1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 ++tk->cs_was_changed_seq; 237 old_clock = tk->tkr_mono.clock; 238 tk->tkr_mono.clock = clock; 239 tk->tkr_mono.read = clock->read; 240 tk->tkr_mono.mask = clock->mask; 241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 242 243 tk->tkr_raw.clock = clock; 244 tk->tkr_raw.read = clock->read; 245 tk->tkr_raw.mask = clock->mask; 246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 247 248 /* Do the ns -> cycle conversion first, using original mult */ 249 tmp = NTP_INTERVAL_LENGTH; 250 tmp <<= clock->shift; 251 ntpinterval = tmp; 252 tmp += clock->mult/2; 253 do_div(tmp, clock->mult); 254 if (tmp == 0) 255 tmp = 1; 256 257 interval = (cycle_t) tmp; 258 tk->cycle_interval = interval; 259 260 /* Go back from cycles -> shifted ns */ 261 tk->xtime_interval = interval * clock->mult; 262 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 263 tk->raw_interval = (interval * clock->mult) >> clock->shift; 264 265 /* if changing clocks, convert xtime_nsec shift units */ 266 if (old_clock) { 267 int shift_change = clock->shift - old_clock->shift; 268 if (shift_change < 0) 269 tk->tkr_mono.xtime_nsec >>= -shift_change; 270 else 271 tk->tkr_mono.xtime_nsec <<= shift_change; 272 } 273 tk->tkr_raw.xtime_nsec = 0; 274 275 tk->tkr_mono.shift = clock->shift; 276 tk->tkr_raw.shift = clock->shift; 277 278 tk->ntp_error = 0; 279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 281 282 /* 283 * The timekeeper keeps its own mult values for the currently 284 * active clocksource. These value will be adjusted via NTP 285 * to counteract clock drifting. 286 */ 287 tk->tkr_mono.mult = clock->mult; 288 tk->tkr_raw.mult = clock->mult; 289 tk->ntp_err_mult = 0; 290 } 291 292 /* Timekeeper helper functions. */ 293 294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 295 static u32 default_arch_gettimeoffset(void) { return 0; } 296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 297 #else 298 static inline u32 arch_gettimeoffset(void) { return 0; } 299 #endif 300 301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, 302 cycle_t delta) 303 { 304 u64 nsec; 305 306 nsec = delta * tkr->mult + tkr->xtime_nsec; 307 nsec >>= tkr->shift; 308 309 /* If arch requires, add in get_arch_timeoffset() */ 310 return nsec + arch_gettimeoffset(); 311 } 312 313 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 314 { 315 cycle_t delta; 316 317 delta = timekeeping_get_delta(tkr); 318 return timekeeping_delta_to_ns(tkr, delta); 319 } 320 321 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, 322 cycle_t cycles) 323 { 324 cycle_t delta; 325 326 /* calculate the delta since the last update_wall_time */ 327 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 328 return timekeeping_delta_to_ns(tkr, delta); 329 } 330 331 /** 332 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 333 * @tkr: Timekeeping readout base from which we take the update 334 * 335 * We want to use this from any context including NMI and tracing / 336 * instrumenting the timekeeping code itself. 337 * 338 * Employ the latch technique; see @raw_write_seqcount_latch. 339 * 340 * So if a NMI hits the update of base[0] then it will use base[1] 341 * which is still consistent. In the worst case this can result is a 342 * slightly wrong timestamp (a few nanoseconds). See 343 * @ktime_get_mono_fast_ns. 344 */ 345 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 346 { 347 struct tk_read_base *base = tkf->base; 348 349 /* Force readers off to base[1] */ 350 raw_write_seqcount_latch(&tkf->seq); 351 352 /* Update base[0] */ 353 memcpy(base, tkr, sizeof(*base)); 354 355 /* Force readers back to base[0] */ 356 raw_write_seqcount_latch(&tkf->seq); 357 358 /* Update base[1] */ 359 memcpy(base + 1, base, sizeof(*base)); 360 } 361 362 /** 363 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 364 * 365 * This timestamp is not guaranteed to be monotonic across an update. 366 * The timestamp is calculated by: 367 * 368 * now = base_mono + clock_delta * slope 369 * 370 * So if the update lowers the slope, readers who are forced to the 371 * not yet updated second array are still using the old steeper slope. 372 * 373 * tmono 374 * ^ 375 * | o n 376 * | o n 377 * | u 378 * | o 379 * |o 380 * |12345678---> reader order 381 * 382 * o = old slope 383 * u = update 384 * n = new slope 385 * 386 * So reader 6 will observe time going backwards versus reader 5. 387 * 388 * While other CPUs are likely to be able observe that, the only way 389 * for a CPU local observation is when an NMI hits in the middle of 390 * the update. Timestamps taken from that NMI context might be ahead 391 * of the following timestamps. Callers need to be aware of that and 392 * deal with it. 393 */ 394 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 395 { 396 struct tk_read_base *tkr; 397 unsigned int seq; 398 u64 now; 399 400 do { 401 seq = raw_read_seqcount_latch(&tkf->seq); 402 tkr = tkf->base + (seq & 0x01); 403 now = ktime_to_ns(tkr->base); 404 405 now += timekeeping_delta_to_ns(tkr, 406 clocksource_delta( 407 tkr->read(tkr->clock), 408 tkr->cycle_last, 409 tkr->mask)); 410 } while (read_seqcount_retry(&tkf->seq, seq)); 411 412 return now; 413 } 414 415 u64 ktime_get_mono_fast_ns(void) 416 { 417 return __ktime_get_fast_ns(&tk_fast_mono); 418 } 419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 420 421 u64 ktime_get_raw_fast_ns(void) 422 { 423 return __ktime_get_fast_ns(&tk_fast_raw); 424 } 425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 426 427 /** 428 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 429 * 430 * To keep it NMI safe since we're accessing from tracing, we're not using a 431 * separate timekeeper with updates to monotonic clock and boot offset 432 * protected with seqlocks. This has the following minor side effects: 433 * 434 * (1) Its possible that a timestamp be taken after the boot offset is updated 435 * but before the timekeeper is updated. If this happens, the new boot offset 436 * is added to the old timekeeping making the clock appear to update slightly 437 * earlier: 438 * CPU 0 CPU 1 439 * timekeeping_inject_sleeptime64() 440 * __timekeeping_inject_sleeptime(tk, delta); 441 * timestamp(); 442 * timekeeping_update(tk, TK_CLEAR_NTP...); 443 * 444 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 445 * partially updated. Since the tk->offs_boot update is a rare event, this 446 * should be a rare occurrence which postprocessing should be able to handle. 447 */ 448 u64 notrace ktime_get_boot_fast_ns(void) 449 { 450 struct timekeeper *tk = &tk_core.timekeeper; 451 452 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 453 } 454 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 455 456 /* Suspend-time cycles value for halted fast timekeeper. */ 457 static cycle_t cycles_at_suspend; 458 459 static cycle_t dummy_clock_read(struct clocksource *cs) 460 { 461 return cycles_at_suspend; 462 } 463 464 /** 465 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 466 * @tk: Timekeeper to snapshot. 467 * 468 * It generally is unsafe to access the clocksource after timekeeping has been 469 * suspended, so take a snapshot of the readout base of @tk and use it as the 470 * fast timekeeper's readout base while suspended. It will return the same 471 * number of cycles every time until timekeeping is resumed at which time the 472 * proper readout base for the fast timekeeper will be restored automatically. 473 */ 474 static void halt_fast_timekeeper(struct timekeeper *tk) 475 { 476 static struct tk_read_base tkr_dummy; 477 struct tk_read_base *tkr = &tk->tkr_mono; 478 479 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 480 cycles_at_suspend = tkr->read(tkr->clock); 481 tkr_dummy.read = dummy_clock_read; 482 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 483 484 tkr = &tk->tkr_raw; 485 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 486 tkr_dummy.read = dummy_clock_read; 487 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 488 } 489 490 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 491 492 static inline void update_vsyscall(struct timekeeper *tk) 493 { 494 struct timespec xt, wm; 495 496 xt = timespec64_to_timespec(tk_xtime(tk)); 497 wm = timespec64_to_timespec(tk->wall_to_monotonic); 498 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 499 tk->tkr_mono.cycle_last); 500 } 501 502 static inline void old_vsyscall_fixup(struct timekeeper *tk) 503 { 504 s64 remainder; 505 506 /* 507 * Store only full nanoseconds into xtime_nsec after rounding 508 * it up and add the remainder to the error difference. 509 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 510 * by truncating the remainder in vsyscalls. However, it causes 511 * additional work to be done in timekeeping_adjust(). Once 512 * the vsyscall implementations are converted to use xtime_nsec 513 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 514 * users are removed, this can be killed. 515 */ 516 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 517 if (remainder != 0) { 518 tk->tkr_mono.xtime_nsec -= remainder; 519 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 520 tk->ntp_error += remainder << tk->ntp_error_shift; 521 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 522 } 523 } 524 #else 525 #define old_vsyscall_fixup(tk) 526 #endif 527 528 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 529 530 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 531 { 532 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 533 } 534 535 /** 536 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 537 */ 538 int pvclock_gtod_register_notifier(struct notifier_block *nb) 539 { 540 struct timekeeper *tk = &tk_core.timekeeper; 541 unsigned long flags; 542 int ret; 543 544 raw_spin_lock_irqsave(&timekeeper_lock, flags); 545 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 546 update_pvclock_gtod(tk, true); 547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 548 549 return ret; 550 } 551 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 552 553 /** 554 * pvclock_gtod_unregister_notifier - unregister a pvclock 555 * timedata update listener 556 */ 557 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 558 { 559 unsigned long flags; 560 int ret; 561 562 raw_spin_lock_irqsave(&timekeeper_lock, flags); 563 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 564 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 565 566 return ret; 567 } 568 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 569 570 /* 571 * tk_update_leap_state - helper to update the next_leap_ktime 572 */ 573 static inline void tk_update_leap_state(struct timekeeper *tk) 574 { 575 tk->next_leap_ktime = ntp_get_next_leap(); 576 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 577 /* Convert to monotonic time */ 578 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 579 } 580 581 /* 582 * Update the ktime_t based scalar nsec members of the timekeeper 583 */ 584 static inline void tk_update_ktime_data(struct timekeeper *tk) 585 { 586 u64 seconds; 587 u32 nsec; 588 589 /* 590 * The xtime based monotonic readout is: 591 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 592 * The ktime based monotonic readout is: 593 * nsec = base_mono + now(); 594 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 595 */ 596 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 597 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 598 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 599 600 /* Update the monotonic raw base */ 601 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 602 603 /* 604 * The sum of the nanoseconds portions of xtime and 605 * wall_to_monotonic can be greater/equal one second. Take 606 * this into account before updating tk->ktime_sec. 607 */ 608 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 609 if (nsec >= NSEC_PER_SEC) 610 seconds++; 611 tk->ktime_sec = seconds; 612 } 613 614 /* must hold timekeeper_lock */ 615 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 616 { 617 if (action & TK_CLEAR_NTP) { 618 tk->ntp_error = 0; 619 ntp_clear(); 620 } 621 622 tk_update_leap_state(tk); 623 tk_update_ktime_data(tk); 624 625 update_vsyscall(tk); 626 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 627 628 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 629 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 630 631 if (action & TK_CLOCK_WAS_SET) 632 tk->clock_was_set_seq++; 633 /* 634 * The mirroring of the data to the shadow-timekeeper needs 635 * to happen last here to ensure we don't over-write the 636 * timekeeper structure on the next update with stale data 637 */ 638 if (action & TK_MIRROR) 639 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 640 sizeof(tk_core.timekeeper)); 641 } 642 643 /** 644 * timekeeping_forward_now - update clock to the current time 645 * 646 * Forward the current clock to update its state since the last call to 647 * update_wall_time(). This is useful before significant clock changes, 648 * as it avoids having to deal with this time offset explicitly. 649 */ 650 static void timekeeping_forward_now(struct timekeeper *tk) 651 { 652 struct clocksource *clock = tk->tkr_mono.clock; 653 cycle_t cycle_now, delta; 654 u64 nsec; 655 656 cycle_now = tk->tkr_mono.read(clock); 657 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 658 tk->tkr_mono.cycle_last = cycle_now; 659 tk->tkr_raw.cycle_last = cycle_now; 660 661 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 662 663 /* If arch requires, add in get_arch_timeoffset() */ 664 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 665 666 tk_normalize_xtime(tk); 667 668 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 669 timespec64_add_ns(&tk->raw_time, nsec); 670 } 671 672 /** 673 * __getnstimeofday64 - Returns the time of day in a timespec64. 674 * @ts: pointer to the timespec to be set 675 * 676 * Updates the time of day in the timespec. 677 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 678 */ 679 int __getnstimeofday64(struct timespec64 *ts) 680 { 681 struct timekeeper *tk = &tk_core.timekeeper; 682 unsigned long seq; 683 u64 nsecs; 684 685 do { 686 seq = read_seqcount_begin(&tk_core.seq); 687 688 ts->tv_sec = tk->xtime_sec; 689 nsecs = timekeeping_get_ns(&tk->tkr_mono); 690 691 } while (read_seqcount_retry(&tk_core.seq, seq)); 692 693 ts->tv_nsec = 0; 694 timespec64_add_ns(ts, nsecs); 695 696 /* 697 * Do not bail out early, in case there were callers still using 698 * the value, even in the face of the WARN_ON. 699 */ 700 if (unlikely(timekeeping_suspended)) 701 return -EAGAIN; 702 return 0; 703 } 704 EXPORT_SYMBOL(__getnstimeofday64); 705 706 /** 707 * getnstimeofday64 - Returns the time of day in a timespec64. 708 * @ts: pointer to the timespec64 to be set 709 * 710 * Returns the time of day in a timespec64 (WARN if suspended). 711 */ 712 void getnstimeofday64(struct timespec64 *ts) 713 { 714 WARN_ON(__getnstimeofday64(ts)); 715 } 716 EXPORT_SYMBOL(getnstimeofday64); 717 718 ktime_t ktime_get(void) 719 { 720 struct timekeeper *tk = &tk_core.timekeeper; 721 unsigned int seq; 722 ktime_t base; 723 u64 nsecs; 724 725 WARN_ON(timekeeping_suspended); 726 727 do { 728 seq = read_seqcount_begin(&tk_core.seq); 729 base = tk->tkr_mono.base; 730 nsecs = timekeeping_get_ns(&tk->tkr_mono); 731 732 } while (read_seqcount_retry(&tk_core.seq, seq)); 733 734 return ktime_add_ns(base, nsecs); 735 } 736 EXPORT_SYMBOL_GPL(ktime_get); 737 738 u32 ktime_get_resolution_ns(void) 739 { 740 struct timekeeper *tk = &tk_core.timekeeper; 741 unsigned int seq; 742 u32 nsecs; 743 744 WARN_ON(timekeeping_suspended); 745 746 do { 747 seq = read_seqcount_begin(&tk_core.seq); 748 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 749 } while (read_seqcount_retry(&tk_core.seq, seq)); 750 751 return nsecs; 752 } 753 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 754 755 static ktime_t *offsets[TK_OFFS_MAX] = { 756 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 757 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 758 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 759 }; 760 761 ktime_t ktime_get_with_offset(enum tk_offsets offs) 762 { 763 struct timekeeper *tk = &tk_core.timekeeper; 764 unsigned int seq; 765 ktime_t base, *offset = offsets[offs]; 766 u64 nsecs; 767 768 WARN_ON(timekeeping_suspended); 769 770 do { 771 seq = read_seqcount_begin(&tk_core.seq); 772 base = ktime_add(tk->tkr_mono.base, *offset); 773 nsecs = timekeeping_get_ns(&tk->tkr_mono); 774 775 } while (read_seqcount_retry(&tk_core.seq, seq)); 776 777 return ktime_add_ns(base, nsecs); 778 779 } 780 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 781 782 /** 783 * ktime_mono_to_any() - convert mononotic time to any other time 784 * @tmono: time to convert. 785 * @offs: which offset to use 786 */ 787 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 788 { 789 ktime_t *offset = offsets[offs]; 790 unsigned long seq; 791 ktime_t tconv; 792 793 do { 794 seq = read_seqcount_begin(&tk_core.seq); 795 tconv = ktime_add(tmono, *offset); 796 } while (read_seqcount_retry(&tk_core.seq, seq)); 797 798 return tconv; 799 } 800 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 801 802 /** 803 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 804 */ 805 ktime_t ktime_get_raw(void) 806 { 807 struct timekeeper *tk = &tk_core.timekeeper; 808 unsigned int seq; 809 ktime_t base; 810 u64 nsecs; 811 812 do { 813 seq = read_seqcount_begin(&tk_core.seq); 814 base = tk->tkr_raw.base; 815 nsecs = timekeeping_get_ns(&tk->tkr_raw); 816 817 } while (read_seqcount_retry(&tk_core.seq, seq)); 818 819 return ktime_add_ns(base, nsecs); 820 } 821 EXPORT_SYMBOL_GPL(ktime_get_raw); 822 823 /** 824 * ktime_get_ts64 - get the monotonic clock in timespec64 format 825 * @ts: pointer to timespec variable 826 * 827 * The function calculates the monotonic clock from the realtime 828 * clock and the wall_to_monotonic offset and stores the result 829 * in normalized timespec64 format in the variable pointed to by @ts. 830 */ 831 void ktime_get_ts64(struct timespec64 *ts) 832 { 833 struct timekeeper *tk = &tk_core.timekeeper; 834 struct timespec64 tomono; 835 unsigned int seq; 836 u64 nsec; 837 838 WARN_ON(timekeeping_suspended); 839 840 do { 841 seq = read_seqcount_begin(&tk_core.seq); 842 ts->tv_sec = tk->xtime_sec; 843 nsec = timekeeping_get_ns(&tk->tkr_mono); 844 tomono = tk->wall_to_monotonic; 845 846 } while (read_seqcount_retry(&tk_core.seq, seq)); 847 848 ts->tv_sec += tomono.tv_sec; 849 ts->tv_nsec = 0; 850 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 851 } 852 EXPORT_SYMBOL_GPL(ktime_get_ts64); 853 854 /** 855 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 856 * 857 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 858 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 859 * works on both 32 and 64 bit systems. On 32 bit systems the readout 860 * covers ~136 years of uptime which should be enough to prevent 861 * premature wrap arounds. 862 */ 863 time64_t ktime_get_seconds(void) 864 { 865 struct timekeeper *tk = &tk_core.timekeeper; 866 867 WARN_ON(timekeeping_suspended); 868 return tk->ktime_sec; 869 } 870 EXPORT_SYMBOL_GPL(ktime_get_seconds); 871 872 /** 873 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 874 * 875 * Returns the wall clock seconds since 1970. This replaces the 876 * get_seconds() interface which is not y2038 safe on 32bit systems. 877 * 878 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 879 * 32bit systems the access must be protected with the sequence 880 * counter to provide "atomic" access to the 64bit tk->xtime_sec 881 * value. 882 */ 883 time64_t ktime_get_real_seconds(void) 884 { 885 struct timekeeper *tk = &tk_core.timekeeper; 886 time64_t seconds; 887 unsigned int seq; 888 889 if (IS_ENABLED(CONFIG_64BIT)) 890 return tk->xtime_sec; 891 892 do { 893 seq = read_seqcount_begin(&tk_core.seq); 894 seconds = tk->xtime_sec; 895 896 } while (read_seqcount_retry(&tk_core.seq, seq)); 897 898 return seconds; 899 } 900 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 901 902 /** 903 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 904 * but without the sequence counter protect. This internal function 905 * is called just when timekeeping lock is already held. 906 */ 907 time64_t __ktime_get_real_seconds(void) 908 { 909 struct timekeeper *tk = &tk_core.timekeeper; 910 911 return tk->xtime_sec; 912 } 913 914 /** 915 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 916 * @systime_snapshot: pointer to struct receiving the system time snapshot 917 */ 918 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 919 { 920 struct timekeeper *tk = &tk_core.timekeeper; 921 unsigned long seq; 922 ktime_t base_raw; 923 ktime_t base_real; 924 u64 nsec_raw; 925 u64 nsec_real; 926 cycle_t now; 927 928 WARN_ON_ONCE(timekeeping_suspended); 929 930 do { 931 seq = read_seqcount_begin(&tk_core.seq); 932 933 now = tk->tkr_mono.read(tk->tkr_mono.clock); 934 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 935 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 936 base_real = ktime_add(tk->tkr_mono.base, 937 tk_core.timekeeper.offs_real); 938 base_raw = tk->tkr_raw.base; 939 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 940 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 941 } while (read_seqcount_retry(&tk_core.seq, seq)); 942 943 systime_snapshot->cycles = now; 944 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 945 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 946 } 947 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 948 949 /* Scale base by mult/div checking for overflow */ 950 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 951 { 952 u64 tmp, rem; 953 954 tmp = div64_u64_rem(*base, div, &rem); 955 956 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 957 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 958 return -EOVERFLOW; 959 tmp *= mult; 960 rem *= mult; 961 962 do_div(rem, div); 963 *base = tmp + rem; 964 return 0; 965 } 966 967 /** 968 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 969 * @history: Snapshot representing start of history 970 * @partial_history_cycles: Cycle offset into history (fractional part) 971 * @total_history_cycles: Total history length in cycles 972 * @discontinuity: True indicates clock was set on history period 973 * @ts: Cross timestamp that should be adjusted using 974 * partial/total ratio 975 * 976 * Helper function used by get_device_system_crosststamp() to correct the 977 * crosstimestamp corresponding to the start of the current interval to the 978 * system counter value (timestamp point) provided by the driver. The 979 * total_history_* quantities are the total history starting at the provided 980 * reference point and ending at the start of the current interval. The cycle 981 * count between the driver timestamp point and the start of the current 982 * interval is partial_history_cycles. 983 */ 984 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 985 cycle_t partial_history_cycles, 986 cycle_t total_history_cycles, 987 bool discontinuity, 988 struct system_device_crosststamp *ts) 989 { 990 struct timekeeper *tk = &tk_core.timekeeper; 991 u64 corr_raw, corr_real; 992 bool interp_forward; 993 int ret; 994 995 if (total_history_cycles == 0 || partial_history_cycles == 0) 996 return 0; 997 998 /* Interpolate shortest distance from beginning or end of history */ 999 interp_forward = partial_history_cycles > total_history_cycles/2 ? 1000 true : false; 1001 partial_history_cycles = interp_forward ? 1002 total_history_cycles - partial_history_cycles : 1003 partial_history_cycles; 1004 1005 /* 1006 * Scale the monotonic raw time delta by: 1007 * partial_history_cycles / total_history_cycles 1008 */ 1009 corr_raw = (u64)ktime_to_ns( 1010 ktime_sub(ts->sys_monoraw, history->raw)); 1011 ret = scale64_check_overflow(partial_history_cycles, 1012 total_history_cycles, &corr_raw); 1013 if (ret) 1014 return ret; 1015 1016 /* 1017 * If there is a discontinuity in the history, scale monotonic raw 1018 * correction by: 1019 * mult(real)/mult(raw) yielding the realtime correction 1020 * Otherwise, calculate the realtime correction similar to monotonic 1021 * raw calculation 1022 */ 1023 if (discontinuity) { 1024 corr_real = mul_u64_u32_div 1025 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1026 } else { 1027 corr_real = (u64)ktime_to_ns( 1028 ktime_sub(ts->sys_realtime, history->real)); 1029 ret = scale64_check_overflow(partial_history_cycles, 1030 total_history_cycles, &corr_real); 1031 if (ret) 1032 return ret; 1033 } 1034 1035 /* Fixup monotonic raw and real time time values */ 1036 if (interp_forward) { 1037 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1038 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1039 } else { 1040 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1041 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * cycle_between - true if test occurs chronologically between before and after 1049 */ 1050 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after) 1051 { 1052 if (test > before && test < after) 1053 return true; 1054 if (test < before && before > after) 1055 return true; 1056 return false; 1057 } 1058 1059 /** 1060 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1061 * @get_time_fn: Callback to get simultaneous device time and 1062 * system counter from the device driver 1063 * @ctx: Context passed to get_time_fn() 1064 * @history_begin: Historical reference point used to interpolate system 1065 * time when counter provided by the driver is before the current interval 1066 * @xtstamp: Receives simultaneously captured system and device time 1067 * 1068 * Reads a timestamp from a device and correlates it to system time 1069 */ 1070 int get_device_system_crosststamp(int (*get_time_fn) 1071 (ktime_t *device_time, 1072 struct system_counterval_t *sys_counterval, 1073 void *ctx), 1074 void *ctx, 1075 struct system_time_snapshot *history_begin, 1076 struct system_device_crosststamp *xtstamp) 1077 { 1078 struct system_counterval_t system_counterval; 1079 struct timekeeper *tk = &tk_core.timekeeper; 1080 cycle_t cycles, now, interval_start; 1081 unsigned int clock_was_set_seq = 0; 1082 ktime_t base_real, base_raw; 1083 u64 nsec_real, nsec_raw; 1084 u8 cs_was_changed_seq; 1085 unsigned long seq; 1086 bool do_interp; 1087 int ret; 1088 1089 do { 1090 seq = read_seqcount_begin(&tk_core.seq); 1091 /* 1092 * Try to synchronously capture device time and a system 1093 * counter value calling back into the device driver 1094 */ 1095 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1096 if (ret) 1097 return ret; 1098 1099 /* 1100 * Verify that the clocksource associated with the captured 1101 * system counter value is the same as the currently installed 1102 * timekeeper clocksource 1103 */ 1104 if (tk->tkr_mono.clock != system_counterval.cs) 1105 return -ENODEV; 1106 cycles = system_counterval.cycles; 1107 1108 /* 1109 * Check whether the system counter value provided by the 1110 * device driver is on the current timekeeping interval. 1111 */ 1112 now = tk->tkr_mono.read(tk->tkr_mono.clock); 1113 interval_start = tk->tkr_mono.cycle_last; 1114 if (!cycle_between(interval_start, cycles, now)) { 1115 clock_was_set_seq = tk->clock_was_set_seq; 1116 cs_was_changed_seq = tk->cs_was_changed_seq; 1117 cycles = interval_start; 1118 do_interp = true; 1119 } else { 1120 do_interp = false; 1121 } 1122 1123 base_real = ktime_add(tk->tkr_mono.base, 1124 tk_core.timekeeper.offs_real); 1125 base_raw = tk->tkr_raw.base; 1126 1127 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1128 system_counterval.cycles); 1129 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1130 system_counterval.cycles); 1131 } while (read_seqcount_retry(&tk_core.seq, seq)); 1132 1133 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1134 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1135 1136 /* 1137 * Interpolate if necessary, adjusting back from the start of the 1138 * current interval 1139 */ 1140 if (do_interp) { 1141 cycle_t partial_history_cycles, total_history_cycles; 1142 bool discontinuity; 1143 1144 /* 1145 * Check that the counter value occurs after the provided 1146 * history reference and that the history doesn't cross a 1147 * clocksource change 1148 */ 1149 if (!history_begin || 1150 !cycle_between(history_begin->cycles, 1151 system_counterval.cycles, cycles) || 1152 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1153 return -EINVAL; 1154 partial_history_cycles = cycles - system_counterval.cycles; 1155 total_history_cycles = cycles - history_begin->cycles; 1156 discontinuity = 1157 history_begin->clock_was_set_seq != clock_was_set_seq; 1158 1159 ret = adjust_historical_crosststamp(history_begin, 1160 partial_history_cycles, 1161 total_history_cycles, 1162 discontinuity, xtstamp); 1163 if (ret) 1164 return ret; 1165 } 1166 1167 return 0; 1168 } 1169 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1170 1171 /** 1172 * do_gettimeofday - Returns the time of day in a timeval 1173 * @tv: pointer to the timeval to be set 1174 * 1175 * NOTE: Users should be converted to using getnstimeofday() 1176 */ 1177 void do_gettimeofday(struct timeval *tv) 1178 { 1179 struct timespec64 now; 1180 1181 getnstimeofday64(&now); 1182 tv->tv_sec = now.tv_sec; 1183 tv->tv_usec = now.tv_nsec/1000; 1184 } 1185 EXPORT_SYMBOL(do_gettimeofday); 1186 1187 /** 1188 * do_settimeofday64 - Sets the time of day. 1189 * @ts: pointer to the timespec64 variable containing the new time 1190 * 1191 * Sets the time of day to the new time and update NTP and notify hrtimers 1192 */ 1193 int do_settimeofday64(const struct timespec64 *ts) 1194 { 1195 struct timekeeper *tk = &tk_core.timekeeper; 1196 struct timespec64 ts_delta, xt; 1197 unsigned long flags; 1198 int ret = 0; 1199 1200 if (!timespec64_valid_strict(ts)) 1201 return -EINVAL; 1202 1203 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1204 write_seqcount_begin(&tk_core.seq); 1205 1206 timekeeping_forward_now(tk); 1207 1208 xt = tk_xtime(tk); 1209 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1210 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1211 1212 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1213 ret = -EINVAL; 1214 goto out; 1215 } 1216 1217 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1218 1219 tk_set_xtime(tk, ts); 1220 out: 1221 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1222 1223 write_seqcount_end(&tk_core.seq); 1224 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1225 1226 /* signal hrtimers about time change */ 1227 clock_was_set(); 1228 1229 return ret; 1230 } 1231 EXPORT_SYMBOL(do_settimeofday64); 1232 1233 /** 1234 * timekeeping_inject_offset - Adds or subtracts from the current time. 1235 * @tv: pointer to the timespec variable containing the offset 1236 * 1237 * Adds or subtracts an offset value from the current time. 1238 */ 1239 int timekeeping_inject_offset(struct timespec *ts) 1240 { 1241 struct timekeeper *tk = &tk_core.timekeeper; 1242 unsigned long flags; 1243 struct timespec64 ts64, tmp; 1244 int ret = 0; 1245 1246 if (!timespec_inject_offset_valid(ts)) 1247 return -EINVAL; 1248 1249 ts64 = timespec_to_timespec64(*ts); 1250 1251 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1252 write_seqcount_begin(&tk_core.seq); 1253 1254 timekeeping_forward_now(tk); 1255 1256 /* Make sure the proposed value is valid */ 1257 tmp = timespec64_add(tk_xtime(tk), ts64); 1258 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1259 !timespec64_valid_strict(&tmp)) { 1260 ret = -EINVAL; 1261 goto error; 1262 } 1263 1264 tk_xtime_add(tk, &ts64); 1265 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1266 1267 error: /* even if we error out, we forwarded the time, so call update */ 1268 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1269 1270 write_seqcount_end(&tk_core.seq); 1271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1272 1273 /* signal hrtimers about time change */ 1274 clock_was_set(); 1275 1276 return ret; 1277 } 1278 EXPORT_SYMBOL(timekeeping_inject_offset); 1279 1280 1281 /** 1282 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 1283 * 1284 */ 1285 s32 timekeeping_get_tai_offset(void) 1286 { 1287 struct timekeeper *tk = &tk_core.timekeeper; 1288 unsigned int seq; 1289 s32 ret; 1290 1291 do { 1292 seq = read_seqcount_begin(&tk_core.seq); 1293 ret = tk->tai_offset; 1294 } while (read_seqcount_retry(&tk_core.seq, seq)); 1295 1296 return ret; 1297 } 1298 1299 /** 1300 * __timekeeping_set_tai_offset - Lock free worker function 1301 * 1302 */ 1303 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1304 { 1305 tk->tai_offset = tai_offset; 1306 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1307 } 1308 1309 /** 1310 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1311 * 1312 */ 1313 void timekeeping_set_tai_offset(s32 tai_offset) 1314 { 1315 struct timekeeper *tk = &tk_core.timekeeper; 1316 unsigned long flags; 1317 1318 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1319 write_seqcount_begin(&tk_core.seq); 1320 __timekeeping_set_tai_offset(tk, tai_offset); 1321 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1322 write_seqcount_end(&tk_core.seq); 1323 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1324 clock_was_set(); 1325 } 1326 1327 /** 1328 * change_clocksource - Swaps clocksources if a new one is available 1329 * 1330 * Accumulates current time interval and initializes new clocksource 1331 */ 1332 static int change_clocksource(void *data) 1333 { 1334 struct timekeeper *tk = &tk_core.timekeeper; 1335 struct clocksource *new, *old; 1336 unsigned long flags; 1337 1338 new = (struct clocksource *) data; 1339 1340 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1341 write_seqcount_begin(&tk_core.seq); 1342 1343 timekeeping_forward_now(tk); 1344 /* 1345 * If the cs is in module, get a module reference. Succeeds 1346 * for built-in code (owner == NULL) as well. 1347 */ 1348 if (try_module_get(new->owner)) { 1349 if (!new->enable || new->enable(new) == 0) { 1350 old = tk->tkr_mono.clock; 1351 tk_setup_internals(tk, new); 1352 if (old->disable) 1353 old->disable(old); 1354 module_put(old->owner); 1355 } else { 1356 module_put(new->owner); 1357 } 1358 } 1359 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1360 1361 write_seqcount_end(&tk_core.seq); 1362 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1363 1364 return 0; 1365 } 1366 1367 /** 1368 * timekeeping_notify - Install a new clock source 1369 * @clock: pointer to the clock source 1370 * 1371 * This function is called from clocksource.c after a new, better clock 1372 * source has been registered. The caller holds the clocksource_mutex. 1373 */ 1374 int timekeeping_notify(struct clocksource *clock) 1375 { 1376 struct timekeeper *tk = &tk_core.timekeeper; 1377 1378 if (tk->tkr_mono.clock == clock) 1379 return 0; 1380 stop_machine(change_clocksource, clock, NULL); 1381 tick_clock_notify(); 1382 return tk->tkr_mono.clock == clock ? 0 : -1; 1383 } 1384 1385 /** 1386 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1387 * @ts: pointer to the timespec64 to be set 1388 * 1389 * Returns the raw monotonic time (completely un-modified by ntp) 1390 */ 1391 void getrawmonotonic64(struct timespec64 *ts) 1392 { 1393 struct timekeeper *tk = &tk_core.timekeeper; 1394 struct timespec64 ts64; 1395 unsigned long seq; 1396 u64 nsecs; 1397 1398 do { 1399 seq = read_seqcount_begin(&tk_core.seq); 1400 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1401 ts64 = tk->raw_time; 1402 1403 } while (read_seqcount_retry(&tk_core.seq, seq)); 1404 1405 timespec64_add_ns(&ts64, nsecs); 1406 *ts = ts64; 1407 } 1408 EXPORT_SYMBOL(getrawmonotonic64); 1409 1410 1411 /** 1412 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1413 */ 1414 int timekeeping_valid_for_hres(void) 1415 { 1416 struct timekeeper *tk = &tk_core.timekeeper; 1417 unsigned long seq; 1418 int ret; 1419 1420 do { 1421 seq = read_seqcount_begin(&tk_core.seq); 1422 1423 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1424 1425 } while (read_seqcount_retry(&tk_core.seq, seq)); 1426 1427 return ret; 1428 } 1429 1430 /** 1431 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1432 */ 1433 u64 timekeeping_max_deferment(void) 1434 { 1435 struct timekeeper *tk = &tk_core.timekeeper; 1436 unsigned long seq; 1437 u64 ret; 1438 1439 do { 1440 seq = read_seqcount_begin(&tk_core.seq); 1441 1442 ret = tk->tkr_mono.clock->max_idle_ns; 1443 1444 } while (read_seqcount_retry(&tk_core.seq, seq)); 1445 1446 return ret; 1447 } 1448 1449 /** 1450 * read_persistent_clock - Return time from the persistent clock. 1451 * 1452 * Weak dummy function for arches that do not yet support it. 1453 * Reads the time from the battery backed persistent clock. 1454 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1455 * 1456 * XXX - Do be sure to remove it once all arches implement it. 1457 */ 1458 void __weak read_persistent_clock(struct timespec *ts) 1459 { 1460 ts->tv_sec = 0; 1461 ts->tv_nsec = 0; 1462 } 1463 1464 void __weak read_persistent_clock64(struct timespec64 *ts64) 1465 { 1466 struct timespec ts; 1467 1468 read_persistent_clock(&ts); 1469 *ts64 = timespec_to_timespec64(ts); 1470 } 1471 1472 /** 1473 * read_boot_clock64 - Return time of the system start. 1474 * 1475 * Weak dummy function for arches that do not yet support it. 1476 * Function to read the exact time the system has been started. 1477 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1478 * 1479 * XXX - Do be sure to remove it once all arches implement it. 1480 */ 1481 void __weak read_boot_clock64(struct timespec64 *ts) 1482 { 1483 ts->tv_sec = 0; 1484 ts->tv_nsec = 0; 1485 } 1486 1487 /* Flag for if timekeeping_resume() has injected sleeptime */ 1488 static bool sleeptime_injected; 1489 1490 /* Flag for if there is a persistent clock on this platform */ 1491 static bool persistent_clock_exists; 1492 1493 /* 1494 * timekeeping_init - Initializes the clocksource and common timekeeping values 1495 */ 1496 void __init timekeeping_init(void) 1497 { 1498 struct timekeeper *tk = &tk_core.timekeeper; 1499 struct clocksource *clock; 1500 unsigned long flags; 1501 struct timespec64 now, boot, tmp; 1502 1503 read_persistent_clock64(&now); 1504 if (!timespec64_valid_strict(&now)) { 1505 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1506 " Check your CMOS/BIOS settings.\n"); 1507 now.tv_sec = 0; 1508 now.tv_nsec = 0; 1509 } else if (now.tv_sec || now.tv_nsec) 1510 persistent_clock_exists = true; 1511 1512 read_boot_clock64(&boot); 1513 if (!timespec64_valid_strict(&boot)) { 1514 pr_warn("WARNING: Boot clock returned invalid value!\n" 1515 " Check your CMOS/BIOS settings.\n"); 1516 boot.tv_sec = 0; 1517 boot.tv_nsec = 0; 1518 } 1519 1520 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1521 write_seqcount_begin(&tk_core.seq); 1522 ntp_init(); 1523 1524 clock = clocksource_default_clock(); 1525 if (clock->enable) 1526 clock->enable(clock); 1527 tk_setup_internals(tk, clock); 1528 1529 tk_set_xtime(tk, &now); 1530 tk->raw_time.tv_sec = 0; 1531 tk->raw_time.tv_nsec = 0; 1532 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1533 boot = tk_xtime(tk); 1534 1535 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1536 tk_set_wall_to_mono(tk, tmp); 1537 1538 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1539 1540 write_seqcount_end(&tk_core.seq); 1541 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1542 } 1543 1544 /* time in seconds when suspend began for persistent clock */ 1545 static struct timespec64 timekeeping_suspend_time; 1546 1547 /** 1548 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1549 * @delta: pointer to a timespec delta value 1550 * 1551 * Takes a timespec offset measuring a suspend interval and properly 1552 * adds the sleep offset to the timekeeping variables. 1553 */ 1554 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1555 struct timespec64 *delta) 1556 { 1557 if (!timespec64_valid_strict(delta)) { 1558 printk_deferred(KERN_WARNING 1559 "__timekeeping_inject_sleeptime: Invalid " 1560 "sleep delta value!\n"); 1561 return; 1562 } 1563 tk_xtime_add(tk, delta); 1564 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1565 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1566 tk_debug_account_sleep_time(delta); 1567 } 1568 1569 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1570 /** 1571 * We have three kinds of time sources to use for sleep time 1572 * injection, the preference order is: 1573 * 1) non-stop clocksource 1574 * 2) persistent clock (ie: RTC accessible when irqs are off) 1575 * 3) RTC 1576 * 1577 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1578 * If system has neither 1) nor 2), 3) will be used finally. 1579 * 1580 * 1581 * If timekeeping has injected sleeptime via either 1) or 2), 1582 * 3) becomes needless, so in this case we don't need to call 1583 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1584 * means. 1585 */ 1586 bool timekeeping_rtc_skipresume(void) 1587 { 1588 return sleeptime_injected; 1589 } 1590 1591 /** 1592 * 1) can be determined whether to use or not only when doing 1593 * timekeeping_resume() which is invoked after rtc_suspend(), 1594 * so we can't skip rtc_suspend() surely if system has 1). 1595 * 1596 * But if system has 2), 2) will definitely be used, so in this 1597 * case we don't need to call rtc_suspend(), and this is what 1598 * timekeeping_rtc_skipsuspend() means. 1599 */ 1600 bool timekeeping_rtc_skipsuspend(void) 1601 { 1602 return persistent_clock_exists; 1603 } 1604 1605 /** 1606 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1607 * @delta: pointer to a timespec64 delta value 1608 * 1609 * This hook is for architectures that cannot support read_persistent_clock64 1610 * because their RTC/persistent clock is only accessible when irqs are enabled. 1611 * and also don't have an effective nonstop clocksource. 1612 * 1613 * This function should only be called by rtc_resume(), and allows 1614 * a suspend offset to be injected into the timekeeping values. 1615 */ 1616 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1617 { 1618 struct timekeeper *tk = &tk_core.timekeeper; 1619 unsigned long flags; 1620 1621 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1622 write_seqcount_begin(&tk_core.seq); 1623 1624 timekeeping_forward_now(tk); 1625 1626 __timekeeping_inject_sleeptime(tk, delta); 1627 1628 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1629 1630 write_seqcount_end(&tk_core.seq); 1631 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1632 1633 /* signal hrtimers about time change */ 1634 clock_was_set(); 1635 } 1636 #endif 1637 1638 /** 1639 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1640 */ 1641 void timekeeping_resume(void) 1642 { 1643 struct timekeeper *tk = &tk_core.timekeeper; 1644 struct clocksource *clock = tk->tkr_mono.clock; 1645 unsigned long flags; 1646 struct timespec64 ts_new, ts_delta; 1647 cycle_t cycle_now; 1648 1649 sleeptime_injected = false; 1650 read_persistent_clock64(&ts_new); 1651 1652 clockevents_resume(); 1653 clocksource_resume(); 1654 1655 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1656 write_seqcount_begin(&tk_core.seq); 1657 1658 /* 1659 * After system resumes, we need to calculate the suspended time and 1660 * compensate it for the OS time. There are 3 sources that could be 1661 * used: Nonstop clocksource during suspend, persistent clock and rtc 1662 * device. 1663 * 1664 * One specific platform may have 1 or 2 or all of them, and the 1665 * preference will be: 1666 * suspend-nonstop clocksource -> persistent clock -> rtc 1667 * The less preferred source will only be tried if there is no better 1668 * usable source. The rtc part is handled separately in rtc core code. 1669 */ 1670 cycle_now = tk->tkr_mono.read(clock); 1671 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1672 cycle_now > tk->tkr_mono.cycle_last) { 1673 u64 nsec, cyc_delta; 1674 1675 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1676 tk->tkr_mono.mask); 1677 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1678 ts_delta = ns_to_timespec64(nsec); 1679 sleeptime_injected = true; 1680 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1681 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1682 sleeptime_injected = true; 1683 } 1684 1685 if (sleeptime_injected) 1686 __timekeeping_inject_sleeptime(tk, &ts_delta); 1687 1688 /* Re-base the last cycle value */ 1689 tk->tkr_mono.cycle_last = cycle_now; 1690 tk->tkr_raw.cycle_last = cycle_now; 1691 1692 tk->ntp_error = 0; 1693 timekeeping_suspended = 0; 1694 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1695 write_seqcount_end(&tk_core.seq); 1696 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1697 1698 touch_softlockup_watchdog(); 1699 1700 tick_resume(); 1701 hrtimers_resume(); 1702 } 1703 1704 int timekeeping_suspend(void) 1705 { 1706 struct timekeeper *tk = &tk_core.timekeeper; 1707 unsigned long flags; 1708 struct timespec64 delta, delta_delta; 1709 static struct timespec64 old_delta; 1710 1711 read_persistent_clock64(&timekeeping_suspend_time); 1712 1713 /* 1714 * On some systems the persistent_clock can not be detected at 1715 * timekeeping_init by its return value, so if we see a valid 1716 * value returned, update the persistent_clock_exists flag. 1717 */ 1718 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1719 persistent_clock_exists = true; 1720 1721 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1722 write_seqcount_begin(&tk_core.seq); 1723 timekeeping_forward_now(tk); 1724 timekeeping_suspended = 1; 1725 1726 if (persistent_clock_exists) { 1727 /* 1728 * To avoid drift caused by repeated suspend/resumes, 1729 * which each can add ~1 second drift error, 1730 * try to compensate so the difference in system time 1731 * and persistent_clock time stays close to constant. 1732 */ 1733 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1734 delta_delta = timespec64_sub(delta, old_delta); 1735 if (abs(delta_delta.tv_sec) >= 2) { 1736 /* 1737 * if delta_delta is too large, assume time correction 1738 * has occurred and set old_delta to the current delta. 1739 */ 1740 old_delta = delta; 1741 } else { 1742 /* Otherwise try to adjust old_system to compensate */ 1743 timekeeping_suspend_time = 1744 timespec64_add(timekeeping_suspend_time, delta_delta); 1745 } 1746 } 1747 1748 timekeeping_update(tk, TK_MIRROR); 1749 halt_fast_timekeeper(tk); 1750 write_seqcount_end(&tk_core.seq); 1751 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1752 1753 tick_suspend(); 1754 clocksource_suspend(); 1755 clockevents_suspend(); 1756 1757 return 0; 1758 } 1759 1760 /* sysfs resume/suspend bits for timekeeping */ 1761 static struct syscore_ops timekeeping_syscore_ops = { 1762 .resume = timekeeping_resume, 1763 .suspend = timekeeping_suspend, 1764 }; 1765 1766 static int __init timekeeping_init_ops(void) 1767 { 1768 register_syscore_ops(&timekeeping_syscore_ops); 1769 return 0; 1770 } 1771 device_initcall(timekeeping_init_ops); 1772 1773 /* 1774 * Apply a multiplier adjustment to the timekeeper 1775 */ 1776 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1777 s64 offset, 1778 bool negative, 1779 int adj_scale) 1780 { 1781 s64 interval = tk->cycle_interval; 1782 s32 mult_adj = 1; 1783 1784 if (negative) { 1785 mult_adj = -mult_adj; 1786 interval = -interval; 1787 offset = -offset; 1788 } 1789 mult_adj <<= adj_scale; 1790 interval <<= adj_scale; 1791 offset <<= adj_scale; 1792 1793 /* 1794 * So the following can be confusing. 1795 * 1796 * To keep things simple, lets assume mult_adj == 1 for now. 1797 * 1798 * When mult_adj != 1, remember that the interval and offset values 1799 * have been appropriately scaled so the math is the same. 1800 * 1801 * The basic idea here is that we're increasing the multiplier 1802 * by one, this causes the xtime_interval to be incremented by 1803 * one cycle_interval. This is because: 1804 * xtime_interval = cycle_interval * mult 1805 * So if mult is being incremented by one: 1806 * xtime_interval = cycle_interval * (mult + 1) 1807 * Its the same as: 1808 * xtime_interval = (cycle_interval * mult) + cycle_interval 1809 * Which can be shortened to: 1810 * xtime_interval += cycle_interval 1811 * 1812 * So offset stores the non-accumulated cycles. Thus the current 1813 * time (in shifted nanoseconds) is: 1814 * now = (offset * adj) + xtime_nsec 1815 * Now, even though we're adjusting the clock frequency, we have 1816 * to keep time consistent. In other words, we can't jump back 1817 * in time, and we also want to avoid jumping forward in time. 1818 * 1819 * So given the same offset value, we need the time to be the same 1820 * both before and after the freq adjustment. 1821 * now = (offset * adj_1) + xtime_nsec_1 1822 * now = (offset * adj_2) + xtime_nsec_2 1823 * So: 1824 * (offset * adj_1) + xtime_nsec_1 = 1825 * (offset * adj_2) + xtime_nsec_2 1826 * And we know: 1827 * adj_2 = adj_1 + 1 1828 * So: 1829 * (offset * adj_1) + xtime_nsec_1 = 1830 * (offset * (adj_1+1)) + xtime_nsec_2 1831 * (offset * adj_1) + xtime_nsec_1 = 1832 * (offset * adj_1) + offset + xtime_nsec_2 1833 * Canceling the sides: 1834 * xtime_nsec_1 = offset + xtime_nsec_2 1835 * Which gives us: 1836 * xtime_nsec_2 = xtime_nsec_1 - offset 1837 * Which simplfies to: 1838 * xtime_nsec -= offset 1839 * 1840 * XXX - TODO: Doc ntp_error calculation. 1841 */ 1842 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1843 /* NTP adjustment caused clocksource mult overflow */ 1844 WARN_ON_ONCE(1); 1845 return; 1846 } 1847 1848 tk->tkr_mono.mult += mult_adj; 1849 tk->xtime_interval += interval; 1850 tk->tkr_mono.xtime_nsec -= offset; 1851 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1852 } 1853 1854 /* 1855 * Calculate the multiplier adjustment needed to match the frequency 1856 * specified by NTP 1857 */ 1858 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1859 s64 offset) 1860 { 1861 s64 interval = tk->cycle_interval; 1862 s64 xinterval = tk->xtime_interval; 1863 u32 base = tk->tkr_mono.clock->mult; 1864 u32 max = tk->tkr_mono.clock->maxadj; 1865 u32 cur_adj = tk->tkr_mono.mult; 1866 s64 tick_error; 1867 bool negative; 1868 u32 adj_scale; 1869 1870 /* Remove any current error adj from freq calculation */ 1871 if (tk->ntp_err_mult) 1872 xinterval -= tk->cycle_interval; 1873 1874 tk->ntp_tick = ntp_tick_length(); 1875 1876 /* Calculate current error per tick */ 1877 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1878 tick_error -= (xinterval + tk->xtime_remainder); 1879 1880 /* Don't worry about correcting it if its small */ 1881 if (likely((tick_error >= 0) && (tick_error <= interval))) 1882 return; 1883 1884 /* preserve the direction of correction */ 1885 negative = (tick_error < 0); 1886 1887 /* If any adjustment would pass the max, just return */ 1888 if (negative && (cur_adj - 1) <= (base - max)) 1889 return; 1890 if (!negative && (cur_adj + 1) >= (base + max)) 1891 return; 1892 /* 1893 * Sort out the magnitude of the correction, but 1894 * avoid making so large a correction that we go 1895 * over the max adjustment. 1896 */ 1897 adj_scale = 0; 1898 tick_error = abs(tick_error); 1899 while (tick_error > interval) { 1900 u32 adj = 1 << (adj_scale + 1); 1901 1902 /* Check if adjustment gets us within 1 unit from the max */ 1903 if (negative && (cur_adj - adj) <= (base - max)) 1904 break; 1905 if (!negative && (cur_adj + adj) >= (base + max)) 1906 break; 1907 1908 adj_scale++; 1909 tick_error >>= 1; 1910 } 1911 1912 /* scale the corrections */ 1913 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1914 } 1915 1916 /* 1917 * Adjust the timekeeper's multiplier to the correct frequency 1918 * and also to reduce the accumulated error value. 1919 */ 1920 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1921 { 1922 /* Correct for the current frequency error */ 1923 timekeeping_freqadjust(tk, offset); 1924 1925 /* Next make a small adjustment to fix any cumulative error */ 1926 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1927 tk->ntp_err_mult = 1; 1928 timekeeping_apply_adjustment(tk, offset, 0, 0); 1929 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1930 /* Undo any existing error adjustment */ 1931 timekeeping_apply_adjustment(tk, offset, 1, 0); 1932 tk->ntp_err_mult = 0; 1933 } 1934 1935 if (unlikely(tk->tkr_mono.clock->maxadj && 1936 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1937 > tk->tkr_mono.clock->maxadj))) { 1938 printk_once(KERN_WARNING 1939 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1940 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1941 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1942 } 1943 1944 /* 1945 * It may be possible that when we entered this function, xtime_nsec 1946 * was very small. Further, if we're slightly speeding the clocksource 1947 * in the code above, its possible the required corrective factor to 1948 * xtime_nsec could cause it to underflow. 1949 * 1950 * Now, since we already accumulated the second, cannot simply roll 1951 * the accumulated second back, since the NTP subsystem has been 1952 * notified via second_overflow. So instead we push xtime_nsec forward 1953 * by the amount we underflowed, and add that amount into the error. 1954 * 1955 * We'll correct this error next time through this function, when 1956 * xtime_nsec is not as small. 1957 */ 1958 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1959 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1960 tk->tkr_mono.xtime_nsec = 0; 1961 tk->ntp_error += neg << tk->ntp_error_shift; 1962 } 1963 } 1964 1965 /** 1966 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1967 * 1968 * Helper function that accumulates the nsecs greater than a second 1969 * from the xtime_nsec field to the xtime_secs field. 1970 * It also calls into the NTP code to handle leapsecond processing. 1971 * 1972 */ 1973 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1974 { 1975 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1976 unsigned int clock_set = 0; 1977 1978 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1979 int leap; 1980 1981 tk->tkr_mono.xtime_nsec -= nsecps; 1982 tk->xtime_sec++; 1983 1984 /* Figure out if its a leap sec and apply if needed */ 1985 leap = second_overflow(tk->xtime_sec); 1986 if (unlikely(leap)) { 1987 struct timespec64 ts; 1988 1989 tk->xtime_sec += leap; 1990 1991 ts.tv_sec = leap; 1992 ts.tv_nsec = 0; 1993 tk_set_wall_to_mono(tk, 1994 timespec64_sub(tk->wall_to_monotonic, ts)); 1995 1996 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1997 1998 clock_set = TK_CLOCK_WAS_SET; 1999 } 2000 } 2001 return clock_set; 2002 } 2003 2004 /** 2005 * logarithmic_accumulation - shifted accumulation of cycles 2006 * 2007 * This functions accumulates a shifted interval of cycles into 2008 * into a shifted interval nanoseconds. Allows for O(log) accumulation 2009 * loop. 2010 * 2011 * Returns the unconsumed cycles. 2012 */ 2013 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 2014 u32 shift, 2015 unsigned int *clock_set) 2016 { 2017 cycle_t interval = tk->cycle_interval << shift; 2018 u64 raw_nsecs; 2019 2020 /* If the offset is smaller than a shifted interval, do nothing */ 2021 if (offset < interval) 2022 return offset; 2023 2024 /* Accumulate one shifted interval */ 2025 offset -= interval; 2026 tk->tkr_mono.cycle_last += interval; 2027 tk->tkr_raw.cycle_last += interval; 2028 2029 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2030 *clock_set |= accumulate_nsecs_to_secs(tk); 2031 2032 /* Accumulate raw time */ 2033 raw_nsecs = (u64)tk->raw_interval << shift; 2034 raw_nsecs += tk->raw_time.tv_nsec; 2035 if (raw_nsecs >= NSEC_PER_SEC) { 2036 u64 raw_secs = raw_nsecs; 2037 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 2038 tk->raw_time.tv_sec += raw_secs; 2039 } 2040 tk->raw_time.tv_nsec = raw_nsecs; 2041 2042 /* Accumulate error between NTP and clock interval */ 2043 tk->ntp_error += tk->ntp_tick << shift; 2044 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2045 (tk->ntp_error_shift + shift); 2046 2047 return offset; 2048 } 2049 2050 /** 2051 * update_wall_time - Uses the current clocksource to increment the wall time 2052 * 2053 */ 2054 void update_wall_time(void) 2055 { 2056 struct timekeeper *real_tk = &tk_core.timekeeper; 2057 struct timekeeper *tk = &shadow_timekeeper; 2058 cycle_t offset; 2059 int shift = 0, maxshift; 2060 unsigned int clock_set = 0; 2061 unsigned long flags; 2062 2063 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2064 2065 /* Make sure we're fully resumed: */ 2066 if (unlikely(timekeeping_suspended)) 2067 goto out; 2068 2069 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2070 offset = real_tk->cycle_interval; 2071 #else 2072 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 2073 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2074 #endif 2075 2076 /* Check if there's really nothing to do */ 2077 if (offset < real_tk->cycle_interval) 2078 goto out; 2079 2080 /* Do some additional sanity checking */ 2081 timekeeping_check_update(real_tk, offset); 2082 2083 /* 2084 * With NO_HZ we may have to accumulate many cycle_intervals 2085 * (think "ticks") worth of time at once. To do this efficiently, 2086 * we calculate the largest doubling multiple of cycle_intervals 2087 * that is smaller than the offset. We then accumulate that 2088 * chunk in one go, and then try to consume the next smaller 2089 * doubled multiple. 2090 */ 2091 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2092 shift = max(0, shift); 2093 /* Bound shift to one less than what overflows tick_length */ 2094 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2095 shift = min(shift, maxshift); 2096 while (offset >= tk->cycle_interval) { 2097 offset = logarithmic_accumulation(tk, offset, shift, 2098 &clock_set); 2099 if (offset < tk->cycle_interval<<shift) 2100 shift--; 2101 } 2102 2103 /* correct the clock when NTP error is too big */ 2104 timekeeping_adjust(tk, offset); 2105 2106 /* 2107 * XXX This can be killed once everyone converts 2108 * to the new update_vsyscall. 2109 */ 2110 old_vsyscall_fixup(tk); 2111 2112 /* 2113 * Finally, make sure that after the rounding 2114 * xtime_nsec isn't larger than NSEC_PER_SEC 2115 */ 2116 clock_set |= accumulate_nsecs_to_secs(tk); 2117 2118 write_seqcount_begin(&tk_core.seq); 2119 /* 2120 * Update the real timekeeper. 2121 * 2122 * We could avoid this memcpy by switching pointers, but that 2123 * requires changes to all other timekeeper usage sites as 2124 * well, i.e. move the timekeeper pointer getter into the 2125 * spinlocked/seqcount protected sections. And we trade this 2126 * memcpy under the tk_core.seq against one before we start 2127 * updating. 2128 */ 2129 timekeeping_update(tk, clock_set); 2130 memcpy(real_tk, tk, sizeof(*tk)); 2131 /* The memcpy must come last. Do not put anything here! */ 2132 write_seqcount_end(&tk_core.seq); 2133 out: 2134 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2135 if (clock_set) 2136 /* Have to call _delayed version, since in irq context*/ 2137 clock_was_set_delayed(); 2138 } 2139 2140 /** 2141 * getboottime64 - Return the real time of system boot. 2142 * @ts: pointer to the timespec64 to be set 2143 * 2144 * Returns the wall-time of boot in a timespec64. 2145 * 2146 * This is based on the wall_to_monotonic offset and the total suspend 2147 * time. Calls to settimeofday will affect the value returned (which 2148 * basically means that however wrong your real time clock is at boot time, 2149 * you get the right time here). 2150 */ 2151 void getboottime64(struct timespec64 *ts) 2152 { 2153 struct timekeeper *tk = &tk_core.timekeeper; 2154 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2155 2156 *ts = ktime_to_timespec64(t); 2157 } 2158 EXPORT_SYMBOL_GPL(getboottime64); 2159 2160 unsigned long get_seconds(void) 2161 { 2162 struct timekeeper *tk = &tk_core.timekeeper; 2163 2164 return tk->xtime_sec; 2165 } 2166 EXPORT_SYMBOL(get_seconds); 2167 2168 struct timespec __current_kernel_time(void) 2169 { 2170 struct timekeeper *tk = &tk_core.timekeeper; 2171 2172 return timespec64_to_timespec(tk_xtime(tk)); 2173 } 2174 2175 struct timespec64 current_kernel_time64(void) 2176 { 2177 struct timekeeper *tk = &tk_core.timekeeper; 2178 struct timespec64 now; 2179 unsigned long seq; 2180 2181 do { 2182 seq = read_seqcount_begin(&tk_core.seq); 2183 2184 now = tk_xtime(tk); 2185 } while (read_seqcount_retry(&tk_core.seq, seq)); 2186 2187 return now; 2188 } 2189 EXPORT_SYMBOL(current_kernel_time64); 2190 2191 struct timespec64 get_monotonic_coarse64(void) 2192 { 2193 struct timekeeper *tk = &tk_core.timekeeper; 2194 struct timespec64 now, mono; 2195 unsigned long seq; 2196 2197 do { 2198 seq = read_seqcount_begin(&tk_core.seq); 2199 2200 now = tk_xtime(tk); 2201 mono = tk->wall_to_monotonic; 2202 } while (read_seqcount_retry(&tk_core.seq, seq)); 2203 2204 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2205 now.tv_nsec + mono.tv_nsec); 2206 2207 return now; 2208 } 2209 EXPORT_SYMBOL(get_monotonic_coarse64); 2210 2211 /* 2212 * Must hold jiffies_lock 2213 */ 2214 void do_timer(unsigned long ticks) 2215 { 2216 jiffies_64 += ticks; 2217 calc_global_load(ticks); 2218 } 2219 2220 /** 2221 * ktime_get_update_offsets_now - hrtimer helper 2222 * @cwsseq: pointer to check and store the clock was set sequence number 2223 * @offs_real: pointer to storage for monotonic -> realtime offset 2224 * @offs_boot: pointer to storage for monotonic -> boottime offset 2225 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2226 * 2227 * Returns current monotonic time and updates the offsets if the 2228 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2229 * different. 2230 * 2231 * Called from hrtimer_interrupt() or retrigger_next_event() 2232 */ 2233 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2234 ktime_t *offs_boot, ktime_t *offs_tai) 2235 { 2236 struct timekeeper *tk = &tk_core.timekeeper; 2237 unsigned int seq; 2238 ktime_t base; 2239 u64 nsecs; 2240 2241 do { 2242 seq = read_seqcount_begin(&tk_core.seq); 2243 2244 base = tk->tkr_mono.base; 2245 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2246 base = ktime_add_ns(base, nsecs); 2247 2248 if (*cwsseq != tk->clock_was_set_seq) { 2249 *cwsseq = tk->clock_was_set_seq; 2250 *offs_real = tk->offs_real; 2251 *offs_boot = tk->offs_boot; 2252 *offs_tai = tk->offs_tai; 2253 } 2254 2255 /* Handle leapsecond insertion adjustments */ 2256 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 2257 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2258 2259 } while (read_seqcount_retry(&tk_core.seq, seq)); 2260 2261 return base; 2262 } 2263 2264 /** 2265 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2266 */ 2267 int do_adjtimex(struct timex *txc) 2268 { 2269 struct timekeeper *tk = &tk_core.timekeeper; 2270 unsigned long flags; 2271 struct timespec64 ts; 2272 s32 orig_tai, tai; 2273 int ret; 2274 2275 /* Validate the data before disabling interrupts */ 2276 ret = ntp_validate_timex(txc); 2277 if (ret) 2278 return ret; 2279 2280 if (txc->modes & ADJ_SETOFFSET) { 2281 struct timespec delta; 2282 delta.tv_sec = txc->time.tv_sec; 2283 delta.tv_nsec = txc->time.tv_usec; 2284 if (!(txc->modes & ADJ_NANO)) 2285 delta.tv_nsec *= 1000; 2286 ret = timekeeping_inject_offset(&delta); 2287 if (ret) 2288 return ret; 2289 } 2290 2291 getnstimeofday64(&ts); 2292 2293 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2294 write_seqcount_begin(&tk_core.seq); 2295 2296 orig_tai = tai = tk->tai_offset; 2297 ret = __do_adjtimex(txc, &ts, &tai); 2298 2299 if (tai != orig_tai) { 2300 __timekeeping_set_tai_offset(tk, tai); 2301 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2302 } 2303 tk_update_leap_state(tk); 2304 2305 write_seqcount_end(&tk_core.seq); 2306 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2307 2308 if (tai != orig_tai) 2309 clock_was_set(); 2310 2311 ntp_notify_cmos_timer(); 2312 2313 return ret; 2314 } 2315 2316 #ifdef CONFIG_NTP_PPS 2317 /** 2318 * hardpps() - Accessor function to NTP __hardpps function 2319 */ 2320 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2321 { 2322 unsigned long flags; 2323 2324 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2325 write_seqcount_begin(&tk_core.seq); 2326 2327 __hardpps(phase_ts, raw_ts); 2328 2329 write_seqcount_end(&tk_core.seq); 2330 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2331 } 2332 EXPORT_SYMBOL(hardpps); 2333 #endif 2334 2335 /** 2336 * xtime_update() - advances the timekeeping infrastructure 2337 * @ticks: number of ticks, that have elapsed since the last call. 2338 * 2339 * Must be called with interrupts disabled. 2340 */ 2341 void xtime_update(unsigned long ticks) 2342 { 2343 write_seqlock(&jiffies_lock); 2344 do_timer(ticks); 2345 write_sequnlock(&jiffies_lock); 2346 update_wall_time(); 2347 } 2348