xref: /linux/kernel/time/timekeeping.c (revision 4494ce4fb4ff42946f48bbc8a5ac55ee18dca600)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 
25 #include "tick-internal.h"
26 #include "ntp_internal.h"
27 #include "timekeeping_internal.h"
28 
29 #define TK_CLEAR_NTP		(1 << 0)
30 #define TK_MIRROR		(1 << 1)
31 #define TK_CLOCK_WAS_SET	(1 << 2)
32 
33 enum timekeeping_adv_mode {
34 	/* Update timekeeper when a tick has passed */
35 	TK_ADV_TICK,
36 
37 	/* Update timekeeper on a direct frequency change */
38 	TK_ADV_FREQ
39 };
40 
41 /*
42  * The most important data for readout fits into a single 64 byte
43  * cache line.
44  */
45 static struct {
46 	seqcount_t		seq;
47 	struct timekeeper	timekeeper;
48 } tk_core ____cacheline_aligned = {
49 	.seq = SEQCNT_ZERO(tk_core.seq),
50 };
51 
52 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
53 static struct timekeeper shadow_timekeeper;
54 
55 /**
56  * struct tk_fast - NMI safe timekeeper
57  * @seq:	Sequence counter for protecting updates. The lowest bit
58  *		is the index for the tk_read_base array
59  * @base:	tk_read_base array. Access is indexed by the lowest bit of
60  *		@seq.
61  *
62  * See @update_fast_timekeeper() below.
63  */
64 struct tk_fast {
65 	seqcount_t		seq;
66 	struct tk_read_base	base[2];
67 };
68 
69 /* Suspend-time cycles value for halted fast timekeeper. */
70 static u64 cycles_at_suspend;
71 
72 static u64 dummy_clock_read(struct clocksource *cs)
73 {
74 	return cycles_at_suspend;
75 }
76 
77 static struct clocksource dummy_clock = {
78 	.read = dummy_clock_read,
79 };
80 
81 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
82 	.base[0] = { .clock = &dummy_clock, },
83 	.base[1] = { .clock = &dummy_clock, },
84 };
85 
86 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
87 	.base[0] = { .clock = &dummy_clock, },
88 	.base[1] = { .clock = &dummy_clock, },
89 };
90 
91 /* flag for if timekeeping is suspended */
92 int __read_mostly timekeeping_suspended;
93 
94 static inline void tk_normalize_xtime(struct timekeeper *tk)
95 {
96 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
97 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
98 		tk->xtime_sec++;
99 	}
100 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
101 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
102 		tk->raw_sec++;
103 	}
104 }
105 
106 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
107 {
108 	struct timespec64 ts;
109 
110 	ts.tv_sec = tk->xtime_sec;
111 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
112 	return ts;
113 }
114 
115 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
116 {
117 	tk->xtime_sec = ts->tv_sec;
118 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
119 }
120 
121 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
122 {
123 	tk->xtime_sec += ts->tv_sec;
124 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
125 	tk_normalize_xtime(tk);
126 }
127 
128 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
129 {
130 	struct timespec64 tmp;
131 
132 	/*
133 	 * Verify consistency of: offset_real = -wall_to_monotonic
134 	 * before modifying anything
135 	 */
136 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
137 					-tk->wall_to_monotonic.tv_nsec);
138 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
139 	tk->wall_to_monotonic = wtm;
140 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
141 	tk->offs_real = timespec64_to_ktime(tmp);
142 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
143 }
144 
145 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
146 {
147 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
148 }
149 
150 /*
151  * tk_clock_read - atomic clocksource read() helper
152  *
153  * This helper is necessary to use in the read paths because, while the
154  * seqlock ensures we don't return a bad value while structures are updated,
155  * it doesn't protect from potential crashes. There is the possibility that
156  * the tkr's clocksource may change between the read reference, and the
157  * clock reference passed to the read function.  This can cause crashes if
158  * the wrong clocksource is passed to the wrong read function.
159  * This isn't necessary to use when holding the timekeeper_lock or doing
160  * a read of the fast-timekeeper tkrs (which is protected by its own locking
161  * and update logic).
162  */
163 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
164 {
165 	struct clocksource *clock = READ_ONCE(tkr->clock);
166 
167 	return clock->read(clock);
168 }
169 
170 #ifdef CONFIG_DEBUG_TIMEKEEPING
171 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
172 
173 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
174 {
175 
176 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
177 	const char *name = tk->tkr_mono.clock->name;
178 
179 	if (offset > max_cycles) {
180 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
181 				offset, name, max_cycles);
182 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
183 	} else {
184 		if (offset > (max_cycles >> 1)) {
185 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
186 					offset, name, max_cycles >> 1);
187 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
188 		}
189 	}
190 
191 	if (tk->underflow_seen) {
192 		if (jiffies - tk->last_warning > WARNING_FREQ) {
193 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
194 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
195 			printk_deferred("         Your kernel is probably still fine.\n");
196 			tk->last_warning = jiffies;
197 		}
198 		tk->underflow_seen = 0;
199 	}
200 
201 	if (tk->overflow_seen) {
202 		if (jiffies - tk->last_warning > WARNING_FREQ) {
203 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
204 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
205 			printk_deferred("         Your kernel is probably still fine.\n");
206 			tk->last_warning = jiffies;
207 		}
208 		tk->overflow_seen = 0;
209 	}
210 }
211 
212 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
213 {
214 	struct timekeeper *tk = &tk_core.timekeeper;
215 	u64 now, last, mask, max, delta;
216 	unsigned int seq;
217 
218 	/*
219 	 * Since we're called holding a seqlock, the data may shift
220 	 * under us while we're doing the calculation. This can cause
221 	 * false positives, since we'd note a problem but throw the
222 	 * results away. So nest another seqlock here to atomically
223 	 * grab the points we are checking with.
224 	 */
225 	do {
226 		seq = read_seqcount_begin(&tk_core.seq);
227 		now = tk_clock_read(tkr);
228 		last = tkr->cycle_last;
229 		mask = tkr->mask;
230 		max = tkr->clock->max_cycles;
231 	} while (read_seqcount_retry(&tk_core.seq, seq));
232 
233 	delta = clocksource_delta(now, last, mask);
234 
235 	/*
236 	 * Try to catch underflows by checking if we are seeing small
237 	 * mask-relative negative values.
238 	 */
239 	if (unlikely((~delta & mask) < (mask >> 3))) {
240 		tk->underflow_seen = 1;
241 		delta = 0;
242 	}
243 
244 	/* Cap delta value to the max_cycles values to avoid mult overflows */
245 	if (unlikely(delta > max)) {
246 		tk->overflow_seen = 1;
247 		delta = tkr->clock->max_cycles;
248 	}
249 
250 	return delta;
251 }
252 #else
253 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
254 {
255 }
256 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
257 {
258 	u64 cycle_now, delta;
259 
260 	/* read clocksource */
261 	cycle_now = tk_clock_read(tkr);
262 
263 	/* calculate the delta since the last update_wall_time */
264 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
265 
266 	return delta;
267 }
268 #endif
269 
270 /**
271  * tk_setup_internals - Set up internals to use clocksource clock.
272  *
273  * @tk:		The target timekeeper to setup.
274  * @clock:		Pointer to clocksource.
275  *
276  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
277  * pair and interval request.
278  *
279  * Unless you're the timekeeping code, you should not be using this!
280  */
281 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
282 {
283 	u64 interval;
284 	u64 tmp, ntpinterval;
285 	struct clocksource *old_clock;
286 
287 	++tk->cs_was_changed_seq;
288 	old_clock = tk->tkr_mono.clock;
289 	tk->tkr_mono.clock = clock;
290 	tk->tkr_mono.mask = clock->mask;
291 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
292 
293 	tk->tkr_raw.clock = clock;
294 	tk->tkr_raw.mask = clock->mask;
295 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
296 
297 	/* Do the ns -> cycle conversion first, using original mult */
298 	tmp = NTP_INTERVAL_LENGTH;
299 	tmp <<= clock->shift;
300 	ntpinterval = tmp;
301 	tmp += clock->mult/2;
302 	do_div(tmp, clock->mult);
303 	if (tmp == 0)
304 		tmp = 1;
305 
306 	interval = (u64) tmp;
307 	tk->cycle_interval = interval;
308 
309 	/* Go back from cycles -> shifted ns */
310 	tk->xtime_interval = interval * clock->mult;
311 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
312 	tk->raw_interval = interval * clock->mult;
313 
314 	 /* if changing clocks, convert xtime_nsec shift units */
315 	if (old_clock) {
316 		int shift_change = clock->shift - old_clock->shift;
317 		if (shift_change < 0) {
318 			tk->tkr_mono.xtime_nsec >>= -shift_change;
319 			tk->tkr_raw.xtime_nsec >>= -shift_change;
320 		} else {
321 			tk->tkr_mono.xtime_nsec <<= shift_change;
322 			tk->tkr_raw.xtime_nsec <<= shift_change;
323 		}
324 	}
325 
326 	tk->tkr_mono.shift = clock->shift;
327 	tk->tkr_raw.shift = clock->shift;
328 
329 	tk->ntp_error = 0;
330 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
331 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
332 
333 	/*
334 	 * The timekeeper keeps its own mult values for the currently
335 	 * active clocksource. These value will be adjusted via NTP
336 	 * to counteract clock drifting.
337 	 */
338 	tk->tkr_mono.mult = clock->mult;
339 	tk->tkr_raw.mult = clock->mult;
340 	tk->ntp_err_mult = 0;
341 	tk->skip_second_overflow = 0;
342 }
343 
344 /* Timekeeper helper functions. */
345 
346 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
347 static u32 default_arch_gettimeoffset(void) { return 0; }
348 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
349 #else
350 static inline u32 arch_gettimeoffset(void) { return 0; }
351 #endif
352 
353 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
354 {
355 	u64 nsec;
356 
357 	nsec = delta * tkr->mult + tkr->xtime_nsec;
358 	nsec >>= tkr->shift;
359 
360 	/* If arch requires, add in get_arch_timeoffset() */
361 	return nsec + arch_gettimeoffset();
362 }
363 
364 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
365 {
366 	u64 delta;
367 
368 	delta = timekeeping_get_delta(tkr);
369 	return timekeeping_delta_to_ns(tkr, delta);
370 }
371 
372 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
373 {
374 	u64 delta;
375 
376 	/* calculate the delta since the last update_wall_time */
377 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
378 	return timekeeping_delta_to_ns(tkr, delta);
379 }
380 
381 /**
382  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
383  * @tkr: Timekeeping readout base from which we take the update
384  *
385  * We want to use this from any context including NMI and tracing /
386  * instrumenting the timekeeping code itself.
387  *
388  * Employ the latch technique; see @raw_write_seqcount_latch.
389  *
390  * So if a NMI hits the update of base[0] then it will use base[1]
391  * which is still consistent. In the worst case this can result is a
392  * slightly wrong timestamp (a few nanoseconds). See
393  * @ktime_get_mono_fast_ns.
394  */
395 static void update_fast_timekeeper(const struct tk_read_base *tkr,
396 				   struct tk_fast *tkf)
397 {
398 	struct tk_read_base *base = tkf->base;
399 
400 	/* Force readers off to base[1] */
401 	raw_write_seqcount_latch(&tkf->seq);
402 
403 	/* Update base[0] */
404 	memcpy(base, tkr, sizeof(*base));
405 
406 	/* Force readers back to base[0] */
407 	raw_write_seqcount_latch(&tkf->seq);
408 
409 	/* Update base[1] */
410 	memcpy(base + 1, base, sizeof(*base));
411 }
412 
413 /**
414  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
415  *
416  * This timestamp is not guaranteed to be monotonic across an update.
417  * The timestamp is calculated by:
418  *
419  *	now = base_mono + clock_delta * slope
420  *
421  * So if the update lowers the slope, readers who are forced to the
422  * not yet updated second array are still using the old steeper slope.
423  *
424  * tmono
425  * ^
426  * |    o  n
427  * |   o n
428  * |  u
429  * | o
430  * |o
431  * |12345678---> reader order
432  *
433  * o = old slope
434  * u = update
435  * n = new slope
436  *
437  * So reader 6 will observe time going backwards versus reader 5.
438  *
439  * While other CPUs are likely to be able observe that, the only way
440  * for a CPU local observation is when an NMI hits in the middle of
441  * the update. Timestamps taken from that NMI context might be ahead
442  * of the following timestamps. Callers need to be aware of that and
443  * deal with it.
444  */
445 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
446 {
447 	struct tk_read_base *tkr;
448 	unsigned int seq;
449 	u64 now;
450 
451 	do {
452 		seq = raw_read_seqcount_latch(&tkf->seq);
453 		tkr = tkf->base + (seq & 0x01);
454 		now = ktime_to_ns(tkr->base);
455 
456 		now += timekeeping_delta_to_ns(tkr,
457 				clocksource_delta(
458 					tk_clock_read(tkr),
459 					tkr->cycle_last,
460 					tkr->mask));
461 	} while (read_seqcount_retry(&tkf->seq, seq));
462 
463 	return now;
464 }
465 
466 u64 ktime_get_mono_fast_ns(void)
467 {
468 	return __ktime_get_fast_ns(&tk_fast_mono);
469 }
470 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
471 
472 u64 ktime_get_raw_fast_ns(void)
473 {
474 	return __ktime_get_fast_ns(&tk_fast_raw);
475 }
476 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
477 
478 /**
479  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
480  *
481  * To keep it NMI safe since we're accessing from tracing, we're not using a
482  * separate timekeeper with updates to monotonic clock and boot offset
483  * protected with seqlocks. This has the following minor side effects:
484  *
485  * (1) Its possible that a timestamp be taken after the boot offset is updated
486  * but before the timekeeper is updated. If this happens, the new boot offset
487  * is added to the old timekeeping making the clock appear to update slightly
488  * earlier:
489  *    CPU 0                                        CPU 1
490  *    timekeeping_inject_sleeptime64()
491  *    __timekeeping_inject_sleeptime(tk, delta);
492  *                                                 timestamp();
493  *    timekeeping_update(tk, TK_CLEAR_NTP...);
494  *
495  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
496  * partially updated.  Since the tk->offs_boot update is a rare event, this
497  * should be a rare occurrence which postprocessing should be able to handle.
498  */
499 u64 notrace ktime_get_boot_fast_ns(void)
500 {
501 	struct timekeeper *tk = &tk_core.timekeeper;
502 
503 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
504 }
505 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
506 
507 
508 /*
509  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
510  */
511 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
512 {
513 	struct tk_read_base *tkr;
514 	unsigned int seq;
515 	u64 now;
516 
517 	do {
518 		seq = raw_read_seqcount_latch(&tkf->seq);
519 		tkr = tkf->base + (seq & 0x01);
520 		now = ktime_to_ns(tkr->base_real);
521 
522 		now += timekeeping_delta_to_ns(tkr,
523 				clocksource_delta(
524 					tk_clock_read(tkr),
525 					tkr->cycle_last,
526 					tkr->mask));
527 	} while (read_seqcount_retry(&tkf->seq, seq));
528 
529 	return now;
530 }
531 
532 /**
533  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
534  */
535 u64 ktime_get_real_fast_ns(void)
536 {
537 	return __ktime_get_real_fast_ns(&tk_fast_mono);
538 }
539 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
540 
541 /**
542  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
543  * @tk: Timekeeper to snapshot.
544  *
545  * It generally is unsafe to access the clocksource after timekeeping has been
546  * suspended, so take a snapshot of the readout base of @tk and use it as the
547  * fast timekeeper's readout base while suspended.  It will return the same
548  * number of cycles every time until timekeeping is resumed at which time the
549  * proper readout base for the fast timekeeper will be restored automatically.
550  */
551 static void halt_fast_timekeeper(const struct timekeeper *tk)
552 {
553 	static struct tk_read_base tkr_dummy;
554 	const struct tk_read_base *tkr = &tk->tkr_mono;
555 
556 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
557 	cycles_at_suspend = tk_clock_read(tkr);
558 	tkr_dummy.clock = &dummy_clock;
559 	tkr_dummy.base_real = tkr->base + tk->offs_real;
560 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
561 
562 	tkr = &tk->tkr_raw;
563 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
564 	tkr_dummy.clock = &dummy_clock;
565 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
566 }
567 
568 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
569 
570 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
571 {
572 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
573 }
574 
575 /**
576  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
577  */
578 int pvclock_gtod_register_notifier(struct notifier_block *nb)
579 {
580 	struct timekeeper *tk = &tk_core.timekeeper;
581 	unsigned long flags;
582 	int ret;
583 
584 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
585 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
586 	update_pvclock_gtod(tk, true);
587 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
588 
589 	return ret;
590 }
591 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
592 
593 /**
594  * pvclock_gtod_unregister_notifier - unregister a pvclock
595  * timedata update listener
596  */
597 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
598 {
599 	unsigned long flags;
600 	int ret;
601 
602 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
603 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
604 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
605 
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
609 
610 /*
611  * tk_update_leap_state - helper to update the next_leap_ktime
612  */
613 static inline void tk_update_leap_state(struct timekeeper *tk)
614 {
615 	tk->next_leap_ktime = ntp_get_next_leap();
616 	if (tk->next_leap_ktime != KTIME_MAX)
617 		/* Convert to monotonic time */
618 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
619 }
620 
621 /*
622  * Update the ktime_t based scalar nsec members of the timekeeper
623  */
624 static inline void tk_update_ktime_data(struct timekeeper *tk)
625 {
626 	u64 seconds;
627 	u32 nsec;
628 
629 	/*
630 	 * The xtime based monotonic readout is:
631 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
632 	 * The ktime based monotonic readout is:
633 	 *	nsec = base_mono + now();
634 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
635 	 */
636 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
637 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
638 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
639 
640 	/*
641 	 * The sum of the nanoseconds portions of xtime and
642 	 * wall_to_monotonic can be greater/equal one second. Take
643 	 * this into account before updating tk->ktime_sec.
644 	 */
645 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
646 	if (nsec >= NSEC_PER_SEC)
647 		seconds++;
648 	tk->ktime_sec = seconds;
649 
650 	/* Update the monotonic raw base */
651 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
652 }
653 
654 /* must hold timekeeper_lock */
655 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
656 {
657 	if (action & TK_CLEAR_NTP) {
658 		tk->ntp_error = 0;
659 		ntp_clear();
660 	}
661 
662 	tk_update_leap_state(tk);
663 	tk_update_ktime_data(tk);
664 
665 	update_vsyscall(tk);
666 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
667 
668 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
669 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
670 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
671 
672 	if (action & TK_CLOCK_WAS_SET)
673 		tk->clock_was_set_seq++;
674 	/*
675 	 * The mirroring of the data to the shadow-timekeeper needs
676 	 * to happen last here to ensure we don't over-write the
677 	 * timekeeper structure on the next update with stale data
678 	 */
679 	if (action & TK_MIRROR)
680 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
681 		       sizeof(tk_core.timekeeper));
682 }
683 
684 /**
685  * timekeeping_forward_now - update clock to the current time
686  *
687  * Forward the current clock to update its state since the last call to
688  * update_wall_time(). This is useful before significant clock changes,
689  * as it avoids having to deal with this time offset explicitly.
690  */
691 static void timekeeping_forward_now(struct timekeeper *tk)
692 {
693 	u64 cycle_now, delta;
694 
695 	cycle_now = tk_clock_read(&tk->tkr_mono);
696 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
697 	tk->tkr_mono.cycle_last = cycle_now;
698 	tk->tkr_raw.cycle_last  = cycle_now;
699 
700 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
701 
702 	/* If arch requires, add in get_arch_timeoffset() */
703 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
704 
705 
706 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
707 
708 	/* If arch requires, add in get_arch_timeoffset() */
709 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
710 
711 	tk_normalize_xtime(tk);
712 }
713 
714 /**
715  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
716  * @ts:		pointer to the timespec to be set
717  *
718  * Returns the time of day in a timespec64 (WARN if suspended).
719  */
720 void ktime_get_real_ts64(struct timespec64 *ts)
721 {
722 	struct timekeeper *tk = &tk_core.timekeeper;
723 	unsigned long seq;
724 	u64 nsecs;
725 
726 	WARN_ON(timekeeping_suspended);
727 
728 	do {
729 		seq = read_seqcount_begin(&tk_core.seq);
730 
731 		ts->tv_sec = tk->xtime_sec;
732 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
733 
734 	} while (read_seqcount_retry(&tk_core.seq, seq));
735 
736 	ts->tv_nsec = 0;
737 	timespec64_add_ns(ts, nsecs);
738 }
739 EXPORT_SYMBOL(ktime_get_real_ts64);
740 
741 ktime_t ktime_get(void)
742 {
743 	struct timekeeper *tk = &tk_core.timekeeper;
744 	unsigned int seq;
745 	ktime_t base;
746 	u64 nsecs;
747 
748 	WARN_ON(timekeeping_suspended);
749 
750 	do {
751 		seq = read_seqcount_begin(&tk_core.seq);
752 		base = tk->tkr_mono.base;
753 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
754 
755 	} while (read_seqcount_retry(&tk_core.seq, seq));
756 
757 	return ktime_add_ns(base, nsecs);
758 }
759 EXPORT_SYMBOL_GPL(ktime_get);
760 
761 u32 ktime_get_resolution_ns(void)
762 {
763 	struct timekeeper *tk = &tk_core.timekeeper;
764 	unsigned int seq;
765 	u32 nsecs;
766 
767 	WARN_ON(timekeeping_suspended);
768 
769 	do {
770 		seq = read_seqcount_begin(&tk_core.seq);
771 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
772 	} while (read_seqcount_retry(&tk_core.seq, seq));
773 
774 	return nsecs;
775 }
776 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
777 
778 static ktime_t *offsets[TK_OFFS_MAX] = {
779 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
780 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
781 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
782 };
783 
784 ktime_t ktime_get_with_offset(enum tk_offsets offs)
785 {
786 	struct timekeeper *tk = &tk_core.timekeeper;
787 	unsigned int seq;
788 	ktime_t base, *offset = offsets[offs];
789 	u64 nsecs;
790 
791 	WARN_ON(timekeeping_suspended);
792 
793 	do {
794 		seq = read_seqcount_begin(&tk_core.seq);
795 		base = ktime_add(tk->tkr_mono.base, *offset);
796 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
797 
798 	} while (read_seqcount_retry(&tk_core.seq, seq));
799 
800 	return ktime_add_ns(base, nsecs);
801 
802 }
803 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
804 
805 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
806 {
807 	struct timekeeper *tk = &tk_core.timekeeper;
808 	unsigned int seq;
809 	ktime_t base, *offset = offsets[offs];
810 
811 	WARN_ON(timekeeping_suspended);
812 
813 	do {
814 		seq = read_seqcount_begin(&tk_core.seq);
815 		base = ktime_add(tk->tkr_mono.base, *offset);
816 
817 	} while (read_seqcount_retry(&tk_core.seq, seq));
818 
819 	return base;
820 
821 }
822 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
823 
824 /**
825  * ktime_mono_to_any() - convert mononotic time to any other time
826  * @tmono:	time to convert.
827  * @offs:	which offset to use
828  */
829 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
830 {
831 	ktime_t *offset = offsets[offs];
832 	unsigned long seq;
833 	ktime_t tconv;
834 
835 	do {
836 		seq = read_seqcount_begin(&tk_core.seq);
837 		tconv = ktime_add(tmono, *offset);
838 	} while (read_seqcount_retry(&tk_core.seq, seq));
839 
840 	return tconv;
841 }
842 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
843 
844 /**
845  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
846  */
847 ktime_t ktime_get_raw(void)
848 {
849 	struct timekeeper *tk = &tk_core.timekeeper;
850 	unsigned int seq;
851 	ktime_t base;
852 	u64 nsecs;
853 
854 	do {
855 		seq = read_seqcount_begin(&tk_core.seq);
856 		base = tk->tkr_raw.base;
857 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
858 
859 	} while (read_seqcount_retry(&tk_core.seq, seq));
860 
861 	return ktime_add_ns(base, nsecs);
862 }
863 EXPORT_SYMBOL_GPL(ktime_get_raw);
864 
865 /**
866  * ktime_get_ts64 - get the monotonic clock in timespec64 format
867  * @ts:		pointer to timespec variable
868  *
869  * The function calculates the monotonic clock from the realtime
870  * clock and the wall_to_monotonic offset and stores the result
871  * in normalized timespec64 format in the variable pointed to by @ts.
872  */
873 void ktime_get_ts64(struct timespec64 *ts)
874 {
875 	struct timekeeper *tk = &tk_core.timekeeper;
876 	struct timespec64 tomono;
877 	unsigned int seq;
878 	u64 nsec;
879 
880 	WARN_ON(timekeeping_suspended);
881 
882 	do {
883 		seq = read_seqcount_begin(&tk_core.seq);
884 		ts->tv_sec = tk->xtime_sec;
885 		nsec = timekeeping_get_ns(&tk->tkr_mono);
886 		tomono = tk->wall_to_monotonic;
887 
888 	} while (read_seqcount_retry(&tk_core.seq, seq));
889 
890 	ts->tv_sec += tomono.tv_sec;
891 	ts->tv_nsec = 0;
892 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
893 }
894 EXPORT_SYMBOL_GPL(ktime_get_ts64);
895 
896 /**
897  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
898  *
899  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
900  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
901  * works on both 32 and 64 bit systems. On 32 bit systems the readout
902  * covers ~136 years of uptime which should be enough to prevent
903  * premature wrap arounds.
904  */
905 time64_t ktime_get_seconds(void)
906 {
907 	struct timekeeper *tk = &tk_core.timekeeper;
908 
909 	WARN_ON(timekeeping_suspended);
910 	return tk->ktime_sec;
911 }
912 EXPORT_SYMBOL_GPL(ktime_get_seconds);
913 
914 /**
915  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
916  *
917  * Returns the wall clock seconds since 1970. This replaces the
918  * get_seconds() interface which is not y2038 safe on 32bit systems.
919  *
920  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
921  * 32bit systems the access must be protected with the sequence
922  * counter to provide "atomic" access to the 64bit tk->xtime_sec
923  * value.
924  */
925 time64_t ktime_get_real_seconds(void)
926 {
927 	struct timekeeper *tk = &tk_core.timekeeper;
928 	time64_t seconds;
929 	unsigned int seq;
930 
931 	if (IS_ENABLED(CONFIG_64BIT))
932 		return tk->xtime_sec;
933 
934 	do {
935 		seq = read_seqcount_begin(&tk_core.seq);
936 		seconds = tk->xtime_sec;
937 
938 	} while (read_seqcount_retry(&tk_core.seq, seq));
939 
940 	return seconds;
941 }
942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
943 
944 /**
945  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
946  * but without the sequence counter protect. This internal function
947  * is called just when timekeeping lock is already held.
948  */
949 time64_t __ktime_get_real_seconds(void)
950 {
951 	struct timekeeper *tk = &tk_core.timekeeper;
952 
953 	return tk->xtime_sec;
954 }
955 
956 /**
957  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
958  * @systime_snapshot:	pointer to struct receiving the system time snapshot
959  */
960 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
961 {
962 	struct timekeeper *tk = &tk_core.timekeeper;
963 	unsigned long seq;
964 	ktime_t base_raw;
965 	ktime_t base_real;
966 	u64 nsec_raw;
967 	u64 nsec_real;
968 	u64 now;
969 
970 	WARN_ON_ONCE(timekeeping_suspended);
971 
972 	do {
973 		seq = read_seqcount_begin(&tk_core.seq);
974 		now = tk_clock_read(&tk->tkr_mono);
975 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
976 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
977 		base_real = ktime_add(tk->tkr_mono.base,
978 				      tk_core.timekeeper.offs_real);
979 		base_raw = tk->tkr_raw.base;
980 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
981 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
982 	} while (read_seqcount_retry(&tk_core.seq, seq));
983 
984 	systime_snapshot->cycles = now;
985 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
986 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
987 }
988 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
989 
990 /* Scale base by mult/div checking for overflow */
991 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
992 {
993 	u64 tmp, rem;
994 
995 	tmp = div64_u64_rem(*base, div, &rem);
996 
997 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
998 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
999 		return -EOVERFLOW;
1000 	tmp *= mult;
1001 	rem *= mult;
1002 
1003 	do_div(rem, div);
1004 	*base = tmp + rem;
1005 	return 0;
1006 }
1007 
1008 /**
1009  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1010  * @history:			Snapshot representing start of history
1011  * @partial_history_cycles:	Cycle offset into history (fractional part)
1012  * @total_history_cycles:	Total history length in cycles
1013  * @discontinuity:		True indicates clock was set on history period
1014  * @ts:				Cross timestamp that should be adjusted using
1015  *	partial/total ratio
1016  *
1017  * Helper function used by get_device_system_crosststamp() to correct the
1018  * crosstimestamp corresponding to the start of the current interval to the
1019  * system counter value (timestamp point) provided by the driver. The
1020  * total_history_* quantities are the total history starting at the provided
1021  * reference point and ending at the start of the current interval. The cycle
1022  * count between the driver timestamp point and the start of the current
1023  * interval is partial_history_cycles.
1024  */
1025 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1026 					 u64 partial_history_cycles,
1027 					 u64 total_history_cycles,
1028 					 bool discontinuity,
1029 					 struct system_device_crosststamp *ts)
1030 {
1031 	struct timekeeper *tk = &tk_core.timekeeper;
1032 	u64 corr_raw, corr_real;
1033 	bool interp_forward;
1034 	int ret;
1035 
1036 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1037 		return 0;
1038 
1039 	/* Interpolate shortest distance from beginning or end of history */
1040 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1041 	partial_history_cycles = interp_forward ?
1042 		total_history_cycles - partial_history_cycles :
1043 		partial_history_cycles;
1044 
1045 	/*
1046 	 * Scale the monotonic raw time delta by:
1047 	 *	partial_history_cycles / total_history_cycles
1048 	 */
1049 	corr_raw = (u64)ktime_to_ns(
1050 		ktime_sub(ts->sys_monoraw, history->raw));
1051 	ret = scale64_check_overflow(partial_history_cycles,
1052 				     total_history_cycles, &corr_raw);
1053 	if (ret)
1054 		return ret;
1055 
1056 	/*
1057 	 * If there is a discontinuity in the history, scale monotonic raw
1058 	 *	correction by:
1059 	 *	mult(real)/mult(raw) yielding the realtime correction
1060 	 * Otherwise, calculate the realtime correction similar to monotonic
1061 	 *	raw calculation
1062 	 */
1063 	if (discontinuity) {
1064 		corr_real = mul_u64_u32_div
1065 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1066 	} else {
1067 		corr_real = (u64)ktime_to_ns(
1068 			ktime_sub(ts->sys_realtime, history->real));
1069 		ret = scale64_check_overflow(partial_history_cycles,
1070 					     total_history_cycles, &corr_real);
1071 		if (ret)
1072 			return ret;
1073 	}
1074 
1075 	/* Fixup monotonic raw and real time time values */
1076 	if (interp_forward) {
1077 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1078 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1079 	} else {
1080 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1081 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 /*
1088  * cycle_between - true if test occurs chronologically between before and after
1089  */
1090 static bool cycle_between(u64 before, u64 test, u64 after)
1091 {
1092 	if (test > before && test < after)
1093 		return true;
1094 	if (test < before && before > after)
1095 		return true;
1096 	return false;
1097 }
1098 
1099 /**
1100  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1101  * @get_time_fn:	Callback to get simultaneous device time and
1102  *	system counter from the device driver
1103  * @ctx:		Context passed to get_time_fn()
1104  * @history_begin:	Historical reference point used to interpolate system
1105  *	time when counter provided by the driver is before the current interval
1106  * @xtstamp:		Receives simultaneously captured system and device time
1107  *
1108  * Reads a timestamp from a device and correlates it to system time
1109  */
1110 int get_device_system_crosststamp(int (*get_time_fn)
1111 				  (ktime_t *device_time,
1112 				   struct system_counterval_t *sys_counterval,
1113 				   void *ctx),
1114 				  void *ctx,
1115 				  struct system_time_snapshot *history_begin,
1116 				  struct system_device_crosststamp *xtstamp)
1117 {
1118 	struct system_counterval_t system_counterval;
1119 	struct timekeeper *tk = &tk_core.timekeeper;
1120 	u64 cycles, now, interval_start;
1121 	unsigned int clock_was_set_seq = 0;
1122 	ktime_t base_real, base_raw;
1123 	u64 nsec_real, nsec_raw;
1124 	u8 cs_was_changed_seq;
1125 	unsigned long seq;
1126 	bool do_interp;
1127 	int ret;
1128 
1129 	do {
1130 		seq = read_seqcount_begin(&tk_core.seq);
1131 		/*
1132 		 * Try to synchronously capture device time and a system
1133 		 * counter value calling back into the device driver
1134 		 */
1135 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1136 		if (ret)
1137 			return ret;
1138 
1139 		/*
1140 		 * Verify that the clocksource associated with the captured
1141 		 * system counter value is the same as the currently installed
1142 		 * timekeeper clocksource
1143 		 */
1144 		if (tk->tkr_mono.clock != system_counterval.cs)
1145 			return -ENODEV;
1146 		cycles = system_counterval.cycles;
1147 
1148 		/*
1149 		 * Check whether the system counter value provided by the
1150 		 * device driver is on the current timekeeping interval.
1151 		 */
1152 		now = tk_clock_read(&tk->tkr_mono);
1153 		interval_start = tk->tkr_mono.cycle_last;
1154 		if (!cycle_between(interval_start, cycles, now)) {
1155 			clock_was_set_seq = tk->clock_was_set_seq;
1156 			cs_was_changed_seq = tk->cs_was_changed_seq;
1157 			cycles = interval_start;
1158 			do_interp = true;
1159 		} else {
1160 			do_interp = false;
1161 		}
1162 
1163 		base_real = ktime_add(tk->tkr_mono.base,
1164 				      tk_core.timekeeper.offs_real);
1165 		base_raw = tk->tkr_raw.base;
1166 
1167 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1168 						     system_counterval.cycles);
1169 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1170 						    system_counterval.cycles);
1171 	} while (read_seqcount_retry(&tk_core.seq, seq));
1172 
1173 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1174 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1175 
1176 	/*
1177 	 * Interpolate if necessary, adjusting back from the start of the
1178 	 * current interval
1179 	 */
1180 	if (do_interp) {
1181 		u64 partial_history_cycles, total_history_cycles;
1182 		bool discontinuity;
1183 
1184 		/*
1185 		 * Check that the counter value occurs after the provided
1186 		 * history reference and that the history doesn't cross a
1187 		 * clocksource change
1188 		 */
1189 		if (!history_begin ||
1190 		    !cycle_between(history_begin->cycles,
1191 				   system_counterval.cycles, cycles) ||
1192 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1193 			return -EINVAL;
1194 		partial_history_cycles = cycles - system_counterval.cycles;
1195 		total_history_cycles = cycles - history_begin->cycles;
1196 		discontinuity =
1197 			history_begin->clock_was_set_seq != clock_was_set_seq;
1198 
1199 		ret = adjust_historical_crosststamp(history_begin,
1200 						    partial_history_cycles,
1201 						    total_history_cycles,
1202 						    discontinuity, xtstamp);
1203 		if (ret)
1204 			return ret;
1205 	}
1206 
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1210 
1211 /**
1212  * do_settimeofday64 - Sets the time of day.
1213  * @ts:     pointer to the timespec64 variable containing the new time
1214  *
1215  * Sets the time of day to the new time and update NTP and notify hrtimers
1216  */
1217 int do_settimeofday64(const struct timespec64 *ts)
1218 {
1219 	struct timekeeper *tk = &tk_core.timekeeper;
1220 	struct timespec64 ts_delta, xt;
1221 	unsigned long flags;
1222 	int ret = 0;
1223 
1224 	if (!timespec64_valid_strict(ts))
1225 		return -EINVAL;
1226 
1227 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1228 	write_seqcount_begin(&tk_core.seq);
1229 
1230 	timekeeping_forward_now(tk);
1231 
1232 	xt = tk_xtime(tk);
1233 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1234 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1235 
1236 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1237 		ret = -EINVAL;
1238 		goto out;
1239 	}
1240 
1241 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1242 
1243 	tk_set_xtime(tk, ts);
1244 out:
1245 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1246 
1247 	write_seqcount_end(&tk_core.seq);
1248 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1249 
1250 	/* signal hrtimers about time change */
1251 	clock_was_set();
1252 
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL(do_settimeofday64);
1256 
1257 /**
1258  * timekeeping_inject_offset - Adds or subtracts from the current time.
1259  * @tv:		pointer to the timespec variable containing the offset
1260  *
1261  * Adds or subtracts an offset value from the current time.
1262  */
1263 static int timekeeping_inject_offset(const struct timespec64 *ts)
1264 {
1265 	struct timekeeper *tk = &tk_core.timekeeper;
1266 	unsigned long flags;
1267 	struct timespec64 tmp;
1268 	int ret = 0;
1269 
1270 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1271 		return -EINVAL;
1272 
1273 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1274 	write_seqcount_begin(&tk_core.seq);
1275 
1276 	timekeeping_forward_now(tk);
1277 
1278 	/* Make sure the proposed value is valid */
1279 	tmp = timespec64_add(tk_xtime(tk), *ts);
1280 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1281 	    !timespec64_valid_strict(&tmp)) {
1282 		ret = -EINVAL;
1283 		goto error;
1284 	}
1285 
1286 	tk_xtime_add(tk, ts);
1287 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1288 
1289 error: /* even if we error out, we forwarded the time, so call update */
1290 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1291 
1292 	write_seqcount_end(&tk_core.seq);
1293 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1294 
1295 	/* signal hrtimers about time change */
1296 	clock_was_set();
1297 
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Indicates if there is an offset between the system clock and the hardware
1303  * clock/persistent clock/rtc.
1304  */
1305 int persistent_clock_is_local;
1306 
1307 /*
1308  * Adjust the time obtained from the CMOS to be UTC time instead of
1309  * local time.
1310  *
1311  * This is ugly, but preferable to the alternatives.  Otherwise we
1312  * would either need to write a program to do it in /etc/rc (and risk
1313  * confusion if the program gets run more than once; it would also be
1314  * hard to make the program warp the clock precisely n hours)  or
1315  * compile in the timezone information into the kernel.  Bad, bad....
1316  *
1317  *						- TYT, 1992-01-01
1318  *
1319  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1320  * as real UNIX machines always do it. This avoids all headaches about
1321  * daylight saving times and warping kernel clocks.
1322  */
1323 void timekeeping_warp_clock(void)
1324 {
1325 	if (sys_tz.tz_minuteswest != 0) {
1326 		struct timespec64 adjust;
1327 
1328 		persistent_clock_is_local = 1;
1329 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1330 		adjust.tv_nsec = 0;
1331 		timekeeping_inject_offset(&adjust);
1332 	}
1333 }
1334 
1335 /**
1336  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1337  *
1338  */
1339 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1340 {
1341 	tk->tai_offset = tai_offset;
1342 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1343 }
1344 
1345 /**
1346  * change_clocksource - Swaps clocksources if a new one is available
1347  *
1348  * Accumulates current time interval and initializes new clocksource
1349  */
1350 static int change_clocksource(void *data)
1351 {
1352 	struct timekeeper *tk = &tk_core.timekeeper;
1353 	struct clocksource *new, *old;
1354 	unsigned long flags;
1355 
1356 	new = (struct clocksource *) data;
1357 
1358 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1359 	write_seqcount_begin(&tk_core.seq);
1360 
1361 	timekeeping_forward_now(tk);
1362 	/*
1363 	 * If the cs is in module, get a module reference. Succeeds
1364 	 * for built-in code (owner == NULL) as well.
1365 	 */
1366 	if (try_module_get(new->owner)) {
1367 		if (!new->enable || new->enable(new) == 0) {
1368 			old = tk->tkr_mono.clock;
1369 			tk_setup_internals(tk, new);
1370 			if (old->disable)
1371 				old->disable(old);
1372 			module_put(old->owner);
1373 		} else {
1374 			module_put(new->owner);
1375 		}
1376 	}
1377 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1378 
1379 	write_seqcount_end(&tk_core.seq);
1380 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1381 
1382 	return 0;
1383 }
1384 
1385 /**
1386  * timekeeping_notify - Install a new clock source
1387  * @clock:		pointer to the clock source
1388  *
1389  * This function is called from clocksource.c after a new, better clock
1390  * source has been registered. The caller holds the clocksource_mutex.
1391  */
1392 int timekeeping_notify(struct clocksource *clock)
1393 {
1394 	struct timekeeper *tk = &tk_core.timekeeper;
1395 
1396 	if (tk->tkr_mono.clock == clock)
1397 		return 0;
1398 	stop_machine(change_clocksource, clock, NULL);
1399 	tick_clock_notify();
1400 	return tk->tkr_mono.clock == clock ? 0 : -1;
1401 }
1402 
1403 /**
1404  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1405  * @ts:		pointer to the timespec64 to be set
1406  *
1407  * Returns the raw monotonic time (completely un-modified by ntp)
1408  */
1409 void ktime_get_raw_ts64(struct timespec64 *ts)
1410 {
1411 	struct timekeeper *tk = &tk_core.timekeeper;
1412 	unsigned long seq;
1413 	u64 nsecs;
1414 
1415 	do {
1416 		seq = read_seqcount_begin(&tk_core.seq);
1417 		ts->tv_sec = tk->raw_sec;
1418 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1419 
1420 	} while (read_seqcount_retry(&tk_core.seq, seq));
1421 
1422 	ts->tv_nsec = 0;
1423 	timespec64_add_ns(ts, nsecs);
1424 }
1425 EXPORT_SYMBOL(ktime_get_raw_ts64);
1426 
1427 
1428 /**
1429  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1430  */
1431 int timekeeping_valid_for_hres(void)
1432 {
1433 	struct timekeeper *tk = &tk_core.timekeeper;
1434 	unsigned long seq;
1435 	int ret;
1436 
1437 	do {
1438 		seq = read_seqcount_begin(&tk_core.seq);
1439 
1440 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1441 
1442 	} while (read_seqcount_retry(&tk_core.seq, seq));
1443 
1444 	return ret;
1445 }
1446 
1447 /**
1448  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1449  */
1450 u64 timekeeping_max_deferment(void)
1451 {
1452 	struct timekeeper *tk = &tk_core.timekeeper;
1453 	unsigned long seq;
1454 	u64 ret;
1455 
1456 	do {
1457 		seq = read_seqcount_begin(&tk_core.seq);
1458 
1459 		ret = tk->tkr_mono.clock->max_idle_ns;
1460 
1461 	} while (read_seqcount_retry(&tk_core.seq, seq));
1462 
1463 	return ret;
1464 }
1465 
1466 /**
1467  * read_persistent_clock -  Return time from the persistent clock.
1468  *
1469  * Weak dummy function for arches that do not yet support it.
1470  * Reads the time from the battery backed persistent clock.
1471  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1472  *
1473  *  XXX - Do be sure to remove it once all arches implement it.
1474  */
1475 void __weak read_persistent_clock(struct timespec *ts)
1476 {
1477 	ts->tv_sec = 0;
1478 	ts->tv_nsec = 0;
1479 }
1480 
1481 void __weak read_persistent_clock64(struct timespec64 *ts64)
1482 {
1483 	struct timespec ts;
1484 
1485 	read_persistent_clock(&ts);
1486 	*ts64 = timespec_to_timespec64(ts);
1487 }
1488 
1489 /**
1490  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1491  *                                        from the boot.
1492  *
1493  * Weak dummy function for arches that do not yet support it.
1494  * wall_time	- current time as returned by persistent clock
1495  * boot_offset	- offset that is defined as wall_time - boot_time
1496  * The default function calculates offset based on the current value of
1497  * local_clock(). This way architectures that support sched_clock() but don't
1498  * support dedicated boot time clock will provide the best estimate of the
1499  * boot time.
1500  */
1501 void __weak __init
1502 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1503 				     struct timespec64 *boot_offset)
1504 {
1505 	read_persistent_clock64(wall_time);
1506 	*boot_offset = ns_to_timespec64(local_clock());
1507 }
1508 
1509 /*
1510  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1511  *
1512  * The flag starts of false and is only set when a suspend reaches
1513  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1514  * timekeeper clocksource is not stopping across suspend and has been
1515  * used to update sleep time. If the timekeeper clocksource has stopped
1516  * then the flag stays true and is used by the RTC resume code to decide
1517  * whether sleeptime must be injected and if so the flag gets false then.
1518  *
1519  * If a suspend fails before reaching timekeeping_resume() then the flag
1520  * stays false and prevents erroneous sleeptime injection.
1521  */
1522 static bool suspend_timing_needed;
1523 
1524 /* Flag for if there is a persistent clock on this platform */
1525 static bool persistent_clock_exists;
1526 
1527 /*
1528  * timekeeping_init - Initializes the clocksource and common timekeeping values
1529  */
1530 void __init timekeeping_init(void)
1531 {
1532 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1533 	struct timekeeper *tk = &tk_core.timekeeper;
1534 	struct clocksource *clock;
1535 	unsigned long flags;
1536 
1537 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1538 	if (timespec64_valid_strict(&wall_time) &&
1539 	    timespec64_to_ns(&wall_time) > 0) {
1540 		persistent_clock_exists = true;
1541 	} else if (timespec64_to_ns(&wall_time) != 0) {
1542 		pr_warn("Persistent clock returned invalid value");
1543 		wall_time = (struct timespec64){0};
1544 	}
1545 
1546 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1547 		boot_offset = (struct timespec64){0};
1548 
1549 	/*
1550 	 * We want set wall_to_mono, so the following is true:
1551 	 * wall time + wall_to_mono = boot time
1552 	 */
1553 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1554 
1555 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1556 	write_seqcount_begin(&tk_core.seq);
1557 	ntp_init();
1558 
1559 	clock = clocksource_default_clock();
1560 	if (clock->enable)
1561 		clock->enable(clock);
1562 	tk_setup_internals(tk, clock);
1563 
1564 	tk_set_xtime(tk, &wall_time);
1565 	tk->raw_sec = 0;
1566 
1567 	tk_set_wall_to_mono(tk, wall_to_mono);
1568 
1569 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1570 
1571 	write_seqcount_end(&tk_core.seq);
1572 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1573 }
1574 
1575 /* time in seconds when suspend began for persistent clock */
1576 static struct timespec64 timekeeping_suspend_time;
1577 
1578 /**
1579  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1580  * @delta: pointer to a timespec delta value
1581  *
1582  * Takes a timespec offset measuring a suspend interval and properly
1583  * adds the sleep offset to the timekeeping variables.
1584  */
1585 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1586 					   const struct timespec64 *delta)
1587 {
1588 	if (!timespec64_valid_strict(delta)) {
1589 		printk_deferred(KERN_WARNING
1590 				"__timekeeping_inject_sleeptime: Invalid "
1591 				"sleep delta value!\n");
1592 		return;
1593 	}
1594 	tk_xtime_add(tk, delta);
1595 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1596 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1597 	tk_debug_account_sleep_time(delta);
1598 }
1599 
1600 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1601 /**
1602  * We have three kinds of time sources to use for sleep time
1603  * injection, the preference order is:
1604  * 1) non-stop clocksource
1605  * 2) persistent clock (ie: RTC accessible when irqs are off)
1606  * 3) RTC
1607  *
1608  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1609  * If system has neither 1) nor 2), 3) will be used finally.
1610  *
1611  *
1612  * If timekeeping has injected sleeptime via either 1) or 2),
1613  * 3) becomes needless, so in this case we don't need to call
1614  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1615  * means.
1616  */
1617 bool timekeeping_rtc_skipresume(void)
1618 {
1619 	return !suspend_timing_needed;
1620 }
1621 
1622 /**
1623  * 1) can be determined whether to use or not only when doing
1624  * timekeeping_resume() which is invoked after rtc_suspend(),
1625  * so we can't skip rtc_suspend() surely if system has 1).
1626  *
1627  * But if system has 2), 2) will definitely be used, so in this
1628  * case we don't need to call rtc_suspend(), and this is what
1629  * timekeeping_rtc_skipsuspend() means.
1630  */
1631 bool timekeeping_rtc_skipsuspend(void)
1632 {
1633 	return persistent_clock_exists;
1634 }
1635 
1636 /**
1637  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1638  * @delta: pointer to a timespec64 delta value
1639  *
1640  * This hook is for architectures that cannot support read_persistent_clock64
1641  * because their RTC/persistent clock is only accessible when irqs are enabled.
1642  * and also don't have an effective nonstop clocksource.
1643  *
1644  * This function should only be called by rtc_resume(), and allows
1645  * a suspend offset to be injected into the timekeeping values.
1646  */
1647 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1648 {
1649 	struct timekeeper *tk = &tk_core.timekeeper;
1650 	unsigned long flags;
1651 
1652 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1653 	write_seqcount_begin(&tk_core.seq);
1654 
1655 	suspend_timing_needed = false;
1656 
1657 	timekeeping_forward_now(tk);
1658 
1659 	__timekeeping_inject_sleeptime(tk, delta);
1660 
1661 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1662 
1663 	write_seqcount_end(&tk_core.seq);
1664 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1665 
1666 	/* signal hrtimers about time change */
1667 	clock_was_set();
1668 }
1669 #endif
1670 
1671 /**
1672  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1673  */
1674 void timekeeping_resume(void)
1675 {
1676 	struct timekeeper *tk = &tk_core.timekeeper;
1677 	struct clocksource *clock = tk->tkr_mono.clock;
1678 	unsigned long flags;
1679 	struct timespec64 ts_new, ts_delta;
1680 	u64 cycle_now, nsec;
1681 	bool inject_sleeptime = false;
1682 
1683 	read_persistent_clock64(&ts_new);
1684 
1685 	clockevents_resume();
1686 	clocksource_resume();
1687 
1688 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1689 	write_seqcount_begin(&tk_core.seq);
1690 
1691 	/*
1692 	 * After system resumes, we need to calculate the suspended time and
1693 	 * compensate it for the OS time. There are 3 sources that could be
1694 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1695 	 * device.
1696 	 *
1697 	 * One specific platform may have 1 or 2 or all of them, and the
1698 	 * preference will be:
1699 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1700 	 * The less preferred source will only be tried if there is no better
1701 	 * usable source. The rtc part is handled separately in rtc core code.
1702 	 */
1703 	cycle_now = tk_clock_read(&tk->tkr_mono);
1704 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1705 	if (nsec > 0) {
1706 		ts_delta = ns_to_timespec64(nsec);
1707 		inject_sleeptime = true;
1708 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1709 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1710 		inject_sleeptime = true;
1711 	}
1712 
1713 	if (inject_sleeptime) {
1714 		suspend_timing_needed = false;
1715 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1716 	}
1717 
1718 	/* Re-base the last cycle value */
1719 	tk->tkr_mono.cycle_last = cycle_now;
1720 	tk->tkr_raw.cycle_last  = cycle_now;
1721 
1722 	tk->ntp_error = 0;
1723 	timekeeping_suspended = 0;
1724 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1725 	write_seqcount_end(&tk_core.seq);
1726 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1727 
1728 	touch_softlockup_watchdog();
1729 
1730 	tick_resume();
1731 	hrtimers_resume();
1732 }
1733 
1734 int timekeeping_suspend(void)
1735 {
1736 	struct timekeeper *tk = &tk_core.timekeeper;
1737 	unsigned long flags;
1738 	struct timespec64		delta, delta_delta;
1739 	static struct timespec64	old_delta;
1740 	struct clocksource *curr_clock;
1741 	u64 cycle_now;
1742 
1743 	read_persistent_clock64(&timekeeping_suspend_time);
1744 
1745 	/*
1746 	 * On some systems the persistent_clock can not be detected at
1747 	 * timekeeping_init by its return value, so if we see a valid
1748 	 * value returned, update the persistent_clock_exists flag.
1749 	 */
1750 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1751 		persistent_clock_exists = true;
1752 
1753 	suspend_timing_needed = true;
1754 
1755 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1756 	write_seqcount_begin(&tk_core.seq);
1757 	timekeeping_forward_now(tk);
1758 	timekeeping_suspended = 1;
1759 
1760 	/*
1761 	 * Since we've called forward_now, cycle_last stores the value
1762 	 * just read from the current clocksource. Save this to potentially
1763 	 * use in suspend timing.
1764 	 */
1765 	curr_clock = tk->tkr_mono.clock;
1766 	cycle_now = tk->tkr_mono.cycle_last;
1767 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1768 
1769 	if (persistent_clock_exists) {
1770 		/*
1771 		 * To avoid drift caused by repeated suspend/resumes,
1772 		 * which each can add ~1 second drift error,
1773 		 * try to compensate so the difference in system time
1774 		 * and persistent_clock time stays close to constant.
1775 		 */
1776 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1777 		delta_delta = timespec64_sub(delta, old_delta);
1778 		if (abs(delta_delta.tv_sec) >= 2) {
1779 			/*
1780 			 * if delta_delta is too large, assume time correction
1781 			 * has occurred and set old_delta to the current delta.
1782 			 */
1783 			old_delta = delta;
1784 		} else {
1785 			/* Otherwise try to adjust old_system to compensate */
1786 			timekeeping_suspend_time =
1787 				timespec64_add(timekeeping_suspend_time, delta_delta);
1788 		}
1789 	}
1790 
1791 	timekeeping_update(tk, TK_MIRROR);
1792 	halt_fast_timekeeper(tk);
1793 	write_seqcount_end(&tk_core.seq);
1794 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1795 
1796 	tick_suspend();
1797 	clocksource_suspend();
1798 	clockevents_suspend();
1799 
1800 	return 0;
1801 }
1802 
1803 /* sysfs resume/suspend bits for timekeeping */
1804 static struct syscore_ops timekeeping_syscore_ops = {
1805 	.resume		= timekeeping_resume,
1806 	.suspend	= timekeeping_suspend,
1807 };
1808 
1809 static int __init timekeeping_init_ops(void)
1810 {
1811 	register_syscore_ops(&timekeeping_syscore_ops);
1812 	return 0;
1813 }
1814 device_initcall(timekeeping_init_ops);
1815 
1816 /*
1817  * Apply a multiplier adjustment to the timekeeper
1818  */
1819 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1820 							 s64 offset,
1821 							 s32 mult_adj)
1822 {
1823 	s64 interval = tk->cycle_interval;
1824 
1825 	if (mult_adj == 0) {
1826 		return;
1827 	} else if (mult_adj == -1) {
1828 		interval = -interval;
1829 		offset = -offset;
1830 	} else if (mult_adj != 1) {
1831 		interval *= mult_adj;
1832 		offset *= mult_adj;
1833 	}
1834 
1835 	/*
1836 	 * So the following can be confusing.
1837 	 *
1838 	 * To keep things simple, lets assume mult_adj == 1 for now.
1839 	 *
1840 	 * When mult_adj != 1, remember that the interval and offset values
1841 	 * have been appropriately scaled so the math is the same.
1842 	 *
1843 	 * The basic idea here is that we're increasing the multiplier
1844 	 * by one, this causes the xtime_interval to be incremented by
1845 	 * one cycle_interval. This is because:
1846 	 *	xtime_interval = cycle_interval * mult
1847 	 * So if mult is being incremented by one:
1848 	 *	xtime_interval = cycle_interval * (mult + 1)
1849 	 * Its the same as:
1850 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1851 	 * Which can be shortened to:
1852 	 *	xtime_interval += cycle_interval
1853 	 *
1854 	 * So offset stores the non-accumulated cycles. Thus the current
1855 	 * time (in shifted nanoseconds) is:
1856 	 *	now = (offset * adj) + xtime_nsec
1857 	 * Now, even though we're adjusting the clock frequency, we have
1858 	 * to keep time consistent. In other words, we can't jump back
1859 	 * in time, and we also want to avoid jumping forward in time.
1860 	 *
1861 	 * So given the same offset value, we need the time to be the same
1862 	 * both before and after the freq adjustment.
1863 	 *	now = (offset * adj_1) + xtime_nsec_1
1864 	 *	now = (offset * adj_2) + xtime_nsec_2
1865 	 * So:
1866 	 *	(offset * adj_1) + xtime_nsec_1 =
1867 	 *		(offset * adj_2) + xtime_nsec_2
1868 	 * And we know:
1869 	 *	adj_2 = adj_1 + 1
1870 	 * So:
1871 	 *	(offset * adj_1) + xtime_nsec_1 =
1872 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1873 	 *	(offset * adj_1) + xtime_nsec_1 =
1874 	 *		(offset * adj_1) + offset + xtime_nsec_2
1875 	 * Canceling the sides:
1876 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1877 	 * Which gives us:
1878 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1879 	 * Which simplfies to:
1880 	 *	xtime_nsec -= offset
1881 	 */
1882 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1883 		/* NTP adjustment caused clocksource mult overflow */
1884 		WARN_ON_ONCE(1);
1885 		return;
1886 	}
1887 
1888 	tk->tkr_mono.mult += mult_adj;
1889 	tk->xtime_interval += interval;
1890 	tk->tkr_mono.xtime_nsec -= offset;
1891 }
1892 
1893 /*
1894  * Adjust the timekeeper's multiplier to the correct frequency
1895  * and also to reduce the accumulated error value.
1896  */
1897 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1898 {
1899 	u32 mult;
1900 
1901 	/*
1902 	 * Determine the multiplier from the current NTP tick length.
1903 	 * Avoid expensive division when the tick length doesn't change.
1904 	 */
1905 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1906 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1907 	} else {
1908 		tk->ntp_tick = ntp_tick_length();
1909 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1910 				 tk->xtime_remainder, tk->cycle_interval);
1911 	}
1912 
1913 	/*
1914 	 * If the clock is behind the NTP time, increase the multiplier by 1
1915 	 * to catch up with it. If it's ahead and there was a remainder in the
1916 	 * tick division, the clock will slow down. Otherwise it will stay
1917 	 * ahead until the tick length changes to a non-divisible value.
1918 	 */
1919 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1920 	mult += tk->ntp_err_mult;
1921 
1922 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1923 
1924 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1925 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1926 			> tk->tkr_mono.clock->maxadj))) {
1927 		printk_once(KERN_WARNING
1928 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1929 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1930 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1931 	}
1932 
1933 	/*
1934 	 * It may be possible that when we entered this function, xtime_nsec
1935 	 * was very small.  Further, if we're slightly speeding the clocksource
1936 	 * in the code above, its possible the required corrective factor to
1937 	 * xtime_nsec could cause it to underflow.
1938 	 *
1939 	 * Now, since we have already accumulated the second and the NTP
1940 	 * subsystem has been notified via second_overflow(), we need to skip
1941 	 * the next update.
1942 	 */
1943 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1944 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1945 							tk->tkr_mono.shift;
1946 		tk->xtime_sec--;
1947 		tk->skip_second_overflow = 1;
1948 	}
1949 }
1950 
1951 /**
1952  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1953  *
1954  * Helper function that accumulates the nsecs greater than a second
1955  * from the xtime_nsec field to the xtime_secs field.
1956  * It also calls into the NTP code to handle leapsecond processing.
1957  *
1958  */
1959 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1960 {
1961 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1962 	unsigned int clock_set = 0;
1963 
1964 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1965 		int leap;
1966 
1967 		tk->tkr_mono.xtime_nsec -= nsecps;
1968 		tk->xtime_sec++;
1969 
1970 		/*
1971 		 * Skip NTP update if this second was accumulated before,
1972 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1973 		 */
1974 		if (unlikely(tk->skip_second_overflow)) {
1975 			tk->skip_second_overflow = 0;
1976 			continue;
1977 		}
1978 
1979 		/* Figure out if its a leap sec and apply if needed */
1980 		leap = second_overflow(tk->xtime_sec);
1981 		if (unlikely(leap)) {
1982 			struct timespec64 ts;
1983 
1984 			tk->xtime_sec += leap;
1985 
1986 			ts.tv_sec = leap;
1987 			ts.tv_nsec = 0;
1988 			tk_set_wall_to_mono(tk,
1989 				timespec64_sub(tk->wall_to_monotonic, ts));
1990 
1991 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1992 
1993 			clock_set = TK_CLOCK_WAS_SET;
1994 		}
1995 	}
1996 	return clock_set;
1997 }
1998 
1999 /**
2000  * logarithmic_accumulation - shifted accumulation of cycles
2001  *
2002  * This functions accumulates a shifted interval of cycles into
2003  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2004  * loop.
2005  *
2006  * Returns the unconsumed cycles.
2007  */
2008 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2009 				    u32 shift, unsigned int *clock_set)
2010 {
2011 	u64 interval = tk->cycle_interval << shift;
2012 	u64 snsec_per_sec;
2013 
2014 	/* If the offset is smaller than a shifted interval, do nothing */
2015 	if (offset < interval)
2016 		return offset;
2017 
2018 	/* Accumulate one shifted interval */
2019 	offset -= interval;
2020 	tk->tkr_mono.cycle_last += interval;
2021 	tk->tkr_raw.cycle_last  += interval;
2022 
2023 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2024 	*clock_set |= accumulate_nsecs_to_secs(tk);
2025 
2026 	/* Accumulate raw time */
2027 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2028 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2029 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2030 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2031 		tk->raw_sec++;
2032 	}
2033 
2034 	/* Accumulate error between NTP and clock interval */
2035 	tk->ntp_error += tk->ntp_tick << shift;
2036 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2037 						(tk->ntp_error_shift + shift);
2038 
2039 	return offset;
2040 }
2041 
2042 /*
2043  * timekeeping_advance - Updates the timekeeper to the current time and
2044  * current NTP tick length
2045  */
2046 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2047 {
2048 	struct timekeeper *real_tk = &tk_core.timekeeper;
2049 	struct timekeeper *tk = &shadow_timekeeper;
2050 	u64 offset;
2051 	int shift = 0, maxshift;
2052 	unsigned int clock_set = 0;
2053 	unsigned long flags;
2054 
2055 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2056 
2057 	/* Make sure we're fully resumed: */
2058 	if (unlikely(timekeeping_suspended))
2059 		goto out;
2060 
2061 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2062 	offset = real_tk->cycle_interval;
2063 
2064 	if (mode != TK_ADV_TICK)
2065 		goto out;
2066 #else
2067 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2068 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2069 
2070 	/* Check if there's really nothing to do */
2071 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2072 		goto out;
2073 #endif
2074 
2075 	/* Do some additional sanity checking */
2076 	timekeeping_check_update(tk, offset);
2077 
2078 	/*
2079 	 * With NO_HZ we may have to accumulate many cycle_intervals
2080 	 * (think "ticks") worth of time at once. To do this efficiently,
2081 	 * we calculate the largest doubling multiple of cycle_intervals
2082 	 * that is smaller than the offset.  We then accumulate that
2083 	 * chunk in one go, and then try to consume the next smaller
2084 	 * doubled multiple.
2085 	 */
2086 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2087 	shift = max(0, shift);
2088 	/* Bound shift to one less than what overflows tick_length */
2089 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2090 	shift = min(shift, maxshift);
2091 	while (offset >= tk->cycle_interval) {
2092 		offset = logarithmic_accumulation(tk, offset, shift,
2093 							&clock_set);
2094 		if (offset < tk->cycle_interval<<shift)
2095 			shift--;
2096 	}
2097 
2098 	/* Adjust the multiplier to correct NTP error */
2099 	timekeeping_adjust(tk, offset);
2100 
2101 	/*
2102 	 * Finally, make sure that after the rounding
2103 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2104 	 */
2105 	clock_set |= accumulate_nsecs_to_secs(tk);
2106 
2107 	write_seqcount_begin(&tk_core.seq);
2108 	/*
2109 	 * Update the real timekeeper.
2110 	 *
2111 	 * We could avoid this memcpy by switching pointers, but that
2112 	 * requires changes to all other timekeeper usage sites as
2113 	 * well, i.e. move the timekeeper pointer getter into the
2114 	 * spinlocked/seqcount protected sections. And we trade this
2115 	 * memcpy under the tk_core.seq against one before we start
2116 	 * updating.
2117 	 */
2118 	timekeeping_update(tk, clock_set);
2119 	memcpy(real_tk, tk, sizeof(*tk));
2120 	/* The memcpy must come last. Do not put anything here! */
2121 	write_seqcount_end(&tk_core.seq);
2122 out:
2123 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2124 	if (clock_set)
2125 		/* Have to call _delayed version, since in irq context*/
2126 		clock_was_set_delayed();
2127 }
2128 
2129 /**
2130  * update_wall_time - Uses the current clocksource to increment the wall time
2131  *
2132  */
2133 void update_wall_time(void)
2134 {
2135 	timekeeping_advance(TK_ADV_TICK);
2136 }
2137 
2138 /**
2139  * getboottime64 - Return the real time of system boot.
2140  * @ts:		pointer to the timespec64 to be set
2141  *
2142  * Returns the wall-time of boot in a timespec64.
2143  *
2144  * This is based on the wall_to_monotonic offset and the total suspend
2145  * time. Calls to settimeofday will affect the value returned (which
2146  * basically means that however wrong your real time clock is at boot time,
2147  * you get the right time here).
2148  */
2149 void getboottime64(struct timespec64 *ts)
2150 {
2151 	struct timekeeper *tk = &tk_core.timekeeper;
2152 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2153 
2154 	*ts = ktime_to_timespec64(t);
2155 }
2156 EXPORT_SYMBOL_GPL(getboottime64);
2157 
2158 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2159 {
2160 	struct timekeeper *tk = &tk_core.timekeeper;
2161 	unsigned long seq;
2162 
2163 	do {
2164 		seq = read_seqcount_begin(&tk_core.seq);
2165 
2166 		*ts = tk_xtime(tk);
2167 	} while (read_seqcount_retry(&tk_core.seq, seq));
2168 }
2169 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2170 
2171 void ktime_get_coarse_ts64(struct timespec64 *ts)
2172 {
2173 	struct timekeeper *tk = &tk_core.timekeeper;
2174 	struct timespec64 now, mono;
2175 	unsigned long seq;
2176 
2177 	do {
2178 		seq = read_seqcount_begin(&tk_core.seq);
2179 
2180 		now = tk_xtime(tk);
2181 		mono = tk->wall_to_monotonic;
2182 	} while (read_seqcount_retry(&tk_core.seq, seq));
2183 
2184 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2185 				now.tv_nsec + mono.tv_nsec);
2186 }
2187 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2188 
2189 /*
2190  * Must hold jiffies_lock
2191  */
2192 void do_timer(unsigned long ticks)
2193 {
2194 	jiffies_64 += ticks;
2195 	calc_global_load(ticks);
2196 }
2197 
2198 /**
2199  * ktime_get_update_offsets_now - hrtimer helper
2200  * @cwsseq:	pointer to check and store the clock was set sequence number
2201  * @offs_real:	pointer to storage for monotonic -> realtime offset
2202  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2203  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2204  *
2205  * Returns current monotonic time and updates the offsets if the
2206  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2207  * different.
2208  *
2209  * Called from hrtimer_interrupt() or retrigger_next_event()
2210  */
2211 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2212 				     ktime_t *offs_boot, ktime_t *offs_tai)
2213 {
2214 	struct timekeeper *tk = &tk_core.timekeeper;
2215 	unsigned int seq;
2216 	ktime_t base;
2217 	u64 nsecs;
2218 
2219 	do {
2220 		seq = read_seqcount_begin(&tk_core.seq);
2221 
2222 		base = tk->tkr_mono.base;
2223 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2224 		base = ktime_add_ns(base, nsecs);
2225 
2226 		if (*cwsseq != tk->clock_was_set_seq) {
2227 			*cwsseq = tk->clock_was_set_seq;
2228 			*offs_real = tk->offs_real;
2229 			*offs_boot = tk->offs_boot;
2230 			*offs_tai = tk->offs_tai;
2231 		}
2232 
2233 		/* Handle leapsecond insertion adjustments */
2234 		if (unlikely(base >= tk->next_leap_ktime))
2235 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2236 
2237 	} while (read_seqcount_retry(&tk_core.seq, seq));
2238 
2239 	return base;
2240 }
2241 
2242 /**
2243  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2244  */
2245 static int timekeeping_validate_timex(const struct timex *txc)
2246 {
2247 	if (txc->modes & ADJ_ADJTIME) {
2248 		/* singleshot must not be used with any other mode bits */
2249 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2250 			return -EINVAL;
2251 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2252 		    !capable(CAP_SYS_TIME))
2253 			return -EPERM;
2254 	} else {
2255 		/* In order to modify anything, you gotta be super-user! */
2256 		if (txc->modes && !capable(CAP_SYS_TIME))
2257 			return -EPERM;
2258 		/*
2259 		 * if the quartz is off by more than 10% then
2260 		 * something is VERY wrong!
2261 		 */
2262 		if (txc->modes & ADJ_TICK &&
2263 		    (txc->tick <  900000/USER_HZ ||
2264 		     txc->tick > 1100000/USER_HZ))
2265 			return -EINVAL;
2266 	}
2267 
2268 	if (txc->modes & ADJ_SETOFFSET) {
2269 		/* In order to inject time, you gotta be super-user! */
2270 		if (!capable(CAP_SYS_TIME))
2271 			return -EPERM;
2272 
2273 		/*
2274 		 * Validate if a timespec/timeval used to inject a time
2275 		 * offset is valid.  Offsets can be postive or negative, so
2276 		 * we don't check tv_sec. The value of the timeval/timespec
2277 		 * is the sum of its fields,but *NOTE*:
2278 		 * The field tv_usec/tv_nsec must always be non-negative and
2279 		 * we can't have more nanoseconds/microseconds than a second.
2280 		 */
2281 		if (txc->time.tv_usec < 0)
2282 			return -EINVAL;
2283 
2284 		if (txc->modes & ADJ_NANO) {
2285 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2286 				return -EINVAL;
2287 		} else {
2288 			if (txc->time.tv_usec >= USEC_PER_SEC)
2289 				return -EINVAL;
2290 		}
2291 	}
2292 
2293 	/*
2294 	 * Check for potential multiplication overflows that can
2295 	 * only happen on 64-bit systems:
2296 	 */
2297 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2298 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2299 			return -EINVAL;
2300 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2301 			return -EINVAL;
2302 	}
2303 
2304 	return 0;
2305 }
2306 
2307 
2308 /**
2309  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2310  */
2311 int do_adjtimex(struct timex *txc)
2312 {
2313 	struct timekeeper *tk = &tk_core.timekeeper;
2314 	unsigned long flags;
2315 	struct timespec64 ts;
2316 	s32 orig_tai, tai;
2317 	int ret;
2318 
2319 	/* Validate the data before disabling interrupts */
2320 	ret = timekeeping_validate_timex(txc);
2321 	if (ret)
2322 		return ret;
2323 
2324 	if (txc->modes & ADJ_SETOFFSET) {
2325 		struct timespec64 delta;
2326 		delta.tv_sec  = txc->time.tv_sec;
2327 		delta.tv_nsec = txc->time.tv_usec;
2328 		if (!(txc->modes & ADJ_NANO))
2329 			delta.tv_nsec *= 1000;
2330 		ret = timekeeping_inject_offset(&delta);
2331 		if (ret)
2332 			return ret;
2333 	}
2334 
2335 	ktime_get_real_ts64(&ts);
2336 
2337 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2338 	write_seqcount_begin(&tk_core.seq);
2339 
2340 	orig_tai = tai = tk->tai_offset;
2341 	ret = __do_adjtimex(txc, &ts, &tai);
2342 
2343 	if (tai != orig_tai) {
2344 		__timekeeping_set_tai_offset(tk, tai);
2345 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2346 	}
2347 	tk_update_leap_state(tk);
2348 
2349 	write_seqcount_end(&tk_core.seq);
2350 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2351 
2352 	/* Update the multiplier immediately if frequency was set directly */
2353 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2354 		timekeeping_advance(TK_ADV_FREQ);
2355 
2356 	if (tai != orig_tai)
2357 		clock_was_set();
2358 
2359 	ntp_notify_cmos_timer();
2360 
2361 	return ret;
2362 }
2363 
2364 #ifdef CONFIG_NTP_PPS
2365 /**
2366  * hardpps() - Accessor function to NTP __hardpps function
2367  */
2368 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2369 {
2370 	unsigned long flags;
2371 
2372 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2373 	write_seqcount_begin(&tk_core.seq);
2374 
2375 	__hardpps(phase_ts, raw_ts);
2376 
2377 	write_seqcount_end(&tk_core.seq);
2378 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2379 }
2380 EXPORT_SYMBOL(hardpps);
2381 #endif /* CONFIG_NTP_PPS */
2382 
2383 /**
2384  * xtime_update() - advances the timekeeping infrastructure
2385  * @ticks:	number of ticks, that have elapsed since the last call.
2386  *
2387  * Must be called with interrupts disabled.
2388  */
2389 void xtime_update(unsigned long ticks)
2390 {
2391 	write_seqlock(&jiffies_lock);
2392 	do_timer(ticks);
2393 	write_sequnlock(&jiffies_lock);
2394 	update_wall_time();
2395 }
2396