xref: /linux/kernel/time/timekeeping.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 /*
122  * These simple flag variables are managed
123  * without locks, which is racy, but ok since
124  * we don't really care about being super
125  * precise about how many events were seen,
126  * just that a problem was observed.
127  */
128 static int timekeeping_underflow_seen;
129 static int timekeeping_overflow_seen;
130 
131 /* last_warning is only modified under the timekeeping lock */
132 static long timekeeping_last_warning;
133 
134 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
135 {
136 
137 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138 	const char *name = tk->tkr_mono.clock->name;
139 
140 	if (offset > max_cycles) {
141 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142 				offset, name, max_cycles);
143 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144 	} else {
145 		if (offset > (max_cycles >> 1)) {
146 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147 					offset, name, max_cycles >> 1);
148 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
149 		}
150 	}
151 
152 	if (timekeeping_underflow_seen) {
153 		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
156 			printk_deferred("         Your kernel is probably still fine.\n");
157 			timekeeping_last_warning = jiffies;
158 		}
159 		timekeeping_underflow_seen = 0;
160 	}
161 
162 	if (timekeeping_overflow_seen) {
163 		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
166 			printk_deferred("         Your kernel is probably still fine.\n");
167 			timekeeping_last_warning = jiffies;
168 		}
169 		timekeeping_overflow_seen = 0;
170 	}
171 }
172 
173 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
174 {
175 	cycle_t now, last, mask, max, delta;
176 	unsigned int seq;
177 
178 	/*
179 	 * Since we're called holding a seqlock, the data may shift
180 	 * under us while we're doing the calculation. This can cause
181 	 * false positives, since we'd note a problem but throw the
182 	 * results away. So nest another seqlock here to atomically
183 	 * grab the points we are checking with.
184 	 */
185 	do {
186 		seq = read_seqcount_begin(&tk_core.seq);
187 		now = tkr->read(tkr->clock);
188 		last = tkr->cycle_last;
189 		mask = tkr->mask;
190 		max = tkr->clock->max_cycles;
191 	} while (read_seqcount_retry(&tk_core.seq, seq));
192 
193 	delta = clocksource_delta(now, last, mask);
194 
195 	/*
196 	 * Try to catch underflows by checking if we are seeing small
197 	 * mask-relative negative values.
198 	 */
199 	if (unlikely((~delta & mask) < (mask >> 3))) {
200 		timekeeping_underflow_seen = 1;
201 		delta = 0;
202 	}
203 
204 	/* Cap delta value to the max_cycles values to avoid mult overflows */
205 	if (unlikely(delta > max)) {
206 		timekeeping_overflow_seen = 1;
207 		delta = tkr->clock->max_cycles;
208 	}
209 
210 	return delta;
211 }
212 #else
213 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
214 {
215 }
216 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
217 {
218 	cycle_t cycle_now, delta;
219 
220 	/* read clocksource */
221 	cycle_now = tkr->read(tkr->clock);
222 
223 	/* calculate the delta since the last update_wall_time */
224 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
225 
226 	return delta;
227 }
228 #endif
229 
230 /**
231  * tk_setup_internals - Set up internals to use clocksource clock.
232  *
233  * @tk:		The target timekeeper to setup.
234  * @clock:		Pointer to clocksource.
235  *
236  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237  * pair and interval request.
238  *
239  * Unless you're the timekeeping code, you should not be using this!
240  */
241 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
242 {
243 	cycle_t interval;
244 	u64 tmp, ntpinterval;
245 	struct clocksource *old_clock;
246 
247 	old_clock = tk->tkr_mono.clock;
248 	tk->tkr_mono.clock = clock;
249 	tk->tkr_mono.read = clock->read;
250 	tk->tkr_mono.mask = clock->mask;
251 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
252 
253 	tk->tkr_raw.clock = clock;
254 	tk->tkr_raw.read = clock->read;
255 	tk->tkr_raw.mask = clock->mask;
256 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
257 
258 	/* Do the ns -> cycle conversion first, using original mult */
259 	tmp = NTP_INTERVAL_LENGTH;
260 	tmp <<= clock->shift;
261 	ntpinterval = tmp;
262 	tmp += clock->mult/2;
263 	do_div(tmp, clock->mult);
264 	if (tmp == 0)
265 		tmp = 1;
266 
267 	interval = (cycle_t) tmp;
268 	tk->cycle_interval = interval;
269 
270 	/* Go back from cycles -> shifted ns */
271 	tk->xtime_interval = (u64) interval * clock->mult;
272 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273 	tk->raw_interval =
274 		((u64) interval * clock->mult) >> clock->shift;
275 
276 	 /* if changing clocks, convert xtime_nsec shift units */
277 	if (old_clock) {
278 		int shift_change = clock->shift - old_clock->shift;
279 		if (shift_change < 0)
280 			tk->tkr_mono.xtime_nsec >>= -shift_change;
281 		else
282 			tk->tkr_mono.xtime_nsec <<= shift_change;
283 	}
284 	tk->tkr_raw.xtime_nsec = 0;
285 
286 	tk->tkr_mono.shift = clock->shift;
287 	tk->tkr_raw.shift = clock->shift;
288 
289 	tk->ntp_error = 0;
290 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
292 
293 	/*
294 	 * The timekeeper keeps its own mult values for the currently
295 	 * active clocksource. These value will be adjusted via NTP
296 	 * to counteract clock drifting.
297 	 */
298 	tk->tkr_mono.mult = clock->mult;
299 	tk->tkr_raw.mult = clock->mult;
300 	tk->ntp_err_mult = 0;
301 }
302 
303 /* Timekeeper helper functions. */
304 
305 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
306 static u32 default_arch_gettimeoffset(void) { return 0; }
307 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308 #else
309 static inline u32 arch_gettimeoffset(void) { return 0; }
310 #endif
311 
312 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314 	cycle_t delta;
315 	s64 nsec;
316 
317 	delta = timekeeping_get_delta(tkr);
318 
319 	nsec = delta * tkr->mult + tkr->xtime_nsec;
320 	nsec >>= tkr->shift;
321 
322 	/* If arch requires, add in get_arch_timeoffset() */
323 	return nsec + arch_gettimeoffset();
324 }
325 
326 /**
327  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
328  * @tkr: Timekeeping readout base from which we take the update
329  *
330  * We want to use this from any context including NMI and tracing /
331  * instrumenting the timekeeping code itself.
332  *
333  * So we handle this differently than the other timekeeping accessor
334  * functions which retry when the sequence count has changed. The
335  * update side does:
336  *
337  * smp_wmb();	<- Ensure that the last base[1] update is visible
338  * tkf->seq++;
339  * smp_wmb();	<- Ensure that the seqcount update is visible
340  * update(tkf->base[0], tkr);
341  * smp_wmb();	<- Ensure that the base[0] update is visible
342  * tkf->seq++;
343  * smp_wmb();	<- Ensure that the seqcount update is visible
344  * update(tkf->base[1], tkr);
345  *
346  * The reader side does:
347  *
348  * do {
349  *	seq = tkf->seq;
350  *	smp_rmb();
351  *	idx = seq & 0x01;
352  *	now = now(tkf->base[idx]);
353  *	smp_rmb();
354  * } while (seq != tkf->seq)
355  *
356  * As long as we update base[0] readers are forced off to
357  * base[1]. Once base[0] is updated readers are redirected to base[0]
358  * and the base[1] update takes place.
359  *
360  * So if a NMI hits the update of base[0] then it will use base[1]
361  * which is still consistent. In the worst case this can result is a
362  * slightly wrong timestamp (a few nanoseconds). See
363  * @ktime_get_mono_fast_ns.
364  */
365 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
366 {
367 	struct tk_read_base *base = tkf->base;
368 
369 	/* Force readers off to base[1] */
370 	raw_write_seqcount_latch(&tkf->seq);
371 
372 	/* Update base[0] */
373 	memcpy(base, tkr, sizeof(*base));
374 
375 	/* Force readers back to base[0] */
376 	raw_write_seqcount_latch(&tkf->seq);
377 
378 	/* Update base[1] */
379 	memcpy(base + 1, base, sizeof(*base));
380 }
381 
382 /**
383  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
384  *
385  * This timestamp is not guaranteed to be monotonic across an update.
386  * The timestamp is calculated by:
387  *
388  *	now = base_mono + clock_delta * slope
389  *
390  * So if the update lowers the slope, readers who are forced to the
391  * not yet updated second array are still using the old steeper slope.
392  *
393  * tmono
394  * ^
395  * |    o  n
396  * |   o n
397  * |  u
398  * | o
399  * |o
400  * |12345678---> reader order
401  *
402  * o = old slope
403  * u = update
404  * n = new slope
405  *
406  * So reader 6 will observe time going backwards versus reader 5.
407  *
408  * While other CPUs are likely to be able observe that, the only way
409  * for a CPU local observation is when an NMI hits in the middle of
410  * the update. Timestamps taken from that NMI context might be ahead
411  * of the following timestamps. Callers need to be aware of that and
412  * deal with it.
413  */
414 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
415 {
416 	struct tk_read_base *tkr;
417 	unsigned int seq;
418 	u64 now;
419 
420 	do {
421 		seq = raw_read_seqcount(&tkf->seq);
422 		tkr = tkf->base + (seq & 0x01);
423 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
424 	} while (read_seqcount_retry(&tkf->seq, seq));
425 
426 	return now;
427 }
428 
429 u64 ktime_get_mono_fast_ns(void)
430 {
431 	return __ktime_get_fast_ns(&tk_fast_mono);
432 }
433 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
434 
435 u64 ktime_get_raw_fast_ns(void)
436 {
437 	return __ktime_get_fast_ns(&tk_fast_raw);
438 }
439 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
440 
441 /* Suspend-time cycles value for halted fast timekeeper. */
442 static cycle_t cycles_at_suspend;
443 
444 static cycle_t dummy_clock_read(struct clocksource *cs)
445 {
446 	return cycles_at_suspend;
447 }
448 
449 /**
450  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
451  * @tk: Timekeeper to snapshot.
452  *
453  * It generally is unsafe to access the clocksource after timekeeping has been
454  * suspended, so take a snapshot of the readout base of @tk and use it as the
455  * fast timekeeper's readout base while suspended.  It will return the same
456  * number of cycles every time until timekeeping is resumed at which time the
457  * proper readout base for the fast timekeeper will be restored automatically.
458  */
459 static void halt_fast_timekeeper(struct timekeeper *tk)
460 {
461 	static struct tk_read_base tkr_dummy;
462 	struct tk_read_base *tkr = &tk->tkr_mono;
463 
464 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
465 	cycles_at_suspend = tkr->read(tkr->clock);
466 	tkr_dummy.read = dummy_clock_read;
467 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
468 
469 	tkr = &tk->tkr_raw;
470 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
471 	tkr_dummy.read = dummy_clock_read;
472 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
473 }
474 
475 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
476 
477 static inline void update_vsyscall(struct timekeeper *tk)
478 {
479 	struct timespec xt, wm;
480 
481 	xt = timespec64_to_timespec(tk_xtime(tk));
482 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
483 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
484 			    tk->tkr_mono.cycle_last);
485 }
486 
487 static inline void old_vsyscall_fixup(struct timekeeper *tk)
488 {
489 	s64 remainder;
490 
491 	/*
492 	* Store only full nanoseconds into xtime_nsec after rounding
493 	* it up and add the remainder to the error difference.
494 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
495 	* by truncating the remainder in vsyscalls. However, it causes
496 	* additional work to be done in timekeeping_adjust(). Once
497 	* the vsyscall implementations are converted to use xtime_nsec
498 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
499 	* users are removed, this can be killed.
500 	*/
501 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
502 	tk->tkr_mono.xtime_nsec -= remainder;
503 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
504 	tk->ntp_error += remainder << tk->ntp_error_shift;
505 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
506 }
507 #else
508 #define old_vsyscall_fixup(tk)
509 #endif
510 
511 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
512 
513 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
514 {
515 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
516 }
517 
518 /**
519  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
520  */
521 int pvclock_gtod_register_notifier(struct notifier_block *nb)
522 {
523 	struct timekeeper *tk = &tk_core.timekeeper;
524 	unsigned long flags;
525 	int ret;
526 
527 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
528 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
529 	update_pvclock_gtod(tk, true);
530 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
531 
532 	return ret;
533 }
534 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
535 
536 /**
537  * pvclock_gtod_unregister_notifier - unregister a pvclock
538  * timedata update listener
539  */
540 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
541 {
542 	unsigned long flags;
543 	int ret;
544 
545 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
546 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
547 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548 
549 	return ret;
550 }
551 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
552 
553 /*
554  * Update the ktime_t based scalar nsec members of the timekeeper
555  */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558 	u64 seconds;
559 	u32 nsec;
560 
561 	/*
562 	 * The xtime based monotonic readout is:
563 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 	 * The ktime based monotonic readout is:
565 	 *	nsec = base_mono + now();
566 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 	 */
568 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571 
572 	/* Update the monotonic raw base */
573 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574 
575 	/*
576 	 * The sum of the nanoseconds portions of xtime and
577 	 * wall_to_monotonic can be greater/equal one second. Take
578 	 * this into account before updating tk->ktime_sec.
579 	 */
580 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581 	if (nsec >= NSEC_PER_SEC)
582 		seconds++;
583 	tk->ktime_sec = seconds;
584 }
585 
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589 	if (action & TK_CLEAR_NTP) {
590 		tk->ntp_error = 0;
591 		ntp_clear();
592 	}
593 
594 	tk_update_ktime_data(tk);
595 
596 	update_vsyscall(tk);
597 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
598 
599 	if (action & TK_MIRROR)
600 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
601 		       sizeof(tk_core.timekeeper));
602 
603 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
604 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
605 }
606 
607 /**
608  * timekeeping_forward_now - update clock to the current time
609  *
610  * Forward the current clock to update its state since the last call to
611  * update_wall_time(). This is useful before significant clock changes,
612  * as it avoids having to deal with this time offset explicitly.
613  */
614 static void timekeeping_forward_now(struct timekeeper *tk)
615 {
616 	struct clocksource *clock = tk->tkr_mono.clock;
617 	cycle_t cycle_now, delta;
618 	s64 nsec;
619 
620 	cycle_now = tk->tkr_mono.read(clock);
621 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
622 	tk->tkr_mono.cycle_last = cycle_now;
623 	tk->tkr_raw.cycle_last  = cycle_now;
624 
625 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
626 
627 	/* If arch requires, add in get_arch_timeoffset() */
628 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
629 
630 	tk_normalize_xtime(tk);
631 
632 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
633 	timespec64_add_ns(&tk->raw_time, nsec);
634 }
635 
636 /**
637  * __getnstimeofday64 - Returns the time of day in a timespec64.
638  * @ts:		pointer to the timespec to be set
639  *
640  * Updates the time of day in the timespec.
641  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
642  */
643 int __getnstimeofday64(struct timespec64 *ts)
644 {
645 	struct timekeeper *tk = &tk_core.timekeeper;
646 	unsigned long seq;
647 	s64 nsecs = 0;
648 
649 	do {
650 		seq = read_seqcount_begin(&tk_core.seq);
651 
652 		ts->tv_sec = tk->xtime_sec;
653 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
654 
655 	} while (read_seqcount_retry(&tk_core.seq, seq));
656 
657 	ts->tv_nsec = 0;
658 	timespec64_add_ns(ts, nsecs);
659 
660 	/*
661 	 * Do not bail out early, in case there were callers still using
662 	 * the value, even in the face of the WARN_ON.
663 	 */
664 	if (unlikely(timekeeping_suspended))
665 		return -EAGAIN;
666 	return 0;
667 }
668 EXPORT_SYMBOL(__getnstimeofday64);
669 
670 /**
671  * getnstimeofday64 - Returns the time of day in a timespec64.
672  * @ts:		pointer to the timespec64 to be set
673  *
674  * Returns the time of day in a timespec64 (WARN if suspended).
675  */
676 void getnstimeofday64(struct timespec64 *ts)
677 {
678 	WARN_ON(__getnstimeofday64(ts));
679 }
680 EXPORT_SYMBOL(getnstimeofday64);
681 
682 ktime_t ktime_get(void)
683 {
684 	struct timekeeper *tk = &tk_core.timekeeper;
685 	unsigned int seq;
686 	ktime_t base;
687 	s64 nsecs;
688 
689 	WARN_ON(timekeeping_suspended);
690 
691 	do {
692 		seq = read_seqcount_begin(&tk_core.seq);
693 		base = tk->tkr_mono.base;
694 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
695 
696 	} while (read_seqcount_retry(&tk_core.seq, seq));
697 
698 	return ktime_add_ns(base, nsecs);
699 }
700 EXPORT_SYMBOL_GPL(ktime_get);
701 
702 static ktime_t *offsets[TK_OFFS_MAX] = {
703 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
704 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
705 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
706 };
707 
708 ktime_t ktime_get_with_offset(enum tk_offsets offs)
709 {
710 	struct timekeeper *tk = &tk_core.timekeeper;
711 	unsigned int seq;
712 	ktime_t base, *offset = offsets[offs];
713 	s64 nsecs;
714 
715 	WARN_ON(timekeeping_suspended);
716 
717 	do {
718 		seq = read_seqcount_begin(&tk_core.seq);
719 		base = ktime_add(tk->tkr_mono.base, *offset);
720 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
721 
722 	} while (read_seqcount_retry(&tk_core.seq, seq));
723 
724 	return ktime_add_ns(base, nsecs);
725 
726 }
727 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
728 
729 /**
730  * ktime_mono_to_any() - convert mononotic time to any other time
731  * @tmono:	time to convert.
732  * @offs:	which offset to use
733  */
734 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
735 {
736 	ktime_t *offset = offsets[offs];
737 	unsigned long seq;
738 	ktime_t tconv;
739 
740 	do {
741 		seq = read_seqcount_begin(&tk_core.seq);
742 		tconv = ktime_add(tmono, *offset);
743 	} while (read_seqcount_retry(&tk_core.seq, seq));
744 
745 	return tconv;
746 }
747 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
748 
749 /**
750  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
751  */
752 ktime_t ktime_get_raw(void)
753 {
754 	struct timekeeper *tk = &tk_core.timekeeper;
755 	unsigned int seq;
756 	ktime_t base;
757 	s64 nsecs;
758 
759 	do {
760 		seq = read_seqcount_begin(&tk_core.seq);
761 		base = tk->tkr_raw.base;
762 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
763 
764 	} while (read_seqcount_retry(&tk_core.seq, seq));
765 
766 	return ktime_add_ns(base, nsecs);
767 }
768 EXPORT_SYMBOL_GPL(ktime_get_raw);
769 
770 /**
771  * ktime_get_ts64 - get the monotonic clock in timespec64 format
772  * @ts:		pointer to timespec variable
773  *
774  * The function calculates the monotonic clock from the realtime
775  * clock and the wall_to_monotonic offset and stores the result
776  * in normalized timespec64 format in the variable pointed to by @ts.
777  */
778 void ktime_get_ts64(struct timespec64 *ts)
779 {
780 	struct timekeeper *tk = &tk_core.timekeeper;
781 	struct timespec64 tomono;
782 	s64 nsec;
783 	unsigned int seq;
784 
785 	WARN_ON(timekeeping_suspended);
786 
787 	do {
788 		seq = read_seqcount_begin(&tk_core.seq);
789 		ts->tv_sec = tk->xtime_sec;
790 		nsec = timekeeping_get_ns(&tk->tkr_mono);
791 		tomono = tk->wall_to_monotonic;
792 
793 	} while (read_seqcount_retry(&tk_core.seq, seq));
794 
795 	ts->tv_sec += tomono.tv_sec;
796 	ts->tv_nsec = 0;
797 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
798 }
799 EXPORT_SYMBOL_GPL(ktime_get_ts64);
800 
801 /**
802  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
803  *
804  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
805  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
806  * works on both 32 and 64 bit systems. On 32 bit systems the readout
807  * covers ~136 years of uptime which should be enough to prevent
808  * premature wrap arounds.
809  */
810 time64_t ktime_get_seconds(void)
811 {
812 	struct timekeeper *tk = &tk_core.timekeeper;
813 
814 	WARN_ON(timekeeping_suspended);
815 	return tk->ktime_sec;
816 }
817 EXPORT_SYMBOL_GPL(ktime_get_seconds);
818 
819 /**
820  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
821  *
822  * Returns the wall clock seconds since 1970. This replaces the
823  * get_seconds() interface which is not y2038 safe on 32bit systems.
824  *
825  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
826  * 32bit systems the access must be protected with the sequence
827  * counter to provide "atomic" access to the 64bit tk->xtime_sec
828  * value.
829  */
830 time64_t ktime_get_real_seconds(void)
831 {
832 	struct timekeeper *tk = &tk_core.timekeeper;
833 	time64_t seconds;
834 	unsigned int seq;
835 
836 	if (IS_ENABLED(CONFIG_64BIT))
837 		return tk->xtime_sec;
838 
839 	do {
840 		seq = read_seqcount_begin(&tk_core.seq);
841 		seconds = tk->xtime_sec;
842 
843 	} while (read_seqcount_retry(&tk_core.seq, seq));
844 
845 	return seconds;
846 }
847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
848 
849 #ifdef CONFIG_NTP_PPS
850 
851 /**
852  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
853  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
854  * @ts_real:	pointer to the timespec to be set to the time of day
855  *
856  * This function reads both the time of day and raw monotonic time at the
857  * same time atomically and stores the resulting timestamps in timespec
858  * format.
859  */
860 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
861 {
862 	struct timekeeper *tk = &tk_core.timekeeper;
863 	unsigned long seq;
864 	s64 nsecs_raw, nsecs_real;
865 
866 	WARN_ON_ONCE(timekeeping_suspended);
867 
868 	do {
869 		seq = read_seqcount_begin(&tk_core.seq);
870 
871 		*ts_raw = timespec64_to_timespec(tk->raw_time);
872 		ts_real->tv_sec = tk->xtime_sec;
873 		ts_real->tv_nsec = 0;
874 
875 		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
876 		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
877 
878 	} while (read_seqcount_retry(&tk_core.seq, seq));
879 
880 	timespec_add_ns(ts_raw, nsecs_raw);
881 	timespec_add_ns(ts_real, nsecs_real);
882 }
883 EXPORT_SYMBOL(getnstime_raw_and_real);
884 
885 #endif /* CONFIG_NTP_PPS */
886 
887 /**
888  * do_gettimeofday - Returns the time of day in a timeval
889  * @tv:		pointer to the timeval to be set
890  *
891  * NOTE: Users should be converted to using getnstimeofday()
892  */
893 void do_gettimeofday(struct timeval *tv)
894 {
895 	struct timespec64 now;
896 
897 	getnstimeofday64(&now);
898 	tv->tv_sec = now.tv_sec;
899 	tv->tv_usec = now.tv_nsec/1000;
900 }
901 EXPORT_SYMBOL(do_gettimeofday);
902 
903 /**
904  * do_settimeofday64 - Sets the time of day.
905  * @ts:     pointer to the timespec64 variable containing the new time
906  *
907  * Sets the time of day to the new time and update NTP and notify hrtimers
908  */
909 int do_settimeofday64(const struct timespec64 *ts)
910 {
911 	struct timekeeper *tk = &tk_core.timekeeper;
912 	struct timespec64 ts_delta, xt;
913 	unsigned long flags;
914 
915 	if (!timespec64_valid_strict(ts))
916 		return -EINVAL;
917 
918 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
919 	write_seqcount_begin(&tk_core.seq);
920 
921 	timekeeping_forward_now(tk);
922 
923 	xt = tk_xtime(tk);
924 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
925 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
926 
927 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
928 
929 	tk_set_xtime(tk, ts);
930 
931 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
932 
933 	write_seqcount_end(&tk_core.seq);
934 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
935 
936 	/* signal hrtimers about time change */
937 	clock_was_set();
938 
939 	return 0;
940 }
941 EXPORT_SYMBOL(do_settimeofday64);
942 
943 /**
944  * timekeeping_inject_offset - Adds or subtracts from the current time.
945  * @tv:		pointer to the timespec variable containing the offset
946  *
947  * Adds or subtracts an offset value from the current time.
948  */
949 int timekeeping_inject_offset(struct timespec *ts)
950 {
951 	struct timekeeper *tk = &tk_core.timekeeper;
952 	unsigned long flags;
953 	struct timespec64 ts64, tmp;
954 	int ret = 0;
955 
956 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
957 		return -EINVAL;
958 
959 	ts64 = timespec_to_timespec64(*ts);
960 
961 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
962 	write_seqcount_begin(&tk_core.seq);
963 
964 	timekeeping_forward_now(tk);
965 
966 	/* Make sure the proposed value is valid */
967 	tmp = timespec64_add(tk_xtime(tk),  ts64);
968 	if (!timespec64_valid_strict(&tmp)) {
969 		ret = -EINVAL;
970 		goto error;
971 	}
972 
973 	tk_xtime_add(tk, &ts64);
974 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
975 
976 error: /* even if we error out, we forwarded the time, so call update */
977 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
978 
979 	write_seqcount_end(&tk_core.seq);
980 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
981 
982 	/* signal hrtimers about time change */
983 	clock_was_set();
984 
985 	return ret;
986 }
987 EXPORT_SYMBOL(timekeeping_inject_offset);
988 
989 
990 /**
991  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
992  *
993  */
994 s32 timekeeping_get_tai_offset(void)
995 {
996 	struct timekeeper *tk = &tk_core.timekeeper;
997 	unsigned int seq;
998 	s32 ret;
999 
1000 	do {
1001 		seq = read_seqcount_begin(&tk_core.seq);
1002 		ret = tk->tai_offset;
1003 	} while (read_seqcount_retry(&tk_core.seq, seq));
1004 
1005 	return ret;
1006 }
1007 
1008 /**
1009  * __timekeeping_set_tai_offset - Lock free worker function
1010  *
1011  */
1012 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1013 {
1014 	tk->tai_offset = tai_offset;
1015 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1016 }
1017 
1018 /**
1019  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1020  *
1021  */
1022 void timekeeping_set_tai_offset(s32 tai_offset)
1023 {
1024 	struct timekeeper *tk = &tk_core.timekeeper;
1025 	unsigned long flags;
1026 
1027 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1028 	write_seqcount_begin(&tk_core.seq);
1029 	__timekeeping_set_tai_offset(tk, tai_offset);
1030 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1031 	write_seqcount_end(&tk_core.seq);
1032 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1033 	clock_was_set();
1034 }
1035 
1036 /**
1037  * change_clocksource - Swaps clocksources if a new one is available
1038  *
1039  * Accumulates current time interval and initializes new clocksource
1040  */
1041 static int change_clocksource(void *data)
1042 {
1043 	struct timekeeper *tk = &tk_core.timekeeper;
1044 	struct clocksource *new, *old;
1045 	unsigned long flags;
1046 
1047 	new = (struct clocksource *) data;
1048 
1049 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1050 	write_seqcount_begin(&tk_core.seq);
1051 
1052 	timekeeping_forward_now(tk);
1053 	/*
1054 	 * If the cs is in module, get a module reference. Succeeds
1055 	 * for built-in code (owner == NULL) as well.
1056 	 */
1057 	if (try_module_get(new->owner)) {
1058 		if (!new->enable || new->enable(new) == 0) {
1059 			old = tk->tkr_mono.clock;
1060 			tk_setup_internals(tk, new);
1061 			if (old->disable)
1062 				old->disable(old);
1063 			module_put(old->owner);
1064 		} else {
1065 			module_put(new->owner);
1066 		}
1067 	}
1068 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1069 
1070 	write_seqcount_end(&tk_core.seq);
1071 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  * timekeeping_notify - Install a new clock source
1078  * @clock:		pointer to the clock source
1079  *
1080  * This function is called from clocksource.c after a new, better clock
1081  * source has been registered. The caller holds the clocksource_mutex.
1082  */
1083 int timekeeping_notify(struct clocksource *clock)
1084 {
1085 	struct timekeeper *tk = &tk_core.timekeeper;
1086 
1087 	if (tk->tkr_mono.clock == clock)
1088 		return 0;
1089 	stop_machine(change_clocksource, clock, NULL);
1090 	tick_clock_notify();
1091 	return tk->tkr_mono.clock == clock ? 0 : -1;
1092 }
1093 
1094 /**
1095  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1096  * @ts:		pointer to the timespec64 to be set
1097  *
1098  * Returns the raw monotonic time (completely un-modified by ntp)
1099  */
1100 void getrawmonotonic64(struct timespec64 *ts)
1101 {
1102 	struct timekeeper *tk = &tk_core.timekeeper;
1103 	struct timespec64 ts64;
1104 	unsigned long seq;
1105 	s64 nsecs;
1106 
1107 	do {
1108 		seq = read_seqcount_begin(&tk_core.seq);
1109 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1110 		ts64 = tk->raw_time;
1111 
1112 	} while (read_seqcount_retry(&tk_core.seq, seq));
1113 
1114 	timespec64_add_ns(&ts64, nsecs);
1115 	*ts = ts64;
1116 }
1117 EXPORT_SYMBOL(getrawmonotonic64);
1118 
1119 
1120 /**
1121  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1122  */
1123 int timekeeping_valid_for_hres(void)
1124 {
1125 	struct timekeeper *tk = &tk_core.timekeeper;
1126 	unsigned long seq;
1127 	int ret;
1128 
1129 	do {
1130 		seq = read_seqcount_begin(&tk_core.seq);
1131 
1132 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1133 
1134 	} while (read_seqcount_retry(&tk_core.seq, seq));
1135 
1136 	return ret;
1137 }
1138 
1139 /**
1140  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1141  */
1142 u64 timekeeping_max_deferment(void)
1143 {
1144 	struct timekeeper *tk = &tk_core.timekeeper;
1145 	unsigned long seq;
1146 	u64 ret;
1147 
1148 	do {
1149 		seq = read_seqcount_begin(&tk_core.seq);
1150 
1151 		ret = tk->tkr_mono.clock->max_idle_ns;
1152 
1153 	} while (read_seqcount_retry(&tk_core.seq, seq));
1154 
1155 	return ret;
1156 }
1157 
1158 /**
1159  * read_persistent_clock -  Return time from the persistent clock.
1160  *
1161  * Weak dummy function for arches that do not yet support it.
1162  * Reads the time from the battery backed persistent clock.
1163  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1164  *
1165  *  XXX - Do be sure to remove it once all arches implement it.
1166  */
1167 void __weak read_persistent_clock(struct timespec *ts)
1168 {
1169 	ts->tv_sec = 0;
1170 	ts->tv_nsec = 0;
1171 }
1172 
1173 void __weak read_persistent_clock64(struct timespec64 *ts64)
1174 {
1175 	struct timespec ts;
1176 
1177 	read_persistent_clock(&ts);
1178 	*ts64 = timespec_to_timespec64(ts);
1179 }
1180 
1181 /**
1182  * read_boot_clock -  Return time of the system start.
1183  *
1184  * Weak dummy function for arches that do not yet support it.
1185  * Function to read the exact time the system has been started.
1186  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1187  *
1188  *  XXX - Do be sure to remove it once all arches implement it.
1189  */
1190 void __weak read_boot_clock(struct timespec *ts)
1191 {
1192 	ts->tv_sec = 0;
1193 	ts->tv_nsec = 0;
1194 }
1195 
1196 void __weak read_boot_clock64(struct timespec64 *ts64)
1197 {
1198 	struct timespec ts;
1199 
1200 	read_boot_clock(&ts);
1201 	*ts64 = timespec_to_timespec64(ts);
1202 }
1203 
1204 /* Flag for if timekeeping_resume() has injected sleeptime */
1205 static bool sleeptime_injected;
1206 
1207 /* Flag for if there is a persistent clock on this platform */
1208 static bool persistent_clock_exists;
1209 
1210 /*
1211  * timekeeping_init - Initializes the clocksource and common timekeeping values
1212  */
1213 void __init timekeeping_init(void)
1214 {
1215 	struct timekeeper *tk = &tk_core.timekeeper;
1216 	struct clocksource *clock;
1217 	unsigned long flags;
1218 	struct timespec64 now, boot, tmp;
1219 
1220 	read_persistent_clock64(&now);
1221 	if (!timespec64_valid_strict(&now)) {
1222 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1223 			"         Check your CMOS/BIOS settings.\n");
1224 		now.tv_sec = 0;
1225 		now.tv_nsec = 0;
1226 	} else if (now.tv_sec || now.tv_nsec)
1227 		persistent_clock_exists = true;
1228 
1229 	read_boot_clock64(&boot);
1230 	if (!timespec64_valid_strict(&boot)) {
1231 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1232 			"         Check your CMOS/BIOS settings.\n");
1233 		boot.tv_sec = 0;
1234 		boot.tv_nsec = 0;
1235 	}
1236 
1237 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1238 	write_seqcount_begin(&tk_core.seq);
1239 	ntp_init();
1240 
1241 	clock = clocksource_default_clock();
1242 	if (clock->enable)
1243 		clock->enable(clock);
1244 	tk_setup_internals(tk, clock);
1245 
1246 	tk_set_xtime(tk, &now);
1247 	tk->raw_time.tv_sec = 0;
1248 	tk->raw_time.tv_nsec = 0;
1249 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1250 		boot = tk_xtime(tk);
1251 
1252 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1253 	tk_set_wall_to_mono(tk, tmp);
1254 
1255 	timekeeping_update(tk, TK_MIRROR);
1256 
1257 	write_seqcount_end(&tk_core.seq);
1258 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1259 }
1260 
1261 /* time in seconds when suspend began for persistent clock */
1262 static struct timespec64 timekeeping_suspend_time;
1263 
1264 /**
1265  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1266  * @delta: pointer to a timespec delta value
1267  *
1268  * Takes a timespec offset measuring a suspend interval and properly
1269  * adds the sleep offset to the timekeeping variables.
1270  */
1271 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1272 					   struct timespec64 *delta)
1273 {
1274 	if (!timespec64_valid_strict(delta)) {
1275 		printk_deferred(KERN_WARNING
1276 				"__timekeeping_inject_sleeptime: Invalid "
1277 				"sleep delta value!\n");
1278 		return;
1279 	}
1280 	tk_xtime_add(tk, delta);
1281 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1282 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1283 	tk_debug_account_sleep_time(delta);
1284 }
1285 
1286 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1287 /**
1288  * We have three kinds of time sources to use for sleep time
1289  * injection, the preference order is:
1290  * 1) non-stop clocksource
1291  * 2) persistent clock (ie: RTC accessible when irqs are off)
1292  * 3) RTC
1293  *
1294  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1295  * If system has neither 1) nor 2), 3) will be used finally.
1296  *
1297  *
1298  * If timekeeping has injected sleeptime via either 1) or 2),
1299  * 3) becomes needless, so in this case we don't need to call
1300  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1301  * means.
1302  */
1303 bool timekeeping_rtc_skipresume(void)
1304 {
1305 	return sleeptime_injected;
1306 }
1307 
1308 /**
1309  * 1) can be determined whether to use or not only when doing
1310  * timekeeping_resume() which is invoked after rtc_suspend(),
1311  * so we can't skip rtc_suspend() surely if system has 1).
1312  *
1313  * But if system has 2), 2) will definitely be used, so in this
1314  * case we don't need to call rtc_suspend(), and this is what
1315  * timekeeping_rtc_skipsuspend() means.
1316  */
1317 bool timekeeping_rtc_skipsuspend(void)
1318 {
1319 	return persistent_clock_exists;
1320 }
1321 
1322 /**
1323  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1324  * @delta: pointer to a timespec64 delta value
1325  *
1326  * This hook is for architectures that cannot support read_persistent_clock64
1327  * because their RTC/persistent clock is only accessible when irqs are enabled.
1328  * and also don't have an effective nonstop clocksource.
1329  *
1330  * This function should only be called by rtc_resume(), and allows
1331  * a suspend offset to be injected into the timekeeping values.
1332  */
1333 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1334 {
1335 	struct timekeeper *tk = &tk_core.timekeeper;
1336 	unsigned long flags;
1337 
1338 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339 	write_seqcount_begin(&tk_core.seq);
1340 
1341 	timekeeping_forward_now(tk);
1342 
1343 	__timekeeping_inject_sleeptime(tk, delta);
1344 
1345 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1346 
1347 	write_seqcount_end(&tk_core.seq);
1348 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1349 
1350 	/* signal hrtimers about time change */
1351 	clock_was_set();
1352 }
1353 #endif
1354 
1355 /**
1356  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1357  */
1358 void timekeeping_resume(void)
1359 {
1360 	struct timekeeper *tk = &tk_core.timekeeper;
1361 	struct clocksource *clock = tk->tkr_mono.clock;
1362 	unsigned long flags;
1363 	struct timespec64 ts_new, ts_delta;
1364 	cycle_t cycle_now, cycle_delta;
1365 
1366 	sleeptime_injected = false;
1367 	read_persistent_clock64(&ts_new);
1368 
1369 	clockevents_resume();
1370 	clocksource_resume();
1371 
1372 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1373 	write_seqcount_begin(&tk_core.seq);
1374 
1375 	/*
1376 	 * After system resumes, we need to calculate the suspended time and
1377 	 * compensate it for the OS time. There are 3 sources that could be
1378 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1379 	 * device.
1380 	 *
1381 	 * One specific platform may have 1 or 2 or all of them, and the
1382 	 * preference will be:
1383 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1384 	 * The less preferred source will only be tried if there is no better
1385 	 * usable source. The rtc part is handled separately in rtc core code.
1386 	 */
1387 	cycle_now = tk->tkr_mono.read(clock);
1388 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1389 		cycle_now > tk->tkr_mono.cycle_last) {
1390 		u64 num, max = ULLONG_MAX;
1391 		u32 mult = clock->mult;
1392 		u32 shift = clock->shift;
1393 		s64 nsec = 0;
1394 
1395 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1396 						tk->tkr_mono.mask);
1397 
1398 		/*
1399 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1400 		 * suspended time is too long. In that case we need do the
1401 		 * 64 bits math carefully
1402 		 */
1403 		do_div(max, mult);
1404 		if (cycle_delta > max) {
1405 			num = div64_u64(cycle_delta, max);
1406 			nsec = (((u64) max * mult) >> shift) * num;
1407 			cycle_delta -= num * max;
1408 		}
1409 		nsec += ((u64) cycle_delta * mult) >> shift;
1410 
1411 		ts_delta = ns_to_timespec64(nsec);
1412 		sleeptime_injected = true;
1413 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1414 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1415 		sleeptime_injected = true;
1416 	}
1417 
1418 	if (sleeptime_injected)
1419 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1420 
1421 	/* Re-base the last cycle value */
1422 	tk->tkr_mono.cycle_last = cycle_now;
1423 	tk->tkr_raw.cycle_last  = cycle_now;
1424 
1425 	tk->ntp_error = 0;
1426 	timekeeping_suspended = 0;
1427 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1428 	write_seqcount_end(&tk_core.seq);
1429 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1430 
1431 	touch_softlockup_watchdog();
1432 
1433 	tick_resume();
1434 	hrtimers_resume();
1435 }
1436 
1437 int timekeeping_suspend(void)
1438 {
1439 	struct timekeeper *tk = &tk_core.timekeeper;
1440 	unsigned long flags;
1441 	struct timespec64		delta, delta_delta;
1442 	static struct timespec64	old_delta;
1443 
1444 	read_persistent_clock64(&timekeeping_suspend_time);
1445 
1446 	/*
1447 	 * On some systems the persistent_clock can not be detected at
1448 	 * timekeeping_init by its return value, so if we see a valid
1449 	 * value returned, update the persistent_clock_exists flag.
1450 	 */
1451 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1452 		persistent_clock_exists = true;
1453 
1454 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1455 	write_seqcount_begin(&tk_core.seq);
1456 	timekeeping_forward_now(tk);
1457 	timekeeping_suspended = 1;
1458 
1459 	if (persistent_clock_exists) {
1460 		/*
1461 		 * To avoid drift caused by repeated suspend/resumes,
1462 		 * which each can add ~1 second drift error,
1463 		 * try to compensate so the difference in system time
1464 		 * and persistent_clock time stays close to constant.
1465 		 */
1466 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1467 		delta_delta = timespec64_sub(delta, old_delta);
1468 		if (abs(delta_delta.tv_sec) >= 2) {
1469 			/*
1470 			 * if delta_delta is too large, assume time correction
1471 			 * has occurred and set old_delta to the current delta.
1472 			 */
1473 			old_delta = delta;
1474 		} else {
1475 			/* Otherwise try to adjust old_system to compensate */
1476 			timekeeping_suspend_time =
1477 				timespec64_add(timekeeping_suspend_time, delta_delta);
1478 		}
1479 	}
1480 
1481 	timekeeping_update(tk, TK_MIRROR);
1482 	halt_fast_timekeeper(tk);
1483 	write_seqcount_end(&tk_core.seq);
1484 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1485 
1486 	tick_suspend();
1487 	clocksource_suspend();
1488 	clockevents_suspend();
1489 
1490 	return 0;
1491 }
1492 
1493 /* sysfs resume/suspend bits for timekeeping */
1494 static struct syscore_ops timekeeping_syscore_ops = {
1495 	.resume		= timekeeping_resume,
1496 	.suspend	= timekeeping_suspend,
1497 };
1498 
1499 static int __init timekeeping_init_ops(void)
1500 {
1501 	register_syscore_ops(&timekeeping_syscore_ops);
1502 	return 0;
1503 }
1504 device_initcall(timekeeping_init_ops);
1505 
1506 /*
1507  * Apply a multiplier adjustment to the timekeeper
1508  */
1509 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1510 							 s64 offset,
1511 							 bool negative,
1512 							 int adj_scale)
1513 {
1514 	s64 interval = tk->cycle_interval;
1515 	s32 mult_adj = 1;
1516 
1517 	if (negative) {
1518 		mult_adj = -mult_adj;
1519 		interval = -interval;
1520 		offset  = -offset;
1521 	}
1522 	mult_adj <<= adj_scale;
1523 	interval <<= adj_scale;
1524 	offset <<= adj_scale;
1525 
1526 	/*
1527 	 * So the following can be confusing.
1528 	 *
1529 	 * To keep things simple, lets assume mult_adj == 1 for now.
1530 	 *
1531 	 * When mult_adj != 1, remember that the interval and offset values
1532 	 * have been appropriately scaled so the math is the same.
1533 	 *
1534 	 * The basic idea here is that we're increasing the multiplier
1535 	 * by one, this causes the xtime_interval to be incremented by
1536 	 * one cycle_interval. This is because:
1537 	 *	xtime_interval = cycle_interval * mult
1538 	 * So if mult is being incremented by one:
1539 	 *	xtime_interval = cycle_interval * (mult + 1)
1540 	 * Its the same as:
1541 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1542 	 * Which can be shortened to:
1543 	 *	xtime_interval += cycle_interval
1544 	 *
1545 	 * So offset stores the non-accumulated cycles. Thus the current
1546 	 * time (in shifted nanoseconds) is:
1547 	 *	now = (offset * adj) + xtime_nsec
1548 	 * Now, even though we're adjusting the clock frequency, we have
1549 	 * to keep time consistent. In other words, we can't jump back
1550 	 * in time, and we also want to avoid jumping forward in time.
1551 	 *
1552 	 * So given the same offset value, we need the time to be the same
1553 	 * both before and after the freq adjustment.
1554 	 *	now = (offset * adj_1) + xtime_nsec_1
1555 	 *	now = (offset * adj_2) + xtime_nsec_2
1556 	 * So:
1557 	 *	(offset * adj_1) + xtime_nsec_1 =
1558 	 *		(offset * adj_2) + xtime_nsec_2
1559 	 * And we know:
1560 	 *	adj_2 = adj_1 + 1
1561 	 * So:
1562 	 *	(offset * adj_1) + xtime_nsec_1 =
1563 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1564 	 *	(offset * adj_1) + xtime_nsec_1 =
1565 	 *		(offset * adj_1) + offset + xtime_nsec_2
1566 	 * Canceling the sides:
1567 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1568 	 * Which gives us:
1569 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1570 	 * Which simplfies to:
1571 	 *	xtime_nsec -= offset
1572 	 *
1573 	 * XXX - TODO: Doc ntp_error calculation.
1574 	 */
1575 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1576 		/* NTP adjustment caused clocksource mult overflow */
1577 		WARN_ON_ONCE(1);
1578 		return;
1579 	}
1580 
1581 	tk->tkr_mono.mult += mult_adj;
1582 	tk->xtime_interval += interval;
1583 	tk->tkr_mono.xtime_nsec -= offset;
1584 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1585 }
1586 
1587 /*
1588  * Calculate the multiplier adjustment needed to match the frequency
1589  * specified by NTP
1590  */
1591 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1592 							s64 offset)
1593 {
1594 	s64 interval = tk->cycle_interval;
1595 	s64 xinterval = tk->xtime_interval;
1596 	s64 tick_error;
1597 	bool negative;
1598 	u32 adj;
1599 
1600 	/* Remove any current error adj from freq calculation */
1601 	if (tk->ntp_err_mult)
1602 		xinterval -= tk->cycle_interval;
1603 
1604 	tk->ntp_tick = ntp_tick_length();
1605 
1606 	/* Calculate current error per tick */
1607 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1608 	tick_error -= (xinterval + tk->xtime_remainder);
1609 
1610 	/* Don't worry about correcting it if its small */
1611 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1612 		return;
1613 
1614 	/* preserve the direction of correction */
1615 	negative = (tick_error < 0);
1616 
1617 	/* Sort out the magnitude of the correction */
1618 	tick_error = abs(tick_error);
1619 	for (adj = 0; tick_error > interval; adj++)
1620 		tick_error >>= 1;
1621 
1622 	/* scale the corrections */
1623 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1624 }
1625 
1626 /*
1627  * Adjust the timekeeper's multiplier to the correct frequency
1628  * and also to reduce the accumulated error value.
1629  */
1630 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1631 {
1632 	/* Correct for the current frequency error */
1633 	timekeeping_freqadjust(tk, offset);
1634 
1635 	/* Next make a small adjustment to fix any cumulative error */
1636 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1637 		tk->ntp_err_mult = 1;
1638 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1639 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1640 		/* Undo any existing error adjustment */
1641 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1642 		tk->ntp_err_mult = 0;
1643 	}
1644 
1645 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1646 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1647 			> tk->tkr_mono.clock->maxadj))) {
1648 		printk_once(KERN_WARNING
1649 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1650 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1651 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1652 	}
1653 
1654 	/*
1655 	 * It may be possible that when we entered this function, xtime_nsec
1656 	 * was very small.  Further, if we're slightly speeding the clocksource
1657 	 * in the code above, its possible the required corrective factor to
1658 	 * xtime_nsec could cause it to underflow.
1659 	 *
1660 	 * Now, since we already accumulated the second, cannot simply roll
1661 	 * the accumulated second back, since the NTP subsystem has been
1662 	 * notified via second_overflow. So instead we push xtime_nsec forward
1663 	 * by the amount we underflowed, and add that amount into the error.
1664 	 *
1665 	 * We'll correct this error next time through this function, when
1666 	 * xtime_nsec is not as small.
1667 	 */
1668 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1669 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1670 		tk->tkr_mono.xtime_nsec = 0;
1671 		tk->ntp_error += neg << tk->ntp_error_shift;
1672 	}
1673 }
1674 
1675 /**
1676  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1677  *
1678  * Helper function that accumulates a the nsecs greater then a second
1679  * from the xtime_nsec field to the xtime_secs field.
1680  * It also calls into the NTP code to handle leapsecond processing.
1681  *
1682  */
1683 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1684 {
1685 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1686 	unsigned int clock_set = 0;
1687 
1688 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1689 		int leap;
1690 
1691 		tk->tkr_mono.xtime_nsec -= nsecps;
1692 		tk->xtime_sec++;
1693 
1694 		/* Figure out if its a leap sec and apply if needed */
1695 		leap = second_overflow(tk->xtime_sec);
1696 		if (unlikely(leap)) {
1697 			struct timespec64 ts;
1698 
1699 			tk->xtime_sec += leap;
1700 
1701 			ts.tv_sec = leap;
1702 			ts.tv_nsec = 0;
1703 			tk_set_wall_to_mono(tk,
1704 				timespec64_sub(tk->wall_to_monotonic, ts));
1705 
1706 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1707 
1708 			clock_set = TK_CLOCK_WAS_SET;
1709 		}
1710 	}
1711 	return clock_set;
1712 }
1713 
1714 /**
1715  * logarithmic_accumulation - shifted accumulation of cycles
1716  *
1717  * This functions accumulates a shifted interval of cycles into
1718  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1719  * loop.
1720  *
1721  * Returns the unconsumed cycles.
1722  */
1723 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1724 						u32 shift,
1725 						unsigned int *clock_set)
1726 {
1727 	cycle_t interval = tk->cycle_interval << shift;
1728 	u64 raw_nsecs;
1729 
1730 	/* If the offset is smaller then a shifted interval, do nothing */
1731 	if (offset < interval)
1732 		return offset;
1733 
1734 	/* Accumulate one shifted interval */
1735 	offset -= interval;
1736 	tk->tkr_mono.cycle_last += interval;
1737 	tk->tkr_raw.cycle_last  += interval;
1738 
1739 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1740 	*clock_set |= accumulate_nsecs_to_secs(tk);
1741 
1742 	/* Accumulate raw time */
1743 	raw_nsecs = (u64)tk->raw_interval << shift;
1744 	raw_nsecs += tk->raw_time.tv_nsec;
1745 	if (raw_nsecs >= NSEC_PER_SEC) {
1746 		u64 raw_secs = raw_nsecs;
1747 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1748 		tk->raw_time.tv_sec += raw_secs;
1749 	}
1750 	tk->raw_time.tv_nsec = raw_nsecs;
1751 
1752 	/* Accumulate error between NTP and clock interval */
1753 	tk->ntp_error += tk->ntp_tick << shift;
1754 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1755 						(tk->ntp_error_shift + shift);
1756 
1757 	return offset;
1758 }
1759 
1760 /**
1761  * update_wall_time - Uses the current clocksource to increment the wall time
1762  *
1763  */
1764 void update_wall_time(void)
1765 {
1766 	struct timekeeper *real_tk = &tk_core.timekeeper;
1767 	struct timekeeper *tk = &shadow_timekeeper;
1768 	cycle_t offset;
1769 	int shift = 0, maxshift;
1770 	unsigned int clock_set = 0;
1771 	unsigned long flags;
1772 
1773 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1774 
1775 	/* Make sure we're fully resumed: */
1776 	if (unlikely(timekeeping_suspended))
1777 		goto out;
1778 
1779 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1780 	offset = real_tk->cycle_interval;
1781 #else
1782 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1783 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1784 #endif
1785 
1786 	/* Check if there's really nothing to do */
1787 	if (offset < real_tk->cycle_interval)
1788 		goto out;
1789 
1790 	/* Do some additional sanity checking */
1791 	timekeeping_check_update(real_tk, offset);
1792 
1793 	/*
1794 	 * With NO_HZ we may have to accumulate many cycle_intervals
1795 	 * (think "ticks") worth of time at once. To do this efficiently,
1796 	 * we calculate the largest doubling multiple of cycle_intervals
1797 	 * that is smaller than the offset.  We then accumulate that
1798 	 * chunk in one go, and then try to consume the next smaller
1799 	 * doubled multiple.
1800 	 */
1801 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1802 	shift = max(0, shift);
1803 	/* Bound shift to one less than what overflows tick_length */
1804 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1805 	shift = min(shift, maxshift);
1806 	while (offset >= tk->cycle_interval) {
1807 		offset = logarithmic_accumulation(tk, offset, shift,
1808 							&clock_set);
1809 		if (offset < tk->cycle_interval<<shift)
1810 			shift--;
1811 	}
1812 
1813 	/* correct the clock when NTP error is too big */
1814 	timekeeping_adjust(tk, offset);
1815 
1816 	/*
1817 	 * XXX This can be killed once everyone converts
1818 	 * to the new update_vsyscall.
1819 	 */
1820 	old_vsyscall_fixup(tk);
1821 
1822 	/*
1823 	 * Finally, make sure that after the rounding
1824 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1825 	 */
1826 	clock_set |= accumulate_nsecs_to_secs(tk);
1827 
1828 	write_seqcount_begin(&tk_core.seq);
1829 	/*
1830 	 * Update the real timekeeper.
1831 	 *
1832 	 * We could avoid this memcpy by switching pointers, but that
1833 	 * requires changes to all other timekeeper usage sites as
1834 	 * well, i.e. move the timekeeper pointer getter into the
1835 	 * spinlocked/seqcount protected sections. And we trade this
1836 	 * memcpy under the tk_core.seq against one before we start
1837 	 * updating.
1838 	 */
1839 	memcpy(real_tk, tk, sizeof(*tk));
1840 	timekeeping_update(real_tk, clock_set);
1841 	write_seqcount_end(&tk_core.seq);
1842 out:
1843 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1844 	if (clock_set)
1845 		/* Have to call _delayed version, since in irq context*/
1846 		clock_was_set_delayed();
1847 }
1848 
1849 /**
1850  * getboottime64 - Return the real time of system boot.
1851  * @ts:		pointer to the timespec64 to be set
1852  *
1853  * Returns the wall-time of boot in a timespec64.
1854  *
1855  * This is based on the wall_to_monotonic offset and the total suspend
1856  * time. Calls to settimeofday will affect the value returned (which
1857  * basically means that however wrong your real time clock is at boot time,
1858  * you get the right time here).
1859  */
1860 void getboottime64(struct timespec64 *ts)
1861 {
1862 	struct timekeeper *tk = &tk_core.timekeeper;
1863 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1864 
1865 	*ts = ktime_to_timespec64(t);
1866 }
1867 EXPORT_SYMBOL_GPL(getboottime64);
1868 
1869 unsigned long get_seconds(void)
1870 {
1871 	struct timekeeper *tk = &tk_core.timekeeper;
1872 
1873 	return tk->xtime_sec;
1874 }
1875 EXPORT_SYMBOL(get_seconds);
1876 
1877 struct timespec __current_kernel_time(void)
1878 {
1879 	struct timekeeper *tk = &tk_core.timekeeper;
1880 
1881 	return timespec64_to_timespec(tk_xtime(tk));
1882 }
1883 
1884 struct timespec current_kernel_time(void)
1885 {
1886 	struct timekeeper *tk = &tk_core.timekeeper;
1887 	struct timespec64 now;
1888 	unsigned long seq;
1889 
1890 	do {
1891 		seq = read_seqcount_begin(&tk_core.seq);
1892 
1893 		now = tk_xtime(tk);
1894 	} while (read_seqcount_retry(&tk_core.seq, seq));
1895 
1896 	return timespec64_to_timespec(now);
1897 }
1898 EXPORT_SYMBOL(current_kernel_time);
1899 
1900 struct timespec64 get_monotonic_coarse64(void)
1901 {
1902 	struct timekeeper *tk = &tk_core.timekeeper;
1903 	struct timespec64 now, mono;
1904 	unsigned long seq;
1905 
1906 	do {
1907 		seq = read_seqcount_begin(&tk_core.seq);
1908 
1909 		now = tk_xtime(tk);
1910 		mono = tk->wall_to_monotonic;
1911 	} while (read_seqcount_retry(&tk_core.seq, seq));
1912 
1913 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1914 				now.tv_nsec + mono.tv_nsec);
1915 
1916 	return now;
1917 }
1918 
1919 /*
1920  * Must hold jiffies_lock
1921  */
1922 void do_timer(unsigned long ticks)
1923 {
1924 	jiffies_64 += ticks;
1925 	calc_global_load(ticks);
1926 }
1927 
1928 /**
1929  * ktime_get_update_offsets_tick - hrtimer helper
1930  * @offs_real:	pointer to storage for monotonic -> realtime offset
1931  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1932  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1933  *
1934  * Returns monotonic time at last tick and various offsets
1935  */
1936 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1937 							ktime_t *offs_tai)
1938 {
1939 	struct timekeeper *tk = &tk_core.timekeeper;
1940 	unsigned int seq;
1941 	ktime_t base;
1942 	u64 nsecs;
1943 
1944 	do {
1945 		seq = read_seqcount_begin(&tk_core.seq);
1946 
1947 		base = tk->tkr_mono.base;
1948 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1949 
1950 		*offs_real = tk->offs_real;
1951 		*offs_boot = tk->offs_boot;
1952 		*offs_tai = tk->offs_tai;
1953 	} while (read_seqcount_retry(&tk_core.seq, seq));
1954 
1955 	return ktime_add_ns(base, nsecs);
1956 }
1957 
1958 #ifdef CONFIG_HIGH_RES_TIMERS
1959 /**
1960  * ktime_get_update_offsets_now - hrtimer helper
1961  * @offs_real:	pointer to storage for monotonic -> realtime offset
1962  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1963  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1964  *
1965  * Returns current monotonic time and updates the offsets
1966  * Called from hrtimer_interrupt() or retrigger_next_event()
1967  */
1968 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1969 							ktime_t *offs_tai)
1970 {
1971 	struct timekeeper *tk = &tk_core.timekeeper;
1972 	unsigned int seq;
1973 	ktime_t base;
1974 	u64 nsecs;
1975 
1976 	do {
1977 		seq = read_seqcount_begin(&tk_core.seq);
1978 
1979 		base = tk->tkr_mono.base;
1980 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1981 
1982 		*offs_real = tk->offs_real;
1983 		*offs_boot = tk->offs_boot;
1984 		*offs_tai = tk->offs_tai;
1985 	} while (read_seqcount_retry(&tk_core.seq, seq));
1986 
1987 	return ktime_add_ns(base, nsecs);
1988 }
1989 #endif
1990 
1991 /**
1992  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1993  */
1994 int do_adjtimex(struct timex *txc)
1995 {
1996 	struct timekeeper *tk = &tk_core.timekeeper;
1997 	unsigned long flags;
1998 	struct timespec64 ts;
1999 	s32 orig_tai, tai;
2000 	int ret;
2001 
2002 	/* Validate the data before disabling interrupts */
2003 	ret = ntp_validate_timex(txc);
2004 	if (ret)
2005 		return ret;
2006 
2007 	if (txc->modes & ADJ_SETOFFSET) {
2008 		struct timespec delta;
2009 		delta.tv_sec  = txc->time.tv_sec;
2010 		delta.tv_nsec = txc->time.tv_usec;
2011 		if (!(txc->modes & ADJ_NANO))
2012 			delta.tv_nsec *= 1000;
2013 		ret = timekeeping_inject_offset(&delta);
2014 		if (ret)
2015 			return ret;
2016 	}
2017 
2018 	getnstimeofday64(&ts);
2019 
2020 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2021 	write_seqcount_begin(&tk_core.seq);
2022 
2023 	orig_tai = tai = tk->tai_offset;
2024 	ret = __do_adjtimex(txc, &ts, &tai);
2025 
2026 	if (tai != orig_tai) {
2027 		__timekeeping_set_tai_offset(tk, tai);
2028 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2029 	}
2030 	write_seqcount_end(&tk_core.seq);
2031 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2032 
2033 	if (tai != orig_tai)
2034 		clock_was_set();
2035 
2036 	ntp_notify_cmos_timer();
2037 
2038 	return ret;
2039 }
2040 
2041 #ifdef CONFIG_NTP_PPS
2042 /**
2043  * hardpps() - Accessor function to NTP __hardpps function
2044  */
2045 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2046 {
2047 	unsigned long flags;
2048 
2049 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2050 	write_seqcount_begin(&tk_core.seq);
2051 
2052 	__hardpps(phase_ts, raw_ts);
2053 
2054 	write_seqcount_end(&tk_core.seq);
2055 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2056 }
2057 EXPORT_SYMBOL(hardpps);
2058 #endif
2059 
2060 /**
2061  * xtime_update() - advances the timekeeping infrastructure
2062  * @ticks:	number of ticks, that have elapsed since the last call.
2063  *
2064  * Must be called with interrupts disabled.
2065  */
2066 void xtime_update(unsigned long ticks)
2067 {
2068 	write_seqlock(&jiffies_lock);
2069 	do_timer(ticks);
2070 	write_sequnlock(&jiffies_lock);
2071 	update_wall_time();
2072 }
2073