1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 enum timekeeping_adv_mode { 37 /* Update timekeeper when a tick has passed */ 38 TK_ADV_TICK, 39 40 /* Update timekeeper on a direct frequency change */ 41 TK_ADV_FREQ 42 }; 43 44 DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 static struct { 51 seqcount_raw_spinlock_t seq; 52 struct timekeeper timekeeper; 53 } tk_core ____cacheline_aligned = { 54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 55 }; 56 57 static struct timekeeper shadow_timekeeper; 58 59 /* flag for if timekeeping is suspended */ 60 int __read_mostly timekeeping_suspended; 61 62 /** 63 * struct tk_fast - NMI safe timekeeper 64 * @seq: Sequence counter for protecting updates. The lowest bit 65 * is the index for the tk_read_base array 66 * @base: tk_read_base array. Access is indexed by the lowest bit of 67 * @seq. 68 * 69 * See @update_fast_timekeeper() below. 70 */ 71 struct tk_fast { 72 seqcount_latch_t seq; 73 struct tk_read_base base[2]; 74 }; 75 76 /* Suspend-time cycles value for halted fast timekeeper. */ 77 static u64 cycles_at_suspend; 78 79 static u64 dummy_clock_read(struct clocksource *cs) 80 { 81 if (timekeeping_suspended) 82 return cycles_at_suspend; 83 return local_clock(); 84 } 85 86 static struct clocksource dummy_clock = { 87 .read = dummy_clock_read, 88 }; 89 90 /* 91 * Boot time initialization which allows local_clock() to be utilized 92 * during early boot when clocksources are not available. local_clock() 93 * returns nanoseconds already so no conversion is required, hence mult=1 94 * and shift=0. When the first proper clocksource is installed then 95 * the fast time keepers are updated with the correct values. 96 */ 97 #define FAST_TK_INIT \ 98 { \ 99 .clock = &dummy_clock, \ 100 .mask = CLOCKSOURCE_MASK(64), \ 101 .mult = 1, \ 102 .shift = 0, \ 103 } 104 105 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 107 .base[0] = FAST_TK_INIT, 108 .base[1] = FAST_TK_INIT, 109 }; 110 111 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 113 .base[0] = FAST_TK_INIT, 114 .base[1] = FAST_TK_INIT, 115 }; 116 117 /* 118 * Multigrain timestamps require tracking the latest fine-grained timestamp 119 * that has been issued, and never returning a coarse-grained timestamp that is 120 * earlier than that value. 121 * 122 * mg_floor represents the latest fine-grained time that has been handed out as 123 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 124 * converted to a realtime clock value on an as-needed basis. 125 * 126 * Maintaining mg_floor ensures the multigrain interfaces never issue a 127 * timestamp earlier than one that has been previously issued. 128 * 129 * The exception to this rule is when there is a backward realtime clock jump. If 130 * such an event occurs, a timestamp can appear to be earlier than a previous one. 131 */ 132 static __cacheline_aligned_in_smp atomic64_t mg_floor; 133 134 static inline void tk_normalize_xtime(struct timekeeper *tk) 135 { 136 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 137 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 138 tk->xtime_sec++; 139 } 140 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 141 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 142 tk->raw_sec++; 143 } 144 } 145 146 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 147 { 148 struct timespec64 ts; 149 150 ts.tv_sec = tk->xtime_sec; 151 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 152 return ts; 153 } 154 155 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 156 { 157 tk->xtime_sec = ts->tv_sec; 158 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 159 } 160 161 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 162 { 163 tk->xtime_sec += ts->tv_sec; 164 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 165 tk_normalize_xtime(tk); 166 } 167 168 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 169 { 170 struct timespec64 tmp; 171 172 /* 173 * Verify consistency of: offset_real = -wall_to_monotonic 174 * before modifying anything 175 */ 176 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 177 -tk->wall_to_monotonic.tv_nsec); 178 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 179 tk->wall_to_monotonic = wtm; 180 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 181 tk->offs_real = timespec64_to_ktime(tmp); 182 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 183 } 184 185 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 186 { 187 tk->offs_boot = ktime_add(tk->offs_boot, delta); 188 /* 189 * Timespec representation for VDSO update to avoid 64bit division 190 * on every update. 191 */ 192 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 193 } 194 195 /* 196 * tk_clock_read - atomic clocksource read() helper 197 * 198 * This helper is necessary to use in the read paths because, while the 199 * seqcount ensures we don't return a bad value while structures are updated, 200 * it doesn't protect from potential crashes. There is the possibility that 201 * the tkr's clocksource may change between the read reference, and the 202 * clock reference passed to the read function. This can cause crashes if 203 * the wrong clocksource is passed to the wrong read function. 204 * This isn't necessary to use when holding the timekeeper_lock or doing 205 * a read of the fast-timekeeper tkrs (which is protected by its own locking 206 * and update logic). 207 */ 208 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 209 { 210 struct clocksource *clock = READ_ONCE(tkr->clock); 211 212 return clock->read(clock); 213 } 214 215 #ifdef CONFIG_DEBUG_TIMEKEEPING 216 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 217 218 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 219 { 220 221 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 222 const char *name = tk->tkr_mono.clock->name; 223 224 if (offset > max_cycles) { 225 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 226 offset, name, max_cycles); 227 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 228 } else { 229 if (offset > (max_cycles >> 1)) { 230 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 231 offset, name, max_cycles >> 1); 232 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 233 } 234 } 235 236 if (tk->underflow_seen) { 237 if (jiffies - tk->last_warning > WARNING_FREQ) { 238 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 239 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 240 printk_deferred(" Your kernel is probably still fine.\n"); 241 tk->last_warning = jiffies; 242 } 243 tk->underflow_seen = 0; 244 } 245 246 if (tk->overflow_seen) { 247 if (jiffies - tk->last_warning > WARNING_FREQ) { 248 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 249 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 250 printk_deferred(" Your kernel is probably still fine.\n"); 251 tk->last_warning = jiffies; 252 } 253 tk->overflow_seen = 0; 254 } 255 } 256 257 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles); 258 259 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 260 { 261 struct timekeeper *tk = &tk_core.timekeeper; 262 u64 now, last, mask, max, delta; 263 unsigned int seq; 264 265 /* 266 * Since we're called holding a seqcount, the data may shift 267 * under us while we're doing the calculation. This can cause 268 * false positives, since we'd note a problem but throw the 269 * results away. So nest another seqcount here to atomically 270 * grab the points we are checking with. 271 */ 272 do { 273 seq = read_seqcount_begin(&tk_core.seq); 274 now = tk_clock_read(tkr); 275 last = tkr->cycle_last; 276 mask = tkr->mask; 277 max = tkr->clock->max_cycles; 278 } while (read_seqcount_retry(&tk_core.seq, seq)); 279 280 delta = clocksource_delta(now, last, mask); 281 282 /* 283 * Try to catch underflows by checking if we are seeing small 284 * mask-relative negative values. 285 */ 286 if (unlikely((~delta & mask) < (mask >> 3))) 287 tk->underflow_seen = 1; 288 289 /* Check for multiplication overflows */ 290 if (unlikely(delta > max)) 291 tk->overflow_seen = 1; 292 293 /* timekeeping_cycles_to_ns() handles both under and overflow */ 294 return timekeeping_cycles_to_ns(tkr, now); 295 } 296 #else 297 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 298 { 299 } 300 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 301 { 302 BUG(); 303 } 304 #endif 305 306 /** 307 * tk_setup_internals - Set up internals to use clocksource clock. 308 * 309 * @tk: The target timekeeper to setup. 310 * @clock: Pointer to clocksource. 311 * 312 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 313 * pair and interval request. 314 * 315 * Unless you're the timekeeping code, you should not be using this! 316 */ 317 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 318 { 319 u64 interval; 320 u64 tmp, ntpinterval; 321 struct clocksource *old_clock; 322 323 ++tk->cs_was_changed_seq; 324 old_clock = tk->tkr_mono.clock; 325 tk->tkr_mono.clock = clock; 326 tk->tkr_mono.mask = clock->mask; 327 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 328 329 tk->tkr_raw.clock = clock; 330 tk->tkr_raw.mask = clock->mask; 331 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 332 333 /* Do the ns -> cycle conversion first, using original mult */ 334 tmp = NTP_INTERVAL_LENGTH; 335 tmp <<= clock->shift; 336 ntpinterval = tmp; 337 tmp += clock->mult/2; 338 do_div(tmp, clock->mult); 339 if (tmp == 0) 340 tmp = 1; 341 342 interval = (u64) tmp; 343 tk->cycle_interval = interval; 344 345 /* Go back from cycles -> shifted ns */ 346 tk->xtime_interval = interval * clock->mult; 347 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 348 tk->raw_interval = interval * clock->mult; 349 350 /* if changing clocks, convert xtime_nsec shift units */ 351 if (old_clock) { 352 int shift_change = clock->shift - old_clock->shift; 353 if (shift_change < 0) { 354 tk->tkr_mono.xtime_nsec >>= -shift_change; 355 tk->tkr_raw.xtime_nsec >>= -shift_change; 356 } else { 357 tk->tkr_mono.xtime_nsec <<= shift_change; 358 tk->tkr_raw.xtime_nsec <<= shift_change; 359 } 360 } 361 362 tk->tkr_mono.shift = clock->shift; 363 tk->tkr_raw.shift = clock->shift; 364 365 tk->ntp_error = 0; 366 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 367 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 368 369 /* 370 * The timekeeper keeps its own mult values for the currently 371 * active clocksource. These value will be adjusted via NTP 372 * to counteract clock drifting. 373 */ 374 tk->tkr_mono.mult = clock->mult; 375 tk->tkr_raw.mult = clock->mult; 376 tk->ntp_err_mult = 0; 377 tk->skip_second_overflow = 0; 378 } 379 380 /* Timekeeper helper functions. */ 381 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 382 { 383 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 384 } 385 386 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 387 { 388 /* Calculate the delta since the last update_wall_time() */ 389 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 390 391 /* 392 * This detects both negative motion and the case where the delta 393 * overflows the multiplication with tkr->mult. 394 */ 395 if (unlikely(delta > tkr->clock->max_cycles)) { 396 /* 397 * Handle clocksource inconsistency between CPUs to prevent 398 * time from going backwards by checking for the MSB of the 399 * mask being set in the delta. 400 */ 401 if (delta & ~(mask >> 1)) 402 return tkr->xtime_nsec >> tkr->shift; 403 404 return delta_to_ns_safe(tkr, delta); 405 } 406 407 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 408 } 409 410 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr) 411 { 412 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 413 } 414 415 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 416 { 417 if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING)) 418 return timekeeping_debug_get_ns(tkr); 419 420 return __timekeeping_get_ns(tkr); 421 } 422 423 /** 424 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 425 * @tkr: Timekeeping readout base from which we take the update 426 * @tkf: Pointer to NMI safe timekeeper 427 * 428 * We want to use this from any context including NMI and tracing / 429 * instrumenting the timekeeping code itself. 430 * 431 * Employ the latch technique; see @write_seqcount_latch. 432 * 433 * So if a NMI hits the update of base[0] then it will use base[1] 434 * which is still consistent. In the worst case this can result is a 435 * slightly wrong timestamp (a few nanoseconds). See 436 * @ktime_get_mono_fast_ns. 437 */ 438 static void update_fast_timekeeper(const struct tk_read_base *tkr, 439 struct tk_fast *tkf) 440 { 441 struct tk_read_base *base = tkf->base; 442 443 /* Force readers off to base[1] */ 444 write_seqcount_latch_begin(&tkf->seq); 445 446 /* Update base[0] */ 447 memcpy(base, tkr, sizeof(*base)); 448 449 /* Force readers back to base[0] */ 450 write_seqcount_latch(&tkf->seq); 451 452 /* Update base[1] */ 453 memcpy(base + 1, base, sizeof(*base)); 454 455 write_seqcount_latch_end(&tkf->seq); 456 } 457 458 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 459 { 460 struct tk_read_base *tkr; 461 unsigned int seq; 462 u64 now; 463 464 do { 465 seq = read_seqcount_latch(&tkf->seq); 466 tkr = tkf->base + (seq & 0x01); 467 now = ktime_to_ns(tkr->base); 468 now += __timekeeping_get_ns(tkr); 469 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 470 471 return now; 472 } 473 474 /** 475 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 476 * 477 * This timestamp is not guaranteed to be monotonic across an update. 478 * The timestamp is calculated by: 479 * 480 * now = base_mono + clock_delta * slope 481 * 482 * So if the update lowers the slope, readers who are forced to the 483 * not yet updated second array are still using the old steeper slope. 484 * 485 * tmono 486 * ^ 487 * | o n 488 * | o n 489 * | u 490 * | o 491 * |o 492 * |12345678---> reader order 493 * 494 * o = old slope 495 * u = update 496 * n = new slope 497 * 498 * So reader 6 will observe time going backwards versus reader 5. 499 * 500 * While other CPUs are likely to be able to observe that, the only way 501 * for a CPU local observation is when an NMI hits in the middle of 502 * the update. Timestamps taken from that NMI context might be ahead 503 * of the following timestamps. Callers need to be aware of that and 504 * deal with it. 505 */ 506 u64 notrace ktime_get_mono_fast_ns(void) 507 { 508 return __ktime_get_fast_ns(&tk_fast_mono); 509 } 510 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 511 512 /** 513 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 514 * 515 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 516 * conversion factor is not affected by NTP/PTP correction. 517 */ 518 u64 notrace ktime_get_raw_fast_ns(void) 519 { 520 return __ktime_get_fast_ns(&tk_fast_raw); 521 } 522 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 523 524 /** 525 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 526 * 527 * To keep it NMI safe since we're accessing from tracing, we're not using a 528 * separate timekeeper with updates to monotonic clock and boot offset 529 * protected with seqcounts. This has the following minor side effects: 530 * 531 * (1) Its possible that a timestamp be taken after the boot offset is updated 532 * but before the timekeeper is updated. If this happens, the new boot offset 533 * is added to the old timekeeping making the clock appear to update slightly 534 * earlier: 535 * CPU 0 CPU 1 536 * timekeeping_inject_sleeptime64() 537 * __timekeeping_inject_sleeptime(tk, delta); 538 * timestamp(); 539 * timekeeping_update(tk, TK_CLEAR_NTP...); 540 * 541 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 542 * partially updated. Since the tk->offs_boot update is a rare event, this 543 * should be a rare occurrence which postprocessing should be able to handle. 544 * 545 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 546 * apply as well. 547 */ 548 u64 notrace ktime_get_boot_fast_ns(void) 549 { 550 struct timekeeper *tk = &tk_core.timekeeper; 551 552 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 553 } 554 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 555 556 /** 557 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 558 * 559 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 560 * mono time and the TAI offset are not read atomically which may yield wrong 561 * readouts. However, an update of the TAI offset is an rare event e.g., caused 562 * by settime or adjtimex with an offset. The user of this function has to deal 563 * with the possibility of wrong timestamps in post processing. 564 */ 565 u64 notrace ktime_get_tai_fast_ns(void) 566 { 567 struct timekeeper *tk = &tk_core.timekeeper; 568 569 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 570 } 571 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 572 573 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 574 { 575 struct tk_read_base *tkr; 576 u64 basem, baser, delta; 577 unsigned int seq; 578 579 do { 580 seq = raw_read_seqcount_latch(&tkf->seq); 581 tkr = tkf->base + (seq & 0x01); 582 basem = ktime_to_ns(tkr->base); 583 baser = ktime_to_ns(tkr->base_real); 584 delta = __timekeeping_get_ns(tkr); 585 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 586 587 if (mono) 588 *mono = basem + delta; 589 return baser + delta; 590 } 591 592 /** 593 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 594 * 595 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 596 */ 597 u64 ktime_get_real_fast_ns(void) 598 { 599 return __ktime_get_real_fast(&tk_fast_mono, NULL); 600 } 601 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 602 603 /** 604 * ktime_get_fast_timestamps: - NMI safe timestamps 605 * @snapshot: Pointer to timestamp storage 606 * 607 * Stores clock monotonic, boottime and realtime timestamps. 608 * 609 * Boot time is a racy access on 32bit systems if the sleep time injection 610 * happens late during resume and not in timekeeping_resume(). That could 611 * be avoided by expanding struct tk_read_base with boot offset for 32bit 612 * and adding more overhead to the update. As this is a hard to observe 613 * once per resume event which can be filtered with reasonable effort using 614 * the accurate mono/real timestamps, it's probably not worth the trouble. 615 * 616 * Aside of that it might be possible on 32 and 64 bit to observe the 617 * following when the sleep time injection happens late: 618 * 619 * CPU 0 CPU 1 620 * timekeeping_resume() 621 * ktime_get_fast_timestamps() 622 * mono, real = __ktime_get_real_fast() 623 * inject_sleep_time() 624 * update boot offset 625 * boot = mono + bootoffset; 626 * 627 * That means that boot time already has the sleep time adjustment, but 628 * real time does not. On the next readout both are in sync again. 629 * 630 * Preventing this for 64bit is not really feasible without destroying the 631 * careful cache layout of the timekeeper because the sequence count and 632 * struct tk_read_base would then need two cache lines instead of one. 633 * 634 * Access to the time keeper clock source is disabled across the innermost 635 * steps of suspend/resume. The accessors still work, but the timestamps 636 * are frozen until time keeping is resumed which happens very early. 637 * 638 * For regular suspend/resume there is no observable difference vs. sched 639 * clock, but it might affect some of the nasty low level debug printks. 640 * 641 * OTOH, access to sched clock is not guaranteed across suspend/resume on 642 * all systems either so it depends on the hardware in use. 643 * 644 * If that turns out to be a real problem then this could be mitigated by 645 * using sched clock in a similar way as during early boot. But it's not as 646 * trivial as on early boot because it needs some careful protection 647 * against the clock monotonic timestamp jumping backwards on resume. 648 */ 649 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 650 { 651 struct timekeeper *tk = &tk_core.timekeeper; 652 653 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 654 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 655 } 656 657 /** 658 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 659 * @tk: Timekeeper to snapshot. 660 * 661 * It generally is unsafe to access the clocksource after timekeeping has been 662 * suspended, so take a snapshot of the readout base of @tk and use it as the 663 * fast timekeeper's readout base while suspended. It will return the same 664 * number of cycles every time until timekeeping is resumed at which time the 665 * proper readout base for the fast timekeeper will be restored automatically. 666 */ 667 static void halt_fast_timekeeper(const struct timekeeper *tk) 668 { 669 static struct tk_read_base tkr_dummy; 670 const struct tk_read_base *tkr = &tk->tkr_mono; 671 672 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 673 cycles_at_suspend = tk_clock_read(tkr); 674 tkr_dummy.clock = &dummy_clock; 675 tkr_dummy.base_real = tkr->base + tk->offs_real; 676 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 677 678 tkr = &tk->tkr_raw; 679 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 680 tkr_dummy.clock = &dummy_clock; 681 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 682 } 683 684 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 685 686 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 687 { 688 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 689 } 690 691 /** 692 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 693 * @nb: Pointer to the notifier block to register 694 */ 695 int pvclock_gtod_register_notifier(struct notifier_block *nb) 696 { 697 struct timekeeper *tk = &tk_core.timekeeper; 698 unsigned long flags; 699 int ret; 700 701 raw_spin_lock_irqsave(&timekeeper_lock, flags); 702 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 703 update_pvclock_gtod(tk, true); 704 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 705 706 return ret; 707 } 708 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 709 710 /** 711 * pvclock_gtod_unregister_notifier - unregister a pvclock 712 * timedata update listener 713 * @nb: Pointer to the notifier block to unregister 714 */ 715 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 716 { 717 unsigned long flags; 718 int ret; 719 720 raw_spin_lock_irqsave(&timekeeper_lock, flags); 721 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 722 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 723 724 return ret; 725 } 726 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 727 728 /* 729 * tk_update_leap_state - helper to update the next_leap_ktime 730 */ 731 static inline void tk_update_leap_state(struct timekeeper *tk) 732 { 733 tk->next_leap_ktime = ntp_get_next_leap(); 734 if (tk->next_leap_ktime != KTIME_MAX) 735 /* Convert to monotonic time */ 736 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 737 } 738 739 /* 740 * Update the ktime_t based scalar nsec members of the timekeeper 741 */ 742 static inline void tk_update_ktime_data(struct timekeeper *tk) 743 { 744 u64 seconds; 745 u32 nsec; 746 747 /* 748 * The xtime based monotonic readout is: 749 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 750 * The ktime based monotonic readout is: 751 * nsec = base_mono + now(); 752 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 753 */ 754 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 755 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 756 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 757 758 /* 759 * The sum of the nanoseconds portions of xtime and 760 * wall_to_monotonic can be greater/equal one second. Take 761 * this into account before updating tk->ktime_sec. 762 */ 763 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 764 if (nsec >= NSEC_PER_SEC) 765 seconds++; 766 tk->ktime_sec = seconds; 767 768 /* Update the monotonic raw base */ 769 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 770 } 771 772 /* must hold timekeeper_lock */ 773 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 774 { 775 if (action & TK_CLEAR_NTP) { 776 tk->ntp_error = 0; 777 ntp_clear(); 778 } 779 780 tk_update_leap_state(tk); 781 tk_update_ktime_data(tk); 782 783 update_vsyscall(tk); 784 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 785 786 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 787 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 788 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 789 790 if (action & TK_CLOCK_WAS_SET) 791 tk->clock_was_set_seq++; 792 /* 793 * The mirroring of the data to the shadow-timekeeper needs 794 * to happen last here to ensure we don't over-write the 795 * timekeeper structure on the next update with stale data 796 */ 797 if (action & TK_MIRROR) 798 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 799 sizeof(tk_core.timekeeper)); 800 } 801 802 /** 803 * timekeeping_forward_now - update clock to the current time 804 * @tk: Pointer to the timekeeper to update 805 * 806 * Forward the current clock to update its state since the last call to 807 * update_wall_time(). This is useful before significant clock changes, 808 * as it avoids having to deal with this time offset explicitly. 809 */ 810 static void timekeeping_forward_now(struct timekeeper *tk) 811 { 812 u64 cycle_now, delta; 813 814 cycle_now = tk_clock_read(&tk->tkr_mono); 815 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 816 tk->tkr_mono.cycle_last = cycle_now; 817 tk->tkr_raw.cycle_last = cycle_now; 818 819 while (delta > 0) { 820 u64 max = tk->tkr_mono.clock->max_cycles; 821 u64 incr = delta < max ? delta : max; 822 823 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 824 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 825 tk_normalize_xtime(tk); 826 delta -= incr; 827 } 828 } 829 830 /** 831 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 832 * @ts: pointer to the timespec to be set 833 * 834 * Returns the time of day in a timespec64 (WARN if suspended). 835 */ 836 void ktime_get_real_ts64(struct timespec64 *ts) 837 { 838 struct timekeeper *tk = &tk_core.timekeeper; 839 unsigned int seq; 840 u64 nsecs; 841 842 WARN_ON(timekeeping_suspended); 843 844 do { 845 seq = read_seqcount_begin(&tk_core.seq); 846 847 ts->tv_sec = tk->xtime_sec; 848 nsecs = timekeeping_get_ns(&tk->tkr_mono); 849 850 } while (read_seqcount_retry(&tk_core.seq, seq)); 851 852 ts->tv_nsec = 0; 853 timespec64_add_ns(ts, nsecs); 854 } 855 EXPORT_SYMBOL(ktime_get_real_ts64); 856 857 ktime_t ktime_get(void) 858 { 859 struct timekeeper *tk = &tk_core.timekeeper; 860 unsigned int seq; 861 ktime_t base; 862 u64 nsecs; 863 864 WARN_ON(timekeeping_suspended); 865 866 do { 867 seq = read_seqcount_begin(&tk_core.seq); 868 base = tk->tkr_mono.base; 869 nsecs = timekeeping_get_ns(&tk->tkr_mono); 870 871 } while (read_seqcount_retry(&tk_core.seq, seq)); 872 873 return ktime_add_ns(base, nsecs); 874 } 875 EXPORT_SYMBOL_GPL(ktime_get); 876 877 u32 ktime_get_resolution_ns(void) 878 { 879 struct timekeeper *tk = &tk_core.timekeeper; 880 unsigned int seq; 881 u32 nsecs; 882 883 WARN_ON(timekeeping_suspended); 884 885 do { 886 seq = read_seqcount_begin(&tk_core.seq); 887 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 888 } while (read_seqcount_retry(&tk_core.seq, seq)); 889 890 return nsecs; 891 } 892 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 893 894 static ktime_t *offsets[TK_OFFS_MAX] = { 895 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 896 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 897 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 898 }; 899 900 ktime_t ktime_get_with_offset(enum tk_offsets offs) 901 { 902 struct timekeeper *tk = &tk_core.timekeeper; 903 unsigned int seq; 904 ktime_t base, *offset = offsets[offs]; 905 u64 nsecs; 906 907 WARN_ON(timekeeping_suspended); 908 909 do { 910 seq = read_seqcount_begin(&tk_core.seq); 911 base = ktime_add(tk->tkr_mono.base, *offset); 912 nsecs = timekeeping_get_ns(&tk->tkr_mono); 913 914 } while (read_seqcount_retry(&tk_core.seq, seq)); 915 916 return ktime_add_ns(base, nsecs); 917 918 } 919 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 920 921 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 922 { 923 struct timekeeper *tk = &tk_core.timekeeper; 924 unsigned int seq; 925 ktime_t base, *offset = offsets[offs]; 926 u64 nsecs; 927 928 WARN_ON(timekeeping_suspended); 929 930 do { 931 seq = read_seqcount_begin(&tk_core.seq); 932 base = ktime_add(tk->tkr_mono.base, *offset); 933 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 934 935 } while (read_seqcount_retry(&tk_core.seq, seq)); 936 937 return ktime_add_ns(base, nsecs); 938 } 939 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 940 941 /** 942 * ktime_mono_to_any() - convert monotonic time to any other time 943 * @tmono: time to convert. 944 * @offs: which offset to use 945 */ 946 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 947 { 948 ktime_t *offset = offsets[offs]; 949 unsigned int seq; 950 ktime_t tconv; 951 952 do { 953 seq = read_seqcount_begin(&tk_core.seq); 954 tconv = ktime_add(tmono, *offset); 955 } while (read_seqcount_retry(&tk_core.seq, seq)); 956 957 return tconv; 958 } 959 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 960 961 /** 962 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 963 */ 964 ktime_t ktime_get_raw(void) 965 { 966 struct timekeeper *tk = &tk_core.timekeeper; 967 unsigned int seq; 968 ktime_t base; 969 u64 nsecs; 970 971 do { 972 seq = read_seqcount_begin(&tk_core.seq); 973 base = tk->tkr_raw.base; 974 nsecs = timekeeping_get_ns(&tk->tkr_raw); 975 976 } while (read_seqcount_retry(&tk_core.seq, seq)); 977 978 return ktime_add_ns(base, nsecs); 979 } 980 EXPORT_SYMBOL_GPL(ktime_get_raw); 981 982 /** 983 * ktime_get_ts64 - get the monotonic clock in timespec64 format 984 * @ts: pointer to timespec variable 985 * 986 * The function calculates the monotonic clock from the realtime 987 * clock and the wall_to_monotonic offset and stores the result 988 * in normalized timespec64 format in the variable pointed to by @ts. 989 */ 990 void ktime_get_ts64(struct timespec64 *ts) 991 { 992 struct timekeeper *tk = &tk_core.timekeeper; 993 struct timespec64 tomono; 994 unsigned int seq; 995 u64 nsec; 996 997 WARN_ON(timekeeping_suspended); 998 999 do { 1000 seq = read_seqcount_begin(&tk_core.seq); 1001 ts->tv_sec = tk->xtime_sec; 1002 nsec = timekeeping_get_ns(&tk->tkr_mono); 1003 tomono = tk->wall_to_monotonic; 1004 1005 } while (read_seqcount_retry(&tk_core.seq, seq)); 1006 1007 ts->tv_sec += tomono.tv_sec; 1008 ts->tv_nsec = 0; 1009 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 1010 } 1011 EXPORT_SYMBOL_GPL(ktime_get_ts64); 1012 1013 /** 1014 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 1015 * 1016 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 1017 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 1018 * works on both 32 and 64 bit systems. On 32 bit systems the readout 1019 * covers ~136 years of uptime which should be enough to prevent 1020 * premature wrap arounds. 1021 */ 1022 time64_t ktime_get_seconds(void) 1023 { 1024 struct timekeeper *tk = &tk_core.timekeeper; 1025 1026 WARN_ON(timekeeping_suspended); 1027 return tk->ktime_sec; 1028 } 1029 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1030 1031 /** 1032 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1033 * 1034 * Returns the wall clock seconds since 1970. 1035 * 1036 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1037 * 32bit systems the access must be protected with the sequence 1038 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1039 * value. 1040 */ 1041 time64_t ktime_get_real_seconds(void) 1042 { 1043 struct timekeeper *tk = &tk_core.timekeeper; 1044 time64_t seconds; 1045 unsigned int seq; 1046 1047 if (IS_ENABLED(CONFIG_64BIT)) 1048 return tk->xtime_sec; 1049 1050 do { 1051 seq = read_seqcount_begin(&tk_core.seq); 1052 seconds = tk->xtime_sec; 1053 1054 } while (read_seqcount_retry(&tk_core.seq, seq)); 1055 1056 return seconds; 1057 } 1058 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1059 1060 /** 1061 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1062 * but without the sequence counter protect. This internal function 1063 * is called just when timekeeping lock is already held. 1064 */ 1065 noinstr time64_t __ktime_get_real_seconds(void) 1066 { 1067 struct timekeeper *tk = &tk_core.timekeeper; 1068 1069 return tk->xtime_sec; 1070 } 1071 1072 /** 1073 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1074 * @systime_snapshot: pointer to struct receiving the system time snapshot 1075 */ 1076 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1077 { 1078 struct timekeeper *tk = &tk_core.timekeeper; 1079 unsigned int seq; 1080 ktime_t base_raw; 1081 ktime_t base_real; 1082 u64 nsec_raw; 1083 u64 nsec_real; 1084 u64 now; 1085 1086 WARN_ON_ONCE(timekeeping_suspended); 1087 1088 do { 1089 seq = read_seqcount_begin(&tk_core.seq); 1090 now = tk_clock_read(&tk->tkr_mono); 1091 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1092 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1093 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1094 base_real = ktime_add(tk->tkr_mono.base, 1095 tk_core.timekeeper.offs_real); 1096 base_raw = tk->tkr_raw.base; 1097 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1098 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1099 } while (read_seqcount_retry(&tk_core.seq, seq)); 1100 1101 systime_snapshot->cycles = now; 1102 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1103 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1104 } 1105 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1106 1107 /* Scale base by mult/div checking for overflow */ 1108 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1109 { 1110 u64 tmp, rem; 1111 1112 tmp = div64_u64_rem(*base, div, &rem); 1113 1114 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1115 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1116 return -EOVERFLOW; 1117 tmp *= mult; 1118 1119 rem = div64_u64(rem * mult, div); 1120 *base = tmp + rem; 1121 return 0; 1122 } 1123 1124 /** 1125 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1126 * @history: Snapshot representing start of history 1127 * @partial_history_cycles: Cycle offset into history (fractional part) 1128 * @total_history_cycles: Total history length in cycles 1129 * @discontinuity: True indicates clock was set on history period 1130 * @ts: Cross timestamp that should be adjusted using 1131 * partial/total ratio 1132 * 1133 * Helper function used by get_device_system_crosststamp() to correct the 1134 * crosstimestamp corresponding to the start of the current interval to the 1135 * system counter value (timestamp point) provided by the driver. The 1136 * total_history_* quantities are the total history starting at the provided 1137 * reference point and ending at the start of the current interval. The cycle 1138 * count between the driver timestamp point and the start of the current 1139 * interval is partial_history_cycles. 1140 */ 1141 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1142 u64 partial_history_cycles, 1143 u64 total_history_cycles, 1144 bool discontinuity, 1145 struct system_device_crosststamp *ts) 1146 { 1147 struct timekeeper *tk = &tk_core.timekeeper; 1148 u64 corr_raw, corr_real; 1149 bool interp_forward; 1150 int ret; 1151 1152 if (total_history_cycles == 0 || partial_history_cycles == 0) 1153 return 0; 1154 1155 /* Interpolate shortest distance from beginning or end of history */ 1156 interp_forward = partial_history_cycles > total_history_cycles / 2; 1157 partial_history_cycles = interp_forward ? 1158 total_history_cycles - partial_history_cycles : 1159 partial_history_cycles; 1160 1161 /* 1162 * Scale the monotonic raw time delta by: 1163 * partial_history_cycles / total_history_cycles 1164 */ 1165 corr_raw = (u64)ktime_to_ns( 1166 ktime_sub(ts->sys_monoraw, history->raw)); 1167 ret = scale64_check_overflow(partial_history_cycles, 1168 total_history_cycles, &corr_raw); 1169 if (ret) 1170 return ret; 1171 1172 /* 1173 * If there is a discontinuity in the history, scale monotonic raw 1174 * correction by: 1175 * mult(real)/mult(raw) yielding the realtime correction 1176 * Otherwise, calculate the realtime correction similar to monotonic 1177 * raw calculation 1178 */ 1179 if (discontinuity) { 1180 corr_real = mul_u64_u32_div 1181 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1182 } else { 1183 corr_real = (u64)ktime_to_ns( 1184 ktime_sub(ts->sys_realtime, history->real)); 1185 ret = scale64_check_overflow(partial_history_cycles, 1186 total_history_cycles, &corr_real); 1187 if (ret) 1188 return ret; 1189 } 1190 1191 /* Fixup monotonic raw and real time time values */ 1192 if (interp_forward) { 1193 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1194 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1195 } else { 1196 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1197 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1198 } 1199 1200 return 0; 1201 } 1202 1203 /* 1204 * timestamp_in_interval - true if ts is chronologically in [start, end] 1205 * 1206 * True if ts occurs chronologically at or after start, and before or at end. 1207 */ 1208 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1209 { 1210 if (ts >= start && ts <= end) 1211 return true; 1212 if (start > end && (ts >= start || ts <= end)) 1213 return true; 1214 return false; 1215 } 1216 1217 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1218 { 1219 u64 rem, res; 1220 1221 if (!numerator || !denominator) 1222 return false; 1223 1224 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1225 *val = res + div_u64(rem * numerator, denominator); 1226 return true; 1227 } 1228 1229 static bool convert_base_to_cs(struct system_counterval_t *scv) 1230 { 1231 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1232 struct clocksource_base *base; 1233 u32 num, den; 1234 1235 /* The timestamp was taken from the time keeper clock source */ 1236 if (cs->id == scv->cs_id) 1237 return true; 1238 1239 /* 1240 * Check whether cs_id matches the base clock. Prevent the compiler from 1241 * re-evaluating @base as the clocksource might change concurrently. 1242 */ 1243 base = READ_ONCE(cs->base); 1244 if (!base || base->id != scv->cs_id) 1245 return false; 1246 1247 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1248 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1249 1250 if (!convert_clock(&scv->cycles, num, den)) 1251 return false; 1252 1253 scv->cycles += base->offset; 1254 return true; 1255 } 1256 1257 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1258 { 1259 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1260 struct clocksource_base *base; 1261 1262 /* 1263 * Check whether base_id matches the base clock. Prevent the compiler from 1264 * re-evaluating @base as the clocksource might change concurrently. 1265 */ 1266 base = READ_ONCE(cs->base); 1267 if (!base || base->id != base_id) 1268 return false; 1269 1270 *cycles -= base->offset; 1271 if (!convert_clock(cycles, base->denominator, base->numerator)) 1272 return false; 1273 return true; 1274 } 1275 1276 static bool convert_ns_to_cs(u64 *delta) 1277 { 1278 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1279 1280 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1281 return false; 1282 1283 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1284 return true; 1285 } 1286 1287 /** 1288 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1289 * @treal: CLOCK_REALTIME timestamp to convert 1290 * @base_id: base clocksource id 1291 * @cycles: pointer to store the converted base clock timestamp 1292 * 1293 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1294 * 1295 * Return: true if the conversion is successful, false otherwise. 1296 */ 1297 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1298 { 1299 struct timekeeper *tk = &tk_core.timekeeper; 1300 unsigned int seq; 1301 u64 delta; 1302 1303 do { 1304 seq = read_seqcount_begin(&tk_core.seq); 1305 if ((u64)treal < tk->tkr_mono.base_real) 1306 return false; 1307 delta = (u64)treal - tk->tkr_mono.base_real; 1308 if (!convert_ns_to_cs(&delta)) 1309 return false; 1310 *cycles = tk->tkr_mono.cycle_last + delta; 1311 if (!convert_cs_to_base(cycles, base_id)) 1312 return false; 1313 } while (read_seqcount_retry(&tk_core.seq, seq)); 1314 1315 return true; 1316 } 1317 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1318 1319 /** 1320 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1321 * @get_time_fn: Callback to get simultaneous device time and 1322 * system counter from the device driver 1323 * @ctx: Context passed to get_time_fn() 1324 * @history_begin: Historical reference point used to interpolate system 1325 * time when counter provided by the driver is before the current interval 1326 * @xtstamp: Receives simultaneously captured system and device time 1327 * 1328 * Reads a timestamp from a device and correlates it to system time 1329 */ 1330 int get_device_system_crosststamp(int (*get_time_fn) 1331 (ktime_t *device_time, 1332 struct system_counterval_t *sys_counterval, 1333 void *ctx), 1334 void *ctx, 1335 struct system_time_snapshot *history_begin, 1336 struct system_device_crosststamp *xtstamp) 1337 { 1338 struct system_counterval_t system_counterval; 1339 struct timekeeper *tk = &tk_core.timekeeper; 1340 u64 cycles, now, interval_start; 1341 unsigned int clock_was_set_seq = 0; 1342 ktime_t base_real, base_raw; 1343 u64 nsec_real, nsec_raw; 1344 u8 cs_was_changed_seq; 1345 unsigned int seq; 1346 bool do_interp; 1347 int ret; 1348 1349 do { 1350 seq = read_seqcount_begin(&tk_core.seq); 1351 /* 1352 * Try to synchronously capture device time and a system 1353 * counter value calling back into the device driver 1354 */ 1355 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1356 if (ret) 1357 return ret; 1358 1359 /* 1360 * Verify that the clocksource ID associated with the captured 1361 * system counter value is the same as for the currently 1362 * installed timekeeper clocksource 1363 */ 1364 if (system_counterval.cs_id == CSID_GENERIC || 1365 !convert_base_to_cs(&system_counterval)) 1366 return -ENODEV; 1367 cycles = system_counterval.cycles; 1368 1369 /* 1370 * Check whether the system counter value provided by the 1371 * device driver is on the current timekeeping interval. 1372 */ 1373 now = tk_clock_read(&tk->tkr_mono); 1374 interval_start = tk->tkr_mono.cycle_last; 1375 if (!timestamp_in_interval(interval_start, now, cycles)) { 1376 clock_was_set_seq = tk->clock_was_set_seq; 1377 cs_was_changed_seq = tk->cs_was_changed_seq; 1378 cycles = interval_start; 1379 do_interp = true; 1380 } else { 1381 do_interp = false; 1382 } 1383 1384 base_real = ktime_add(tk->tkr_mono.base, 1385 tk_core.timekeeper.offs_real); 1386 base_raw = tk->tkr_raw.base; 1387 1388 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1389 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1390 } while (read_seqcount_retry(&tk_core.seq, seq)); 1391 1392 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1393 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1394 1395 /* 1396 * Interpolate if necessary, adjusting back from the start of the 1397 * current interval 1398 */ 1399 if (do_interp) { 1400 u64 partial_history_cycles, total_history_cycles; 1401 bool discontinuity; 1402 1403 /* 1404 * Check that the counter value is not before the provided 1405 * history reference and that the history doesn't cross a 1406 * clocksource change 1407 */ 1408 if (!history_begin || 1409 !timestamp_in_interval(history_begin->cycles, 1410 cycles, system_counterval.cycles) || 1411 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1412 return -EINVAL; 1413 partial_history_cycles = cycles - system_counterval.cycles; 1414 total_history_cycles = cycles - history_begin->cycles; 1415 discontinuity = 1416 history_begin->clock_was_set_seq != clock_was_set_seq; 1417 1418 ret = adjust_historical_crosststamp(history_begin, 1419 partial_history_cycles, 1420 total_history_cycles, 1421 discontinuity, xtstamp); 1422 if (ret) 1423 return ret; 1424 } 1425 1426 return 0; 1427 } 1428 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1429 1430 /** 1431 * timekeeping_clocksource_has_base - Check whether the current clocksource 1432 * is based on given a base clock 1433 * @id: base clocksource ID 1434 * 1435 * Note: The return value is a snapshot which can become invalid right 1436 * after the function returns. 1437 * 1438 * Return: true if the timekeeper clocksource has a base clock with @id, 1439 * false otherwise 1440 */ 1441 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1442 { 1443 /* 1444 * This is a snapshot, so no point in using the sequence 1445 * count. Just prevent the compiler from re-evaluating @base as the 1446 * clocksource might change concurrently. 1447 */ 1448 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1449 1450 return base ? base->id == id : false; 1451 } 1452 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1453 1454 /** 1455 * do_settimeofday64 - Sets the time of day. 1456 * @ts: pointer to the timespec64 variable containing the new time 1457 * 1458 * Sets the time of day to the new time and update NTP and notify hrtimers 1459 */ 1460 int do_settimeofday64(const struct timespec64 *ts) 1461 { 1462 struct timekeeper *tk = &tk_core.timekeeper; 1463 struct timespec64 ts_delta, xt; 1464 unsigned long flags; 1465 int ret = 0; 1466 1467 if (!timespec64_valid_settod(ts)) 1468 return -EINVAL; 1469 1470 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1471 write_seqcount_begin(&tk_core.seq); 1472 1473 timekeeping_forward_now(tk); 1474 1475 xt = tk_xtime(tk); 1476 ts_delta = timespec64_sub(*ts, xt); 1477 1478 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1479 ret = -EINVAL; 1480 goto out; 1481 } 1482 1483 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1484 1485 tk_set_xtime(tk, ts); 1486 out: 1487 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1488 1489 write_seqcount_end(&tk_core.seq); 1490 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1491 1492 /* Signal hrtimers about time change */ 1493 clock_was_set(CLOCK_SET_WALL); 1494 1495 if (!ret) { 1496 audit_tk_injoffset(ts_delta); 1497 add_device_randomness(ts, sizeof(*ts)); 1498 } 1499 1500 return ret; 1501 } 1502 EXPORT_SYMBOL(do_settimeofday64); 1503 1504 /** 1505 * timekeeping_inject_offset - Adds or subtracts from the current time. 1506 * @ts: Pointer to the timespec variable containing the offset 1507 * 1508 * Adds or subtracts an offset value from the current time. 1509 */ 1510 static int timekeeping_inject_offset(const struct timespec64 *ts) 1511 { 1512 struct timekeeper *tk = &tk_core.timekeeper; 1513 unsigned long flags; 1514 struct timespec64 tmp; 1515 int ret = 0; 1516 1517 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1518 return -EINVAL; 1519 1520 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1521 write_seqcount_begin(&tk_core.seq); 1522 1523 timekeeping_forward_now(tk); 1524 1525 /* Make sure the proposed value is valid */ 1526 tmp = timespec64_add(tk_xtime(tk), *ts); 1527 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1528 !timespec64_valid_settod(&tmp)) { 1529 ret = -EINVAL; 1530 goto error; 1531 } 1532 1533 tk_xtime_add(tk, ts); 1534 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1535 1536 error: /* even if we error out, we forwarded the time, so call update */ 1537 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1538 1539 write_seqcount_end(&tk_core.seq); 1540 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1541 1542 /* Signal hrtimers about time change */ 1543 clock_was_set(CLOCK_SET_WALL); 1544 1545 return ret; 1546 } 1547 1548 /* 1549 * Indicates if there is an offset between the system clock and the hardware 1550 * clock/persistent clock/rtc. 1551 */ 1552 int persistent_clock_is_local; 1553 1554 /* 1555 * Adjust the time obtained from the CMOS to be UTC time instead of 1556 * local time. 1557 * 1558 * This is ugly, but preferable to the alternatives. Otherwise we 1559 * would either need to write a program to do it in /etc/rc (and risk 1560 * confusion if the program gets run more than once; it would also be 1561 * hard to make the program warp the clock precisely n hours) or 1562 * compile in the timezone information into the kernel. Bad, bad.... 1563 * 1564 * - TYT, 1992-01-01 1565 * 1566 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1567 * as real UNIX machines always do it. This avoids all headaches about 1568 * daylight saving times and warping kernel clocks. 1569 */ 1570 void timekeeping_warp_clock(void) 1571 { 1572 if (sys_tz.tz_minuteswest != 0) { 1573 struct timespec64 adjust; 1574 1575 persistent_clock_is_local = 1; 1576 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1577 adjust.tv_nsec = 0; 1578 timekeeping_inject_offset(&adjust); 1579 } 1580 } 1581 1582 /* 1583 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1584 */ 1585 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1586 { 1587 tk->tai_offset = tai_offset; 1588 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1589 } 1590 1591 /* 1592 * change_clocksource - Swaps clocksources if a new one is available 1593 * 1594 * Accumulates current time interval and initializes new clocksource 1595 */ 1596 static int change_clocksource(void *data) 1597 { 1598 struct timekeeper *tk = &tk_core.timekeeper; 1599 struct clocksource *new, *old = NULL; 1600 unsigned long flags; 1601 bool change = false; 1602 1603 new = (struct clocksource *) data; 1604 1605 /* 1606 * If the cs is in module, get a module reference. Succeeds 1607 * for built-in code (owner == NULL) as well. 1608 */ 1609 if (try_module_get(new->owner)) { 1610 if (!new->enable || new->enable(new) == 0) 1611 change = true; 1612 else 1613 module_put(new->owner); 1614 } 1615 1616 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1617 write_seqcount_begin(&tk_core.seq); 1618 1619 timekeeping_forward_now(tk); 1620 1621 if (change) { 1622 old = tk->tkr_mono.clock; 1623 tk_setup_internals(tk, new); 1624 } 1625 1626 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1627 1628 write_seqcount_end(&tk_core.seq); 1629 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1630 1631 if (old) { 1632 if (old->disable) 1633 old->disable(old); 1634 1635 module_put(old->owner); 1636 } 1637 1638 return 0; 1639 } 1640 1641 /** 1642 * timekeeping_notify - Install a new clock source 1643 * @clock: pointer to the clock source 1644 * 1645 * This function is called from clocksource.c after a new, better clock 1646 * source has been registered. The caller holds the clocksource_mutex. 1647 */ 1648 int timekeeping_notify(struct clocksource *clock) 1649 { 1650 struct timekeeper *tk = &tk_core.timekeeper; 1651 1652 if (tk->tkr_mono.clock == clock) 1653 return 0; 1654 stop_machine(change_clocksource, clock, NULL); 1655 tick_clock_notify(); 1656 return tk->tkr_mono.clock == clock ? 0 : -1; 1657 } 1658 1659 /** 1660 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1661 * @ts: pointer to the timespec64 to be set 1662 * 1663 * Returns the raw monotonic time (completely un-modified by ntp) 1664 */ 1665 void ktime_get_raw_ts64(struct timespec64 *ts) 1666 { 1667 struct timekeeper *tk = &tk_core.timekeeper; 1668 unsigned int seq; 1669 u64 nsecs; 1670 1671 do { 1672 seq = read_seqcount_begin(&tk_core.seq); 1673 ts->tv_sec = tk->raw_sec; 1674 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1675 1676 } while (read_seqcount_retry(&tk_core.seq, seq)); 1677 1678 ts->tv_nsec = 0; 1679 timespec64_add_ns(ts, nsecs); 1680 } 1681 EXPORT_SYMBOL(ktime_get_raw_ts64); 1682 1683 1684 /** 1685 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1686 */ 1687 int timekeeping_valid_for_hres(void) 1688 { 1689 struct timekeeper *tk = &tk_core.timekeeper; 1690 unsigned int seq; 1691 int ret; 1692 1693 do { 1694 seq = read_seqcount_begin(&tk_core.seq); 1695 1696 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1697 1698 } while (read_seqcount_retry(&tk_core.seq, seq)); 1699 1700 return ret; 1701 } 1702 1703 /** 1704 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1705 */ 1706 u64 timekeeping_max_deferment(void) 1707 { 1708 struct timekeeper *tk = &tk_core.timekeeper; 1709 unsigned int seq; 1710 u64 ret; 1711 1712 do { 1713 seq = read_seqcount_begin(&tk_core.seq); 1714 1715 ret = tk->tkr_mono.clock->max_idle_ns; 1716 1717 } while (read_seqcount_retry(&tk_core.seq, seq)); 1718 1719 return ret; 1720 } 1721 1722 /** 1723 * read_persistent_clock64 - Return time from the persistent clock. 1724 * @ts: Pointer to the storage for the readout value 1725 * 1726 * Weak dummy function for arches that do not yet support it. 1727 * Reads the time from the battery backed persistent clock. 1728 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1729 * 1730 * XXX - Do be sure to remove it once all arches implement it. 1731 */ 1732 void __weak read_persistent_clock64(struct timespec64 *ts) 1733 { 1734 ts->tv_sec = 0; 1735 ts->tv_nsec = 0; 1736 } 1737 1738 /** 1739 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1740 * from the boot. 1741 * @wall_time: current time as returned by persistent clock 1742 * @boot_offset: offset that is defined as wall_time - boot_time 1743 * 1744 * Weak dummy function for arches that do not yet support it. 1745 * 1746 * The default function calculates offset based on the current value of 1747 * local_clock(). This way architectures that support sched_clock() but don't 1748 * support dedicated boot time clock will provide the best estimate of the 1749 * boot time. 1750 */ 1751 void __weak __init 1752 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1753 struct timespec64 *boot_offset) 1754 { 1755 read_persistent_clock64(wall_time); 1756 *boot_offset = ns_to_timespec64(local_clock()); 1757 } 1758 1759 /* 1760 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1761 * 1762 * The flag starts of false and is only set when a suspend reaches 1763 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1764 * timekeeper clocksource is not stopping across suspend and has been 1765 * used to update sleep time. If the timekeeper clocksource has stopped 1766 * then the flag stays true and is used by the RTC resume code to decide 1767 * whether sleeptime must be injected and if so the flag gets false then. 1768 * 1769 * If a suspend fails before reaching timekeeping_resume() then the flag 1770 * stays false and prevents erroneous sleeptime injection. 1771 */ 1772 static bool suspend_timing_needed; 1773 1774 /* Flag for if there is a persistent clock on this platform */ 1775 static bool persistent_clock_exists; 1776 1777 /* 1778 * timekeeping_init - Initializes the clocksource and common timekeeping values 1779 */ 1780 void __init timekeeping_init(void) 1781 { 1782 struct timespec64 wall_time, boot_offset, wall_to_mono; 1783 struct timekeeper *tk = &tk_core.timekeeper; 1784 struct clocksource *clock; 1785 unsigned long flags; 1786 1787 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1788 if (timespec64_valid_settod(&wall_time) && 1789 timespec64_to_ns(&wall_time) > 0) { 1790 persistent_clock_exists = true; 1791 } else if (timespec64_to_ns(&wall_time) != 0) { 1792 pr_warn("Persistent clock returned invalid value"); 1793 wall_time = (struct timespec64){0}; 1794 } 1795 1796 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1797 boot_offset = (struct timespec64){0}; 1798 1799 /* 1800 * We want set wall_to_mono, so the following is true: 1801 * wall time + wall_to_mono = boot time 1802 */ 1803 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1804 1805 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1806 write_seqcount_begin(&tk_core.seq); 1807 ntp_init(); 1808 1809 clock = clocksource_default_clock(); 1810 if (clock->enable) 1811 clock->enable(clock); 1812 tk_setup_internals(tk, clock); 1813 1814 tk_set_xtime(tk, &wall_time); 1815 tk->raw_sec = 0; 1816 1817 tk_set_wall_to_mono(tk, wall_to_mono); 1818 1819 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1820 1821 write_seqcount_end(&tk_core.seq); 1822 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1823 } 1824 1825 /* time in seconds when suspend began for persistent clock */ 1826 static struct timespec64 timekeeping_suspend_time; 1827 1828 /** 1829 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1830 * @tk: Pointer to the timekeeper to be updated 1831 * @delta: Pointer to the delta value in timespec64 format 1832 * 1833 * Takes a timespec offset measuring a suspend interval and properly 1834 * adds the sleep offset to the timekeeping variables. 1835 */ 1836 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1837 const struct timespec64 *delta) 1838 { 1839 if (!timespec64_valid_strict(delta)) { 1840 printk_deferred(KERN_WARNING 1841 "__timekeeping_inject_sleeptime: Invalid " 1842 "sleep delta value!\n"); 1843 return; 1844 } 1845 tk_xtime_add(tk, delta); 1846 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1847 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1848 tk_debug_account_sleep_time(delta); 1849 } 1850 1851 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1852 /* 1853 * We have three kinds of time sources to use for sleep time 1854 * injection, the preference order is: 1855 * 1) non-stop clocksource 1856 * 2) persistent clock (ie: RTC accessible when irqs are off) 1857 * 3) RTC 1858 * 1859 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1860 * If system has neither 1) nor 2), 3) will be used finally. 1861 * 1862 * 1863 * If timekeeping has injected sleeptime via either 1) or 2), 1864 * 3) becomes needless, so in this case we don't need to call 1865 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1866 * means. 1867 */ 1868 bool timekeeping_rtc_skipresume(void) 1869 { 1870 return !suspend_timing_needed; 1871 } 1872 1873 /* 1874 * 1) can be determined whether to use or not only when doing 1875 * timekeeping_resume() which is invoked after rtc_suspend(), 1876 * so we can't skip rtc_suspend() surely if system has 1). 1877 * 1878 * But if system has 2), 2) will definitely be used, so in this 1879 * case we don't need to call rtc_suspend(), and this is what 1880 * timekeeping_rtc_skipsuspend() means. 1881 */ 1882 bool timekeeping_rtc_skipsuspend(void) 1883 { 1884 return persistent_clock_exists; 1885 } 1886 1887 /** 1888 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1889 * @delta: pointer to a timespec64 delta value 1890 * 1891 * This hook is for architectures that cannot support read_persistent_clock64 1892 * because their RTC/persistent clock is only accessible when irqs are enabled. 1893 * and also don't have an effective nonstop clocksource. 1894 * 1895 * This function should only be called by rtc_resume(), and allows 1896 * a suspend offset to be injected into the timekeeping values. 1897 */ 1898 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1899 { 1900 struct timekeeper *tk = &tk_core.timekeeper; 1901 unsigned long flags; 1902 1903 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1904 write_seqcount_begin(&tk_core.seq); 1905 1906 suspend_timing_needed = false; 1907 1908 timekeeping_forward_now(tk); 1909 1910 __timekeeping_inject_sleeptime(tk, delta); 1911 1912 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1913 1914 write_seqcount_end(&tk_core.seq); 1915 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1916 1917 /* Signal hrtimers about time change */ 1918 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1919 } 1920 #endif 1921 1922 /** 1923 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1924 */ 1925 void timekeeping_resume(void) 1926 { 1927 struct timekeeper *tk = &tk_core.timekeeper; 1928 struct clocksource *clock = tk->tkr_mono.clock; 1929 unsigned long flags; 1930 struct timespec64 ts_new, ts_delta; 1931 u64 cycle_now, nsec; 1932 bool inject_sleeptime = false; 1933 1934 read_persistent_clock64(&ts_new); 1935 1936 clockevents_resume(); 1937 clocksource_resume(); 1938 1939 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1940 write_seqcount_begin(&tk_core.seq); 1941 1942 /* 1943 * After system resumes, we need to calculate the suspended time and 1944 * compensate it for the OS time. There are 3 sources that could be 1945 * used: Nonstop clocksource during suspend, persistent clock and rtc 1946 * device. 1947 * 1948 * One specific platform may have 1 or 2 or all of them, and the 1949 * preference will be: 1950 * suspend-nonstop clocksource -> persistent clock -> rtc 1951 * The less preferred source will only be tried if there is no better 1952 * usable source. The rtc part is handled separately in rtc core code. 1953 */ 1954 cycle_now = tk_clock_read(&tk->tkr_mono); 1955 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1956 if (nsec > 0) { 1957 ts_delta = ns_to_timespec64(nsec); 1958 inject_sleeptime = true; 1959 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1960 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1961 inject_sleeptime = true; 1962 } 1963 1964 if (inject_sleeptime) { 1965 suspend_timing_needed = false; 1966 __timekeeping_inject_sleeptime(tk, &ts_delta); 1967 } 1968 1969 /* Re-base the last cycle value */ 1970 tk->tkr_mono.cycle_last = cycle_now; 1971 tk->tkr_raw.cycle_last = cycle_now; 1972 1973 tk->ntp_error = 0; 1974 timekeeping_suspended = 0; 1975 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1976 write_seqcount_end(&tk_core.seq); 1977 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1978 1979 touch_softlockup_watchdog(); 1980 1981 /* Resume the clockevent device(s) and hrtimers */ 1982 tick_resume(); 1983 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1984 timerfd_resume(); 1985 } 1986 1987 int timekeeping_suspend(void) 1988 { 1989 struct timekeeper *tk = &tk_core.timekeeper; 1990 unsigned long flags; 1991 struct timespec64 delta, delta_delta; 1992 static struct timespec64 old_delta; 1993 struct clocksource *curr_clock; 1994 u64 cycle_now; 1995 1996 read_persistent_clock64(&timekeeping_suspend_time); 1997 1998 /* 1999 * On some systems the persistent_clock can not be detected at 2000 * timekeeping_init by its return value, so if we see a valid 2001 * value returned, update the persistent_clock_exists flag. 2002 */ 2003 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 2004 persistent_clock_exists = true; 2005 2006 suspend_timing_needed = true; 2007 2008 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2009 write_seqcount_begin(&tk_core.seq); 2010 timekeeping_forward_now(tk); 2011 timekeeping_suspended = 1; 2012 2013 /* 2014 * Since we've called forward_now, cycle_last stores the value 2015 * just read from the current clocksource. Save this to potentially 2016 * use in suspend timing. 2017 */ 2018 curr_clock = tk->tkr_mono.clock; 2019 cycle_now = tk->tkr_mono.cycle_last; 2020 clocksource_start_suspend_timing(curr_clock, cycle_now); 2021 2022 if (persistent_clock_exists) { 2023 /* 2024 * To avoid drift caused by repeated suspend/resumes, 2025 * which each can add ~1 second drift error, 2026 * try to compensate so the difference in system time 2027 * and persistent_clock time stays close to constant. 2028 */ 2029 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 2030 delta_delta = timespec64_sub(delta, old_delta); 2031 if (abs(delta_delta.tv_sec) >= 2) { 2032 /* 2033 * if delta_delta is too large, assume time correction 2034 * has occurred and set old_delta to the current delta. 2035 */ 2036 old_delta = delta; 2037 } else { 2038 /* Otherwise try to adjust old_system to compensate */ 2039 timekeeping_suspend_time = 2040 timespec64_add(timekeeping_suspend_time, delta_delta); 2041 } 2042 } 2043 2044 timekeeping_update(tk, TK_MIRROR); 2045 halt_fast_timekeeper(tk); 2046 write_seqcount_end(&tk_core.seq); 2047 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2048 2049 tick_suspend(); 2050 clocksource_suspend(); 2051 clockevents_suspend(); 2052 2053 return 0; 2054 } 2055 2056 /* sysfs resume/suspend bits for timekeeping */ 2057 static struct syscore_ops timekeeping_syscore_ops = { 2058 .resume = timekeeping_resume, 2059 .suspend = timekeeping_suspend, 2060 }; 2061 2062 static int __init timekeeping_init_ops(void) 2063 { 2064 register_syscore_ops(&timekeeping_syscore_ops); 2065 return 0; 2066 } 2067 device_initcall(timekeeping_init_ops); 2068 2069 /* 2070 * Apply a multiplier adjustment to the timekeeper 2071 */ 2072 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2073 s64 offset, 2074 s32 mult_adj) 2075 { 2076 s64 interval = tk->cycle_interval; 2077 2078 if (mult_adj == 0) { 2079 return; 2080 } else if (mult_adj == -1) { 2081 interval = -interval; 2082 offset = -offset; 2083 } else if (mult_adj != 1) { 2084 interval *= mult_adj; 2085 offset *= mult_adj; 2086 } 2087 2088 /* 2089 * So the following can be confusing. 2090 * 2091 * To keep things simple, lets assume mult_adj == 1 for now. 2092 * 2093 * When mult_adj != 1, remember that the interval and offset values 2094 * have been appropriately scaled so the math is the same. 2095 * 2096 * The basic idea here is that we're increasing the multiplier 2097 * by one, this causes the xtime_interval to be incremented by 2098 * one cycle_interval. This is because: 2099 * xtime_interval = cycle_interval * mult 2100 * So if mult is being incremented by one: 2101 * xtime_interval = cycle_interval * (mult + 1) 2102 * Its the same as: 2103 * xtime_interval = (cycle_interval * mult) + cycle_interval 2104 * Which can be shortened to: 2105 * xtime_interval += cycle_interval 2106 * 2107 * So offset stores the non-accumulated cycles. Thus the current 2108 * time (in shifted nanoseconds) is: 2109 * now = (offset * adj) + xtime_nsec 2110 * Now, even though we're adjusting the clock frequency, we have 2111 * to keep time consistent. In other words, we can't jump back 2112 * in time, and we also want to avoid jumping forward in time. 2113 * 2114 * So given the same offset value, we need the time to be the same 2115 * both before and after the freq adjustment. 2116 * now = (offset * adj_1) + xtime_nsec_1 2117 * now = (offset * adj_2) + xtime_nsec_2 2118 * So: 2119 * (offset * adj_1) + xtime_nsec_1 = 2120 * (offset * adj_2) + xtime_nsec_2 2121 * And we know: 2122 * adj_2 = adj_1 + 1 2123 * So: 2124 * (offset * adj_1) + xtime_nsec_1 = 2125 * (offset * (adj_1+1)) + xtime_nsec_2 2126 * (offset * adj_1) + xtime_nsec_1 = 2127 * (offset * adj_1) + offset + xtime_nsec_2 2128 * Canceling the sides: 2129 * xtime_nsec_1 = offset + xtime_nsec_2 2130 * Which gives us: 2131 * xtime_nsec_2 = xtime_nsec_1 - offset 2132 * Which simplifies to: 2133 * xtime_nsec -= offset 2134 */ 2135 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2136 /* NTP adjustment caused clocksource mult overflow */ 2137 WARN_ON_ONCE(1); 2138 return; 2139 } 2140 2141 tk->tkr_mono.mult += mult_adj; 2142 tk->xtime_interval += interval; 2143 tk->tkr_mono.xtime_nsec -= offset; 2144 } 2145 2146 /* 2147 * Adjust the timekeeper's multiplier to the correct frequency 2148 * and also to reduce the accumulated error value. 2149 */ 2150 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2151 { 2152 u32 mult; 2153 2154 /* 2155 * Determine the multiplier from the current NTP tick length. 2156 * Avoid expensive division when the tick length doesn't change. 2157 */ 2158 if (likely(tk->ntp_tick == ntp_tick_length())) { 2159 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2160 } else { 2161 tk->ntp_tick = ntp_tick_length(); 2162 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2163 tk->xtime_remainder, tk->cycle_interval); 2164 } 2165 2166 /* 2167 * If the clock is behind the NTP time, increase the multiplier by 1 2168 * to catch up with it. If it's ahead and there was a remainder in the 2169 * tick division, the clock will slow down. Otherwise it will stay 2170 * ahead until the tick length changes to a non-divisible value. 2171 */ 2172 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2173 mult += tk->ntp_err_mult; 2174 2175 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2176 2177 if (unlikely(tk->tkr_mono.clock->maxadj && 2178 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2179 > tk->tkr_mono.clock->maxadj))) { 2180 printk_once(KERN_WARNING 2181 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2182 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2183 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2184 } 2185 2186 /* 2187 * It may be possible that when we entered this function, xtime_nsec 2188 * was very small. Further, if we're slightly speeding the clocksource 2189 * in the code above, its possible the required corrective factor to 2190 * xtime_nsec could cause it to underflow. 2191 * 2192 * Now, since we have already accumulated the second and the NTP 2193 * subsystem has been notified via second_overflow(), we need to skip 2194 * the next update. 2195 */ 2196 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2197 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2198 tk->tkr_mono.shift; 2199 tk->xtime_sec--; 2200 tk->skip_second_overflow = 1; 2201 } 2202 } 2203 2204 /* 2205 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2206 * 2207 * Helper function that accumulates the nsecs greater than a second 2208 * from the xtime_nsec field to the xtime_secs field. 2209 * It also calls into the NTP code to handle leapsecond processing. 2210 */ 2211 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2212 { 2213 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2214 unsigned int clock_set = 0; 2215 2216 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2217 int leap; 2218 2219 tk->tkr_mono.xtime_nsec -= nsecps; 2220 tk->xtime_sec++; 2221 2222 /* 2223 * Skip NTP update if this second was accumulated before, 2224 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2225 */ 2226 if (unlikely(tk->skip_second_overflow)) { 2227 tk->skip_second_overflow = 0; 2228 continue; 2229 } 2230 2231 /* Figure out if its a leap sec and apply if needed */ 2232 leap = second_overflow(tk->xtime_sec); 2233 if (unlikely(leap)) { 2234 struct timespec64 ts; 2235 2236 tk->xtime_sec += leap; 2237 2238 ts.tv_sec = leap; 2239 ts.tv_nsec = 0; 2240 tk_set_wall_to_mono(tk, 2241 timespec64_sub(tk->wall_to_monotonic, ts)); 2242 2243 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2244 2245 clock_set = TK_CLOCK_WAS_SET; 2246 } 2247 } 2248 return clock_set; 2249 } 2250 2251 /* 2252 * logarithmic_accumulation - shifted accumulation of cycles 2253 * 2254 * This functions accumulates a shifted interval of cycles into 2255 * a shifted interval nanoseconds. Allows for O(log) accumulation 2256 * loop. 2257 * 2258 * Returns the unconsumed cycles. 2259 */ 2260 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2261 u32 shift, unsigned int *clock_set) 2262 { 2263 u64 interval = tk->cycle_interval << shift; 2264 u64 snsec_per_sec; 2265 2266 /* If the offset is smaller than a shifted interval, do nothing */ 2267 if (offset < interval) 2268 return offset; 2269 2270 /* Accumulate one shifted interval */ 2271 offset -= interval; 2272 tk->tkr_mono.cycle_last += interval; 2273 tk->tkr_raw.cycle_last += interval; 2274 2275 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2276 *clock_set |= accumulate_nsecs_to_secs(tk); 2277 2278 /* Accumulate raw time */ 2279 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2280 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2281 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2282 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2283 tk->raw_sec++; 2284 } 2285 2286 /* Accumulate error between NTP and clock interval */ 2287 tk->ntp_error += tk->ntp_tick << shift; 2288 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2289 (tk->ntp_error_shift + shift); 2290 2291 return offset; 2292 } 2293 2294 /* 2295 * timekeeping_advance - Updates the timekeeper to the current time and 2296 * current NTP tick length 2297 */ 2298 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2299 { 2300 struct timekeeper *real_tk = &tk_core.timekeeper; 2301 struct timekeeper *tk = &shadow_timekeeper; 2302 u64 offset; 2303 int shift = 0, maxshift; 2304 unsigned int clock_set = 0; 2305 unsigned long flags; 2306 2307 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2308 2309 /* Make sure we're fully resumed: */ 2310 if (unlikely(timekeeping_suspended)) 2311 goto out; 2312 2313 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2314 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2315 2316 /* Check if there's really nothing to do */ 2317 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2318 goto out; 2319 2320 /* Do some additional sanity checking */ 2321 timekeeping_check_update(tk, offset); 2322 2323 /* 2324 * With NO_HZ we may have to accumulate many cycle_intervals 2325 * (think "ticks") worth of time at once. To do this efficiently, 2326 * we calculate the largest doubling multiple of cycle_intervals 2327 * that is smaller than the offset. We then accumulate that 2328 * chunk in one go, and then try to consume the next smaller 2329 * doubled multiple. 2330 */ 2331 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2332 shift = max(0, shift); 2333 /* Bound shift to one less than what overflows tick_length */ 2334 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2335 shift = min(shift, maxshift); 2336 while (offset >= tk->cycle_interval) { 2337 offset = logarithmic_accumulation(tk, offset, shift, 2338 &clock_set); 2339 if (offset < tk->cycle_interval<<shift) 2340 shift--; 2341 } 2342 2343 /* Adjust the multiplier to correct NTP error */ 2344 timekeeping_adjust(tk, offset); 2345 2346 /* 2347 * Finally, make sure that after the rounding 2348 * xtime_nsec isn't larger than NSEC_PER_SEC 2349 */ 2350 clock_set |= accumulate_nsecs_to_secs(tk); 2351 2352 write_seqcount_begin(&tk_core.seq); 2353 /* 2354 * Update the real timekeeper. 2355 * 2356 * We could avoid this memcpy by switching pointers, but that 2357 * requires changes to all other timekeeper usage sites as 2358 * well, i.e. move the timekeeper pointer getter into the 2359 * spinlocked/seqcount protected sections. And we trade this 2360 * memcpy under the tk_core.seq against one before we start 2361 * updating. 2362 */ 2363 timekeeping_update(tk, clock_set); 2364 memcpy(real_tk, tk, sizeof(*tk)); 2365 /* The memcpy must come last. Do not put anything here! */ 2366 write_seqcount_end(&tk_core.seq); 2367 out: 2368 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2369 2370 return !!clock_set; 2371 } 2372 2373 /** 2374 * update_wall_time - Uses the current clocksource to increment the wall time 2375 * 2376 */ 2377 void update_wall_time(void) 2378 { 2379 if (timekeeping_advance(TK_ADV_TICK)) 2380 clock_was_set_delayed(); 2381 } 2382 2383 /** 2384 * getboottime64 - Return the real time of system boot. 2385 * @ts: pointer to the timespec64 to be set 2386 * 2387 * Returns the wall-time of boot in a timespec64. 2388 * 2389 * This is based on the wall_to_monotonic offset and the total suspend 2390 * time. Calls to settimeofday will affect the value returned (which 2391 * basically means that however wrong your real time clock is at boot time, 2392 * you get the right time here). 2393 */ 2394 void getboottime64(struct timespec64 *ts) 2395 { 2396 struct timekeeper *tk = &tk_core.timekeeper; 2397 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2398 2399 *ts = ktime_to_timespec64(t); 2400 } 2401 EXPORT_SYMBOL_GPL(getboottime64); 2402 2403 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2404 { 2405 struct timekeeper *tk = &tk_core.timekeeper; 2406 unsigned int seq; 2407 2408 do { 2409 seq = read_seqcount_begin(&tk_core.seq); 2410 2411 *ts = tk_xtime(tk); 2412 } while (read_seqcount_retry(&tk_core.seq, seq)); 2413 } 2414 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2415 2416 /** 2417 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2418 * @ts: timespec64 to be filled 2419 * 2420 * Fetch the global mg_floor value, convert it to realtime and compare it 2421 * to the current coarse-grained time. Fill @ts with whichever is 2422 * latest. Note that this is a filesystem-specific interface and should be 2423 * avoided outside of that context. 2424 */ 2425 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2426 { 2427 struct timekeeper *tk = &tk_core.timekeeper; 2428 u64 floor = atomic64_read(&mg_floor); 2429 ktime_t f_real, offset, coarse; 2430 unsigned int seq; 2431 2432 do { 2433 seq = read_seqcount_begin(&tk_core.seq); 2434 *ts = tk_xtime(tk); 2435 offset = tk_core.timekeeper.offs_real; 2436 } while (read_seqcount_retry(&tk_core.seq, seq)); 2437 2438 coarse = timespec64_to_ktime(*ts); 2439 f_real = ktime_add(floor, offset); 2440 if (ktime_after(f_real, coarse)) 2441 *ts = ktime_to_timespec64(f_real); 2442 } 2443 2444 /** 2445 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2446 * @ts: pointer to the timespec to be set 2447 * 2448 * Get a monotonic fine-grained time value and attempt to swap it into 2449 * mg_floor. If that succeeds then accept the new floor value. If it fails 2450 * then another task raced in during the interim time and updated the 2451 * floor. Since any update to the floor must be later than the previous 2452 * floor, either outcome is acceptable. 2453 * 2454 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2455 * and determining that the resulting coarse-grained timestamp did not effect 2456 * a change in ctime. Any more recent floor value would effect a change to 2457 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2458 * 2459 * @ts will be filled with the latest floor value, regardless of the outcome of 2460 * the cmpxchg. Note that this is a filesystem specific interface and should be 2461 * avoided outside of that context. 2462 */ 2463 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2464 { 2465 struct timekeeper *tk = &tk_core.timekeeper; 2466 ktime_t old = atomic64_read(&mg_floor); 2467 ktime_t offset, mono; 2468 unsigned int seq; 2469 u64 nsecs; 2470 2471 do { 2472 seq = read_seqcount_begin(&tk_core.seq); 2473 2474 ts->tv_sec = tk->xtime_sec; 2475 mono = tk->tkr_mono.base; 2476 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2477 offset = tk_core.timekeeper.offs_real; 2478 } while (read_seqcount_retry(&tk_core.seq, seq)); 2479 2480 mono = ktime_add_ns(mono, nsecs); 2481 2482 /* 2483 * Attempt to update the floor with the new time value. As any 2484 * update must be later then the existing floor, and would effect 2485 * a change to ctime from the perspective of the current task, 2486 * accept the resulting floor value regardless of the outcome of 2487 * the swap. 2488 */ 2489 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2490 ts->tv_nsec = 0; 2491 timespec64_add_ns(ts, nsecs); 2492 timekeeping_inc_mg_floor_swaps(); 2493 } else { 2494 /* 2495 * Another task changed mg_floor since "old" was fetched. 2496 * "old" has been updated with the latest value of "mg_floor". 2497 * That value is newer than the previous floor value, which 2498 * is enough to effect a change to ctime. Accept it. 2499 */ 2500 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2501 } 2502 } 2503 2504 void ktime_get_coarse_ts64(struct timespec64 *ts) 2505 { 2506 struct timekeeper *tk = &tk_core.timekeeper; 2507 struct timespec64 now, mono; 2508 unsigned int seq; 2509 2510 do { 2511 seq = read_seqcount_begin(&tk_core.seq); 2512 2513 now = tk_xtime(tk); 2514 mono = tk->wall_to_monotonic; 2515 } while (read_seqcount_retry(&tk_core.seq, seq)); 2516 2517 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2518 now.tv_nsec + mono.tv_nsec); 2519 } 2520 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2521 2522 /* 2523 * Must hold jiffies_lock 2524 */ 2525 void do_timer(unsigned long ticks) 2526 { 2527 jiffies_64 += ticks; 2528 calc_global_load(); 2529 } 2530 2531 /** 2532 * ktime_get_update_offsets_now - hrtimer helper 2533 * @cwsseq: pointer to check and store the clock was set sequence number 2534 * @offs_real: pointer to storage for monotonic -> realtime offset 2535 * @offs_boot: pointer to storage for monotonic -> boottime offset 2536 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2537 * 2538 * Returns current monotonic time and updates the offsets if the 2539 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2540 * different. 2541 * 2542 * Called from hrtimer_interrupt() or retrigger_next_event() 2543 */ 2544 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2545 ktime_t *offs_boot, ktime_t *offs_tai) 2546 { 2547 struct timekeeper *tk = &tk_core.timekeeper; 2548 unsigned int seq; 2549 ktime_t base; 2550 u64 nsecs; 2551 2552 do { 2553 seq = read_seqcount_begin(&tk_core.seq); 2554 2555 base = tk->tkr_mono.base; 2556 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2557 base = ktime_add_ns(base, nsecs); 2558 2559 if (*cwsseq != tk->clock_was_set_seq) { 2560 *cwsseq = tk->clock_was_set_seq; 2561 *offs_real = tk->offs_real; 2562 *offs_boot = tk->offs_boot; 2563 *offs_tai = tk->offs_tai; 2564 } 2565 2566 /* Handle leapsecond insertion adjustments */ 2567 if (unlikely(base >= tk->next_leap_ktime)) 2568 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2569 2570 } while (read_seqcount_retry(&tk_core.seq, seq)); 2571 2572 return base; 2573 } 2574 2575 /* 2576 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2577 */ 2578 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2579 { 2580 if (txc->modes & ADJ_ADJTIME) { 2581 /* singleshot must not be used with any other mode bits */ 2582 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2583 return -EINVAL; 2584 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2585 !capable(CAP_SYS_TIME)) 2586 return -EPERM; 2587 } else { 2588 /* In order to modify anything, you gotta be super-user! */ 2589 if (txc->modes && !capable(CAP_SYS_TIME)) 2590 return -EPERM; 2591 /* 2592 * if the quartz is off by more than 10% then 2593 * something is VERY wrong! 2594 */ 2595 if (txc->modes & ADJ_TICK && 2596 (txc->tick < 900000/USER_HZ || 2597 txc->tick > 1100000/USER_HZ)) 2598 return -EINVAL; 2599 } 2600 2601 if (txc->modes & ADJ_SETOFFSET) { 2602 /* In order to inject time, you gotta be super-user! */ 2603 if (!capable(CAP_SYS_TIME)) 2604 return -EPERM; 2605 2606 /* 2607 * Validate if a timespec/timeval used to inject a time 2608 * offset is valid. Offsets can be positive or negative, so 2609 * we don't check tv_sec. The value of the timeval/timespec 2610 * is the sum of its fields,but *NOTE*: 2611 * The field tv_usec/tv_nsec must always be non-negative and 2612 * we can't have more nanoseconds/microseconds than a second. 2613 */ 2614 if (txc->time.tv_usec < 0) 2615 return -EINVAL; 2616 2617 if (txc->modes & ADJ_NANO) { 2618 if (txc->time.tv_usec >= NSEC_PER_SEC) 2619 return -EINVAL; 2620 } else { 2621 if (txc->time.tv_usec >= USEC_PER_SEC) 2622 return -EINVAL; 2623 } 2624 } 2625 2626 /* 2627 * Check for potential multiplication overflows that can 2628 * only happen on 64-bit systems: 2629 */ 2630 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2631 if (LLONG_MIN / PPM_SCALE > txc->freq) 2632 return -EINVAL; 2633 if (LLONG_MAX / PPM_SCALE < txc->freq) 2634 return -EINVAL; 2635 } 2636 2637 return 0; 2638 } 2639 2640 /** 2641 * random_get_entropy_fallback - Returns the raw clock source value, 2642 * used by random.c for platforms with no valid random_get_entropy(). 2643 */ 2644 unsigned long random_get_entropy_fallback(void) 2645 { 2646 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2647 struct clocksource *clock = READ_ONCE(tkr->clock); 2648 2649 if (unlikely(timekeeping_suspended || !clock)) 2650 return 0; 2651 return clock->read(clock); 2652 } 2653 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2654 2655 /** 2656 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2657 * @txc: Pointer to kernel_timex structure containing NTP parameters 2658 */ 2659 int do_adjtimex(struct __kernel_timex *txc) 2660 { 2661 struct timekeeper *tk = &tk_core.timekeeper; 2662 struct audit_ntp_data ad; 2663 bool offset_set = false; 2664 bool clock_set = false; 2665 struct timespec64 ts; 2666 unsigned long flags; 2667 s32 orig_tai, tai; 2668 int ret; 2669 2670 /* Validate the data before disabling interrupts */ 2671 ret = timekeeping_validate_timex(txc); 2672 if (ret) 2673 return ret; 2674 add_device_randomness(txc, sizeof(*txc)); 2675 2676 if (txc->modes & ADJ_SETOFFSET) { 2677 struct timespec64 delta; 2678 delta.tv_sec = txc->time.tv_sec; 2679 delta.tv_nsec = txc->time.tv_usec; 2680 if (!(txc->modes & ADJ_NANO)) 2681 delta.tv_nsec *= 1000; 2682 ret = timekeeping_inject_offset(&delta); 2683 if (ret) 2684 return ret; 2685 2686 offset_set = delta.tv_sec != 0; 2687 audit_tk_injoffset(delta); 2688 } 2689 2690 audit_ntp_init(&ad); 2691 2692 ktime_get_real_ts64(&ts); 2693 add_device_randomness(&ts, sizeof(ts)); 2694 2695 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2696 write_seqcount_begin(&tk_core.seq); 2697 2698 orig_tai = tai = tk->tai_offset; 2699 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2700 2701 if (tai != orig_tai) { 2702 __timekeeping_set_tai_offset(tk, tai); 2703 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2704 clock_set = true; 2705 } 2706 tk_update_leap_state(tk); 2707 2708 write_seqcount_end(&tk_core.seq); 2709 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2710 2711 audit_ntp_log(&ad); 2712 2713 /* Update the multiplier immediately if frequency was set directly */ 2714 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2715 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2716 2717 if (clock_set) 2718 clock_was_set(CLOCK_SET_WALL); 2719 2720 ntp_notify_cmos_timer(offset_set); 2721 2722 return ret; 2723 } 2724 2725 #ifdef CONFIG_NTP_PPS 2726 /** 2727 * hardpps() - Accessor function to NTP __hardpps function 2728 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2729 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2730 */ 2731 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2732 { 2733 unsigned long flags; 2734 2735 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2736 write_seqcount_begin(&tk_core.seq); 2737 2738 __hardpps(phase_ts, raw_ts); 2739 2740 write_seqcount_end(&tk_core.seq); 2741 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2742 } 2743 EXPORT_SYMBOL(hardpps); 2744 #endif /* CONFIG_NTP_PPS */ 2745