1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sysdev.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 #include <linux/stop_machine.h> 22 23 /* Structure holding internal timekeeping values. */ 24 struct timekeeper { 25 /* Current clocksource used for timekeeping. */ 26 struct clocksource *clock; 27 /* The shift value of the current clocksource. */ 28 int shift; 29 30 /* Number of clock cycles in one NTP interval. */ 31 cycle_t cycle_interval; 32 /* Number of clock shifted nano seconds in one NTP interval. */ 33 u64 xtime_interval; 34 /* Raw nano seconds accumulated per NTP interval. */ 35 u32 raw_interval; 36 37 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ 38 u64 xtime_nsec; 39 /* Difference between accumulated time and NTP time in ntp 40 * shifted nano seconds. */ 41 s64 ntp_error; 42 /* Shift conversion between clock shifted nano seconds and 43 * ntp shifted nano seconds. */ 44 int ntp_error_shift; 45 /* NTP adjusted clock multiplier */ 46 u32 mult; 47 }; 48 49 struct timekeeper timekeeper; 50 51 /** 52 * timekeeper_setup_internals - Set up internals to use clocksource clock. 53 * 54 * @clock: Pointer to clocksource. 55 * 56 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 57 * pair and interval request. 58 * 59 * Unless you're the timekeeping code, you should not be using this! 60 */ 61 static void timekeeper_setup_internals(struct clocksource *clock) 62 { 63 cycle_t interval; 64 u64 tmp; 65 66 timekeeper.clock = clock; 67 clock->cycle_last = clock->read(clock); 68 69 /* Do the ns -> cycle conversion first, using original mult */ 70 tmp = NTP_INTERVAL_LENGTH; 71 tmp <<= clock->shift; 72 tmp += clock->mult/2; 73 do_div(tmp, clock->mult); 74 if (tmp == 0) 75 tmp = 1; 76 77 interval = (cycle_t) tmp; 78 timekeeper.cycle_interval = interval; 79 80 /* Go back from cycles -> shifted ns */ 81 timekeeper.xtime_interval = (u64) interval * clock->mult; 82 timekeeper.raw_interval = 83 ((u64) interval * clock->mult) >> clock->shift; 84 85 timekeeper.xtime_nsec = 0; 86 timekeeper.shift = clock->shift; 87 88 timekeeper.ntp_error = 0; 89 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 90 91 /* 92 * The timekeeper keeps its own mult values for the currently 93 * active clocksource. These value will be adjusted via NTP 94 * to counteract clock drifting. 95 */ 96 timekeeper.mult = clock->mult; 97 } 98 99 /* Timekeeper helper functions. */ 100 static inline s64 timekeeping_get_ns(void) 101 { 102 cycle_t cycle_now, cycle_delta; 103 struct clocksource *clock; 104 105 /* read clocksource: */ 106 clock = timekeeper.clock; 107 cycle_now = clock->read(clock); 108 109 /* calculate the delta since the last update_wall_time: */ 110 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 111 112 /* return delta convert to nanoseconds using ntp adjusted mult. */ 113 return clocksource_cyc2ns(cycle_delta, timekeeper.mult, 114 timekeeper.shift); 115 } 116 117 static inline s64 timekeeping_get_ns_raw(void) 118 { 119 cycle_t cycle_now, cycle_delta; 120 struct clocksource *clock; 121 122 /* read clocksource: */ 123 clock = timekeeper.clock; 124 cycle_now = clock->read(clock); 125 126 /* calculate the delta since the last update_wall_time: */ 127 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 128 129 /* return delta convert to nanoseconds using ntp adjusted mult. */ 130 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 131 } 132 133 /* 134 * This read-write spinlock protects us from races in SMP while 135 * playing with xtime. 136 */ 137 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 138 139 140 /* 141 * The current time 142 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 143 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 144 * at zero at system boot time, so wall_to_monotonic will be negative, 145 * however, we will ALWAYS keep the tv_nsec part positive so we can use 146 * the usual normalization. 147 * 148 * wall_to_monotonic is moved after resume from suspend for the monotonic 149 * time not to jump. We need to add total_sleep_time to wall_to_monotonic 150 * to get the real boot based time offset. 151 * 152 * - wall_to_monotonic is no longer the boot time, getboottime must be 153 * used instead. 154 */ 155 struct timespec xtime __attribute__ ((aligned (16))); 156 struct timespec wall_to_monotonic __attribute__ ((aligned (16))); 157 static struct timespec total_sleep_time; 158 159 /* 160 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. 161 */ 162 struct timespec raw_time; 163 164 /* flag for if timekeeping is suspended */ 165 int __read_mostly timekeeping_suspended; 166 167 static struct timespec xtime_cache __attribute__ ((aligned (16))); 168 void update_xtime_cache(u64 nsec) 169 { 170 xtime_cache = xtime; 171 timespec_add_ns(&xtime_cache, nsec); 172 } 173 174 /* must hold xtime_lock */ 175 void timekeeping_leap_insert(int leapsecond) 176 { 177 xtime.tv_sec += leapsecond; 178 wall_to_monotonic.tv_sec -= leapsecond; 179 update_vsyscall(&xtime, timekeeper.clock); 180 } 181 182 #ifdef CONFIG_GENERIC_TIME 183 184 /** 185 * timekeeping_forward_now - update clock to the current time 186 * 187 * Forward the current clock to update its state since the last call to 188 * update_wall_time(). This is useful before significant clock changes, 189 * as it avoids having to deal with this time offset explicitly. 190 */ 191 static void timekeeping_forward_now(void) 192 { 193 cycle_t cycle_now, cycle_delta; 194 struct clocksource *clock; 195 s64 nsec; 196 197 clock = timekeeper.clock; 198 cycle_now = clock->read(clock); 199 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 200 clock->cycle_last = cycle_now; 201 202 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, 203 timekeeper.shift); 204 205 /* If arch requires, add in gettimeoffset() */ 206 nsec += arch_gettimeoffset(); 207 208 timespec_add_ns(&xtime, nsec); 209 210 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 211 timespec_add_ns(&raw_time, nsec); 212 } 213 214 /** 215 * getnstimeofday - Returns the time of day in a timespec 216 * @ts: pointer to the timespec to be set 217 * 218 * Returns the time of day in a timespec. 219 */ 220 void getnstimeofday(struct timespec *ts) 221 { 222 unsigned long seq; 223 s64 nsecs; 224 225 WARN_ON(timekeeping_suspended); 226 227 do { 228 seq = read_seqbegin(&xtime_lock); 229 230 *ts = xtime; 231 nsecs = timekeeping_get_ns(); 232 233 /* If arch requires, add in gettimeoffset() */ 234 nsecs += arch_gettimeoffset(); 235 236 } while (read_seqretry(&xtime_lock, seq)); 237 238 timespec_add_ns(ts, nsecs); 239 } 240 241 EXPORT_SYMBOL(getnstimeofday); 242 243 ktime_t ktime_get(void) 244 { 245 unsigned int seq; 246 s64 secs, nsecs; 247 248 WARN_ON(timekeeping_suspended); 249 250 do { 251 seq = read_seqbegin(&xtime_lock); 252 secs = xtime.tv_sec + wall_to_monotonic.tv_sec; 253 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; 254 nsecs += timekeeping_get_ns(); 255 256 } while (read_seqretry(&xtime_lock, seq)); 257 /* 258 * Use ktime_set/ktime_add_ns to create a proper ktime on 259 * 32-bit architectures without CONFIG_KTIME_SCALAR. 260 */ 261 return ktime_add_ns(ktime_set(secs, 0), nsecs); 262 } 263 EXPORT_SYMBOL_GPL(ktime_get); 264 265 /** 266 * ktime_get_ts - get the monotonic clock in timespec format 267 * @ts: pointer to timespec variable 268 * 269 * The function calculates the monotonic clock from the realtime 270 * clock and the wall_to_monotonic offset and stores the result 271 * in normalized timespec format in the variable pointed to by @ts. 272 */ 273 void ktime_get_ts(struct timespec *ts) 274 { 275 struct timespec tomono; 276 unsigned int seq; 277 s64 nsecs; 278 279 WARN_ON(timekeeping_suspended); 280 281 do { 282 seq = read_seqbegin(&xtime_lock); 283 *ts = xtime; 284 tomono = wall_to_monotonic; 285 nsecs = timekeeping_get_ns(); 286 287 } while (read_seqretry(&xtime_lock, seq)); 288 289 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 290 ts->tv_nsec + tomono.tv_nsec + nsecs); 291 } 292 EXPORT_SYMBOL_GPL(ktime_get_ts); 293 294 /** 295 * do_gettimeofday - Returns the time of day in a timeval 296 * @tv: pointer to the timeval to be set 297 * 298 * NOTE: Users should be converted to using getnstimeofday() 299 */ 300 void do_gettimeofday(struct timeval *tv) 301 { 302 struct timespec now; 303 304 getnstimeofday(&now); 305 tv->tv_sec = now.tv_sec; 306 tv->tv_usec = now.tv_nsec/1000; 307 } 308 309 EXPORT_SYMBOL(do_gettimeofday); 310 /** 311 * do_settimeofday - Sets the time of day 312 * @tv: pointer to the timespec variable containing the new time 313 * 314 * Sets the time of day to the new time and update NTP and notify hrtimers 315 */ 316 int do_settimeofday(struct timespec *tv) 317 { 318 struct timespec ts_delta; 319 unsigned long flags; 320 321 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 322 return -EINVAL; 323 324 write_seqlock_irqsave(&xtime_lock, flags); 325 326 timekeeping_forward_now(); 327 328 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; 329 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; 330 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta); 331 332 xtime = *tv; 333 334 update_xtime_cache(0); 335 336 timekeeper.ntp_error = 0; 337 ntp_clear(); 338 339 update_vsyscall(&xtime, timekeeper.clock); 340 341 write_sequnlock_irqrestore(&xtime_lock, flags); 342 343 /* signal hrtimers about time change */ 344 clock_was_set(); 345 346 return 0; 347 } 348 349 EXPORT_SYMBOL(do_settimeofday); 350 351 /** 352 * change_clocksource - Swaps clocksources if a new one is available 353 * 354 * Accumulates current time interval and initializes new clocksource 355 */ 356 static int change_clocksource(void *data) 357 { 358 struct clocksource *new, *old; 359 360 new = (struct clocksource *) data; 361 362 timekeeping_forward_now(); 363 if (!new->enable || new->enable(new) == 0) { 364 old = timekeeper.clock; 365 timekeeper_setup_internals(new); 366 if (old->disable) 367 old->disable(old); 368 } 369 return 0; 370 } 371 372 /** 373 * timekeeping_notify - Install a new clock source 374 * @clock: pointer to the clock source 375 * 376 * This function is called from clocksource.c after a new, better clock 377 * source has been registered. The caller holds the clocksource_mutex. 378 */ 379 void timekeeping_notify(struct clocksource *clock) 380 { 381 if (timekeeper.clock == clock) 382 return; 383 stop_machine(change_clocksource, clock, NULL); 384 tick_clock_notify(); 385 } 386 387 #else /* GENERIC_TIME */ 388 389 static inline void timekeeping_forward_now(void) { } 390 391 /** 392 * ktime_get - get the monotonic time in ktime_t format 393 * 394 * returns the time in ktime_t format 395 */ 396 ktime_t ktime_get(void) 397 { 398 struct timespec now; 399 400 ktime_get_ts(&now); 401 402 return timespec_to_ktime(now); 403 } 404 EXPORT_SYMBOL_GPL(ktime_get); 405 406 /** 407 * ktime_get_ts - get the monotonic clock in timespec format 408 * @ts: pointer to timespec variable 409 * 410 * The function calculates the monotonic clock from the realtime 411 * clock and the wall_to_monotonic offset and stores the result 412 * in normalized timespec format in the variable pointed to by @ts. 413 */ 414 void ktime_get_ts(struct timespec *ts) 415 { 416 struct timespec tomono; 417 unsigned long seq; 418 419 do { 420 seq = read_seqbegin(&xtime_lock); 421 getnstimeofday(ts); 422 tomono = wall_to_monotonic; 423 424 } while (read_seqretry(&xtime_lock, seq)); 425 426 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 427 ts->tv_nsec + tomono.tv_nsec); 428 } 429 EXPORT_SYMBOL_GPL(ktime_get_ts); 430 431 #endif /* !GENERIC_TIME */ 432 433 /** 434 * ktime_get_real - get the real (wall-) time in ktime_t format 435 * 436 * returns the time in ktime_t format 437 */ 438 ktime_t ktime_get_real(void) 439 { 440 struct timespec now; 441 442 getnstimeofday(&now); 443 444 return timespec_to_ktime(now); 445 } 446 EXPORT_SYMBOL_GPL(ktime_get_real); 447 448 /** 449 * getrawmonotonic - Returns the raw monotonic time in a timespec 450 * @ts: pointer to the timespec to be set 451 * 452 * Returns the raw monotonic time (completely un-modified by ntp) 453 */ 454 void getrawmonotonic(struct timespec *ts) 455 { 456 unsigned long seq; 457 s64 nsecs; 458 459 do { 460 seq = read_seqbegin(&xtime_lock); 461 nsecs = timekeeping_get_ns_raw(); 462 *ts = raw_time; 463 464 } while (read_seqretry(&xtime_lock, seq)); 465 466 timespec_add_ns(ts, nsecs); 467 } 468 EXPORT_SYMBOL(getrawmonotonic); 469 470 471 /** 472 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 473 */ 474 int timekeeping_valid_for_hres(void) 475 { 476 unsigned long seq; 477 int ret; 478 479 do { 480 seq = read_seqbegin(&xtime_lock); 481 482 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 483 484 } while (read_seqretry(&xtime_lock, seq)); 485 486 return ret; 487 } 488 489 /** 490 * read_persistent_clock - Return time from the persistent clock. 491 * 492 * Weak dummy function for arches that do not yet support it. 493 * Reads the time from the battery backed persistent clock. 494 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 495 * 496 * XXX - Do be sure to remove it once all arches implement it. 497 */ 498 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 499 { 500 ts->tv_sec = 0; 501 ts->tv_nsec = 0; 502 } 503 504 /** 505 * read_boot_clock - Return time of the system start. 506 * 507 * Weak dummy function for arches that do not yet support it. 508 * Function to read the exact time the system has been started. 509 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 510 * 511 * XXX - Do be sure to remove it once all arches implement it. 512 */ 513 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 514 { 515 ts->tv_sec = 0; 516 ts->tv_nsec = 0; 517 } 518 519 /* 520 * timekeeping_init - Initializes the clocksource and common timekeeping values 521 */ 522 void __init timekeeping_init(void) 523 { 524 struct clocksource *clock; 525 unsigned long flags; 526 struct timespec now, boot; 527 528 read_persistent_clock(&now); 529 read_boot_clock(&boot); 530 531 write_seqlock_irqsave(&xtime_lock, flags); 532 533 ntp_init(); 534 535 clock = clocksource_default_clock(); 536 if (clock->enable) 537 clock->enable(clock); 538 timekeeper_setup_internals(clock); 539 540 xtime.tv_sec = now.tv_sec; 541 xtime.tv_nsec = now.tv_nsec; 542 raw_time.tv_sec = 0; 543 raw_time.tv_nsec = 0; 544 if (boot.tv_sec == 0 && boot.tv_nsec == 0) { 545 boot.tv_sec = xtime.tv_sec; 546 boot.tv_nsec = xtime.tv_nsec; 547 } 548 set_normalized_timespec(&wall_to_monotonic, 549 -boot.tv_sec, -boot.tv_nsec); 550 update_xtime_cache(0); 551 total_sleep_time.tv_sec = 0; 552 total_sleep_time.tv_nsec = 0; 553 write_sequnlock_irqrestore(&xtime_lock, flags); 554 } 555 556 /* time in seconds when suspend began */ 557 static struct timespec timekeeping_suspend_time; 558 559 /** 560 * timekeeping_resume - Resumes the generic timekeeping subsystem. 561 * @dev: unused 562 * 563 * This is for the generic clocksource timekeeping. 564 * xtime/wall_to_monotonic/jiffies/etc are 565 * still managed by arch specific suspend/resume code. 566 */ 567 static int timekeeping_resume(struct sys_device *dev) 568 { 569 unsigned long flags; 570 struct timespec ts; 571 572 read_persistent_clock(&ts); 573 574 clocksource_resume(); 575 576 write_seqlock_irqsave(&xtime_lock, flags); 577 578 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { 579 ts = timespec_sub(ts, timekeeping_suspend_time); 580 xtime = timespec_add_safe(xtime, ts); 581 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); 582 total_sleep_time = timespec_add_safe(total_sleep_time, ts); 583 } 584 update_xtime_cache(0); 585 /* re-base the last cycle value */ 586 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); 587 timekeeper.ntp_error = 0; 588 timekeeping_suspended = 0; 589 write_sequnlock_irqrestore(&xtime_lock, flags); 590 591 touch_softlockup_watchdog(); 592 593 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 594 595 /* Resume hrtimers */ 596 hres_timers_resume(); 597 598 return 0; 599 } 600 601 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) 602 { 603 unsigned long flags; 604 605 read_persistent_clock(&timekeeping_suspend_time); 606 607 write_seqlock_irqsave(&xtime_lock, flags); 608 timekeeping_forward_now(); 609 timekeeping_suspended = 1; 610 write_sequnlock_irqrestore(&xtime_lock, flags); 611 612 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 613 614 return 0; 615 } 616 617 /* sysfs resume/suspend bits for timekeeping */ 618 static struct sysdev_class timekeeping_sysclass = { 619 .name = "timekeeping", 620 .resume = timekeeping_resume, 621 .suspend = timekeeping_suspend, 622 }; 623 624 static struct sys_device device_timer = { 625 .id = 0, 626 .cls = &timekeeping_sysclass, 627 }; 628 629 static int __init timekeeping_init_device(void) 630 { 631 int error = sysdev_class_register(&timekeeping_sysclass); 632 if (!error) 633 error = sysdev_register(&device_timer); 634 return error; 635 } 636 637 device_initcall(timekeeping_init_device); 638 639 /* 640 * If the error is already larger, we look ahead even further 641 * to compensate for late or lost adjustments. 642 */ 643 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, 644 s64 *offset) 645 { 646 s64 tick_error, i; 647 u32 look_ahead, adj; 648 s32 error2, mult; 649 650 /* 651 * Use the current error value to determine how much to look ahead. 652 * The larger the error the slower we adjust for it to avoid problems 653 * with losing too many ticks, otherwise we would overadjust and 654 * produce an even larger error. The smaller the adjustment the 655 * faster we try to adjust for it, as lost ticks can do less harm 656 * here. This is tuned so that an error of about 1 msec is adjusted 657 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 658 */ 659 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 660 error2 = abs(error2); 661 for (look_ahead = 0; error2 > 0; look_ahead++) 662 error2 >>= 2; 663 664 /* 665 * Now calculate the error in (1 << look_ahead) ticks, but first 666 * remove the single look ahead already included in the error. 667 */ 668 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); 669 tick_error -= timekeeper.xtime_interval >> 1; 670 error = ((error - tick_error) >> look_ahead) + tick_error; 671 672 /* Finally calculate the adjustment shift value. */ 673 i = *interval; 674 mult = 1; 675 if (error < 0) { 676 error = -error; 677 *interval = -*interval; 678 *offset = -*offset; 679 mult = -1; 680 } 681 for (adj = 0; error > i; adj++) 682 error >>= 1; 683 684 *interval <<= adj; 685 *offset <<= adj; 686 return mult << adj; 687 } 688 689 /* 690 * Adjust the multiplier to reduce the error value, 691 * this is optimized for the most common adjustments of -1,0,1, 692 * for other values we can do a bit more work. 693 */ 694 static void timekeeping_adjust(s64 offset) 695 { 696 s64 error, interval = timekeeper.cycle_interval; 697 int adj; 698 699 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 700 if (error > interval) { 701 error >>= 2; 702 if (likely(error <= interval)) 703 adj = 1; 704 else 705 adj = timekeeping_bigadjust(error, &interval, &offset); 706 } else if (error < -interval) { 707 error >>= 2; 708 if (likely(error >= -interval)) { 709 adj = -1; 710 interval = -interval; 711 offset = -offset; 712 } else 713 adj = timekeeping_bigadjust(error, &interval, &offset); 714 } else 715 return; 716 717 timekeeper.mult += adj; 718 timekeeper.xtime_interval += interval; 719 timekeeper.xtime_nsec -= offset; 720 timekeeper.ntp_error -= (interval - offset) << 721 timekeeper.ntp_error_shift; 722 } 723 724 /** 725 * update_wall_time - Uses the current clocksource to increment the wall time 726 * 727 * Called from the timer interrupt, must hold a write on xtime_lock. 728 */ 729 void update_wall_time(void) 730 { 731 struct clocksource *clock; 732 cycle_t offset; 733 u64 nsecs; 734 735 /* Make sure we're fully resumed: */ 736 if (unlikely(timekeeping_suspended)) 737 return; 738 739 clock = timekeeper.clock; 740 #ifdef CONFIG_GENERIC_TIME 741 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 742 #else 743 offset = timekeeper.cycle_interval; 744 #endif 745 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; 746 747 /* normally this loop will run just once, however in the 748 * case of lost or late ticks, it will accumulate correctly. 749 */ 750 while (offset >= timekeeper.cycle_interval) { 751 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; 752 753 /* accumulate one interval */ 754 offset -= timekeeper.cycle_interval; 755 clock->cycle_last += timekeeper.cycle_interval; 756 757 timekeeper.xtime_nsec += timekeeper.xtime_interval; 758 if (timekeeper.xtime_nsec >= nsecps) { 759 timekeeper.xtime_nsec -= nsecps; 760 xtime.tv_sec++; 761 second_overflow(); 762 } 763 764 raw_time.tv_nsec += timekeeper.raw_interval; 765 if (raw_time.tv_nsec >= NSEC_PER_SEC) { 766 raw_time.tv_nsec -= NSEC_PER_SEC; 767 raw_time.tv_sec++; 768 } 769 770 /* accumulate error between NTP and clock interval */ 771 timekeeper.ntp_error += tick_length; 772 timekeeper.ntp_error -= timekeeper.xtime_interval << 773 timekeeper.ntp_error_shift; 774 } 775 776 /* correct the clock when NTP error is too big */ 777 timekeeping_adjust(offset); 778 779 /* 780 * Since in the loop above, we accumulate any amount of time 781 * in xtime_nsec over a second into xtime.tv_sec, its possible for 782 * xtime_nsec to be fairly small after the loop. Further, if we're 783 * slightly speeding the clocksource up in timekeeping_adjust(), 784 * its possible the required corrective factor to xtime_nsec could 785 * cause it to underflow. 786 * 787 * Now, we cannot simply roll the accumulated second back, since 788 * the NTP subsystem has been notified via second_overflow. So 789 * instead we push xtime_nsec forward by the amount we underflowed, 790 * and add that amount into the error. 791 * 792 * We'll correct this error next time through this function, when 793 * xtime_nsec is not as small. 794 */ 795 if (unlikely((s64)timekeeper.xtime_nsec < 0)) { 796 s64 neg = -(s64)timekeeper.xtime_nsec; 797 timekeeper.xtime_nsec = 0; 798 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; 799 } 800 801 /* store full nanoseconds into xtime after rounding it up and 802 * add the remainder to the error difference. 803 */ 804 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; 805 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; 806 timekeeper.ntp_error += timekeeper.xtime_nsec << 807 timekeeper.ntp_error_shift; 808 809 nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); 810 update_xtime_cache(nsecs); 811 812 /* check to see if there is a new clocksource to use */ 813 update_vsyscall(&xtime, timekeeper.clock); 814 } 815 816 /** 817 * getboottime - Return the real time of system boot. 818 * @ts: pointer to the timespec to be set 819 * 820 * Returns the time of day in a timespec. 821 * 822 * This is based on the wall_to_monotonic offset and the total suspend 823 * time. Calls to settimeofday will affect the value returned (which 824 * basically means that however wrong your real time clock is at boot time, 825 * you get the right time here). 826 */ 827 void getboottime(struct timespec *ts) 828 { 829 struct timespec boottime = { 830 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, 831 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec 832 }; 833 834 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 835 } 836 837 /** 838 * monotonic_to_bootbased - Convert the monotonic time to boot based. 839 * @ts: pointer to the timespec to be converted 840 */ 841 void monotonic_to_bootbased(struct timespec *ts) 842 { 843 *ts = timespec_add_safe(*ts, total_sleep_time); 844 } 845 846 unsigned long get_seconds(void) 847 { 848 return xtime_cache.tv_sec; 849 } 850 EXPORT_SYMBOL(get_seconds); 851 852 struct timespec __current_kernel_time(void) 853 { 854 return xtime_cache; 855 } 856 857 struct timespec current_kernel_time(void) 858 { 859 struct timespec now; 860 unsigned long seq; 861 862 do { 863 seq = read_seqbegin(&xtime_lock); 864 865 now = xtime_cache; 866 } while (read_seqretry(&xtime_lock, seq)); 867 868 return now; 869 } 870 EXPORT_SYMBOL(current_kernel_time); 871 872 struct timespec get_monotonic_coarse(void) 873 { 874 struct timespec now, mono; 875 unsigned long seq; 876 877 do { 878 seq = read_seqbegin(&xtime_lock); 879 880 now = xtime_cache; 881 mono = wall_to_monotonic; 882 } while (read_seqretry(&xtime_lock, seq)); 883 884 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 885 now.tv_nsec + mono.tv_nsec); 886 return now; 887 } 888