1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 enum timekeeping_adv_mode { 37 /* Update timekeeper when a tick has passed */ 38 TK_ADV_TICK, 39 40 /* Update timekeeper on a direct frequency change */ 41 TK_ADV_FREQ 42 }; 43 44 DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 static struct { 51 seqcount_raw_spinlock_t seq; 52 struct timekeeper timekeeper; 53 } tk_core ____cacheline_aligned = { 54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 55 }; 56 57 static struct timekeeper shadow_timekeeper; 58 59 /* flag for if timekeeping is suspended */ 60 int __read_mostly timekeeping_suspended; 61 62 /** 63 * struct tk_fast - NMI safe timekeeper 64 * @seq: Sequence counter for protecting updates. The lowest bit 65 * is the index for the tk_read_base array 66 * @base: tk_read_base array. Access is indexed by the lowest bit of 67 * @seq. 68 * 69 * See @update_fast_timekeeper() below. 70 */ 71 struct tk_fast { 72 seqcount_latch_t seq; 73 struct tk_read_base base[2]; 74 }; 75 76 /* Suspend-time cycles value for halted fast timekeeper. */ 77 static u64 cycles_at_suspend; 78 79 static u64 dummy_clock_read(struct clocksource *cs) 80 { 81 if (timekeeping_suspended) 82 return cycles_at_suspend; 83 return local_clock(); 84 } 85 86 static struct clocksource dummy_clock = { 87 .read = dummy_clock_read, 88 }; 89 90 /* 91 * Boot time initialization which allows local_clock() to be utilized 92 * during early boot when clocksources are not available. local_clock() 93 * returns nanoseconds already so no conversion is required, hence mult=1 94 * and shift=0. When the first proper clocksource is installed then 95 * the fast time keepers are updated with the correct values. 96 */ 97 #define FAST_TK_INIT \ 98 { \ 99 .clock = &dummy_clock, \ 100 .mask = CLOCKSOURCE_MASK(64), \ 101 .mult = 1, \ 102 .shift = 0, \ 103 } 104 105 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 107 .base[0] = FAST_TK_INIT, 108 .base[1] = FAST_TK_INIT, 109 }; 110 111 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 113 .base[0] = FAST_TK_INIT, 114 .base[1] = FAST_TK_INIT, 115 }; 116 117 /* 118 * Multigrain timestamps require tracking the latest fine-grained timestamp 119 * that has been issued, and never returning a coarse-grained timestamp that is 120 * earlier than that value. 121 * 122 * mg_floor represents the latest fine-grained time that has been handed out as 123 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 124 * converted to a realtime clock value on an as-needed basis. 125 * 126 * Maintaining mg_floor ensures the multigrain interfaces never issue a 127 * timestamp earlier than one that has been previously issued. 128 * 129 * The exception to this rule is when there is a backward realtime clock jump. If 130 * such an event occurs, a timestamp can appear to be earlier than a previous one. 131 */ 132 static __cacheline_aligned_in_smp atomic64_t mg_floor; 133 134 static inline void tk_normalize_xtime(struct timekeeper *tk) 135 { 136 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 137 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 138 tk->xtime_sec++; 139 } 140 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 141 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 142 tk->raw_sec++; 143 } 144 } 145 146 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 147 { 148 struct timespec64 ts; 149 150 ts.tv_sec = tk->xtime_sec; 151 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 152 return ts; 153 } 154 155 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 156 { 157 tk->xtime_sec = ts->tv_sec; 158 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 159 } 160 161 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 162 { 163 tk->xtime_sec += ts->tv_sec; 164 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 165 tk_normalize_xtime(tk); 166 } 167 168 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 169 { 170 struct timespec64 tmp; 171 172 /* 173 * Verify consistency of: offset_real = -wall_to_monotonic 174 * before modifying anything 175 */ 176 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 177 -tk->wall_to_monotonic.tv_nsec); 178 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 179 tk->wall_to_monotonic = wtm; 180 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 181 tk->offs_real = timespec64_to_ktime(tmp); 182 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 183 } 184 185 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 186 { 187 tk->offs_boot = ktime_add(tk->offs_boot, delta); 188 /* 189 * Timespec representation for VDSO update to avoid 64bit division 190 * on every update. 191 */ 192 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 193 } 194 195 /* 196 * tk_clock_read - atomic clocksource read() helper 197 * 198 * This helper is necessary to use in the read paths because, while the 199 * seqcount ensures we don't return a bad value while structures are updated, 200 * it doesn't protect from potential crashes. There is the possibility that 201 * the tkr's clocksource may change between the read reference, and the 202 * clock reference passed to the read function. This can cause crashes if 203 * the wrong clocksource is passed to the wrong read function. 204 * This isn't necessary to use when holding the timekeeper_lock or doing 205 * a read of the fast-timekeeper tkrs (which is protected by its own locking 206 * and update logic). 207 */ 208 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 209 { 210 struct clocksource *clock = READ_ONCE(tkr->clock); 211 212 return clock->read(clock); 213 } 214 215 #ifdef CONFIG_DEBUG_TIMEKEEPING 216 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 217 218 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 219 { 220 221 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 222 const char *name = tk->tkr_mono.clock->name; 223 224 if (offset > max_cycles) { 225 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 226 offset, name, max_cycles); 227 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 228 } else { 229 if (offset > (max_cycles >> 1)) { 230 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 231 offset, name, max_cycles >> 1); 232 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 233 } 234 } 235 236 if (tk->underflow_seen) { 237 if (jiffies - tk->last_warning > WARNING_FREQ) { 238 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 239 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 240 printk_deferred(" Your kernel is probably still fine.\n"); 241 tk->last_warning = jiffies; 242 } 243 tk->underflow_seen = 0; 244 } 245 246 if (tk->overflow_seen) { 247 if (jiffies - tk->last_warning > WARNING_FREQ) { 248 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 249 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 250 printk_deferred(" Your kernel is probably still fine.\n"); 251 tk->last_warning = jiffies; 252 } 253 tk->overflow_seen = 0; 254 } 255 } 256 257 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles); 258 259 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 260 { 261 struct timekeeper *tk = &tk_core.timekeeper; 262 u64 now, last, mask, max, delta; 263 unsigned int seq; 264 265 /* 266 * Since we're called holding a seqcount, the data may shift 267 * under us while we're doing the calculation. This can cause 268 * false positives, since we'd note a problem but throw the 269 * results away. So nest another seqcount here to atomically 270 * grab the points we are checking with. 271 */ 272 do { 273 seq = read_seqcount_begin(&tk_core.seq); 274 now = tk_clock_read(tkr); 275 last = tkr->cycle_last; 276 mask = tkr->mask; 277 max = tkr->clock->max_cycles; 278 } while (read_seqcount_retry(&tk_core.seq, seq)); 279 280 delta = clocksource_delta(now, last, mask); 281 282 /* 283 * Try to catch underflows by checking if we are seeing small 284 * mask-relative negative values. 285 */ 286 if (unlikely((~delta & mask) < (mask >> 3))) 287 tk->underflow_seen = 1; 288 289 /* Check for multiplication overflows */ 290 if (unlikely(delta > max)) 291 tk->overflow_seen = 1; 292 293 /* timekeeping_cycles_to_ns() handles both under and overflow */ 294 return timekeeping_cycles_to_ns(tkr, now); 295 } 296 #else 297 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 298 { 299 } 300 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 301 { 302 BUG(); 303 } 304 #endif 305 306 /** 307 * tk_setup_internals - Set up internals to use clocksource clock. 308 * 309 * @tk: The target timekeeper to setup. 310 * @clock: Pointer to clocksource. 311 * 312 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 313 * pair and interval request. 314 * 315 * Unless you're the timekeeping code, you should not be using this! 316 */ 317 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 318 { 319 u64 interval; 320 u64 tmp, ntpinterval; 321 struct clocksource *old_clock; 322 323 ++tk->cs_was_changed_seq; 324 old_clock = tk->tkr_mono.clock; 325 tk->tkr_mono.clock = clock; 326 tk->tkr_mono.mask = clock->mask; 327 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 328 329 tk->tkr_raw.clock = clock; 330 tk->tkr_raw.mask = clock->mask; 331 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 332 333 /* Do the ns -> cycle conversion first, using original mult */ 334 tmp = NTP_INTERVAL_LENGTH; 335 tmp <<= clock->shift; 336 ntpinterval = tmp; 337 tmp += clock->mult/2; 338 do_div(tmp, clock->mult); 339 if (tmp == 0) 340 tmp = 1; 341 342 interval = (u64) tmp; 343 tk->cycle_interval = interval; 344 345 /* Go back from cycles -> shifted ns */ 346 tk->xtime_interval = interval * clock->mult; 347 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 348 tk->raw_interval = interval * clock->mult; 349 350 /* if changing clocks, convert xtime_nsec shift units */ 351 if (old_clock) { 352 int shift_change = clock->shift - old_clock->shift; 353 if (shift_change < 0) { 354 tk->tkr_mono.xtime_nsec >>= -shift_change; 355 tk->tkr_raw.xtime_nsec >>= -shift_change; 356 } else { 357 tk->tkr_mono.xtime_nsec <<= shift_change; 358 tk->tkr_raw.xtime_nsec <<= shift_change; 359 } 360 } 361 362 tk->tkr_mono.shift = clock->shift; 363 tk->tkr_raw.shift = clock->shift; 364 365 tk->ntp_error = 0; 366 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 367 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 368 369 /* 370 * The timekeeper keeps its own mult values for the currently 371 * active clocksource. These value will be adjusted via NTP 372 * to counteract clock drifting. 373 */ 374 tk->tkr_mono.mult = clock->mult; 375 tk->tkr_raw.mult = clock->mult; 376 tk->ntp_err_mult = 0; 377 tk->skip_second_overflow = 0; 378 } 379 380 /* Timekeeper helper functions. */ 381 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 382 { 383 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 384 } 385 386 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 387 { 388 /* Calculate the delta since the last update_wall_time() */ 389 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 390 391 /* 392 * This detects both negative motion and the case where the delta 393 * overflows the multiplication with tkr->mult. 394 */ 395 if (unlikely(delta > tkr->clock->max_cycles)) { 396 /* 397 * Handle clocksource inconsistency between CPUs to prevent 398 * time from going backwards by checking for the MSB of the 399 * mask being set in the delta. 400 */ 401 if (delta & ~(mask >> 1)) 402 return tkr->xtime_nsec >> tkr->shift; 403 404 return delta_to_ns_safe(tkr, delta); 405 } 406 407 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 408 } 409 410 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr) 411 { 412 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 413 } 414 415 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 416 { 417 if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING)) 418 return timekeeping_debug_get_ns(tkr); 419 420 return __timekeeping_get_ns(tkr); 421 } 422 423 /** 424 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 425 * @tkr: Timekeeping readout base from which we take the update 426 * @tkf: Pointer to NMI safe timekeeper 427 * 428 * We want to use this from any context including NMI and tracing / 429 * instrumenting the timekeeping code itself. 430 * 431 * Employ the latch technique; see @raw_write_seqcount_latch. 432 * 433 * So if a NMI hits the update of base[0] then it will use base[1] 434 * which is still consistent. In the worst case this can result is a 435 * slightly wrong timestamp (a few nanoseconds). See 436 * @ktime_get_mono_fast_ns. 437 */ 438 static void update_fast_timekeeper(const struct tk_read_base *tkr, 439 struct tk_fast *tkf) 440 { 441 struct tk_read_base *base = tkf->base; 442 443 /* Force readers off to base[1] */ 444 raw_write_seqcount_latch(&tkf->seq); 445 446 /* Update base[0] */ 447 memcpy(base, tkr, sizeof(*base)); 448 449 /* Force readers back to base[0] */ 450 raw_write_seqcount_latch(&tkf->seq); 451 452 /* Update base[1] */ 453 memcpy(base + 1, base, sizeof(*base)); 454 } 455 456 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 457 { 458 struct tk_read_base *tkr; 459 unsigned int seq; 460 u64 now; 461 462 do { 463 seq = raw_read_seqcount_latch(&tkf->seq); 464 tkr = tkf->base + (seq & 0x01); 465 now = ktime_to_ns(tkr->base); 466 now += __timekeeping_get_ns(tkr); 467 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 468 469 return now; 470 } 471 472 /** 473 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 474 * 475 * This timestamp is not guaranteed to be monotonic across an update. 476 * The timestamp is calculated by: 477 * 478 * now = base_mono + clock_delta * slope 479 * 480 * So if the update lowers the slope, readers who are forced to the 481 * not yet updated second array are still using the old steeper slope. 482 * 483 * tmono 484 * ^ 485 * | o n 486 * | o n 487 * | u 488 * | o 489 * |o 490 * |12345678---> reader order 491 * 492 * o = old slope 493 * u = update 494 * n = new slope 495 * 496 * So reader 6 will observe time going backwards versus reader 5. 497 * 498 * While other CPUs are likely to be able to observe that, the only way 499 * for a CPU local observation is when an NMI hits in the middle of 500 * the update. Timestamps taken from that NMI context might be ahead 501 * of the following timestamps. Callers need to be aware of that and 502 * deal with it. 503 */ 504 u64 notrace ktime_get_mono_fast_ns(void) 505 { 506 return __ktime_get_fast_ns(&tk_fast_mono); 507 } 508 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 509 510 /** 511 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 512 * 513 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 514 * conversion factor is not affected by NTP/PTP correction. 515 */ 516 u64 notrace ktime_get_raw_fast_ns(void) 517 { 518 return __ktime_get_fast_ns(&tk_fast_raw); 519 } 520 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 521 522 /** 523 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 524 * 525 * To keep it NMI safe since we're accessing from tracing, we're not using a 526 * separate timekeeper with updates to monotonic clock and boot offset 527 * protected with seqcounts. This has the following minor side effects: 528 * 529 * (1) Its possible that a timestamp be taken after the boot offset is updated 530 * but before the timekeeper is updated. If this happens, the new boot offset 531 * is added to the old timekeeping making the clock appear to update slightly 532 * earlier: 533 * CPU 0 CPU 1 534 * timekeeping_inject_sleeptime64() 535 * __timekeeping_inject_sleeptime(tk, delta); 536 * timestamp(); 537 * timekeeping_update(tk, TK_CLEAR_NTP...); 538 * 539 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 540 * partially updated. Since the tk->offs_boot update is a rare event, this 541 * should be a rare occurrence which postprocessing should be able to handle. 542 * 543 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 544 * apply as well. 545 */ 546 u64 notrace ktime_get_boot_fast_ns(void) 547 { 548 struct timekeeper *tk = &tk_core.timekeeper; 549 550 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 551 } 552 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 553 554 /** 555 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 556 * 557 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 558 * mono time and the TAI offset are not read atomically which may yield wrong 559 * readouts. However, an update of the TAI offset is an rare event e.g., caused 560 * by settime or adjtimex with an offset. The user of this function has to deal 561 * with the possibility of wrong timestamps in post processing. 562 */ 563 u64 notrace ktime_get_tai_fast_ns(void) 564 { 565 struct timekeeper *tk = &tk_core.timekeeper; 566 567 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 568 } 569 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 570 571 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 572 { 573 struct tk_read_base *tkr; 574 u64 basem, baser, delta; 575 unsigned int seq; 576 577 do { 578 seq = raw_read_seqcount_latch(&tkf->seq); 579 tkr = tkf->base + (seq & 0x01); 580 basem = ktime_to_ns(tkr->base); 581 baser = ktime_to_ns(tkr->base_real); 582 delta = __timekeeping_get_ns(tkr); 583 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 584 585 if (mono) 586 *mono = basem + delta; 587 return baser + delta; 588 } 589 590 /** 591 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 592 * 593 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 594 */ 595 u64 ktime_get_real_fast_ns(void) 596 { 597 return __ktime_get_real_fast(&tk_fast_mono, NULL); 598 } 599 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 600 601 /** 602 * ktime_get_fast_timestamps: - NMI safe timestamps 603 * @snapshot: Pointer to timestamp storage 604 * 605 * Stores clock monotonic, boottime and realtime timestamps. 606 * 607 * Boot time is a racy access on 32bit systems if the sleep time injection 608 * happens late during resume and not in timekeeping_resume(). That could 609 * be avoided by expanding struct tk_read_base with boot offset for 32bit 610 * and adding more overhead to the update. As this is a hard to observe 611 * once per resume event which can be filtered with reasonable effort using 612 * the accurate mono/real timestamps, it's probably not worth the trouble. 613 * 614 * Aside of that it might be possible on 32 and 64 bit to observe the 615 * following when the sleep time injection happens late: 616 * 617 * CPU 0 CPU 1 618 * timekeeping_resume() 619 * ktime_get_fast_timestamps() 620 * mono, real = __ktime_get_real_fast() 621 * inject_sleep_time() 622 * update boot offset 623 * boot = mono + bootoffset; 624 * 625 * That means that boot time already has the sleep time adjustment, but 626 * real time does not. On the next readout both are in sync again. 627 * 628 * Preventing this for 64bit is not really feasible without destroying the 629 * careful cache layout of the timekeeper because the sequence count and 630 * struct tk_read_base would then need two cache lines instead of one. 631 * 632 * Access to the time keeper clock source is disabled across the innermost 633 * steps of suspend/resume. The accessors still work, but the timestamps 634 * are frozen until time keeping is resumed which happens very early. 635 * 636 * For regular suspend/resume there is no observable difference vs. sched 637 * clock, but it might affect some of the nasty low level debug printks. 638 * 639 * OTOH, access to sched clock is not guaranteed across suspend/resume on 640 * all systems either so it depends on the hardware in use. 641 * 642 * If that turns out to be a real problem then this could be mitigated by 643 * using sched clock in a similar way as during early boot. But it's not as 644 * trivial as on early boot because it needs some careful protection 645 * against the clock monotonic timestamp jumping backwards on resume. 646 */ 647 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 648 { 649 struct timekeeper *tk = &tk_core.timekeeper; 650 651 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 652 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 653 } 654 655 /** 656 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 657 * @tk: Timekeeper to snapshot. 658 * 659 * It generally is unsafe to access the clocksource after timekeeping has been 660 * suspended, so take a snapshot of the readout base of @tk and use it as the 661 * fast timekeeper's readout base while suspended. It will return the same 662 * number of cycles every time until timekeeping is resumed at which time the 663 * proper readout base for the fast timekeeper will be restored automatically. 664 */ 665 static void halt_fast_timekeeper(const struct timekeeper *tk) 666 { 667 static struct tk_read_base tkr_dummy; 668 const struct tk_read_base *tkr = &tk->tkr_mono; 669 670 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 671 cycles_at_suspend = tk_clock_read(tkr); 672 tkr_dummy.clock = &dummy_clock; 673 tkr_dummy.base_real = tkr->base + tk->offs_real; 674 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 675 676 tkr = &tk->tkr_raw; 677 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 678 tkr_dummy.clock = &dummy_clock; 679 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 680 } 681 682 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 683 684 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 685 { 686 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 687 } 688 689 /** 690 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 691 * @nb: Pointer to the notifier block to register 692 */ 693 int pvclock_gtod_register_notifier(struct notifier_block *nb) 694 { 695 struct timekeeper *tk = &tk_core.timekeeper; 696 unsigned long flags; 697 int ret; 698 699 raw_spin_lock_irqsave(&timekeeper_lock, flags); 700 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 701 update_pvclock_gtod(tk, true); 702 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 703 704 return ret; 705 } 706 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 707 708 /** 709 * pvclock_gtod_unregister_notifier - unregister a pvclock 710 * timedata update listener 711 * @nb: Pointer to the notifier block to unregister 712 */ 713 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 714 { 715 unsigned long flags; 716 int ret; 717 718 raw_spin_lock_irqsave(&timekeeper_lock, flags); 719 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 720 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 721 722 return ret; 723 } 724 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 725 726 /* 727 * tk_update_leap_state - helper to update the next_leap_ktime 728 */ 729 static inline void tk_update_leap_state(struct timekeeper *tk) 730 { 731 tk->next_leap_ktime = ntp_get_next_leap(); 732 if (tk->next_leap_ktime != KTIME_MAX) 733 /* Convert to monotonic time */ 734 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 735 } 736 737 /* 738 * Update the ktime_t based scalar nsec members of the timekeeper 739 */ 740 static inline void tk_update_ktime_data(struct timekeeper *tk) 741 { 742 u64 seconds; 743 u32 nsec; 744 745 /* 746 * The xtime based monotonic readout is: 747 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 748 * The ktime based monotonic readout is: 749 * nsec = base_mono + now(); 750 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 751 */ 752 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 753 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 754 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 755 756 /* 757 * The sum of the nanoseconds portions of xtime and 758 * wall_to_monotonic can be greater/equal one second. Take 759 * this into account before updating tk->ktime_sec. 760 */ 761 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 762 if (nsec >= NSEC_PER_SEC) 763 seconds++; 764 tk->ktime_sec = seconds; 765 766 /* Update the monotonic raw base */ 767 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 768 } 769 770 /* must hold timekeeper_lock */ 771 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 772 { 773 if (action & TK_CLEAR_NTP) { 774 tk->ntp_error = 0; 775 ntp_clear(); 776 } 777 778 tk_update_leap_state(tk); 779 tk_update_ktime_data(tk); 780 781 update_vsyscall(tk); 782 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 783 784 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 785 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 786 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 787 788 if (action & TK_CLOCK_WAS_SET) 789 tk->clock_was_set_seq++; 790 /* 791 * The mirroring of the data to the shadow-timekeeper needs 792 * to happen last here to ensure we don't over-write the 793 * timekeeper structure on the next update with stale data 794 */ 795 if (action & TK_MIRROR) 796 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 797 sizeof(tk_core.timekeeper)); 798 } 799 800 /** 801 * timekeeping_forward_now - update clock to the current time 802 * @tk: Pointer to the timekeeper to update 803 * 804 * Forward the current clock to update its state since the last call to 805 * update_wall_time(). This is useful before significant clock changes, 806 * as it avoids having to deal with this time offset explicitly. 807 */ 808 static void timekeeping_forward_now(struct timekeeper *tk) 809 { 810 u64 cycle_now, delta; 811 812 cycle_now = tk_clock_read(&tk->tkr_mono); 813 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 814 tk->tkr_mono.cycle_last = cycle_now; 815 tk->tkr_raw.cycle_last = cycle_now; 816 817 while (delta > 0) { 818 u64 max = tk->tkr_mono.clock->max_cycles; 819 u64 incr = delta < max ? delta : max; 820 821 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 822 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 823 tk_normalize_xtime(tk); 824 delta -= incr; 825 } 826 } 827 828 /** 829 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 830 * @ts: pointer to the timespec to be set 831 * 832 * Returns the time of day in a timespec64 (WARN if suspended). 833 */ 834 void ktime_get_real_ts64(struct timespec64 *ts) 835 { 836 struct timekeeper *tk = &tk_core.timekeeper; 837 unsigned int seq; 838 u64 nsecs; 839 840 WARN_ON(timekeeping_suspended); 841 842 do { 843 seq = read_seqcount_begin(&tk_core.seq); 844 845 ts->tv_sec = tk->xtime_sec; 846 nsecs = timekeeping_get_ns(&tk->tkr_mono); 847 848 } while (read_seqcount_retry(&tk_core.seq, seq)); 849 850 ts->tv_nsec = 0; 851 timespec64_add_ns(ts, nsecs); 852 } 853 EXPORT_SYMBOL(ktime_get_real_ts64); 854 855 ktime_t ktime_get(void) 856 { 857 struct timekeeper *tk = &tk_core.timekeeper; 858 unsigned int seq; 859 ktime_t base; 860 u64 nsecs; 861 862 WARN_ON(timekeeping_suspended); 863 864 do { 865 seq = read_seqcount_begin(&tk_core.seq); 866 base = tk->tkr_mono.base; 867 nsecs = timekeeping_get_ns(&tk->tkr_mono); 868 869 } while (read_seqcount_retry(&tk_core.seq, seq)); 870 871 return ktime_add_ns(base, nsecs); 872 } 873 EXPORT_SYMBOL_GPL(ktime_get); 874 875 u32 ktime_get_resolution_ns(void) 876 { 877 struct timekeeper *tk = &tk_core.timekeeper; 878 unsigned int seq; 879 u32 nsecs; 880 881 WARN_ON(timekeeping_suspended); 882 883 do { 884 seq = read_seqcount_begin(&tk_core.seq); 885 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 886 } while (read_seqcount_retry(&tk_core.seq, seq)); 887 888 return nsecs; 889 } 890 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 891 892 static ktime_t *offsets[TK_OFFS_MAX] = { 893 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 894 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 895 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 896 }; 897 898 ktime_t ktime_get_with_offset(enum tk_offsets offs) 899 { 900 struct timekeeper *tk = &tk_core.timekeeper; 901 unsigned int seq; 902 ktime_t base, *offset = offsets[offs]; 903 u64 nsecs; 904 905 WARN_ON(timekeeping_suspended); 906 907 do { 908 seq = read_seqcount_begin(&tk_core.seq); 909 base = ktime_add(tk->tkr_mono.base, *offset); 910 nsecs = timekeeping_get_ns(&tk->tkr_mono); 911 912 } while (read_seqcount_retry(&tk_core.seq, seq)); 913 914 return ktime_add_ns(base, nsecs); 915 916 } 917 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 918 919 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 920 { 921 struct timekeeper *tk = &tk_core.timekeeper; 922 unsigned int seq; 923 ktime_t base, *offset = offsets[offs]; 924 u64 nsecs; 925 926 WARN_ON(timekeeping_suspended); 927 928 do { 929 seq = read_seqcount_begin(&tk_core.seq); 930 base = ktime_add(tk->tkr_mono.base, *offset); 931 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 932 933 } while (read_seqcount_retry(&tk_core.seq, seq)); 934 935 return ktime_add_ns(base, nsecs); 936 } 937 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 938 939 /** 940 * ktime_mono_to_any() - convert monotonic time to any other time 941 * @tmono: time to convert. 942 * @offs: which offset to use 943 */ 944 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 945 { 946 ktime_t *offset = offsets[offs]; 947 unsigned int seq; 948 ktime_t tconv; 949 950 do { 951 seq = read_seqcount_begin(&tk_core.seq); 952 tconv = ktime_add(tmono, *offset); 953 } while (read_seqcount_retry(&tk_core.seq, seq)); 954 955 return tconv; 956 } 957 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 958 959 /** 960 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 961 */ 962 ktime_t ktime_get_raw(void) 963 { 964 struct timekeeper *tk = &tk_core.timekeeper; 965 unsigned int seq; 966 ktime_t base; 967 u64 nsecs; 968 969 do { 970 seq = read_seqcount_begin(&tk_core.seq); 971 base = tk->tkr_raw.base; 972 nsecs = timekeeping_get_ns(&tk->tkr_raw); 973 974 } while (read_seqcount_retry(&tk_core.seq, seq)); 975 976 return ktime_add_ns(base, nsecs); 977 } 978 EXPORT_SYMBOL_GPL(ktime_get_raw); 979 980 /** 981 * ktime_get_ts64 - get the monotonic clock in timespec64 format 982 * @ts: pointer to timespec variable 983 * 984 * The function calculates the monotonic clock from the realtime 985 * clock and the wall_to_monotonic offset and stores the result 986 * in normalized timespec64 format in the variable pointed to by @ts. 987 */ 988 void ktime_get_ts64(struct timespec64 *ts) 989 { 990 struct timekeeper *tk = &tk_core.timekeeper; 991 struct timespec64 tomono; 992 unsigned int seq; 993 u64 nsec; 994 995 WARN_ON(timekeeping_suspended); 996 997 do { 998 seq = read_seqcount_begin(&tk_core.seq); 999 ts->tv_sec = tk->xtime_sec; 1000 nsec = timekeeping_get_ns(&tk->tkr_mono); 1001 tomono = tk->wall_to_monotonic; 1002 1003 } while (read_seqcount_retry(&tk_core.seq, seq)); 1004 1005 ts->tv_sec += tomono.tv_sec; 1006 ts->tv_nsec = 0; 1007 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 1008 } 1009 EXPORT_SYMBOL_GPL(ktime_get_ts64); 1010 1011 /** 1012 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 1013 * 1014 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 1015 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 1016 * works on both 32 and 64 bit systems. On 32 bit systems the readout 1017 * covers ~136 years of uptime which should be enough to prevent 1018 * premature wrap arounds. 1019 */ 1020 time64_t ktime_get_seconds(void) 1021 { 1022 struct timekeeper *tk = &tk_core.timekeeper; 1023 1024 WARN_ON(timekeeping_suspended); 1025 return tk->ktime_sec; 1026 } 1027 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1028 1029 /** 1030 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1031 * 1032 * Returns the wall clock seconds since 1970. 1033 * 1034 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1035 * 32bit systems the access must be protected with the sequence 1036 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1037 * value. 1038 */ 1039 time64_t ktime_get_real_seconds(void) 1040 { 1041 struct timekeeper *tk = &tk_core.timekeeper; 1042 time64_t seconds; 1043 unsigned int seq; 1044 1045 if (IS_ENABLED(CONFIG_64BIT)) 1046 return tk->xtime_sec; 1047 1048 do { 1049 seq = read_seqcount_begin(&tk_core.seq); 1050 seconds = tk->xtime_sec; 1051 1052 } while (read_seqcount_retry(&tk_core.seq, seq)); 1053 1054 return seconds; 1055 } 1056 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1057 1058 /** 1059 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1060 * but without the sequence counter protect. This internal function 1061 * is called just when timekeeping lock is already held. 1062 */ 1063 noinstr time64_t __ktime_get_real_seconds(void) 1064 { 1065 struct timekeeper *tk = &tk_core.timekeeper; 1066 1067 return tk->xtime_sec; 1068 } 1069 1070 /** 1071 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1072 * @systime_snapshot: pointer to struct receiving the system time snapshot 1073 */ 1074 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1075 { 1076 struct timekeeper *tk = &tk_core.timekeeper; 1077 unsigned int seq; 1078 ktime_t base_raw; 1079 ktime_t base_real; 1080 u64 nsec_raw; 1081 u64 nsec_real; 1082 u64 now; 1083 1084 WARN_ON_ONCE(timekeeping_suspended); 1085 1086 do { 1087 seq = read_seqcount_begin(&tk_core.seq); 1088 now = tk_clock_read(&tk->tkr_mono); 1089 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1090 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1091 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1092 base_real = ktime_add(tk->tkr_mono.base, 1093 tk_core.timekeeper.offs_real); 1094 base_raw = tk->tkr_raw.base; 1095 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1096 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1097 } while (read_seqcount_retry(&tk_core.seq, seq)); 1098 1099 systime_snapshot->cycles = now; 1100 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1101 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1102 } 1103 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1104 1105 /* Scale base by mult/div checking for overflow */ 1106 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1107 { 1108 u64 tmp, rem; 1109 1110 tmp = div64_u64_rem(*base, div, &rem); 1111 1112 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1113 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1114 return -EOVERFLOW; 1115 tmp *= mult; 1116 1117 rem = div64_u64(rem * mult, div); 1118 *base = tmp + rem; 1119 return 0; 1120 } 1121 1122 /** 1123 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1124 * @history: Snapshot representing start of history 1125 * @partial_history_cycles: Cycle offset into history (fractional part) 1126 * @total_history_cycles: Total history length in cycles 1127 * @discontinuity: True indicates clock was set on history period 1128 * @ts: Cross timestamp that should be adjusted using 1129 * partial/total ratio 1130 * 1131 * Helper function used by get_device_system_crosststamp() to correct the 1132 * crosstimestamp corresponding to the start of the current interval to the 1133 * system counter value (timestamp point) provided by the driver. The 1134 * total_history_* quantities are the total history starting at the provided 1135 * reference point and ending at the start of the current interval. The cycle 1136 * count between the driver timestamp point and the start of the current 1137 * interval is partial_history_cycles. 1138 */ 1139 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1140 u64 partial_history_cycles, 1141 u64 total_history_cycles, 1142 bool discontinuity, 1143 struct system_device_crosststamp *ts) 1144 { 1145 struct timekeeper *tk = &tk_core.timekeeper; 1146 u64 corr_raw, corr_real; 1147 bool interp_forward; 1148 int ret; 1149 1150 if (total_history_cycles == 0 || partial_history_cycles == 0) 1151 return 0; 1152 1153 /* Interpolate shortest distance from beginning or end of history */ 1154 interp_forward = partial_history_cycles > total_history_cycles / 2; 1155 partial_history_cycles = interp_forward ? 1156 total_history_cycles - partial_history_cycles : 1157 partial_history_cycles; 1158 1159 /* 1160 * Scale the monotonic raw time delta by: 1161 * partial_history_cycles / total_history_cycles 1162 */ 1163 corr_raw = (u64)ktime_to_ns( 1164 ktime_sub(ts->sys_monoraw, history->raw)); 1165 ret = scale64_check_overflow(partial_history_cycles, 1166 total_history_cycles, &corr_raw); 1167 if (ret) 1168 return ret; 1169 1170 /* 1171 * If there is a discontinuity in the history, scale monotonic raw 1172 * correction by: 1173 * mult(real)/mult(raw) yielding the realtime correction 1174 * Otherwise, calculate the realtime correction similar to monotonic 1175 * raw calculation 1176 */ 1177 if (discontinuity) { 1178 corr_real = mul_u64_u32_div 1179 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1180 } else { 1181 corr_real = (u64)ktime_to_ns( 1182 ktime_sub(ts->sys_realtime, history->real)); 1183 ret = scale64_check_overflow(partial_history_cycles, 1184 total_history_cycles, &corr_real); 1185 if (ret) 1186 return ret; 1187 } 1188 1189 /* Fixup monotonic raw and real time time values */ 1190 if (interp_forward) { 1191 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1192 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1193 } else { 1194 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1195 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1196 } 1197 1198 return 0; 1199 } 1200 1201 /* 1202 * timestamp_in_interval - true if ts is chronologically in [start, end] 1203 * 1204 * True if ts occurs chronologically at or after start, and before or at end. 1205 */ 1206 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1207 { 1208 if (ts >= start && ts <= end) 1209 return true; 1210 if (start > end && (ts >= start || ts <= end)) 1211 return true; 1212 return false; 1213 } 1214 1215 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1216 { 1217 u64 rem, res; 1218 1219 if (!numerator || !denominator) 1220 return false; 1221 1222 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1223 *val = res + div_u64(rem * numerator, denominator); 1224 return true; 1225 } 1226 1227 static bool convert_base_to_cs(struct system_counterval_t *scv) 1228 { 1229 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1230 struct clocksource_base *base; 1231 u32 num, den; 1232 1233 /* The timestamp was taken from the time keeper clock source */ 1234 if (cs->id == scv->cs_id) 1235 return true; 1236 1237 /* 1238 * Check whether cs_id matches the base clock. Prevent the compiler from 1239 * re-evaluating @base as the clocksource might change concurrently. 1240 */ 1241 base = READ_ONCE(cs->base); 1242 if (!base || base->id != scv->cs_id) 1243 return false; 1244 1245 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1246 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1247 1248 if (!convert_clock(&scv->cycles, num, den)) 1249 return false; 1250 1251 scv->cycles += base->offset; 1252 return true; 1253 } 1254 1255 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1256 { 1257 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1258 struct clocksource_base *base; 1259 1260 /* 1261 * Check whether base_id matches the base clock. Prevent the compiler from 1262 * re-evaluating @base as the clocksource might change concurrently. 1263 */ 1264 base = READ_ONCE(cs->base); 1265 if (!base || base->id != base_id) 1266 return false; 1267 1268 *cycles -= base->offset; 1269 if (!convert_clock(cycles, base->denominator, base->numerator)) 1270 return false; 1271 return true; 1272 } 1273 1274 static bool convert_ns_to_cs(u64 *delta) 1275 { 1276 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1277 1278 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1279 return false; 1280 1281 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1282 return true; 1283 } 1284 1285 /** 1286 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1287 * @treal: CLOCK_REALTIME timestamp to convert 1288 * @base_id: base clocksource id 1289 * @cycles: pointer to store the converted base clock timestamp 1290 * 1291 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1292 * 1293 * Return: true if the conversion is successful, false otherwise. 1294 */ 1295 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1296 { 1297 struct timekeeper *tk = &tk_core.timekeeper; 1298 unsigned int seq; 1299 u64 delta; 1300 1301 do { 1302 seq = read_seqcount_begin(&tk_core.seq); 1303 if ((u64)treal < tk->tkr_mono.base_real) 1304 return false; 1305 delta = (u64)treal - tk->tkr_mono.base_real; 1306 if (!convert_ns_to_cs(&delta)) 1307 return false; 1308 *cycles = tk->tkr_mono.cycle_last + delta; 1309 if (!convert_cs_to_base(cycles, base_id)) 1310 return false; 1311 } while (read_seqcount_retry(&tk_core.seq, seq)); 1312 1313 return true; 1314 } 1315 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1316 1317 /** 1318 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1319 * @get_time_fn: Callback to get simultaneous device time and 1320 * system counter from the device driver 1321 * @ctx: Context passed to get_time_fn() 1322 * @history_begin: Historical reference point used to interpolate system 1323 * time when counter provided by the driver is before the current interval 1324 * @xtstamp: Receives simultaneously captured system and device time 1325 * 1326 * Reads a timestamp from a device and correlates it to system time 1327 */ 1328 int get_device_system_crosststamp(int (*get_time_fn) 1329 (ktime_t *device_time, 1330 struct system_counterval_t *sys_counterval, 1331 void *ctx), 1332 void *ctx, 1333 struct system_time_snapshot *history_begin, 1334 struct system_device_crosststamp *xtstamp) 1335 { 1336 struct system_counterval_t system_counterval; 1337 struct timekeeper *tk = &tk_core.timekeeper; 1338 u64 cycles, now, interval_start; 1339 unsigned int clock_was_set_seq = 0; 1340 ktime_t base_real, base_raw; 1341 u64 nsec_real, nsec_raw; 1342 u8 cs_was_changed_seq; 1343 unsigned int seq; 1344 bool do_interp; 1345 int ret; 1346 1347 do { 1348 seq = read_seqcount_begin(&tk_core.seq); 1349 /* 1350 * Try to synchronously capture device time and a system 1351 * counter value calling back into the device driver 1352 */ 1353 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1354 if (ret) 1355 return ret; 1356 1357 /* 1358 * Verify that the clocksource ID associated with the captured 1359 * system counter value is the same as for the currently 1360 * installed timekeeper clocksource 1361 */ 1362 if (system_counterval.cs_id == CSID_GENERIC || 1363 !convert_base_to_cs(&system_counterval)) 1364 return -ENODEV; 1365 cycles = system_counterval.cycles; 1366 1367 /* 1368 * Check whether the system counter value provided by the 1369 * device driver is on the current timekeeping interval. 1370 */ 1371 now = tk_clock_read(&tk->tkr_mono); 1372 interval_start = tk->tkr_mono.cycle_last; 1373 if (!timestamp_in_interval(interval_start, now, cycles)) { 1374 clock_was_set_seq = tk->clock_was_set_seq; 1375 cs_was_changed_seq = tk->cs_was_changed_seq; 1376 cycles = interval_start; 1377 do_interp = true; 1378 } else { 1379 do_interp = false; 1380 } 1381 1382 base_real = ktime_add(tk->tkr_mono.base, 1383 tk_core.timekeeper.offs_real); 1384 base_raw = tk->tkr_raw.base; 1385 1386 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1387 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1388 } while (read_seqcount_retry(&tk_core.seq, seq)); 1389 1390 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1391 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1392 1393 /* 1394 * Interpolate if necessary, adjusting back from the start of the 1395 * current interval 1396 */ 1397 if (do_interp) { 1398 u64 partial_history_cycles, total_history_cycles; 1399 bool discontinuity; 1400 1401 /* 1402 * Check that the counter value is not before the provided 1403 * history reference and that the history doesn't cross a 1404 * clocksource change 1405 */ 1406 if (!history_begin || 1407 !timestamp_in_interval(history_begin->cycles, 1408 cycles, system_counterval.cycles) || 1409 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1410 return -EINVAL; 1411 partial_history_cycles = cycles - system_counterval.cycles; 1412 total_history_cycles = cycles - history_begin->cycles; 1413 discontinuity = 1414 history_begin->clock_was_set_seq != clock_was_set_seq; 1415 1416 ret = adjust_historical_crosststamp(history_begin, 1417 partial_history_cycles, 1418 total_history_cycles, 1419 discontinuity, xtstamp); 1420 if (ret) 1421 return ret; 1422 } 1423 1424 return 0; 1425 } 1426 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1427 1428 /** 1429 * timekeeping_clocksource_has_base - Check whether the current clocksource 1430 * is based on given a base clock 1431 * @id: base clocksource ID 1432 * 1433 * Note: The return value is a snapshot which can become invalid right 1434 * after the function returns. 1435 * 1436 * Return: true if the timekeeper clocksource has a base clock with @id, 1437 * false otherwise 1438 */ 1439 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1440 { 1441 /* 1442 * This is a snapshot, so no point in using the sequence 1443 * count. Just prevent the compiler from re-evaluating @base as the 1444 * clocksource might change concurrently. 1445 */ 1446 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1447 1448 return base ? base->id == id : false; 1449 } 1450 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1451 1452 /** 1453 * do_settimeofday64 - Sets the time of day. 1454 * @ts: pointer to the timespec64 variable containing the new time 1455 * 1456 * Sets the time of day to the new time and update NTP and notify hrtimers 1457 */ 1458 int do_settimeofday64(const struct timespec64 *ts) 1459 { 1460 struct timekeeper *tk = &tk_core.timekeeper; 1461 struct timespec64 ts_delta, xt; 1462 unsigned long flags; 1463 int ret = 0; 1464 1465 if (!timespec64_valid_settod(ts)) 1466 return -EINVAL; 1467 1468 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1469 write_seqcount_begin(&tk_core.seq); 1470 1471 timekeeping_forward_now(tk); 1472 1473 xt = tk_xtime(tk); 1474 ts_delta = timespec64_sub(*ts, xt); 1475 1476 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1477 ret = -EINVAL; 1478 goto out; 1479 } 1480 1481 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1482 1483 tk_set_xtime(tk, ts); 1484 out: 1485 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1486 1487 write_seqcount_end(&tk_core.seq); 1488 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1489 1490 /* Signal hrtimers about time change */ 1491 clock_was_set(CLOCK_SET_WALL); 1492 1493 if (!ret) { 1494 audit_tk_injoffset(ts_delta); 1495 add_device_randomness(ts, sizeof(*ts)); 1496 } 1497 1498 return ret; 1499 } 1500 EXPORT_SYMBOL(do_settimeofday64); 1501 1502 /** 1503 * timekeeping_inject_offset - Adds or subtracts from the current time. 1504 * @ts: Pointer to the timespec variable containing the offset 1505 * 1506 * Adds or subtracts an offset value from the current time. 1507 */ 1508 static int timekeeping_inject_offset(const struct timespec64 *ts) 1509 { 1510 struct timekeeper *tk = &tk_core.timekeeper; 1511 unsigned long flags; 1512 struct timespec64 tmp; 1513 int ret = 0; 1514 1515 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1516 return -EINVAL; 1517 1518 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1519 write_seqcount_begin(&tk_core.seq); 1520 1521 timekeeping_forward_now(tk); 1522 1523 /* Make sure the proposed value is valid */ 1524 tmp = timespec64_add(tk_xtime(tk), *ts); 1525 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1526 !timespec64_valid_settod(&tmp)) { 1527 ret = -EINVAL; 1528 goto error; 1529 } 1530 1531 tk_xtime_add(tk, ts); 1532 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1533 1534 error: /* even if we error out, we forwarded the time, so call update */ 1535 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1536 1537 write_seqcount_end(&tk_core.seq); 1538 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1539 1540 /* Signal hrtimers about time change */ 1541 clock_was_set(CLOCK_SET_WALL); 1542 1543 return ret; 1544 } 1545 1546 /* 1547 * Indicates if there is an offset between the system clock and the hardware 1548 * clock/persistent clock/rtc. 1549 */ 1550 int persistent_clock_is_local; 1551 1552 /* 1553 * Adjust the time obtained from the CMOS to be UTC time instead of 1554 * local time. 1555 * 1556 * This is ugly, but preferable to the alternatives. Otherwise we 1557 * would either need to write a program to do it in /etc/rc (and risk 1558 * confusion if the program gets run more than once; it would also be 1559 * hard to make the program warp the clock precisely n hours) or 1560 * compile in the timezone information into the kernel. Bad, bad.... 1561 * 1562 * - TYT, 1992-01-01 1563 * 1564 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1565 * as real UNIX machines always do it. This avoids all headaches about 1566 * daylight saving times and warping kernel clocks. 1567 */ 1568 void timekeeping_warp_clock(void) 1569 { 1570 if (sys_tz.tz_minuteswest != 0) { 1571 struct timespec64 adjust; 1572 1573 persistent_clock_is_local = 1; 1574 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1575 adjust.tv_nsec = 0; 1576 timekeeping_inject_offset(&adjust); 1577 } 1578 } 1579 1580 /* 1581 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1582 */ 1583 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1584 { 1585 tk->tai_offset = tai_offset; 1586 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1587 } 1588 1589 /* 1590 * change_clocksource - Swaps clocksources if a new one is available 1591 * 1592 * Accumulates current time interval and initializes new clocksource 1593 */ 1594 static int change_clocksource(void *data) 1595 { 1596 struct timekeeper *tk = &tk_core.timekeeper; 1597 struct clocksource *new, *old = NULL; 1598 unsigned long flags; 1599 bool change = false; 1600 1601 new = (struct clocksource *) data; 1602 1603 /* 1604 * If the cs is in module, get a module reference. Succeeds 1605 * for built-in code (owner == NULL) as well. 1606 */ 1607 if (try_module_get(new->owner)) { 1608 if (!new->enable || new->enable(new) == 0) 1609 change = true; 1610 else 1611 module_put(new->owner); 1612 } 1613 1614 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1615 write_seqcount_begin(&tk_core.seq); 1616 1617 timekeeping_forward_now(tk); 1618 1619 if (change) { 1620 old = tk->tkr_mono.clock; 1621 tk_setup_internals(tk, new); 1622 } 1623 1624 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1625 1626 write_seqcount_end(&tk_core.seq); 1627 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1628 1629 if (old) { 1630 if (old->disable) 1631 old->disable(old); 1632 1633 module_put(old->owner); 1634 } 1635 1636 return 0; 1637 } 1638 1639 /** 1640 * timekeeping_notify - Install a new clock source 1641 * @clock: pointer to the clock source 1642 * 1643 * This function is called from clocksource.c after a new, better clock 1644 * source has been registered. The caller holds the clocksource_mutex. 1645 */ 1646 int timekeeping_notify(struct clocksource *clock) 1647 { 1648 struct timekeeper *tk = &tk_core.timekeeper; 1649 1650 if (tk->tkr_mono.clock == clock) 1651 return 0; 1652 stop_machine(change_clocksource, clock, NULL); 1653 tick_clock_notify(); 1654 return tk->tkr_mono.clock == clock ? 0 : -1; 1655 } 1656 1657 /** 1658 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1659 * @ts: pointer to the timespec64 to be set 1660 * 1661 * Returns the raw monotonic time (completely un-modified by ntp) 1662 */ 1663 void ktime_get_raw_ts64(struct timespec64 *ts) 1664 { 1665 struct timekeeper *tk = &tk_core.timekeeper; 1666 unsigned int seq; 1667 u64 nsecs; 1668 1669 do { 1670 seq = read_seqcount_begin(&tk_core.seq); 1671 ts->tv_sec = tk->raw_sec; 1672 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1673 1674 } while (read_seqcount_retry(&tk_core.seq, seq)); 1675 1676 ts->tv_nsec = 0; 1677 timespec64_add_ns(ts, nsecs); 1678 } 1679 EXPORT_SYMBOL(ktime_get_raw_ts64); 1680 1681 1682 /** 1683 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1684 */ 1685 int timekeeping_valid_for_hres(void) 1686 { 1687 struct timekeeper *tk = &tk_core.timekeeper; 1688 unsigned int seq; 1689 int ret; 1690 1691 do { 1692 seq = read_seqcount_begin(&tk_core.seq); 1693 1694 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1695 1696 } while (read_seqcount_retry(&tk_core.seq, seq)); 1697 1698 return ret; 1699 } 1700 1701 /** 1702 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1703 */ 1704 u64 timekeeping_max_deferment(void) 1705 { 1706 struct timekeeper *tk = &tk_core.timekeeper; 1707 unsigned int seq; 1708 u64 ret; 1709 1710 do { 1711 seq = read_seqcount_begin(&tk_core.seq); 1712 1713 ret = tk->tkr_mono.clock->max_idle_ns; 1714 1715 } while (read_seqcount_retry(&tk_core.seq, seq)); 1716 1717 return ret; 1718 } 1719 1720 /** 1721 * read_persistent_clock64 - Return time from the persistent clock. 1722 * @ts: Pointer to the storage for the readout value 1723 * 1724 * Weak dummy function for arches that do not yet support it. 1725 * Reads the time from the battery backed persistent clock. 1726 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1727 * 1728 * XXX - Do be sure to remove it once all arches implement it. 1729 */ 1730 void __weak read_persistent_clock64(struct timespec64 *ts) 1731 { 1732 ts->tv_sec = 0; 1733 ts->tv_nsec = 0; 1734 } 1735 1736 /** 1737 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1738 * from the boot. 1739 * @wall_time: current time as returned by persistent clock 1740 * @boot_offset: offset that is defined as wall_time - boot_time 1741 * 1742 * Weak dummy function for arches that do not yet support it. 1743 * 1744 * The default function calculates offset based on the current value of 1745 * local_clock(). This way architectures that support sched_clock() but don't 1746 * support dedicated boot time clock will provide the best estimate of the 1747 * boot time. 1748 */ 1749 void __weak __init 1750 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1751 struct timespec64 *boot_offset) 1752 { 1753 read_persistent_clock64(wall_time); 1754 *boot_offset = ns_to_timespec64(local_clock()); 1755 } 1756 1757 /* 1758 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1759 * 1760 * The flag starts of false and is only set when a suspend reaches 1761 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1762 * timekeeper clocksource is not stopping across suspend and has been 1763 * used to update sleep time. If the timekeeper clocksource has stopped 1764 * then the flag stays true and is used by the RTC resume code to decide 1765 * whether sleeptime must be injected and if so the flag gets false then. 1766 * 1767 * If a suspend fails before reaching timekeeping_resume() then the flag 1768 * stays false and prevents erroneous sleeptime injection. 1769 */ 1770 static bool suspend_timing_needed; 1771 1772 /* Flag for if there is a persistent clock on this platform */ 1773 static bool persistent_clock_exists; 1774 1775 /* 1776 * timekeeping_init - Initializes the clocksource and common timekeeping values 1777 */ 1778 void __init timekeeping_init(void) 1779 { 1780 struct timespec64 wall_time, boot_offset, wall_to_mono; 1781 struct timekeeper *tk = &tk_core.timekeeper; 1782 struct clocksource *clock; 1783 unsigned long flags; 1784 1785 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1786 if (timespec64_valid_settod(&wall_time) && 1787 timespec64_to_ns(&wall_time) > 0) { 1788 persistent_clock_exists = true; 1789 } else if (timespec64_to_ns(&wall_time) != 0) { 1790 pr_warn("Persistent clock returned invalid value"); 1791 wall_time = (struct timespec64){0}; 1792 } 1793 1794 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1795 boot_offset = (struct timespec64){0}; 1796 1797 /* 1798 * We want set wall_to_mono, so the following is true: 1799 * wall time + wall_to_mono = boot time 1800 */ 1801 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1802 1803 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1804 write_seqcount_begin(&tk_core.seq); 1805 ntp_init(); 1806 1807 clock = clocksource_default_clock(); 1808 if (clock->enable) 1809 clock->enable(clock); 1810 tk_setup_internals(tk, clock); 1811 1812 tk_set_xtime(tk, &wall_time); 1813 tk->raw_sec = 0; 1814 1815 tk_set_wall_to_mono(tk, wall_to_mono); 1816 1817 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1818 1819 write_seqcount_end(&tk_core.seq); 1820 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1821 } 1822 1823 /* time in seconds when suspend began for persistent clock */ 1824 static struct timespec64 timekeeping_suspend_time; 1825 1826 /** 1827 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1828 * @tk: Pointer to the timekeeper to be updated 1829 * @delta: Pointer to the delta value in timespec64 format 1830 * 1831 * Takes a timespec offset measuring a suspend interval and properly 1832 * adds the sleep offset to the timekeeping variables. 1833 */ 1834 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1835 const struct timespec64 *delta) 1836 { 1837 if (!timespec64_valid_strict(delta)) { 1838 printk_deferred(KERN_WARNING 1839 "__timekeeping_inject_sleeptime: Invalid " 1840 "sleep delta value!\n"); 1841 return; 1842 } 1843 tk_xtime_add(tk, delta); 1844 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1845 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1846 tk_debug_account_sleep_time(delta); 1847 } 1848 1849 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1850 /* 1851 * We have three kinds of time sources to use for sleep time 1852 * injection, the preference order is: 1853 * 1) non-stop clocksource 1854 * 2) persistent clock (ie: RTC accessible when irqs are off) 1855 * 3) RTC 1856 * 1857 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1858 * If system has neither 1) nor 2), 3) will be used finally. 1859 * 1860 * 1861 * If timekeeping has injected sleeptime via either 1) or 2), 1862 * 3) becomes needless, so in this case we don't need to call 1863 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1864 * means. 1865 */ 1866 bool timekeeping_rtc_skipresume(void) 1867 { 1868 return !suspend_timing_needed; 1869 } 1870 1871 /* 1872 * 1) can be determined whether to use or not only when doing 1873 * timekeeping_resume() which is invoked after rtc_suspend(), 1874 * so we can't skip rtc_suspend() surely if system has 1). 1875 * 1876 * But if system has 2), 2) will definitely be used, so in this 1877 * case we don't need to call rtc_suspend(), and this is what 1878 * timekeeping_rtc_skipsuspend() means. 1879 */ 1880 bool timekeeping_rtc_skipsuspend(void) 1881 { 1882 return persistent_clock_exists; 1883 } 1884 1885 /** 1886 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1887 * @delta: pointer to a timespec64 delta value 1888 * 1889 * This hook is for architectures that cannot support read_persistent_clock64 1890 * because their RTC/persistent clock is only accessible when irqs are enabled. 1891 * and also don't have an effective nonstop clocksource. 1892 * 1893 * This function should only be called by rtc_resume(), and allows 1894 * a suspend offset to be injected into the timekeeping values. 1895 */ 1896 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1897 { 1898 struct timekeeper *tk = &tk_core.timekeeper; 1899 unsigned long flags; 1900 1901 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1902 write_seqcount_begin(&tk_core.seq); 1903 1904 suspend_timing_needed = false; 1905 1906 timekeeping_forward_now(tk); 1907 1908 __timekeeping_inject_sleeptime(tk, delta); 1909 1910 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1911 1912 write_seqcount_end(&tk_core.seq); 1913 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1914 1915 /* Signal hrtimers about time change */ 1916 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1917 } 1918 #endif 1919 1920 /** 1921 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1922 */ 1923 void timekeeping_resume(void) 1924 { 1925 struct timekeeper *tk = &tk_core.timekeeper; 1926 struct clocksource *clock = tk->tkr_mono.clock; 1927 unsigned long flags; 1928 struct timespec64 ts_new, ts_delta; 1929 u64 cycle_now, nsec; 1930 bool inject_sleeptime = false; 1931 1932 read_persistent_clock64(&ts_new); 1933 1934 clockevents_resume(); 1935 clocksource_resume(); 1936 1937 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1938 write_seqcount_begin(&tk_core.seq); 1939 1940 /* 1941 * After system resumes, we need to calculate the suspended time and 1942 * compensate it for the OS time. There are 3 sources that could be 1943 * used: Nonstop clocksource during suspend, persistent clock and rtc 1944 * device. 1945 * 1946 * One specific platform may have 1 or 2 or all of them, and the 1947 * preference will be: 1948 * suspend-nonstop clocksource -> persistent clock -> rtc 1949 * The less preferred source will only be tried if there is no better 1950 * usable source. The rtc part is handled separately in rtc core code. 1951 */ 1952 cycle_now = tk_clock_read(&tk->tkr_mono); 1953 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1954 if (nsec > 0) { 1955 ts_delta = ns_to_timespec64(nsec); 1956 inject_sleeptime = true; 1957 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1958 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1959 inject_sleeptime = true; 1960 } 1961 1962 if (inject_sleeptime) { 1963 suspend_timing_needed = false; 1964 __timekeeping_inject_sleeptime(tk, &ts_delta); 1965 } 1966 1967 /* Re-base the last cycle value */ 1968 tk->tkr_mono.cycle_last = cycle_now; 1969 tk->tkr_raw.cycle_last = cycle_now; 1970 1971 tk->ntp_error = 0; 1972 timekeeping_suspended = 0; 1973 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1974 write_seqcount_end(&tk_core.seq); 1975 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1976 1977 touch_softlockup_watchdog(); 1978 1979 /* Resume the clockevent device(s) and hrtimers */ 1980 tick_resume(); 1981 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1982 timerfd_resume(); 1983 } 1984 1985 int timekeeping_suspend(void) 1986 { 1987 struct timekeeper *tk = &tk_core.timekeeper; 1988 unsigned long flags; 1989 struct timespec64 delta, delta_delta; 1990 static struct timespec64 old_delta; 1991 struct clocksource *curr_clock; 1992 u64 cycle_now; 1993 1994 read_persistent_clock64(&timekeeping_suspend_time); 1995 1996 /* 1997 * On some systems the persistent_clock can not be detected at 1998 * timekeeping_init by its return value, so if we see a valid 1999 * value returned, update the persistent_clock_exists flag. 2000 */ 2001 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 2002 persistent_clock_exists = true; 2003 2004 suspend_timing_needed = true; 2005 2006 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2007 write_seqcount_begin(&tk_core.seq); 2008 timekeeping_forward_now(tk); 2009 timekeeping_suspended = 1; 2010 2011 /* 2012 * Since we've called forward_now, cycle_last stores the value 2013 * just read from the current clocksource. Save this to potentially 2014 * use in suspend timing. 2015 */ 2016 curr_clock = tk->tkr_mono.clock; 2017 cycle_now = tk->tkr_mono.cycle_last; 2018 clocksource_start_suspend_timing(curr_clock, cycle_now); 2019 2020 if (persistent_clock_exists) { 2021 /* 2022 * To avoid drift caused by repeated suspend/resumes, 2023 * which each can add ~1 second drift error, 2024 * try to compensate so the difference in system time 2025 * and persistent_clock time stays close to constant. 2026 */ 2027 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 2028 delta_delta = timespec64_sub(delta, old_delta); 2029 if (abs(delta_delta.tv_sec) >= 2) { 2030 /* 2031 * if delta_delta is too large, assume time correction 2032 * has occurred and set old_delta to the current delta. 2033 */ 2034 old_delta = delta; 2035 } else { 2036 /* Otherwise try to adjust old_system to compensate */ 2037 timekeeping_suspend_time = 2038 timespec64_add(timekeeping_suspend_time, delta_delta); 2039 } 2040 } 2041 2042 timekeeping_update(tk, TK_MIRROR); 2043 halt_fast_timekeeper(tk); 2044 write_seqcount_end(&tk_core.seq); 2045 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2046 2047 tick_suspend(); 2048 clocksource_suspend(); 2049 clockevents_suspend(); 2050 2051 return 0; 2052 } 2053 2054 /* sysfs resume/suspend bits for timekeeping */ 2055 static struct syscore_ops timekeeping_syscore_ops = { 2056 .resume = timekeeping_resume, 2057 .suspend = timekeeping_suspend, 2058 }; 2059 2060 static int __init timekeeping_init_ops(void) 2061 { 2062 register_syscore_ops(&timekeeping_syscore_ops); 2063 return 0; 2064 } 2065 device_initcall(timekeeping_init_ops); 2066 2067 /* 2068 * Apply a multiplier adjustment to the timekeeper 2069 */ 2070 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2071 s64 offset, 2072 s32 mult_adj) 2073 { 2074 s64 interval = tk->cycle_interval; 2075 2076 if (mult_adj == 0) { 2077 return; 2078 } else if (mult_adj == -1) { 2079 interval = -interval; 2080 offset = -offset; 2081 } else if (mult_adj != 1) { 2082 interval *= mult_adj; 2083 offset *= mult_adj; 2084 } 2085 2086 /* 2087 * So the following can be confusing. 2088 * 2089 * To keep things simple, lets assume mult_adj == 1 for now. 2090 * 2091 * When mult_adj != 1, remember that the interval and offset values 2092 * have been appropriately scaled so the math is the same. 2093 * 2094 * The basic idea here is that we're increasing the multiplier 2095 * by one, this causes the xtime_interval to be incremented by 2096 * one cycle_interval. This is because: 2097 * xtime_interval = cycle_interval * mult 2098 * So if mult is being incremented by one: 2099 * xtime_interval = cycle_interval * (mult + 1) 2100 * Its the same as: 2101 * xtime_interval = (cycle_interval * mult) + cycle_interval 2102 * Which can be shortened to: 2103 * xtime_interval += cycle_interval 2104 * 2105 * So offset stores the non-accumulated cycles. Thus the current 2106 * time (in shifted nanoseconds) is: 2107 * now = (offset * adj) + xtime_nsec 2108 * Now, even though we're adjusting the clock frequency, we have 2109 * to keep time consistent. In other words, we can't jump back 2110 * in time, and we also want to avoid jumping forward in time. 2111 * 2112 * So given the same offset value, we need the time to be the same 2113 * both before and after the freq adjustment. 2114 * now = (offset * adj_1) + xtime_nsec_1 2115 * now = (offset * adj_2) + xtime_nsec_2 2116 * So: 2117 * (offset * adj_1) + xtime_nsec_1 = 2118 * (offset * adj_2) + xtime_nsec_2 2119 * And we know: 2120 * adj_2 = adj_1 + 1 2121 * So: 2122 * (offset * adj_1) + xtime_nsec_1 = 2123 * (offset * (adj_1+1)) + xtime_nsec_2 2124 * (offset * adj_1) + xtime_nsec_1 = 2125 * (offset * adj_1) + offset + xtime_nsec_2 2126 * Canceling the sides: 2127 * xtime_nsec_1 = offset + xtime_nsec_2 2128 * Which gives us: 2129 * xtime_nsec_2 = xtime_nsec_1 - offset 2130 * Which simplifies to: 2131 * xtime_nsec -= offset 2132 */ 2133 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2134 /* NTP adjustment caused clocksource mult overflow */ 2135 WARN_ON_ONCE(1); 2136 return; 2137 } 2138 2139 tk->tkr_mono.mult += mult_adj; 2140 tk->xtime_interval += interval; 2141 tk->tkr_mono.xtime_nsec -= offset; 2142 } 2143 2144 /* 2145 * Adjust the timekeeper's multiplier to the correct frequency 2146 * and also to reduce the accumulated error value. 2147 */ 2148 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2149 { 2150 u32 mult; 2151 2152 /* 2153 * Determine the multiplier from the current NTP tick length. 2154 * Avoid expensive division when the tick length doesn't change. 2155 */ 2156 if (likely(tk->ntp_tick == ntp_tick_length())) { 2157 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2158 } else { 2159 tk->ntp_tick = ntp_tick_length(); 2160 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2161 tk->xtime_remainder, tk->cycle_interval); 2162 } 2163 2164 /* 2165 * If the clock is behind the NTP time, increase the multiplier by 1 2166 * to catch up with it. If it's ahead and there was a remainder in the 2167 * tick division, the clock will slow down. Otherwise it will stay 2168 * ahead until the tick length changes to a non-divisible value. 2169 */ 2170 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2171 mult += tk->ntp_err_mult; 2172 2173 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2174 2175 if (unlikely(tk->tkr_mono.clock->maxadj && 2176 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2177 > tk->tkr_mono.clock->maxadj))) { 2178 printk_once(KERN_WARNING 2179 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2180 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2181 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2182 } 2183 2184 /* 2185 * It may be possible that when we entered this function, xtime_nsec 2186 * was very small. Further, if we're slightly speeding the clocksource 2187 * in the code above, its possible the required corrective factor to 2188 * xtime_nsec could cause it to underflow. 2189 * 2190 * Now, since we have already accumulated the second and the NTP 2191 * subsystem has been notified via second_overflow(), we need to skip 2192 * the next update. 2193 */ 2194 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2195 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2196 tk->tkr_mono.shift; 2197 tk->xtime_sec--; 2198 tk->skip_second_overflow = 1; 2199 } 2200 } 2201 2202 /* 2203 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2204 * 2205 * Helper function that accumulates the nsecs greater than a second 2206 * from the xtime_nsec field to the xtime_secs field. 2207 * It also calls into the NTP code to handle leapsecond processing. 2208 */ 2209 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2210 { 2211 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2212 unsigned int clock_set = 0; 2213 2214 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2215 int leap; 2216 2217 tk->tkr_mono.xtime_nsec -= nsecps; 2218 tk->xtime_sec++; 2219 2220 /* 2221 * Skip NTP update if this second was accumulated before, 2222 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2223 */ 2224 if (unlikely(tk->skip_second_overflow)) { 2225 tk->skip_second_overflow = 0; 2226 continue; 2227 } 2228 2229 /* Figure out if its a leap sec and apply if needed */ 2230 leap = second_overflow(tk->xtime_sec); 2231 if (unlikely(leap)) { 2232 struct timespec64 ts; 2233 2234 tk->xtime_sec += leap; 2235 2236 ts.tv_sec = leap; 2237 ts.tv_nsec = 0; 2238 tk_set_wall_to_mono(tk, 2239 timespec64_sub(tk->wall_to_monotonic, ts)); 2240 2241 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2242 2243 clock_set = TK_CLOCK_WAS_SET; 2244 } 2245 } 2246 return clock_set; 2247 } 2248 2249 /* 2250 * logarithmic_accumulation - shifted accumulation of cycles 2251 * 2252 * This functions accumulates a shifted interval of cycles into 2253 * a shifted interval nanoseconds. Allows for O(log) accumulation 2254 * loop. 2255 * 2256 * Returns the unconsumed cycles. 2257 */ 2258 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2259 u32 shift, unsigned int *clock_set) 2260 { 2261 u64 interval = tk->cycle_interval << shift; 2262 u64 snsec_per_sec; 2263 2264 /* If the offset is smaller than a shifted interval, do nothing */ 2265 if (offset < interval) 2266 return offset; 2267 2268 /* Accumulate one shifted interval */ 2269 offset -= interval; 2270 tk->tkr_mono.cycle_last += interval; 2271 tk->tkr_raw.cycle_last += interval; 2272 2273 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2274 *clock_set |= accumulate_nsecs_to_secs(tk); 2275 2276 /* Accumulate raw time */ 2277 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2278 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2279 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2280 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2281 tk->raw_sec++; 2282 } 2283 2284 /* Accumulate error between NTP and clock interval */ 2285 tk->ntp_error += tk->ntp_tick << shift; 2286 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2287 (tk->ntp_error_shift + shift); 2288 2289 return offset; 2290 } 2291 2292 /* 2293 * timekeeping_advance - Updates the timekeeper to the current time and 2294 * current NTP tick length 2295 */ 2296 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2297 { 2298 struct timekeeper *real_tk = &tk_core.timekeeper; 2299 struct timekeeper *tk = &shadow_timekeeper; 2300 u64 offset; 2301 int shift = 0, maxshift; 2302 unsigned int clock_set = 0; 2303 unsigned long flags; 2304 2305 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2306 2307 /* Make sure we're fully resumed: */ 2308 if (unlikely(timekeeping_suspended)) 2309 goto out; 2310 2311 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2312 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2313 2314 /* Check if there's really nothing to do */ 2315 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2316 goto out; 2317 2318 /* Do some additional sanity checking */ 2319 timekeeping_check_update(tk, offset); 2320 2321 /* 2322 * With NO_HZ we may have to accumulate many cycle_intervals 2323 * (think "ticks") worth of time at once. To do this efficiently, 2324 * we calculate the largest doubling multiple of cycle_intervals 2325 * that is smaller than the offset. We then accumulate that 2326 * chunk in one go, and then try to consume the next smaller 2327 * doubled multiple. 2328 */ 2329 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2330 shift = max(0, shift); 2331 /* Bound shift to one less than what overflows tick_length */ 2332 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2333 shift = min(shift, maxshift); 2334 while (offset >= tk->cycle_interval) { 2335 offset = logarithmic_accumulation(tk, offset, shift, 2336 &clock_set); 2337 if (offset < tk->cycle_interval<<shift) 2338 shift--; 2339 } 2340 2341 /* Adjust the multiplier to correct NTP error */ 2342 timekeeping_adjust(tk, offset); 2343 2344 /* 2345 * Finally, make sure that after the rounding 2346 * xtime_nsec isn't larger than NSEC_PER_SEC 2347 */ 2348 clock_set |= accumulate_nsecs_to_secs(tk); 2349 2350 write_seqcount_begin(&tk_core.seq); 2351 /* 2352 * Update the real timekeeper. 2353 * 2354 * We could avoid this memcpy by switching pointers, but that 2355 * requires changes to all other timekeeper usage sites as 2356 * well, i.e. move the timekeeper pointer getter into the 2357 * spinlocked/seqcount protected sections. And we trade this 2358 * memcpy under the tk_core.seq against one before we start 2359 * updating. 2360 */ 2361 timekeeping_update(tk, clock_set); 2362 memcpy(real_tk, tk, sizeof(*tk)); 2363 /* The memcpy must come last. Do not put anything here! */ 2364 write_seqcount_end(&tk_core.seq); 2365 out: 2366 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2367 2368 return !!clock_set; 2369 } 2370 2371 /** 2372 * update_wall_time - Uses the current clocksource to increment the wall time 2373 * 2374 */ 2375 void update_wall_time(void) 2376 { 2377 if (timekeeping_advance(TK_ADV_TICK)) 2378 clock_was_set_delayed(); 2379 } 2380 2381 /** 2382 * getboottime64 - Return the real time of system boot. 2383 * @ts: pointer to the timespec64 to be set 2384 * 2385 * Returns the wall-time of boot in a timespec64. 2386 * 2387 * This is based on the wall_to_monotonic offset and the total suspend 2388 * time. Calls to settimeofday will affect the value returned (which 2389 * basically means that however wrong your real time clock is at boot time, 2390 * you get the right time here). 2391 */ 2392 void getboottime64(struct timespec64 *ts) 2393 { 2394 struct timekeeper *tk = &tk_core.timekeeper; 2395 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2396 2397 *ts = ktime_to_timespec64(t); 2398 } 2399 EXPORT_SYMBOL_GPL(getboottime64); 2400 2401 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2402 { 2403 struct timekeeper *tk = &tk_core.timekeeper; 2404 unsigned int seq; 2405 2406 do { 2407 seq = read_seqcount_begin(&tk_core.seq); 2408 2409 *ts = tk_xtime(tk); 2410 } while (read_seqcount_retry(&tk_core.seq, seq)); 2411 } 2412 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2413 2414 /** 2415 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2416 * @ts: timespec64 to be filled 2417 * 2418 * Fetch the global mg_floor value, convert it to realtime and compare it 2419 * to the current coarse-grained time. Fill @ts with whichever is 2420 * latest. Note that this is a filesystem-specific interface and should be 2421 * avoided outside of that context. 2422 */ 2423 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2424 { 2425 struct timekeeper *tk = &tk_core.timekeeper; 2426 u64 floor = atomic64_read(&mg_floor); 2427 ktime_t f_real, offset, coarse; 2428 unsigned int seq; 2429 2430 do { 2431 seq = read_seqcount_begin(&tk_core.seq); 2432 *ts = tk_xtime(tk); 2433 offset = tk_core.timekeeper.offs_real; 2434 } while (read_seqcount_retry(&tk_core.seq, seq)); 2435 2436 coarse = timespec64_to_ktime(*ts); 2437 f_real = ktime_add(floor, offset); 2438 if (ktime_after(f_real, coarse)) 2439 *ts = ktime_to_timespec64(f_real); 2440 } 2441 2442 /** 2443 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2444 * @ts: pointer to the timespec to be set 2445 * 2446 * Get a monotonic fine-grained time value and attempt to swap it into 2447 * mg_floor. If that succeeds then accept the new floor value. If it fails 2448 * then another task raced in during the interim time and updated the 2449 * floor. Since any update to the floor must be later than the previous 2450 * floor, either outcome is acceptable. 2451 * 2452 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2453 * and determining that the resulting coarse-grained timestamp did not effect 2454 * a change in ctime. Any more recent floor value would effect a change to 2455 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2456 * 2457 * @ts will be filled with the latest floor value, regardless of the outcome of 2458 * the cmpxchg. Note that this is a filesystem specific interface and should be 2459 * avoided outside of that context. 2460 */ 2461 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2462 { 2463 struct timekeeper *tk = &tk_core.timekeeper; 2464 ktime_t old = atomic64_read(&mg_floor); 2465 ktime_t offset, mono; 2466 unsigned int seq; 2467 u64 nsecs; 2468 2469 do { 2470 seq = read_seqcount_begin(&tk_core.seq); 2471 2472 ts->tv_sec = tk->xtime_sec; 2473 mono = tk->tkr_mono.base; 2474 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2475 offset = tk_core.timekeeper.offs_real; 2476 } while (read_seqcount_retry(&tk_core.seq, seq)); 2477 2478 mono = ktime_add_ns(mono, nsecs); 2479 2480 /* 2481 * Attempt to update the floor with the new time value. As any 2482 * update must be later then the existing floor, and would effect 2483 * a change to ctime from the perspective of the current task, 2484 * accept the resulting floor value regardless of the outcome of 2485 * the swap. 2486 */ 2487 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2488 ts->tv_nsec = 0; 2489 timespec64_add_ns(ts, nsecs); 2490 timekeeping_inc_mg_floor_swaps(); 2491 } else { 2492 /* 2493 * Another task changed mg_floor since "old" was fetched. 2494 * "old" has been updated with the latest value of "mg_floor". 2495 * That value is newer than the previous floor value, which 2496 * is enough to effect a change to ctime. Accept it. 2497 */ 2498 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2499 } 2500 } 2501 2502 void ktime_get_coarse_ts64(struct timespec64 *ts) 2503 { 2504 struct timekeeper *tk = &tk_core.timekeeper; 2505 struct timespec64 now, mono; 2506 unsigned int seq; 2507 2508 do { 2509 seq = read_seqcount_begin(&tk_core.seq); 2510 2511 now = tk_xtime(tk); 2512 mono = tk->wall_to_monotonic; 2513 } while (read_seqcount_retry(&tk_core.seq, seq)); 2514 2515 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2516 now.tv_nsec + mono.tv_nsec); 2517 } 2518 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2519 2520 /* 2521 * Must hold jiffies_lock 2522 */ 2523 void do_timer(unsigned long ticks) 2524 { 2525 jiffies_64 += ticks; 2526 calc_global_load(); 2527 } 2528 2529 /** 2530 * ktime_get_update_offsets_now - hrtimer helper 2531 * @cwsseq: pointer to check and store the clock was set sequence number 2532 * @offs_real: pointer to storage for monotonic -> realtime offset 2533 * @offs_boot: pointer to storage for monotonic -> boottime offset 2534 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2535 * 2536 * Returns current monotonic time and updates the offsets if the 2537 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2538 * different. 2539 * 2540 * Called from hrtimer_interrupt() or retrigger_next_event() 2541 */ 2542 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2543 ktime_t *offs_boot, ktime_t *offs_tai) 2544 { 2545 struct timekeeper *tk = &tk_core.timekeeper; 2546 unsigned int seq; 2547 ktime_t base; 2548 u64 nsecs; 2549 2550 do { 2551 seq = read_seqcount_begin(&tk_core.seq); 2552 2553 base = tk->tkr_mono.base; 2554 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2555 base = ktime_add_ns(base, nsecs); 2556 2557 if (*cwsseq != tk->clock_was_set_seq) { 2558 *cwsseq = tk->clock_was_set_seq; 2559 *offs_real = tk->offs_real; 2560 *offs_boot = tk->offs_boot; 2561 *offs_tai = tk->offs_tai; 2562 } 2563 2564 /* Handle leapsecond insertion adjustments */ 2565 if (unlikely(base >= tk->next_leap_ktime)) 2566 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2567 2568 } while (read_seqcount_retry(&tk_core.seq, seq)); 2569 2570 return base; 2571 } 2572 2573 /* 2574 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2575 */ 2576 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2577 { 2578 if (txc->modes & ADJ_ADJTIME) { 2579 /* singleshot must not be used with any other mode bits */ 2580 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2581 return -EINVAL; 2582 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2583 !capable(CAP_SYS_TIME)) 2584 return -EPERM; 2585 } else { 2586 /* In order to modify anything, you gotta be super-user! */ 2587 if (txc->modes && !capable(CAP_SYS_TIME)) 2588 return -EPERM; 2589 /* 2590 * if the quartz is off by more than 10% then 2591 * something is VERY wrong! 2592 */ 2593 if (txc->modes & ADJ_TICK && 2594 (txc->tick < 900000/USER_HZ || 2595 txc->tick > 1100000/USER_HZ)) 2596 return -EINVAL; 2597 } 2598 2599 if (txc->modes & ADJ_SETOFFSET) { 2600 /* In order to inject time, you gotta be super-user! */ 2601 if (!capable(CAP_SYS_TIME)) 2602 return -EPERM; 2603 2604 /* 2605 * Validate if a timespec/timeval used to inject a time 2606 * offset is valid. Offsets can be positive or negative, so 2607 * we don't check tv_sec. The value of the timeval/timespec 2608 * is the sum of its fields,but *NOTE*: 2609 * The field tv_usec/tv_nsec must always be non-negative and 2610 * we can't have more nanoseconds/microseconds than a second. 2611 */ 2612 if (txc->time.tv_usec < 0) 2613 return -EINVAL; 2614 2615 if (txc->modes & ADJ_NANO) { 2616 if (txc->time.tv_usec >= NSEC_PER_SEC) 2617 return -EINVAL; 2618 } else { 2619 if (txc->time.tv_usec >= USEC_PER_SEC) 2620 return -EINVAL; 2621 } 2622 } 2623 2624 /* 2625 * Check for potential multiplication overflows that can 2626 * only happen on 64-bit systems: 2627 */ 2628 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2629 if (LLONG_MIN / PPM_SCALE > txc->freq) 2630 return -EINVAL; 2631 if (LLONG_MAX / PPM_SCALE < txc->freq) 2632 return -EINVAL; 2633 } 2634 2635 return 0; 2636 } 2637 2638 /** 2639 * random_get_entropy_fallback - Returns the raw clock source value, 2640 * used by random.c for platforms with no valid random_get_entropy(). 2641 */ 2642 unsigned long random_get_entropy_fallback(void) 2643 { 2644 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2645 struct clocksource *clock = READ_ONCE(tkr->clock); 2646 2647 if (unlikely(timekeeping_suspended || !clock)) 2648 return 0; 2649 return clock->read(clock); 2650 } 2651 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2652 2653 /** 2654 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2655 * @txc: Pointer to kernel_timex structure containing NTP parameters 2656 */ 2657 int do_adjtimex(struct __kernel_timex *txc) 2658 { 2659 struct timekeeper *tk = &tk_core.timekeeper; 2660 struct audit_ntp_data ad; 2661 bool offset_set = false; 2662 bool clock_set = false; 2663 struct timespec64 ts; 2664 unsigned long flags; 2665 s32 orig_tai, tai; 2666 int ret; 2667 2668 /* Validate the data before disabling interrupts */ 2669 ret = timekeeping_validate_timex(txc); 2670 if (ret) 2671 return ret; 2672 add_device_randomness(txc, sizeof(*txc)); 2673 2674 if (txc->modes & ADJ_SETOFFSET) { 2675 struct timespec64 delta; 2676 delta.tv_sec = txc->time.tv_sec; 2677 delta.tv_nsec = txc->time.tv_usec; 2678 if (!(txc->modes & ADJ_NANO)) 2679 delta.tv_nsec *= 1000; 2680 ret = timekeeping_inject_offset(&delta); 2681 if (ret) 2682 return ret; 2683 2684 offset_set = delta.tv_sec != 0; 2685 audit_tk_injoffset(delta); 2686 } 2687 2688 audit_ntp_init(&ad); 2689 2690 ktime_get_real_ts64(&ts); 2691 add_device_randomness(&ts, sizeof(ts)); 2692 2693 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2694 write_seqcount_begin(&tk_core.seq); 2695 2696 orig_tai = tai = tk->tai_offset; 2697 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2698 2699 if (tai != orig_tai) { 2700 __timekeeping_set_tai_offset(tk, tai); 2701 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2702 clock_set = true; 2703 } 2704 tk_update_leap_state(tk); 2705 2706 write_seqcount_end(&tk_core.seq); 2707 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2708 2709 audit_ntp_log(&ad); 2710 2711 /* Update the multiplier immediately if frequency was set directly */ 2712 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2713 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2714 2715 if (clock_set) 2716 clock_was_set(CLOCK_SET_WALL); 2717 2718 ntp_notify_cmos_timer(offset_set); 2719 2720 return ret; 2721 } 2722 2723 #ifdef CONFIG_NTP_PPS 2724 /** 2725 * hardpps() - Accessor function to NTP __hardpps function 2726 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2727 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2728 */ 2729 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2730 { 2731 unsigned long flags; 2732 2733 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2734 write_seqcount_begin(&tk_core.seq); 2735 2736 __hardpps(phase_ts, raw_ts); 2737 2738 write_seqcount_end(&tk_core.seq); 2739 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2740 } 2741 EXPORT_SYMBOL(hardpps); 2742 #endif /* CONFIG_NTP_PPS */ 2743