xref: /linux/kernel/time/timekeeping.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 
23 /* Structure holding internal timekeeping values. */
24 struct timekeeper {
25 	/* Current clocksource used for timekeeping. */
26 	struct clocksource *clock;
27 	/* The shift value of the current clocksource. */
28 	int	shift;
29 
30 	/* Number of clock cycles in one NTP interval. */
31 	cycle_t cycle_interval;
32 	/* Number of clock shifted nano seconds in one NTP interval. */
33 	u64	xtime_interval;
34 	/* Raw nano seconds accumulated per NTP interval. */
35 	u32	raw_interval;
36 
37 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
38 	u64	xtime_nsec;
39 	/* Difference between accumulated time and NTP time in ntp
40 	 * shifted nano seconds. */
41 	s64	ntp_error;
42 	/* Shift conversion between clock shifted nano seconds and
43 	 * ntp shifted nano seconds. */
44 	int	ntp_error_shift;
45 	/* NTP adjusted clock multiplier */
46 	u32	mult;
47 };
48 
49 struct timekeeper timekeeper;
50 
51 /**
52  * timekeeper_setup_internals - Set up internals to use clocksource clock.
53  *
54  * @clock:		Pointer to clocksource.
55  *
56  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
57  * pair and interval request.
58  *
59  * Unless you're the timekeeping code, you should not be using this!
60  */
61 static void timekeeper_setup_internals(struct clocksource *clock)
62 {
63 	cycle_t interval;
64 	u64 tmp;
65 
66 	timekeeper.clock = clock;
67 	clock->cycle_last = clock->read(clock);
68 
69 	/* Do the ns -> cycle conversion first, using original mult */
70 	tmp = NTP_INTERVAL_LENGTH;
71 	tmp <<= clock->shift;
72 	tmp += clock->mult/2;
73 	do_div(tmp, clock->mult);
74 	if (tmp == 0)
75 		tmp = 1;
76 
77 	interval = (cycle_t) tmp;
78 	timekeeper.cycle_interval = interval;
79 
80 	/* Go back from cycles -> shifted ns */
81 	timekeeper.xtime_interval = (u64) interval * clock->mult;
82 	timekeeper.raw_interval =
83 		((u64) interval * clock->mult) >> clock->shift;
84 
85 	timekeeper.xtime_nsec = 0;
86 	timekeeper.shift = clock->shift;
87 
88 	timekeeper.ntp_error = 0;
89 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
90 
91 	/*
92 	 * The timekeeper keeps its own mult values for the currently
93 	 * active clocksource. These value will be adjusted via NTP
94 	 * to counteract clock drifting.
95 	 */
96 	timekeeper.mult = clock->mult;
97 }
98 
99 /* Timekeeper helper functions. */
100 static inline s64 timekeeping_get_ns(void)
101 {
102 	cycle_t cycle_now, cycle_delta;
103 	struct clocksource *clock;
104 
105 	/* read clocksource: */
106 	clock = timekeeper.clock;
107 	cycle_now = clock->read(clock);
108 
109 	/* calculate the delta since the last update_wall_time: */
110 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
111 
112 	/* return delta convert to nanoseconds using ntp adjusted mult. */
113 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
114 				  timekeeper.shift);
115 }
116 
117 static inline s64 timekeeping_get_ns_raw(void)
118 {
119 	cycle_t cycle_now, cycle_delta;
120 	struct clocksource *clock;
121 
122 	/* read clocksource: */
123 	clock = timekeeper.clock;
124 	cycle_now = clock->read(clock);
125 
126 	/* calculate the delta since the last update_wall_time: */
127 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
128 
129 	/* return delta convert to nanoseconds using ntp adjusted mult. */
130 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
131 }
132 
133 /*
134  * This read-write spinlock protects us from races in SMP while
135  * playing with xtime.
136  */
137 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
138 
139 
140 /*
141  * The current time
142  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
143  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
144  * at zero at system boot time, so wall_to_monotonic will be negative,
145  * however, we will ALWAYS keep the tv_nsec part positive so we can use
146  * the usual normalization.
147  *
148  * wall_to_monotonic is moved after resume from suspend for the monotonic
149  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
150  * to get the real boot based time offset.
151  *
152  * - wall_to_monotonic is no longer the boot time, getboottime must be
153  * used instead.
154  */
155 struct timespec xtime __attribute__ ((aligned (16)));
156 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
157 static struct timespec total_sleep_time;
158 
159 /*
160  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
161  */
162 struct timespec raw_time;
163 
164 /* flag for if timekeeping is suspended */
165 int __read_mostly timekeeping_suspended;
166 
167 static struct timespec xtime_cache __attribute__ ((aligned (16)));
168 void update_xtime_cache(u64 nsec)
169 {
170 	xtime_cache = xtime;
171 	timespec_add_ns(&xtime_cache, nsec);
172 }
173 
174 /* must hold xtime_lock */
175 void timekeeping_leap_insert(int leapsecond)
176 {
177 	xtime.tv_sec += leapsecond;
178 	wall_to_monotonic.tv_sec -= leapsecond;
179 	update_vsyscall(&xtime, timekeeper.clock);
180 }
181 
182 #ifdef CONFIG_GENERIC_TIME
183 
184 /**
185  * timekeeping_forward_now - update clock to the current time
186  *
187  * Forward the current clock to update its state since the last call to
188  * update_wall_time(). This is useful before significant clock changes,
189  * as it avoids having to deal with this time offset explicitly.
190  */
191 static void timekeeping_forward_now(void)
192 {
193 	cycle_t cycle_now, cycle_delta;
194 	struct clocksource *clock;
195 	s64 nsec;
196 
197 	clock = timekeeper.clock;
198 	cycle_now = clock->read(clock);
199 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
200 	clock->cycle_last = cycle_now;
201 
202 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
203 				  timekeeper.shift);
204 
205 	/* If arch requires, add in gettimeoffset() */
206 	nsec += arch_gettimeoffset();
207 
208 	timespec_add_ns(&xtime, nsec);
209 
210 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
211 	timespec_add_ns(&raw_time, nsec);
212 }
213 
214 /**
215  * getnstimeofday - Returns the time of day in a timespec
216  * @ts:		pointer to the timespec to be set
217  *
218  * Returns the time of day in a timespec.
219  */
220 void getnstimeofday(struct timespec *ts)
221 {
222 	unsigned long seq;
223 	s64 nsecs;
224 
225 	WARN_ON(timekeeping_suspended);
226 
227 	do {
228 		seq = read_seqbegin(&xtime_lock);
229 
230 		*ts = xtime;
231 		nsecs = timekeeping_get_ns();
232 
233 		/* If arch requires, add in gettimeoffset() */
234 		nsecs += arch_gettimeoffset();
235 
236 	} while (read_seqretry(&xtime_lock, seq));
237 
238 	timespec_add_ns(ts, nsecs);
239 }
240 
241 EXPORT_SYMBOL(getnstimeofday);
242 
243 ktime_t ktime_get(void)
244 {
245 	unsigned int seq;
246 	s64 secs, nsecs;
247 
248 	WARN_ON(timekeeping_suspended);
249 
250 	do {
251 		seq = read_seqbegin(&xtime_lock);
252 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
253 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
254 		nsecs += timekeeping_get_ns();
255 
256 	} while (read_seqretry(&xtime_lock, seq));
257 	/*
258 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
259 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
260 	 */
261 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
262 }
263 EXPORT_SYMBOL_GPL(ktime_get);
264 
265 /**
266  * ktime_get_ts - get the monotonic clock in timespec format
267  * @ts:		pointer to timespec variable
268  *
269  * The function calculates the monotonic clock from the realtime
270  * clock and the wall_to_monotonic offset and stores the result
271  * in normalized timespec format in the variable pointed to by @ts.
272  */
273 void ktime_get_ts(struct timespec *ts)
274 {
275 	struct timespec tomono;
276 	unsigned int seq;
277 	s64 nsecs;
278 
279 	WARN_ON(timekeeping_suspended);
280 
281 	do {
282 		seq = read_seqbegin(&xtime_lock);
283 		*ts = xtime;
284 		tomono = wall_to_monotonic;
285 		nsecs = timekeeping_get_ns();
286 
287 	} while (read_seqretry(&xtime_lock, seq));
288 
289 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
290 				ts->tv_nsec + tomono.tv_nsec + nsecs);
291 }
292 EXPORT_SYMBOL_GPL(ktime_get_ts);
293 
294 /**
295  * do_gettimeofday - Returns the time of day in a timeval
296  * @tv:		pointer to the timeval to be set
297  *
298  * NOTE: Users should be converted to using getnstimeofday()
299  */
300 void do_gettimeofday(struct timeval *tv)
301 {
302 	struct timespec now;
303 
304 	getnstimeofday(&now);
305 	tv->tv_sec = now.tv_sec;
306 	tv->tv_usec = now.tv_nsec/1000;
307 }
308 
309 EXPORT_SYMBOL(do_gettimeofday);
310 /**
311  * do_settimeofday - Sets the time of day
312  * @tv:		pointer to the timespec variable containing the new time
313  *
314  * Sets the time of day to the new time and update NTP and notify hrtimers
315  */
316 int do_settimeofday(struct timespec *tv)
317 {
318 	struct timespec ts_delta;
319 	unsigned long flags;
320 
321 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
322 		return -EINVAL;
323 
324 	write_seqlock_irqsave(&xtime_lock, flags);
325 
326 	timekeeping_forward_now();
327 
328 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
329 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
330 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
331 
332 	xtime = *tv;
333 
334 	update_xtime_cache(0);
335 
336 	timekeeper.ntp_error = 0;
337 	ntp_clear();
338 
339 	update_vsyscall(&xtime, timekeeper.clock);
340 
341 	write_sequnlock_irqrestore(&xtime_lock, flags);
342 
343 	/* signal hrtimers about time change */
344 	clock_was_set();
345 
346 	return 0;
347 }
348 
349 EXPORT_SYMBOL(do_settimeofday);
350 
351 /**
352  * change_clocksource - Swaps clocksources if a new one is available
353  *
354  * Accumulates current time interval and initializes new clocksource
355  */
356 static int change_clocksource(void *data)
357 {
358 	struct clocksource *new, *old;
359 
360 	new = (struct clocksource *) data;
361 
362 	timekeeping_forward_now();
363 	if (!new->enable || new->enable(new) == 0) {
364 		old = timekeeper.clock;
365 		timekeeper_setup_internals(new);
366 		if (old->disable)
367 			old->disable(old);
368 	}
369 	return 0;
370 }
371 
372 /**
373  * timekeeping_notify - Install a new clock source
374  * @clock:		pointer to the clock source
375  *
376  * This function is called from clocksource.c after a new, better clock
377  * source has been registered. The caller holds the clocksource_mutex.
378  */
379 void timekeeping_notify(struct clocksource *clock)
380 {
381 	if (timekeeper.clock == clock)
382 		return;
383 	stop_machine(change_clocksource, clock, NULL);
384 	tick_clock_notify();
385 }
386 
387 #else /* GENERIC_TIME */
388 
389 static inline void timekeeping_forward_now(void) { }
390 
391 /**
392  * ktime_get - get the monotonic time in ktime_t format
393  *
394  * returns the time in ktime_t format
395  */
396 ktime_t ktime_get(void)
397 {
398 	struct timespec now;
399 
400 	ktime_get_ts(&now);
401 
402 	return timespec_to_ktime(now);
403 }
404 EXPORT_SYMBOL_GPL(ktime_get);
405 
406 /**
407  * ktime_get_ts - get the monotonic clock in timespec format
408  * @ts:		pointer to timespec variable
409  *
410  * The function calculates the monotonic clock from the realtime
411  * clock and the wall_to_monotonic offset and stores the result
412  * in normalized timespec format in the variable pointed to by @ts.
413  */
414 void ktime_get_ts(struct timespec *ts)
415 {
416 	struct timespec tomono;
417 	unsigned long seq;
418 
419 	do {
420 		seq = read_seqbegin(&xtime_lock);
421 		getnstimeofday(ts);
422 		tomono = wall_to_monotonic;
423 
424 	} while (read_seqretry(&xtime_lock, seq));
425 
426 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
427 				ts->tv_nsec + tomono.tv_nsec);
428 }
429 EXPORT_SYMBOL_GPL(ktime_get_ts);
430 
431 #endif /* !GENERIC_TIME */
432 
433 /**
434  * ktime_get_real - get the real (wall-) time in ktime_t format
435  *
436  * returns the time in ktime_t format
437  */
438 ktime_t ktime_get_real(void)
439 {
440 	struct timespec now;
441 
442 	getnstimeofday(&now);
443 
444 	return timespec_to_ktime(now);
445 }
446 EXPORT_SYMBOL_GPL(ktime_get_real);
447 
448 /**
449  * getrawmonotonic - Returns the raw monotonic time in a timespec
450  * @ts:		pointer to the timespec to be set
451  *
452  * Returns the raw monotonic time (completely un-modified by ntp)
453  */
454 void getrawmonotonic(struct timespec *ts)
455 {
456 	unsigned long seq;
457 	s64 nsecs;
458 
459 	do {
460 		seq = read_seqbegin(&xtime_lock);
461 		nsecs = timekeeping_get_ns_raw();
462 		*ts = raw_time;
463 
464 	} while (read_seqretry(&xtime_lock, seq));
465 
466 	timespec_add_ns(ts, nsecs);
467 }
468 EXPORT_SYMBOL(getrawmonotonic);
469 
470 
471 /**
472  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
473  */
474 int timekeeping_valid_for_hres(void)
475 {
476 	unsigned long seq;
477 	int ret;
478 
479 	do {
480 		seq = read_seqbegin(&xtime_lock);
481 
482 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
483 
484 	} while (read_seqretry(&xtime_lock, seq));
485 
486 	return ret;
487 }
488 
489 /**
490  * read_persistent_clock -  Return time from the persistent clock.
491  *
492  * Weak dummy function for arches that do not yet support it.
493  * Reads the time from the battery backed persistent clock.
494  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
495  *
496  *  XXX - Do be sure to remove it once all arches implement it.
497  */
498 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
499 {
500 	ts->tv_sec = 0;
501 	ts->tv_nsec = 0;
502 }
503 
504 /**
505  * read_boot_clock -  Return time of the system start.
506  *
507  * Weak dummy function for arches that do not yet support it.
508  * Function to read the exact time the system has been started.
509  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
510  *
511  *  XXX - Do be sure to remove it once all arches implement it.
512  */
513 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
514 {
515 	ts->tv_sec = 0;
516 	ts->tv_nsec = 0;
517 }
518 
519 /*
520  * timekeeping_init - Initializes the clocksource and common timekeeping values
521  */
522 void __init timekeeping_init(void)
523 {
524 	struct clocksource *clock;
525 	unsigned long flags;
526 	struct timespec now, boot;
527 
528 	read_persistent_clock(&now);
529 	read_boot_clock(&boot);
530 
531 	write_seqlock_irqsave(&xtime_lock, flags);
532 
533 	ntp_init();
534 
535 	clock = clocksource_default_clock();
536 	if (clock->enable)
537 		clock->enable(clock);
538 	timekeeper_setup_internals(clock);
539 
540 	xtime.tv_sec = now.tv_sec;
541 	xtime.tv_nsec = now.tv_nsec;
542 	raw_time.tv_sec = 0;
543 	raw_time.tv_nsec = 0;
544 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
545 		boot.tv_sec = xtime.tv_sec;
546 		boot.tv_nsec = xtime.tv_nsec;
547 	}
548 	set_normalized_timespec(&wall_to_monotonic,
549 				-boot.tv_sec, -boot.tv_nsec);
550 	update_xtime_cache(0);
551 	total_sleep_time.tv_sec = 0;
552 	total_sleep_time.tv_nsec = 0;
553 	write_sequnlock_irqrestore(&xtime_lock, flags);
554 }
555 
556 /* time in seconds when suspend began */
557 static struct timespec timekeeping_suspend_time;
558 
559 /**
560  * timekeeping_resume - Resumes the generic timekeeping subsystem.
561  * @dev:	unused
562  *
563  * This is for the generic clocksource timekeeping.
564  * xtime/wall_to_monotonic/jiffies/etc are
565  * still managed by arch specific suspend/resume code.
566  */
567 static int timekeeping_resume(struct sys_device *dev)
568 {
569 	unsigned long flags;
570 	struct timespec ts;
571 
572 	read_persistent_clock(&ts);
573 
574 	clocksource_resume();
575 
576 	write_seqlock_irqsave(&xtime_lock, flags);
577 
578 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
579 		ts = timespec_sub(ts, timekeeping_suspend_time);
580 		xtime = timespec_add_safe(xtime, ts);
581 		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
582 		total_sleep_time = timespec_add_safe(total_sleep_time, ts);
583 	}
584 	update_xtime_cache(0);
585 	/* re-base the last cycle value */
586 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
587 	timekeeper.ntp_error = 0;
588 	timekeeping_suspended = 0;
589 	write_sequnlock_irqrestore(&xtime_lock, flags);
590 
591 	touch_softlockup_watchdog();
592 
593 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
594 
595 	/* Resume hrtimers */
596 	hres_timers_resume();
597 
598 	return 0;
599 }
600 
601 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
602 {
603 	unsigned long flags;
604 
605 	read_persistent_clock(&timekeeping_suspend_time);
606 
607 	write_seqlock_irqsave(&xtime_lock, flags);
608 	timekeeping_forward_now();
609 	timekeeping_suspended = 1;
610 	write_sequnlock_irqrestore(&xtime_lock, flags);
611 
612 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
613 
614 	return 0;
615 }
616 
617 /* sysfs resume/suspend bits for timekeeping */
618 static struct sysdev_class timekeeping_sysclass = {
619 	.name		= "timekeeping",
620 	.resume		= timekeeping_resume,
621 	.suspend	= timekeeping_suspend,
622 };
623 
624 static struct sys_device device_timer = {
625 	.id		= 0,
626 	.cls		= &timekeeping_sysclass,
627 };
628 
629 static int __init timekeeping_init_device(void)
630 {
631 	int error = sysdev_class_register(&timekeeping_sysclass);
632 	if (!error)
633 		error = sysdev_register(&device_timer);
634 	return error;
635 }
636 
637 device_initcall(timekeeping_init_device);
638 
639 /*
640  * If the error is already larger, we look ahead even further
641  * to compensate for late or lost adjustments.
642  */
643 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
644 						 s64 *offset)
645 {
646 	s64 tick_error, i;
647 	u32 look_ahead, adj;
648 	s32 error2, mult;
649 
650 	/*
651 	 * Use the current error value to determine how much to look ahead.
652 	 * The larger the error the slower we adjust for it to avoid problems
653 	 * with losing too many ticks, otherwise we would overadjust and
654 	 * produce an even larger error.  The smaller the adjustment the
655 	 * faster we try to adjust for it, as lost ticks can do less harm
656 	 * here.  This is tuned so that an error of about 1 msec is adjusted
657 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
658 	 */
659 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
660 	error2 = abs(error2);
661 	for (look_ahead = 0; error2 > 0; look_ahead++)
662 		error2 >>= 2;
663 
664 	/*
665 	 * Now calculate the error in (1 << look_ahead) ticks, but first
666 	 * remove the single look ahead already included in the error.
667 	 */
668 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
669 	tick_error -= timekeeper.xtime_interval >> 1;
670 	error = ((error - tick_error) >> look_ahead) + tick_error;
671 
672 	/* Finally calculate the adjustment shift value.  */
673 	i = *interval;
674 	mult = 1;
675 	if (error < 0) {
676 		error = -error;
677 		*interval = -*interval;
678 		*offset = -*offset;
679 		mult = -1;
680 	}
681 	for (adj = 0; error > i; adj++)
682 		error >>= 1;
683 
684 	*interval <<= adj;
685 	*offset <<= adj;
686 	return mult << adj;
687 }
688 
689 /*
690  * Adjust the multiplier to reduce the error value,
691  * this is optimized for the most common adjustments of -1,0,1,
692  * for other values we can do a bit more work.
693  */
694 static void timekeeping_adjust(s64 offset)
695 {
696 	s64 error, interval = timekeeper.cycle_interval;
697 	int adj;
698 
699 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
700 	if (error > interval) {
701 		error >>= 2;
702 		if (likely(error <= interval))
703 			adj = 1;
704 		else
705 			adj = timekeeping_bigadjust(error, &interval, &offset);
706 	} else if (error < -interval) {
707 		error >>= 2;
708 		if (likely(error >= -interval)) {
709 			adj = -1;
710 			interval = -interval;
711 			offset = -offset;
712 		} else
713 			adj = timekeeping_bigadjust(error, &interval, &offset);
714 	} else
715 		return;
716 
717 	timekeeper.mult += adj;
718 	timekeeper.xtime_interval += interval;
719 	timekeeper.xtime_nsec -= offset;
720 	timekeeper.ntp_error -= (interval - offset) <<
721 				timekeeper.ntp_error_shift;
722 }
723 
724 /**
725  * update_wall_time - Uses the current clocksource to increment the wall time
726  *
727  * Called from the timer interrupt, must hold a write on xtime_lock.
728  */
729 void update_wall_time(void)
730 {
731 	struct clocksource *clock;
732 	cycle_t offset;
733 	u64 nsecs;
734 
735 	/* Make sure we're fully resumed: */
736 	if (unlikely(timekeeping_suspended))
737 		return;
738 
739 	clock = timekeeper.clock;
740 #ifdef CONFIG_GENERIC_TIME
741 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
742 #else
743 	offset = timekeeper.cycle_interval;
744 #endif
745 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
746 
747 	/* normally this loop will run just once, however in the
748 	 * case of lost or late ticks, it will accumulate correctly.
749 	 */
750 	while (offset >= timekeeper.cycle_interval) {
751 		u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
752 
753 		/* accumulate one interval */
754 		offset -= timekeeper.cycle_interval;
755 		clock->cycle_last += timekeeper.cycle_interval;
756 
757 		timekeeper.xtime_nsec += timekeeper.xtime_interval;
758 		if (timekeeper.xtime_nsec >= nsecps) {
759 			timekeeper.xtime_nsec -= nsecps;
760 			xtime.tv_sec++;
761 			second_overflow();
762 		}
763 
764 		raw_time.tv_nsec += timekeeper.raw_interval;
765 		if (raw_time.tv_nsec >= NSEC_PER_SEC) {
766 			raw_time.tv_nsec -= NSEC_PER_SEC;
767 			raw_time.tv_sec++;
768 		}
769 
770 		/* accumulate error between NTP and clock interval */
771 		timekeeper.ntp_error += tick_length;
772 		timekeeper.ntp_error -= timekeeper.xtime_interval <<
773 					timekeeper.ntp_error_shift;
774 	}
775 
776 	/* correct the clock when NTP error is too big */
777 	timekeeping_adjust(offset);
778 
779 	/*
780 	 * Since in the loop above, we accumulate any amount of time
781 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
782 	 * xtime_nsec to be fairly small after the loop. Further, if we're
783 	 * slightly speeding the clocksource up in timekeeping_adjust(),
784 	 * its possible the required corrective factor to xtime_nsec could
785 	 * cause it to underflow.
786 	 *
787 	 * Now, we cannot simply roll the accumulated second back, since
788 	 * the NTP subsystem has been notified via second_overflow. So
789 	 * instead we push xtime_nsec forward by the amount we underflowed,
790 	 * and add that amount into the error.
791 	 *
792 	 * We'll correct this error next time through this function, when
793 	 * xtime_nsec is not as small.
794 	 */
795 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
796 		s64 neg = -(s64)timekeeper.xtime_nsec;
797 		timekeeper.xtime_nsec = 0;
798 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
799 	}
800 
801 	/* store full nanoseconds into xtime after rounding it up and
802 	 * add the remainder to the error difference.
803 	 */
804 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
805 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
806 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
807 				timekeeper.ntp_error_shift;
808 
809 	nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
810 	update_xtime_cache(nsecs);
811 
812 	/* check to see if there is a new clocksource to use */
813 	update_vsyscall(&xtime, timekeeper.clock);
814 }
815 
816 /**
817  * getboottime - Return the real time of system boot.
818  * @ts:		pointer to the timespec to be set
819  *
820  * Returns the time of day in a timespec.
821  *
822  * This is based on the wall_to_monotonic offset and the total suspend
823  * time. Calls to settimeofday will affect the value returned (which
824  * basically means that however wrong your real time clock is at boot time,
825  * you get the right time here).
826  */
827 void getboottime(struct timespec *ts)
828 {
829 	struct timespec boottime = {
830 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
831 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
832 	};
833 
834 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
835 }
836 
837 /**
838  * monotonic_to_bootbased - Convert the monotonic time to boot based.
839  * @ts:		pointer to the timespec to be converted
840  */
841 void monotonic_to_bootbased(struct timespec *ts)
842 {
843 	*ts = timespec_add_safe(*ts, total_sleep_time);
844 }
845 
846 unsigned long get_seconds(void)
847 {
848 	return xtime_cache.tv_sec;
849 }
850 EXPORT_SYMBOL(get_seconds);
851 
852 struct timespec __current_kernel_time(void)
853 {
854 	return xtime_cache;
855 }
856 
857 struct timespec current_kernel_time(void)
858 {
859 	struct timespec now;
860 	unsigned long seq;
861 
862 	do {
863 		seq = read_seqbegin(&xtime_lock);
864 
865 		now = xtime_cache;
866 	} while (read_seqretry(&xtime_lock, seq));
867 
868 	return now;
869 }
870 EXPORT_SYMBOL(current_kernel_time);
871 
872 struct timespec get_monotonic_coarse(void)
873 {
874 	struct timespec now, mono;
875 	unsigned long seq;
876 
877 	do {
878 		seq = read_seqbegin(&xtime_lock);
879 
880 		now = xtime_cache;
881 		mono = wall_to_monotonic;
882 	} while (read_seqretry(&xtime_lock, seq));
883 
884 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
885 				now.tv_nsec + mono.tv_nsec);
886 	return now;
887 }
888