818 */ 1819 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1820 const struct timespec64 *delta) 1821 { 1822 if (!timespec64_valid_strict(delta)) { 1823 printk_deferred(KERN_WARNING 1824 "__timekeeping_inject_sleeptime: Invalid " 1825 "sleep delta value!\n"); 1826 return; 1827 } 1828 tk_xtime_add(tk, delta); 1829 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1830 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1831 tk_debug_account_sleep_time(delta); 1832 } 1833 1834 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1835 /* 1836 * We have three kinds of time sources to use for sleep time 1837 * injection, the preference order is: 1838 * 1) non-stop clocksource 1839 * 2) persistent clock (ie: RTC accessible when irqs are off) 1840 * 3) RTC 1841 * 1842 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1843 * If system has neither 1) nor 2), 3) will be used finally. 1844 * 1845 * 1846 * If timekeeping has injected sleeptime via either 1) or 2), 1847 * 3) becomes needless, so in this case we don't need to call 1848 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1849 * means. 1850 */ 1851 bool timekeeping_rtc_skipresume(void) 1852 { 1853 return !suspend_timing_needed; 1854 } 1855 1856 /* 1857 * 1) can be determined whether to use or not only when doing 1858 * timekeeping_resume() which is invoked after rtc_suspend(), 1859 * so we can't skip rtc_suspend() surely if system has 1). 1860 * 1861 * But if system has 2), 2) will definitely be used, so in this 1862 * case we don't need to call rtc_suspend(), and this is what 1863 * timekeeping_rtc_skipsuspend() means. 1864 */ 1865 bool timekeeping_rtc_skipsuspend(void) 1866 { 1867 return persistent_clock_exists; 1868 } 1869 1870 /** 1871 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1872 * @delta: pointer to a timespec64 delta value 1873 * 1874 * This hook is for architectures that cannot support read_persistent_clock64 1875 * because their RTC/persistent clock is only accessible when irqs are enabled. 1876 * and also don't have an effective nonstop clocksource. 1877 * 1878 * This function should only be called by rtc_resume(), and allows 1879 * a suspend offset to be injected into the timekeeping values. 1880 */ 1881 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1882 { 1883 struct timekeeper *tk = &tk_core.timekeeper; 1884 unsigned long flags; 1885 1886 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1887 write_seqcount_begin(&tk_core.seq); 1888 1889 suspend_timing_needed = false; 1890 1891 timekeeping_forward_now(tk); 1892 1893 __timekeeping_inject_sleeptime(tk, delta); 1894 1895 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1896 1897 write_seqcount_end(&tk_core.seq); 1898 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1899 1900 /* Signal hrtimers about time change */ 1901 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1902 } 1903 #endif 1904 1905 /** 1906 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1907 */ 1908 void timekeeping_resume(void) 1909 { 1910 struct timekeeper *tk = &tk_core.timekeeper; 1911 struct clocksource *clock = tk->tkr_mono.clock; 1912 unsigned long flags; 1913 struct timespec64 ts_new, ts_delta; 1914 u64 cycle_now, nsec; 1915 bool inject_sleeptime = false; 1916 1917 read_persistent_clock64(&ts_new); 1918 1919 clockevents_resume(); 1920 clocksource_resume(); 1921 1922 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1923 write_seqcount_begin(&tk_core.seq); 1924 1925 /* 1926 * After system resumes, we need to calculate the suspended time and 1927 * compensate it for the OS time. There are 3 sources that could be 1928 * used: Nonstop clocksource during suspend, persistent clock and rtc 1929 * device. 1930 * 1931 * One specific platform may have 1 or 2 or all of them, and the 1932 * preference will be: 1933 * suspend-nonstop clocksource -> persistent clock -> rtc 1934 * The less preferred source will only be tried if there is no better 1935 * usable source. The rtc part is handled separately in rtc core code. 1936 */ 1937 cycle_now = tk_clock_read(&tk->tkr_mono); 1938 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1939 if (nsec > 0) { 1940 ts_delta = ns_to_timespec64(nsec); 1941 inject_sleeptime = true; 1942 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1943 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1944 inject_sleeptime = true; 1945 } 1946 1947 if (inject_sleeptime) { 1948 suspend_timing_needed = false; 1949 __timekeeping_inject_sleeptime(tk, &ts_delta); 1950 } 1951 1952 /* Re-base the last cycle value */ 1953 tk->tkr_mono.cycle_last = cycle_now; 1954 tk->tkr_raw.cycle_last = cycle_now; 1955 1956 tk->ntp_error = 0; 1957 timekeeping_suspended = 0; 1958 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1959 write_seqcount_end(&tk_core.seq); 1960 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1961 1962 touch_softlockup_watchdog(); 1963 1964 /* Resume the clockevent device(s) and hrtimers */ 1965 tick_resume(); 1966 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1967 timerfd_resume(); 1968 } 1969 1970 int timekeeping_suspend(void) 1971 { 1972 struct timekeeper *tk = &tk_core.timekeeper; 1973 unsigned long flags; 1974 struct timespec64 delta, delta_delta; 1975 static struct timespec64 old_delta; 1976 struct clocksource *curr_clock; 1977 u64 cycle_now; 1978 1979 read_persistent_clock64(&timekeeping_suspend_time); 1980 1981 /* 1982 * On some systems the persistent_clock can not be detected at 1983 * timekeeping_init by its return value, so if we see a valid 1984 * value returned, update the persistent_clock_exists flag. 1985 */ 1986 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1987 persistent_clock_exists = true; 1988 1989 suspend_timing_needed = true; 1990 1991 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1992 write_seqcount_begin(&tk_core.seq); 1993 timekeeping_forward_now(tk); 1994 timekeeping_suspended = 1; 1995 1996 /* 1997 * Since we've called forward_now, cycle_last stores the value 1998 * just read from the current clocksource. Save this to potentially 1999 * use in suspend timing. 2000 */ 2001 curr_clock = tk->tkr_mono.clock; 2002 cycle_now = tk->tkr_mono.cycle_last; 2003 clocksource_start_suspend_timing(curr_clock, cycle_now); 2004 2005 if (persistent_clock_exists) { 2006 /* 2007 * To avoid drift caused by repeated suspend/resumes, 2008 * which each can add ~1 second drift error, 2009 * try to compensate so the difference in system time 2010 * and persistent_clock time stays close to constant. 2011 */ 2012 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 2013 delta_delta = timespec64_sub(delta, old_delta); 2014 if (abs(delta_delta.tv_sec) >= 2) { 2015 /* 2016 * if delta_delta is too large, assume time correction 2017 * has occurred and set old_delta to the current delta. 2018 */ 2019 old_delta = delta; 2020 } else { 2021 /* Otherwise try to adjust old_system to compensate */ 2022 timekeeping_suspend_time = 2023 timespec64_add(timekeeping_suspend_time, delta_delta); 2024 } 2025 } 2026 2027 timekeeping_update(tk, TK_MIRROR); 2028 halt_fast_timekeeper(tk); 2029 write_seqcount_end(&tk_core.seq); 2030 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2031 2032 tick_suspend(); 2033 clocksource_suspend(); 2034 clockevents_suspend(); 2035 2036 return 0; 2037 } 2038 2039 /* sysfs resume/suspend bits for timekeeping */ 2040 static struct syscore_ops timekeeping_syscore_ops = { 2041 .resume = timekeeping_resume, 2042 .suspend = timekeeping_suspend, 2043 }; 2044 2045 static int __init timekeeping_init_ops(void) 2046 { 2047 register_syscore_ops(&timekeeping_syscore_ops); 2048 return 0; 2049 } 2050 device_initcall(timekeeping_init_ops); 2051 2052 /* 2053 * Apply a multiplier adjustment to the timekeeper 2054 */ 2055 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2056 s64 offset, 2057 s32 mult_adj) 2058 { 2059 s64 interval = tk->cycle_interval; 2060 2061 if (mult_adj == 0) { 2062 return; 2063 } else if (mult_adj == -1) { 2064 interval = -interval; 2065 offset = -offset; 2066 } else if (mult_adj != 1) { 2067 interval *= mult_adj; 2068 offset *= mult_adj; 2069 } 2070 2071 /* 2072 * So the following can be confusing. 2073 * 2074 * To keep things simple, lets assume mult_adj == 1 for now. 2075 * 2076 * When mult_adj != 1, remember that the interval and offset values 2077 * have been appropriately scaled so the math is the same. 2078 * 2079 * The basic idea here is that we're increasing the multiplier 2080 * by one, this causes the xtime_interval to be incremented by 2081 * one cycle_interval. This is because: 2082 * xtime_interval = cycle_interval * mult 2083 * So if mult is being incremented by one: 2084 * xtime_interval = cycle_interval * (mult + 1) 2085 * Its the same as: 2086 * xtime_interval = (cycle_interval * mult) + cycle_interval 2087 * Which can be shortened to: 2088 * xtime_interval += cycle_interval 2089 * 2090 * So offset stores the non-accumulated cycles. Thus the current 2091 * time (in shifted nanoseconds) is: 2092 * now = (offset * adj) + xtime_nsec 2093 * Now, even though we're adjusting the clock frequency, we have 2094 * to keep time consistent. In other words, we can't jump back 2095 * in time, and we also want to avoid jumping forward in time. 2096 * 2097 * So given the same offset value, we need the time to be the same 2098 * both before and after the freq adjustment. 2099 * now = (offset * adj_1) + xtime_nsec_1 2100 * now = (offset * adj_2) + xtime_nsec_2 2101 * So: 2102 * (offset * adj_1) + xtime_nsec_1 = 2103 * (offset * adj_2) + xtime_nsec_2 2104 * And we know: 2105 * adj_2 = adj_1 + 1 2106 * So: 2107 * (offset * adj_1) + xtime_nsec_1 = 2108 * (offset * (adj_1+1)) + xtime_nsec_2 2109 * (offset * adj_1) + xtime_nsec_1 = 2110 * (offset * adj_1) + offset + xtime_nsec_2 2111 * Canceling the sides: 2112 * xtime_nsec_1 = offset + xtime_nsec_2 2113 * Which gives us: 2114 * xtime_nsec_2 = xtime_nsec_1 - offset 2115 * Which simplifies to: 2116 * xtime_nsec -= offset 2117 */ 2118 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2119 /* NTP adjustment caused clocksource mult overflow */ 2120 WARN_ON_ONCE(1); 2121 return; 2122 } 2123 2124 tk->tkr_mono.mult += mult_adj; 2125 tk->xtime_interval += interval; 2126 tk->tkr_mono.xtime_nsec -= offset; 2127 } 2128 2129 /* 2130 * Adjust the timekeeper's multiplier to the correct frequency 2131 * and also to reduce the accumulated error value. 2132 */ 2133 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2134 { 2135 u32 mult; 2136 2137 /* 2138 * Determine the multiplier from the current NTP tick length. 2139 * Avoid expensive division when the tick length doesn't change. 2140 */ 2141 if (likely(tk->ntp_tick == ntp_tick_length())) { 2142 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2143 } else { 2144 tk->ntp_tick = ntp_tick_length(); 2145 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2146 tk->xtime_remainder, tk->cycle_interval); 2147 } 2148 2149 /* 2150 * If the clock is behind the NTP time, increase the multiplier by 1 2151 * to catch up with it. If it's ahead and there was a remainder in the 2152 * tick division, the clock will slow down. Otherwise it will stay 2153 * ahead until the tick length changes to a non-divisible value. 2154 */ 2155 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2156 mult += tk->ntp_err_mult; 2157 2158 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2159 2160 if (unlikely(tk->tkr_mono.clock->maxadj && 2161 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2162 > tk->tkr_mono.clock->maxadj))) { 2163 printk_once(KERN_WARNING 2164 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2165 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2166 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2167 } 2168 2169 /* 2170 * It may be possible that when we entered this function, xtime_nsec 2171 * was very small. Further, if we're slightly speeding the clocksource 2172 * in the code above, its possible the required corrective factor to 2173 * xtime_nsec could cause it to underflow. 2174 * 2175 * Now, since we have already accumulated the second and the NTP 2176 * subsystem has been notified via second_overflow(), we need to skip 2177 * the next update. 2178 */ 2179 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2180 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2181 tk->tkr_mono.shift; 2182 tk->xtime_sec--; 2183 tk->skip_second_overflow = 1; 2184 } 2185 } 2186 2187 /* 2188 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2189 * 2190 * Helper function that accumulates the nsecs greater than a second 2191 * from the xtime_nsec field to the xtime_secs field. 2192 * It also calls into the NTP code to handle leapsecond processing. 2193 */ 2194 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2195 { 2196 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2197 unsigned int clock_set = 0; 2198 2199 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2200 int leap; 2201 2202 tk->tkr_mono.xtime_nsec -= nsecps; 2203 tk->xtime_sec++; 2204 2205 /* 2206 * Skip NTP update if this second was accumulated before, 2207 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2208 */ 2209 if (unlikely(tk->skip_second_overflow)) { 2210 tk->skip_second_overflow = 0; 2211 continue; 2212 } 2213 2214 /* Figure out if its a leap sec and apply if needed */ 2215 leap = second_overflow(tk->xtime_sec); 2216 if (unlikely(leap)) { 2217 struct timespec64 ts; 2218 2219 tk->xtime_sec += leap; 2220 2221 ts.tv_sec = leap; 2222 ts.tv_nsec = 0; 2223 tk_set_wall_to_mono(tk, 2224 timespec64_sub(tk->wall_to_monotonic, ts)); 2225 2226 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2227 2228 clock_set = TK_CLOCK_WAS_SET; 2229 } 2230 } 2231 return clock_set; 2232 } 2233 2234 /* 2235 * logarithmic_accumulation - shifted accumulation of cycles 2236 * 2237 * This functions accumulates a shifted interval of cycles into 2238 * a shifted interval nanoseconds. Allows for O(log) accumulation 2239 * loop. 2240 * 2241 * Returns the unconsumed cycles. 2242 */ 2243 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2244 u32 shift, unsigned int *clock_set) 2245 { 2246 u64 interval = tk->cycle_interval << shift; 2247 u64 snsec_per_sec; 2248 2249 /* If the offset is smaller than a shifted interval, do nothing */ 2250 if (offset < interval) 2251 return offset; 2252 2253 /* Accumulate one shifted interval */ 2254 offset -= interval; 2255 tk->tkr_mono.cycle_last += interval; 2256 tk->tkr_raw.cycle_last += interval; 2257 2258 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2259 *clock_set |= accumulate_nsecs_to_secs(tk); 2260 2261 /* Accumulate raw time */ 2262 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2263 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2264 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2265 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2266 tk->raw_sec++; 2267 } 2268 2269 /* Accumulate error between NTP and clock interval */ 2270 tk->ntp_error += tk->ntp_tick << shift; 2271 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2272 (tk->ntp_error_shift + shift); 2273 2274 return offset; 2275 } 2276 2277 /* 2278 * timekeeping_advance - Updates the timekeeper to the current time and 2279 * current NTP tick length 2280 */ 2281 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2282 { 2283 struct timekeeper *real_tk = &tk_core.timekeeper; 2284 struct timekeeper *tk = &shadow_timekeeper; 2285 u64 offset; 2286 int shift = 0, maxshift; 2287 unsigned int clock_set = 0; 2288 unsigned long flags; 2289 2290 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2291 2292 /* Make sure we're fully resumed: */ 2293 if (unlikely(timekeeping_suspended)) 2294 goto out; 2295 2296 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2297 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2298 2299 /* Check if there's really nothing to do */ 2300 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2301 goto out; 2302 2303 /* Do some additional sanity checking */ 2304 timekeeping_check_update(tk, offset); 2305 2306 /* 2307 * With NO_HZ we may have to accumulate many cycle_intervals 2308 * (think "ticks") worth of time at once. To do this efficiently, 2309 * we calculate the largest doubling multiple of cycle_intervals 2310 * that is smaller than the offset. We then accumulate that 2311 * chunk in one go, and then try to consume the next smaller 2312 * doubled multiple. 2313 */ 2314 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2315 shift = max(0, shift); 2316 /* Bound shift to one less than what overflows tick_length */ 2317 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2318 shift = min(shift, maxshift); 2319 while (offset >= tk->cycle_interval) { 2320 offset = logarithmic_accumulation(tk, offset, shift, 2321 &clock_set); 2322 if (offset < tk->cycle_interval<<shift) 2323 shift--; 2324 } 2325 2326 /* Adjust the multiplier to correct NTP error */ 2327 timekeeping_adjust(tk, offset); 2328 2329 /* 2330 * Finally, make sure that after the rounding 2331 * xtime_nsec isn't larger than NSEC_PER_SEC 2332 */ 2333 clock_set |= accumulate_nsecs_to_secs(tk); 2334 2335 write_seqcount_begin(&tk_core.seq); 2336 /* 2337 * Update the real timekeeper. 2338 * 2339 * We could avoid this memcpy by switching pointers, but that 2340 * requires changes to all other timekeeper usage sites as 2341 * well, i.e. move the timekeeper pointer getter into the 2342 * spinlocked/seqcount protected sections. And we trade this 2343 * memcpy under the tk_core.seq against one before we start 2344 * updating. 2345 */ 2346 timekeeping_update(tk, clock_set); 2347 memcpy(real_tk, tk, sizeof(*tk)); 2348 /* The memcpy must come last. Do not put anything here! */ 2349 write_seqcount_end(&tk_core.seq); 2350 out: 2351 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2352 2353 return !!clock_set; 2354 } 2355 2356 /** 2357 * update_wall_time - Uses the current clocksource to increment the wall time 2358 * 2359 */ 2360 void update_wall_time(void) 2361 { 2362 if (timekeeping_advance(TK_ADV_TICK)) 2363 clock_was_set_delayed(); 2364 } 2365 2366 /** 2367 * getboottime64 - Return the real time of system boot. 2368 * @ts: pointer to the timespec64 to be set 2369 * 2370 * Returns the wall-time of boot in a timespec64. 2371 * 2372 * This is based on the wall_to_monotonic offset and the total suspend 2373 * time. Calls to settimeofday will affect the value returned (which 2374 * basically means that however wrong your real time clock is at boot time, 2375 * you get the right time here). 2376 */ 2377 void getboottime64(struct timespec64 *ts) 2378 { 2379 struct timekeeper *tk = &tk_core.timekeeper; 2380 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2381 2382 *ts = ktime_to_timespec64(t); 2383 } 2384 EXPORT_SYMBOL_GPL(getboottime64); 2385 2386 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2387 { 2388 struct timekeeper *tk = &tk_core.timekeeper; 2389 unsigned int seq; 2390 2391 do { 2392 seq = read_seqcount_begin(&tk_core.seq); 2393 2394 *ts = tk_xtime(tk); 2395 } while (read_seqcount_retry(&tk_core.seq, seq)); 2396 } 2397 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2398 2399 void ktime_get_coarse_ts64(struct timespec64 *ts) 2400 { 2401 struct timekeeper *tk = &tk_core.timekeeper; 2402 struct timespec64 now, mono; 2403 unsigned int seq; 2404 2405 do { 2406 seq = read_seqcount_begin(&tk_core.seq); 2407 2408 now = tk_xtime(tk); 2409 mono = tk->wall_to_monotonic; 2410 } while (read_seqcount_retry(&tk_core.seq, seq)); 2411 2412 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2413 now.tv_nsec + mono.tv_nsec); 2414 } 2415 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2416 2417 /* 2418 * Must hold jiffies_lock 2419 */ 2420 void do_timer(unsigned long ticks) 2421 { 2422 jiffies_64 += ticks; 2423 calc_global_load(); 2424 } 2425 2426 /** 2427 * ktime_get_update_offsets_now - hrtimer helper 2428 * @cwsseq: pointer to check and store the clock was set sequence number 2429 * @offs_real: pointer to storage for monotonic -> realtime offset 2430 * @offs_boot: pointer to storage for monotonic -> boottime offset 2431 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2432 * 2433 * Returns current monotonic time and updates the offsets if the 2434 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2435 * different. 2436 * 2437 * Called from hrtimer_interrupt() or retrigger_next_event() 2438 */ 2439 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2440 ktime_t *offs_boot, ktime_t *offs_tai) 2441 { 2442 struct timekeeper *tk = &tk_core.timekeeper; 2443 unsigned int seq; 2444 ktime_t base; 2445 u64 nsecs; 2446 2447 do { 2448 seq = read_seqcount_begin(&tk_core.seq); 2449 2450 base = tk->tkr_mono.base; 2451 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2452 base = ktime_add_ns(base, nsecs); 2453 2454 if (*cwsseq != tk->clock_was_set_seq) { 2455 *cwsseq = tk->clock_was_set_seq; 2456 *offs_real = tk->offs_real; 2457 *offs_boot = tk->offs_boot; 2458 *offs_tai = tk->offs_tai; 2459 } 2460 2461 /* Handle leapsecond insertion adjustments */ 2462 if (unlikely(base >= tk->next_leap_ktime)) 2463 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2464 2465 } while (read_seqcount_retry(&tk_core.seq, seq)); 2466 2467 return base; 2468 } 2469 2470 /* 2471 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2472 */ 2473 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2474 { 2475 if (txc->modes & ADJ_ADJTIME) { 2476 /* singleshot must not be used with any other mode bits */ 2477 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2478 return -EINVAL; 2479 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2480 !capable(CAP_SYS_TIME)) 2481 return -EPERM; 2482 } else { 2483 /* In order to modify anything, you gotta be super-user! */ 2484 if (txc->modes && !capable(CAP_SYS_TIME)) 2485 return -EPERM; 2486 /* 2487 * if the quartz is off by more than 10% then 2488 * something is VERY wrong! 2489 */ 2490 if (txc->modes & ADJ_TICK && 2491 (txc->tick < 900000/USER_HZ || 2492 txc->tick > 1100000/USER_HZ)) 2493 return -EINVAL; 2494 } 2495 2496 if (txc->modes & ADJ_SETOFFSET) { 2497 /* In order to inject time, you gotta be super-user! */ 2498 if (!capable(CAP_SYS_TIME)) 2499 return -EPERM; 2500 2501 /* 2502 * Validate if a timespec/timeval used to inject a time 2503 * offset is valid. Offsets can be positive or negative, so 2504 * we don't check tv_sec. The value of the timeval/timespec 2505 * is the sum of its fields,but *NOTE*: 2506 * The field tv_usec/tv_nsec must always be non-negative and 2507 * we can't have more nanoseconds/microseconds than a second. 2508 */ 2509 if (txc->time.tv_usec < 0) 2510 return -EINVAL; 2511 2512 if (txc->modes & ADJ_NANO) { 2513 if (txc->time.tv_usec >= NSEC_PER_SEC) 2514 return -EINVAL; 2515 } else { 2516 if (txc->time.tv_usec >= USEC_PER_SEC) 2517 return -EINVAL; 2518 } 2519 } 2520 2521 /* 2522 * Check for potential multiplication overflows that can 2523 * only happen on 64-bit systems: 2524 */ 2525 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2526 if (LLONG_MIN / PPM_SCALE > txc->freq) 2527 return -EINVAL; 2528 if (LLONG_MAX / PPM_SCALE < txc->freq) 2529 return -EINVAL; 2530 } 2531 2532 return 0; 2533 } 2534 2535 /** 2536 * random_get_entropy_fallback - Returns the raw clock source value, 2537 * used by random.c for platforms with no valid random_get_entropy(). 2538 */ 2539 unsigned long random_get_entropy_fallback(void) 2540 { 2541 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2542 struct clocksource *clock = READ_ONCE(tkr->clock); 2543 2544 if (unlikely(timekeeping_suspended || !clock)) 2545 return 0; 2546 return clock->read(clock); 2547 } 2548 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2549 2550 /** 2551 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2552 * @txc: Pointer to kernel_timex structure containing NTP parameters 2553 */ 2554 int do_adjtimex(struct __kernel_timex *txc) 2555 { 2556 struct timekeeper *tk = &tk_core.timekeeper; 2557 struct audit_ntp_data ad; 2558 bool offset_set = false; 2559 bool clock_set = false; 2560 struct timespec64 ts; 2561 unsigned long flags; 2562 s32 orig_tai, tai; 2563 int ret; 2564 2565 /* Validate the data before disabling interrupts */ 2566 ret = timekeeping_validate_timex(txc); 2567 if (ret) 2568 return ret; 2569 add_device_randomness(txc, sizeof(*txc)); 2570 2571 if (txc->modes & ADJ_SETOFFSET) { 2572 struct timespec64 delta; 2573 delta.tv_sec = txc->time.tv_sec; 2574 delta.tv_nsec = txc->time.tv_usec; 2575 if (!(txc->modes & ADJ_NANO)) 2576 delta.tv_nsec *= 1000; 2577 ret = timekeeping_inject_offset(&delta); 2578 if (ret) 2579 return ret; 2580 2581 offset_set = delta.tv_sec != 0; 2582 audit_tk_injoffset(delta); 2583 } 2584 2585 audit_ntp_init(&ad); 2586 2587 ktime_get_real_ts64(&ts); 2588 add_device_randomness(&ts, sizeof(ts)); 2589 2590 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2591 write_seqcount_begin(&tk_core.seq); 2592 2593 orig_tai = tai = tk->tai_offset; 2594 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2595 2596 if (tai != orig_tai) { 2597 __timekeeping_set_tai_offset(tk, tai); 2598 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2599 clock_set = true; 2600 } 2601 tk_update_leap_state(tk); 2602 2603 write_seqcount_end(&tk_core.seq); 2604 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2605 2606 audit_ntp_log(&ad); 2607 2608 /* Update the multiplier immediately if frequency was set directly */ 2609 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2610 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2611 2612 if (clock_set) 2613 clock_was_set(CLOCK_SET_WALL); 2614 2615 ntp_notify_cmos_timer(offset_set); 2616 2617 return ret; 2618 } 2619 2620 #ifdef CONFIG_NTP_PPS 2621 /** 2622 * hardpps() - Accessor function to NTP __hardpps function 2623 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2624 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2625 */ 2626 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2627 { 2628 unsigned long flags; 2629 2630 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2631 write_seqcount_begin(&tk_core.seq); 2632 2633 __hardpps(phase_ts, raw_ts); 2634 2635 write_seqcount_end(&tk_core.seq); 2636 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2637 } 2638 EXPORT_SYMBOL(hardpps); 2639 #endif /* CONFIG_NTP_PPS */ 2640